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ABSTRACT. This paper contains a game-theoretic model describing the
behaviour of investors at a stock exchange.

The model presented is developed to reflect the actual market microstruc-
ture.

The players constitute a non-uniform continuum, differing, among others,
by the planning horizon, the external flow of money which can be invested, for-
mation of expectations about future prices, which, briefly, divides the investors
into the following groups: fundamental analysts, chartist, users of various econo-
metric models, users of Capital Asset Pricing Model, and players observing a
random exogenous signal.

Prices are determined by orders and the equilibrating mechanism of the
stock exchange. The mechanism presented is the actual single-price auction
system used, among others, at Warsaw Stock Exchange.

One of the main issues are self-verifying beliefs.

Results of numerical simulations of stock exchange based on the model are
also included.
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1. INTRODUCTION

The stock exchange, starting from a place where buyers and sellers could face each
other and even negotiate prices, evolved to a place, also in the virtual meaning, in
which anonymous masses of investors buy or sell at prices dictated by the equilibrating
mechanism. During this process of evolution, as the anonymity increased, various
models predicting future prices were developed, among others: fundamental analysis,
technical analysis, various econometric models and the Capital Asset Pricing model.

In this paper the author tries to present a model of stock exchange reflecting its
actual microstructure. In this model each single player has a negligible impact on
the aggregated values, such as the market demand and supply, and their functions,
including the market price. Nevertheless, prices are determined by the equilibrating
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mechanism of the stock exchange using only players’ orders. Each player has strategies
depending on information about past prices and values of other available variables
filtered by the prognostic technique inherent to his type of forming expectations.
Such games, called games with distorted information were formally introduced by
the author in Wiszniewska-Matyszkiel [42] and developed in Wiszniewska-Matyszkiel
[43] in the form more applicable for modelling financial markets.

In order to make the model realistic an actual market mechanism of a real stock ex-
change was implemented — it is single-price auction system taken from Warsaw Stock
Exchange (WSE) but similar mechanisms are used at many stock exchanges. Actual
formation of prices is, as in the real life, fully deterministic: prices are determined by
orders and the equilibrating mechanism of the stock exchange.

The model considered in this paper continues the research contained in Wiszniewska-
Matyszkiel [40].

A continuum of players is used in order to model a "mature” stock exchange: there
are many agents, each of them insignificant. Each single player is conscious that his
order cannot affect prices and this reflects real situations. On the other hand, prices
are effect of agents’ orders.

Depending on sizes of types, even very abstract beliefs can become self-verifying
at least to some extent. In the paper there are examples of such self-verifying beliefs:
some of fundamental nature, technical signals of changes of trends and an absolutely
abstract formation of cat. This formation has not existed by now and empirical data
does not confirm it. It is explained in a quasi-psychological way which is frequently
used by authors of textbooks on technical analysis. Moreover, this formation, if it was
popularized among investors, would become self-verifying. This "cat” is an example
of self-verifying character of some techniques of foreseeing future prices.

The paper starts by a short description of some models of price formation (sub-
section 1.2).

The model is formulated in section 2.

We state some results about equilibria in section 3; those concerning threshold
prices and weak dominance in subgames with distorted information are in subsection
3.2. In section 4 we examine the issue of self-verification of various prognostic ap-
proaches. Some of them are self-verifying when used by a strong group of players (but
not the whole population), e.g. players using fundamental analysis cause fast con-
vergence to a price close to the fundamental value of a share (subsection 4.1), while
some others are self-falsifying (subsection 4.2). The results of numerical simulations
are in section 5.

1.1. Games with a continuum of players. Models with continuum of players
were first introduced by Aumann [3| and [2] and Vind [26] to model competitive
markets. By then it was very difficult to model insignificance of each single player.
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Games with continuum of players was formally defined by Schmeidler [21], and
afterwards the general theory of such games was extensively studied in, among others,
Mas-Colell [17], Balder [5], Wieczorek [27] and [28], Wieczorek and Wiszniewska [29]
or Wiszniewska-Matyszkiel [31]. Dynamic games with continuum of players are quite
new (some examples of applications of such games are Karatzas, Shubik and Sudderth
[8], Wiszniewska-Matyszkiel [30] and [32], [41], and general theory of such games in
Wiszniewska-Matyszkiel [33], [34], and [36]). An interesting issue is the problem
of convergence of parameters of equilibria in finitely-many-players counterparts of a
dynamic game with a continuum of players to the parameters of equilibria in this
game — see Wiszniewska-Matyszkiel [38] and [37].

1.2. Some models of prices of shares. In this subsection we shortly present
some models and techniques used for foreseeing future prices of shares.

Fundamental analysis. The fundamental analysis approach is based on cal-
culation of the "actual” value of a share, called its fundamental value. The most
obvious definition is a discounted value of the infinite series of expected future div-
idends. Given the interest rate r and the sequence of expected (at time () divi-
dends of company 1, {Ag}tzto’toﬂw, the fundamental value at time to equals F;(ty) =

D et (ﬁ)t_to At. However, at WSE most companies do not pay dividends. In such
a case the fundamental value of a share should reflect the fraction of the value of the
company corresponding to this share.

Investors using fundamental analysis assume that the price should be close to the
fundamental value and any distortion is caused by speculations and it can prevail only
in a short period — the prices on the stock exchange should reflect the fundamental

value.

Technical analysis. The basic assumption of technical analysis is opposite to
that of fundamental analysis: the prices move in trends. The real processes in the
economy are perceived as secondary to the behaviour of prices and volumes of shares
in the past. Technical analysts explain this counterintuitive assumption by saying
that prices of shares contain information of future state of the economy, even this
which is not explicitly known to the investors (e.g. Pring [19]).

The explanations are based on various sociological, psychological and economic
terms, but in fact, technical analysis reduces to analysis of past prices and volumes.
Formerly it was mainly analysis of charts, therefore its users are called chartists.

Although it is usually disregarded by scientists, it is taught at many departments
of economic sciences and it is now the most popular way of predicting prices by private
investors at WSE. Therefore it may really influence the prices (as it is described in
the paper).
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Probabilistic models. In this subsection we can describe various models with
one common feature: all of them treat prices of shares as a realization of a stochastic
process.

Portfolio analysis and Capital Assets Pricing Model (CAPM). Portfolio
analysis, started by Markowitz ([13] and [15], see also [14] and [16]), was first a
normative theory of investment in risky assets. It reduced the problem to an analysis
of the mean and variance of the asset return.

It was converted into a description of the behaviour of investors by Lintner [12],
Mossin [18], Sharpe [23], and Fama (e.g. [6]) and is known as CAPM (Capital Asset
Pricing Model).

The parameters of the model (mean and the covariance matrix, and, consequently,
so called 3 coefficients) are estimated on the basis on empirical data taken from the
stock exchange.

According to this model, at equilibrium the price of an asset ¢ should be such
that the expected return fulfils the equation R; = r + 3; - (Ry — r), where R; is the
expected return of asset i, (; its (-coefficient, r — the interest rate of the risk free asset
and Rj; the expected return from the market portfolio (usually the stock exchange
index).

This model is static, but after a slight modification it can be applied for predicting
prices at a stock exchange.

Econometric models. This wide genre of models encompasses all prognostic
methods based on data analysis using various econometric techniques, starting from
the simplest — linear regression. In such models, we can consider dependence on past
prices and volumes, day of the week, or some external data.

Pricing of derivative securities. A model of price formation on a stock ex-
change is necessary not only for "usual” investors trying to make money on buying and
selling shares, but also for financial institutions selling derivative securities based on
assets sold at the stock exchange. Pricing of derivative securities requires knowledge
about the form of the equation describing future prices.

It is usually a stochastic differential equation. In the model of Black and Scholes
[4] it is dP(t) = P(t) (b(t)dt + o(t)dW (t)), where W is a standard Wiener process.
See also Karatzas [7] for an extensive description of the theory of pricing of derivatives.

Beside the prices of derivatives, the hedging strategies depend on the equation
describing the evolution of prices of shares.

We are not going to model such investors, mainly because their strategies of buying
or selling shares depend on the contract they want to hedge, which is exogenous to
the model considered.
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No model. There are also investors who do not form expectations about prices.
They either choose a strategy from some simple investors manuals (e.g. constant
sum, constant relation or constat reaction), and believing that they turn out to be
fruitful, or decide at random by opening the bible or visiting a fortune teller. Both
kinds of players may turn out to be successful. However, the first type cannot be
nontrivially modelled by a game-theoretic model, since their strategies are fixed and
no optimization takes place. The latter type can be encompassed by our model of a
stock exchange. Moreover, they can improve the operation of the stock exchange.

Previous models of stock exchange based on optimization of indepen-
dent agents. The model presented in this paper, as well as the earlier authors
papers on financial markets [35] and [40], are not the first models, considering a mi-
croeconomic approach to the behaviour of the players. The main issue in agent-based
models was the influence of players expectations about price behaviour on actual
prices. There were so called models of artificial stock exchange, in which players
tended to maximize their payoffs given some expectations. One of them was the
model and a computer simulation programme called Santa Fe Artificial Stock Mar-
ket. In this models there is a share with a stochastic dividend and a risk free asset.
Player estimate the expected value of future dividends. A market clearing condition
was added. Players adjust their expectations during the game. See e.g. Arthur et al.
|1], LeBaron |9] and [10] or LeBaron, Arthur and Palmer [11] for more details.

2. FORMULATION OF THE MODEL

In this section we formulate the game theoretic model of a stock exchange.

A game & is defined by specifying the set of players, the sets of players strategies
and the payoff functions.

Here we consider a dynamic game, therefore the strategy specifies choices of de-
cistons at every time instant during the game and the response of the whole system
to these decisions.

The first object to define is the set of players. We consider a model of a mature
stock exchange, i.e. such that a single player has a negligible impact on prices — the
set of players is the unit interval Q0 = [0, 1] with the Lebesgue measure \.

In our model of stock exchange we consider n + 2 types of assets. Firstly, there
are shares of n companies sold at the stock exchange. Shares in our model are not
assumed to pay any dividends. Secondly, there is a risk free but not fully liquid asset
of positive interest rate r, for simplicity called bonds. And finally, money, which are
risk free and liquid but of interest rate 0.

The game is dynamic, it starts at ¢y — initial time and terminates at +oo, but
each player has his own terminal time T,, < 400, identical for players of the same
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type. We shall denote the set of possible time instants {tg,to+ 1,...} by T, while
the symbol T,, denotes {to,to +1,...,T,, + 1} if T, is finite, T otherwise.

The set of possible stock prices P is a discrete subset of R, \{0}.

There are some restrictions on prices — at time ¢ it should be in the interval
[(1—=h) -pt—1),(1+h)--pt—1)], where h > 0 denotes the maximal rate of
variability.

Beside the money earned at the stock exchange, the players can invest money
from an external flow of capital (or be forced to withdraw some money). For player
w it will be represented by a function M, : T — R.

The players have to pay a commission for any transaction, but they do not have to
pay additional commission for orders. For simplicity of calculations we shall assume
a constant commission rate C' << 1. The same commission is also paid for buying
or selling bonds.

Portfolio of a player, denoted by z, is an n+2-tuple with coordinates corresponding
to shares of n companies, bonds and money. Therefore x € R’fr?.

At the beginning of the game player w is assigned an initial portfolio zv.

Players’ decisions at each time instant consists of: an order to sell S — a pair
(p%,¢%) € P* x RZ, two orders to buy BM — a pair (pPM,¢®M) € P" x R" ("buy for
money”) and BB — a pair (pP7,¢%P) € P" x R" ("buy for bonds”), and the part of
value non invested in shares which is hold in cash: e. In each case p- denotes the vector
of price limits for all shares, ¢ — the vector of amounts. Price limits (coordinates of
p’) are in P, amounts are nonnegative, and the ratio of liquid money e € [0, 1].

Besides the general form of the orders we want to be able to illustrate the fact,
that some players do not invest in some kind of companies, some players never keep
cash or that some players never keep bonds. Therefore the set of decisions of player
w — D, is a subset of the set D = {(BM, BB,S,e) : BM,BB,S € P* x R%, e € [0, 1]}
These sets D, have the form D, = (P™ x Fw)3 x F,, where I', C R" is a product of
real semilines starting from 0 and singletons {0}.

We also have to define the notion of physical admissibility of a decision, depending
on the portfolio. The symbol D, (z¥) C D, will denote the set of decisions of player
w available at his portfolio x*. It is defined by the constraints
St (14 C) - pPM . gPM < a% , (where 2%, , denotes money; this reads as "a player
cannot pay more money than he possesses”), > 0 (14 C) - pPM . ¢PM < (1—C)a
(where 2, | denotes value of bonds) and ¢ < 2% (i.e. shortselling is forbidden) for
each sharet=1,...,n.

If v = {2“} ., represent a family of portfolios of the players, then any measurable
function ¢ : © — I such that for every w d(w) € D, (a¥) is called a static profile
available at x. The set of all static profiles available at x will be denoted by X(z),
while Y will denote the set of all static profiles.
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A static profile together with the past price determines the market price as ex-
plained below.

Aggregated demand, aggregated supply and the market mechanism

Let us consider the market for shares of company ¢ at a fixed time instant ¢ and
players porfolios z. Given a static profile available at x
(M (w), "M (W), PP (W), ¢"F (W), (°(w), ¢°(w)), e(w)), the market supply of share
1 AS; : P — R, is equal to

ASl(pZ) = / qf(w)lpf(w)gpid)‘(w)7
Q

while the market demand for share i AD; : P — R, is equal to

AD;(p:) =/qz-BM(W)'1pFM(w)>pi+qz~BB(W)-1p?3(w>>pidk(w)>
Q

where 1..,4ition 18 €qual to 1 when the condition is fulfilled and 0 otherwise.

In order to calculate the market price fo share ¢, the market mechanism considered
in the paper first returns returns the price maximizing a lexicographic order with
criteria, starting from the most important:

1. mazimizing volume i.e. the function min(AD;(p;), AS;(p:));

2. minimizing disequilibrium i.e. the function|AD;(p;) — AS;(pi);

3. minimizing the number of shares in selling orders with price limait less then the
market price and buying orders with price limits higher than the market price;

4. minimizing the absolute value of the difference between the calculated price and
the reference price i.e. |p; — pi(t — 1)|.

The result is projected on the set [(1 —h) -p(t — 1), (1 +h)-p(t —1)] NP and it
constitutes the market price p;(t).

A similar procedure is used at WSE (see [20]). The differences are caused by
obvious mistakes and inconsistencies of the regulations of WSE. The problem of these
imperfections was studied in Wiszniewska-Matyszkiel [39].

Evolution of portfolios, strategies, and dynamic profiles

The portfolio of player w at time ¢ is denoted by X“(¢). If player w chooses at
time ¢t a decision (BM, BB, S, e) € D, (X“(t)) and the price at time ¢ is p(¢), then:

Xp(t4+1) = X2 (0 + a7 Lpparspn + @77 - Lppospi = @ - Lps<pe for t > to,
1=1,...,n,

X;:—&-l(t +1)=(1+7): (erﬂ(t) - Z?:l % ) quB 'szB ) 1p?32pi(t)+
+11+;é ' <Xﬁ+2(t) — i ((1 +C) g™ pPM Logaisp
- (1 - C) ’ q;S' p;S‘ ' 1pf§pi(t)>>7
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Xio(t+1) = My(t+1) +e- <X7L:+2(t) =i ((1 +0) - g pPM Lpsrisp, )=

A strategy of player w is a function defining choices of decisions at all time instants
— it is a function A, : T — D, with A,(t) € D,(X%(t)), where X*“ denotes the
trajectory of portfolio of player w, which is defined by the above evolution equation
with the initial condition X“(ty) = z*. The set of strategies of player w will be
denoted by G&.

If for a choice of players’ strategies A = {A,} ., for every ¢ the function w —
A, (t) is measurable, then A is called a dynamic profile. The trajectory corresponding
to A will be denoted by X* and the sequence of market prices p. The set of all
dynamic profiles will be denoted by X.

Players’ payoffs and expected payoffs

If T, is finite, then the payoff of a player, given his strategies and a sequence of

market prices along the profile is defined in the obvious way as the present value of

the portfolio at time T, + 1, V(r‘?l’j::)i i(fpj;jl)), where V : T, x R’}fz — R denotes

any function representing the value of the portfolio. Here we consider V(t,x) =
Tn+1 + Tp+2 + Z?:l pz(t) * Ty
Elementary calculations show that the payoff can be equivalently expressed as
tT;’tO V(Hl’xw(t;{i)g):ﬂffg V(tX" (1) , since subtracting a constant does not change choices
of the players. This definition of payoff can be obviously extended to T, = 400 if the
sum is well defined — it can attain infinite values.
Formally, the payoff function of player w I, : ¥ — R defined by II,(A) =

L V(HL(XA) T (1) — (1) V(5 (X2) 7 (1) n
tT:to ) (1+r)F =% (%) for V(t,2) = 2y + Tppo + Zi:l pi(t) - .

This ends the definition of our "actual” game &.

As in the context of more general games with distorted information, defined in
Wiszniewska-Matyszkiel [42] and [43], we can also define the ezpected payoff of player
w at time ¢ given his belief correspondence based on his observation of the history of
the game. It represents the supremum over future decisions of player w of his payoff
assuming the belief correspondence - the player assumes that in future he is going to
behave optimally and considers his guaranteed payoff — the payoff corresponding to
the worst future history of the system in his belief correspondence. In this paper, in
order to avoid a complicated notation, we shall incorporate the belief correspondence
into the expected payoff function.

While analyzing decision making processes of stock exchange investors we have to
take into account what information they can use during the decision process. This
information is used to estimate the behaviour of future prices of underlying assets,
and, consequently, players expected payoffs.

In order to build a model we have to formalize all descriptions of formation of
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expectations. When this issue is concerned, we shall consider five general types of
players: fundamental, technical, econometric, portfolio and stochastic, and the first
letter will be used as a type index k. The symbol k(w) denotes the type of formation
of expectations of player w.

We shall define the ezpected utility function of players of type k U* : I, x P x Dy, —
R, where I, is a specific form of processed information used by type k. The form of this
function depends on type since the form and interpretation of information changes.
The information used by type k£ during the game constitutes a function [, : X xT —I
such that I(A,t) is independent of A.(s) for s > t. The specific form of information,
general constraints on the strategy sets and the expected payoff functions for five
types of formation of expectation are as follows.

1. Fundamental players. Their information is a vector of fundamental values of n
shares — f € R"}, which is not based on prices of share. They are the kind of players
waiting for results in a long time horizon, therefore they do not keep liquid money
— they invest only in bonds and shares i.e. e = 0 (a constraint on their available
decisions’ set ). The expected payoff is defined by
Ul (fap> (BM>BB>S>€)) = 12: <(f1 —Di- (1 + 0)2) ) qZBB ’ 1p?32pi+
+ (fi — i) 'QZBM : lprzpi - (fi —pi-(1— 0)2) 'qz's ’ ]'p;gfpi)'

The first part corresponds to buying-for-bonds order, therefore the commission
is paid twice, the second is buying-for-money, therefore no commission is subtracted
— otherwise fundamental players will also have to pay it in order to buy bonds, in
the selling order commission is paid twice again since fundamental players will have
to buy bonds for money: in this case for each share we get profit (compared to the
fundamental value) p; —C-p;— C ((1 — C)p;) — f; which equals — (f; — p; - (1 — 0)2).
This explains the general rule of defining payoffs — the expected payoff of each order
is the difference between this order and ”doing nothing” with interpretation specific
to this type.

Similarly we define the remaining payoffs.

2. Technical players. They use some techniques of technical analysis, based on
past prices and volumes. Their information in our model will be represented as the
vector Ap € R" of expected changes of price (of n shares) of minimal absolute value.
Technical players look for short period trends, therefore in our model they do not
invest in bonds (they want to have liquid money to react at once since selling bonds
is costly), which is represented by e = 1.

Ut (Ap,p,(BM,BB,S,¢e)) =

= >, (pit—=1)+Api—pi-(1+0C))- <QZBM lppus,, + /" - ]'PiBBzPi> +

— (it =1 +Api—pi- (1=0)) - ¢ - 154,
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3. Econometric players. We do not assume that a considerable portion of stock
exchange investors have economic or mathematical education sufficient to build an
econometric model. This type of players use a ready programme using an econometric
model, and they do not reestimate it during the game. The programme predicts prices
P(t + j) for 7 periods with declared accuracy w. Econmetric players in this model
treat w as the number that has to be subtracted from the estimated future price when
they consider a buying order and added to the estimated price when they consider
a selling order. Their information is a vector of maximal discounted prices for the

prognosis period p; = max;_; }(Di(t“). As fundamental players they do not keep

liquid money — they invest only in bonds and shares: e = 0.
Ue (ﬁvpa (BM7 BBa S, 6)) =

= 5 (Bimw—p (140 g Loyt

+(@_w_pi)'QiBM'1przpi_ (@‘f‘w_pz”(l_C)Q) 'Q{g'lpfgpi)

4. Portfolio players. They know models of portfolio analysis, including CAPM and
they try to use it for predicting prices. The problem is that in CAPM the distribution
of future price is known, especially the expected return R;. In our model the players
know the variance of returns as well [-coefficient for all shares, and consequently,
the vector of expected returns according to CAPM, denoted by p. At each stage
of the game they calculate the average return for last [ periods R; for each share
(which constitute their information R) and compare it with p;. As fundamental and
econometric players they do not keep liquid money — they invest only in bonds and
shares: e = 0.

U? (R,p,(BM,BB, S, ¢)) =

=\ 2
= = (R Bl =1 = pi- 04O = pins) - 0P Lyt
+ <(1 + Rz’>2pi(t - 1) —Di — Pz'pi) .qu : 1piB]szi +

- ((1 + Ri)zpi(t —1)—pi-(1— 0)2 — pl-pl) g 1p§§pi>'

5. Stochastic players. In our model it will be a type describing all kinds of fortune-
tellers clients. Stochastic players obtain only clear signals (buying +1, selling —1 or
no signal 0) which are realization of some random variables. These random variables
in common constitute a Young measure (see e.g. Valadier [25]), which implies that
the set of players obtaining the same signal at each time instant is measurable.

We do not assume that the signals observed by various stochastic players are
independent. We only assume that the measures of sets of players obtaining buying
and selling signals are positive with probability 1 and with high probability detached
from 0 and that signals obtained in different time instants are independent. Their
information is the signal s they obtained. As technical players, they do not invest in
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bonds: e = 1. For simplicity each type of stochastic players will invest in only one
company.

Us (s,p,(BM,BB,S,¢)) =
= Z (2h8pz(t_1)_0pl> (quM']-p.BM>pi+q'£BB.1p.BB>pi _q;glps<pz)

i=1,..,n b T '

For a profile A we introduce the symbol &£ for the game with the same set
of players, players strategy sets D, ((XA)W (t)), and payoff functions II,(p,d) =
U’“(w)(fk(w)(A, t),p,d). This game is called subgame with distorted information of our
game &.

3. REsULTS
Here we present two concepts of equilibria with applications to our model.

3.1. Nash equilibria and belief-distorted Nash equilibria. The basic con-
cept of game theory is Nash equilibrium.

Definition 1. A profile A is a Nash equilibrium if for a.e. w € €, for every profile
A such that A(v) = A(v) for v # w we have T1,(A) > TI,(A).

However, all Nash equilibria in our game are not very interesting and they are far
from reality — at a Nash equilibrium the stock exchange cannot operate.

Theorem 1. Consider a game in which players have identical available strategy sets
and T,,. If C' > 0 and the maximal payoff that can be attained by the players during
the game is finite, then at every Nash equilibrium for ¢ € {1,...,n} and every t € T
the volume is 0.

If, moreover, esssup,eq 5 (>0 P (W, 1), essinfcq s (w0 P (W, 1) and
eSSSUD,eq 47 (w)>0 Pi - (W, ) are in the interval [(1 — h) - pi(t — 1), (1 +h) - pi(t — 1)]
then
€SSSUP,,e, ¢BM (4 1) >0 pPM(w t) < essinf e ¢s (w150 p?(w,t) and
ESSSUD,c0 4B ()50 Pi - (Wi 1) < essinfeq o5 (=0 1F (W, 1)

Proof. Let us consider a Nash equilibrium profile with a trajectory of prices p.

Let us assume that at time ¢ player w sells a positive amount ¢ (w,t) (i.e. he
has pf(w,t) < pi(t)) while player v buys ¢?M(v,t) > 0 for money (i.e. he has
PEM(1,0) > pi(t)).

First let us show that at equilibrium it is impossible that a player (outside a set
of measure 0) both buys and sells shares at the same time instant, i.e. that such a
situation is impossible for v = w.

Let us assume the converse and let us denote by g the minimum of ¢®(w,t) and
¢ (w,t). If player w decreases both ¢?M (w,t) and ¢7(w,t) by g, then he increases his



STOCK MARKET AS A DYNAMIC GAME WITH CONTINUUM OF PLAYERS 12

instantaneous payoff at time ¢ by ¢- (14+C) -p;i(t) —q- (1 —=C) -pi(t) = 2-C - p;(t) > 0.
At equilibrium the set of players who do not maximize their payoffs is of measure 0.

Now let consider two players w and v. Now let us consider a change of strategy of
player w such that instead of selling share 7 at time ¢, he repeats the palt of strategy

of player v resulting from buying it, multiplied by a coefficient § = %A(;‘(’;))

to precise what we mean, we "label” the money obtained from selling it by player v,
bonds or shares bought for this money and so on, recursively. This labelling does
not have to be unique, but it exists. The part of payoff of player v resulting from

the labelled transactions (discounted for ty), V,,, has to fulfill V,, > I”(l)ﬁ—;{%”, since
otherwise it is better for player v not to buy share ¢ but stay with money (if it is
available in his strategy set) or buy bonds instead.

Now let us explain what we mean by repeating the labelled part of strategy of
player v by player w. Let us consider the orders for any share j. At time t we change
only ¢’ (w,t) to 0.

For any time s > t for which pJ(v,s) > p;(s), pP (v, s) < p;(s) or pPP(v,s) <
p;(s) we do not change the corresponding orders for share j.

Otherwise, we have the following situations.

1. The price limit in the selling order fulfils p7 (v, s) < p;(s). Let ¢’ denote the
labelled part of ¢7 (v, s).

If pf(w, s) < pj(s), then we Change only 4 S(w,s) to g5 (w, s) + ¢ - ¢. Otherwise,
we change p3(w, s) to p;(s) and ¢ (w,s) to ¢ - ¢.

2. The price limit in the BM order fulfils pf*(v,s) > p;(s). Let ¢’ denote the
labelled part of ¢ (v, s).

It pPM(w, s) > p;(s ) then we change only ¢/ (w, s) to ¢P"(w, s)+¢-g. Otherwise,
we change pP"(w, s) to p;(s) and g/ M(w,s) to ¢ - q.

3. The price limit fulfils p (V s) > pj(s). Let ¢ denote the labelled part of
q; (v, 5).

prfB(w, s) < pj(s), then we Change only ¢P8(w, s) to quB(w, s)+¢'-q. Otherwise,
we change pPP(w, s) to p;(s) and ¢PP(w, s) to q - q.

The payoff of player w increases by V,,-q@ but decreases by the payoff corresponding
to the the part of strategy resulting from selling share ¢ at time ¢ discounted for %,
V.- (1—C), which we define analogously, by labelling the part of strategy of player w
resulting from the money obtained for share . Now we assume that player v, instead
of buying share ¢ for money at time t repeats the labelled transactions of player w,
multiplied by 1 7 analogously to the form we have defined for player w. By this he

In order

i

increases his payoff by % (without multiplying by (1 — C') since he does not have to
pay commission) but decreases it by V,. At equilibrium the set of players that can

improve their payoffs by changing their decision is of measure 0, therefore for a.e.
such w and v, we have both V,,-¢—V,, - (1 —C) < 0 and % —V, <0, which is
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impossible for C' € (0,1).
For ¢PP(w,t) > 0, the reasoning is analogous.
|

Since Nash equilibrium seems unrealistic in the context of a stock exchange, as in
Wiszniewska-Matyszkiel [42] and [43|, we introduce another concept of equilibrium,
taking the distorted information structure into account.

Definition 2. A profile A is a belief-distorted Nash equilibrium if for every t € T,
a.e. w € Q) and every d € D, ((X2)” (t)) we have UF®) (L) (A, 1), p2(t), Au(t)) >
UF) (Tywy (A, 1), p2(2), d).

Note that for a belief-distorted Nash equilibrium A, all static profiles A () are
Nash equilibria in &2, correspondingly.

Theorem 2. If C' > 0 and a.e. player w is of the same type of formation of expec-
tations, then at every belief-distorted Nash equilibrium for every t
the volume is 0.

If; moreover, essSUP,cq gBM (u,1)>0 pPM(w, 1), esSinf,cq ¢5 (w150 p?(w,t) and
CSSSUPq gB B (w,)>0 pBB(w,t) are in the interval [(1 — h) - p;(t — 1), (1 + h) - p;(t — 1)]
then
ESSSUD,,c0 g BM (u)>0 P (W, T) < essinfeq s, 1ys0 PF (W, t) and

BB ; S
esssupweﬂ,qu(w,t)>0 b; (w? t) < eSSlnwaQ,qf(w,t)>O p; (w? t)

Proof. After substituting the specific form of the expected utility function for
every type of formation of expectations it becomes an easy calculation.
|

In Wiszniewska-Matyszkiel [42] and [43] equivalence theorems were stated be-
tween Nash equilibria and belief-distorted Nash equilibria along the perfect foresight
path. In this paper a similar result can be proven. However, it requires an explicit
formulation of the belief correspondence, omitted here for concision.

3.2. Threshold prices and weak dominance. We start our investigation of
the model by defining a minimal profitable price in a selling order p_Sf(] ) given in-
formation I as well as maximal profitable price in both buying orders — pB—Mf(I ) for
"buying for money” and pBTBf (1) "buying for bonds”.

Definition 3. a) A price p_Sf(I ) is the threshold price for selling order for players of
type k at information I if for every strategy 6 with p? = p_SiC (I) and ¢ positive, and
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a strategy 0 differing from  only by p; and with p? < p_Sf(I) we have U* (I,p, 5) >
U* (I,p,0) for some p € P* and U* (I,p,8) > U*(1,p,6) for all p € P.

b) A price pB—Mf([ ) is the threshold price for buying for money order for players
of type k at information I if for every strategy 0 with pPM = pBM.(I) and ¢PM
positive, and a strategy d differing from 0 only by pPM and with pPM > pB—Mf(I ) we
have U* (I,p,8) > U*(I,p,6) for some p € P" and U* (I,p,8) > U*(1,p,d) for all
p e P

c¢) A price pB_Bf([ ) is the threshold price for buying for bonds order for players of
type k at information [ if for every strategy 6 with pPP = pBTBf (I) and ¢P? positive,
and a strategy & differing from & only by pPP and with pP? > prBf([) we have
Uk (I,p,g) > U* (I, p,6) for some p € P* and U* (I,p,g) > U* (I, p,6) for all p € P".

Now we shall calculate the threshold prices for all types of players, given their
information. In order to simplify the notation, we shall introduce two symbols: if a
is a nonnegative real then by succ(a) = min,ep >, p and by pred(a) = max,ep p<q D-

Proposition 3. Threshold prices given information of the form corresponding to the
type are as follows.

a) For fundamental players Ef( fi) = succ ((17]0—0)2> )
PBMY (f:) = pred (), BBB} (f;) = pred (s ).

b) For technical players pSi(si, Ap;, pi) = succ (p(TL Acf;l
pB—M?(Si? Api, pi) = pBTB?(fi) = pred (iﬂ%ﬁ)

¢) For stochastic players pS, (s, p;) = succ (

PBM; (s, 7i) = pBB; (s) = pred (pﬁ?g;)

ce
pBMi (pi) = pred (p; — w), pBB pi) = pred <Zf

d) For econometric players pS Di) =

\_/
\_/

_\2
. 1+R; i(t—1)
e) For portfolio players pS, (R;, ps(t — 1)) = succ % )

14+R:)pilt—1)

_ : - _ 1+R;) ps(t—1)
PBAT (R, pi(t—1)) = pred (<T),_ppBBi (B pr(t—1)) = pred (%)

Proof.
We shall state the proof for fundamental players. For the remaining players it is
analogous.
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First let us consider the part of the expected payoff corresponding to the selling
order for the i-th share — (f; — p; - (1 — 0)2) P 1,5y, for positive ¢’. It increases
with p? for p¥ < p; and is 0 for pf > p;. If we restrict our attention to comparing
decisions differing only by the price in this order, the remaining parts of the expected
payoff do not change.

This part is nonnegative if — (f1 —p;- (1= 0)2) >0, ie p; > (1f6)2. The

lowest price at which it is satisfied is succ ((1_f—0)2) Let us take a decision d with

p? = suce ((1_]0—10)2> and d differing from d only by p? < succ ((1—]6—10)2> If the actual

price p; > succ <(1_f—c)2>, then both orders will be admissible and for the decision d
the corresponding part of the expected payoff will be nonnegative, while for d it will

be negative. If the actu?l price p; < succ (1_f—’c)2 , then the corresponding part of
the expected payoff for d will be 0, while for d it will be nonpositive.

fi
(1—0)2>'
To get nonnegativity of the corresponding part of the expected payoff for BM
order we take f; — p; > 0, therefore the price limit will be pred (f;).

For BB order, analogously, we get pred (mf—lc)g .
|

Therefore the threshold price in selling order is p_Sfc( fi) = succ (

The notion of threshold price implies the following weak dominance results.

Proposition 4. Assume that at time instant t for a past realisation of a profile A
player w of type k has portfolio x* with nonzero x¢ and his information is I.

a) Ifﬁf([) € [(1—=h)-pi(t—=1),(1+h)-pi(t—1)], then every strategy such that
pi # p_Sf(I) or ¢ < ¥ is weakly dominated in &2.

b) pr_Sf([) < (1—h)-p;i(t—1), then every strategy such that p; > succ ((1 — h) - p;(t — 1))
or ¢7 < 1% is weakly dominated in &2.

Proof.

a) As while calculating the threshold prices, we compare strategies in &2 differing
only by the price and amount in the selling order for share i and the corresponding
part of the payoff function. In all cases the payoff is constructed such that this part
may be considered separately. Note that for a strategy d with pi = p_Sf([) and ¢7 >0
it is always nonnegative, while for any market price higher than p_Sf (I) it is strictly
positive .

For a strategy d differing only by p; with p7 > p_Sf(I) at the market price lower
than p;y the order will not be executed, therefore this part of the payoff will be 0
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(Iess than for d), while at the market price higher than p? payoffs for d and d will be
identical.

For a strategy d differing only by p7 with p{ < p_Sf(] ) at the market price greater
or equal to p7, the corresponding part of the payoff will be negative, while for d it is
nonnegative. At the market price less than p; the corresponding part of the payoff
for both strategies will be 0.

This completes the proof that not saying the threshold price in selling order is
weakly dominated.

Now we compare d with a strategy d such that py = p_Sf(I) and ¢@ < z¢. The
coefficient at ¢ is always nonnegative and at some prices positive, therefore the
maximum is obtained at the constraint ¢ = z¢.

b) An analogous reasoning holds for the threshold price below the lower variability
limit. Tt is the result of the fact that the market price must be at least (1—h)-p;(t—1).

|

The analogous fact for buying orders does not hold. One of the reasons is that
money or bonds can be used for buying all kinds of shares. Even if we assume that a
player invests only in shares of one company or its money and bonds are "labeled” in
the sense that the fraction of them that can be invested in shares of each company
is previously defined, such a fact will not hold. The reason is the constraint: saying
a lower price players can buy more shares, if the market price happens to be less or
equal to the price limit. However, we have to remember the fact that our order can
be not executable and we shall get nothing for this order. So we have to compare
two opposite effect: moderate increase of the payoff by increasing the amount and
considerable increase of risk of loosing sure profit. The profit from telling a lower price
grows with the difference, and it is the highest, when we say the lower variability limit
while our threshold price is equal to the upper variability limit. The threshold price
is equal to the upper limit of variability when we expect a considerable growth of
prices. In such a situation telling the least possible price is a nonsense, and rational
investors at a stock exchange surely do not behave this way. Therefore, from now on,
we add this assumption to the description of players’ strategies.

Definition 4. We say that the set of available strategies of player w is constrained
with respect to information I if pPM > pB—Mf(m(l) and pPP > pBTBf(M)(I).
Proposition 5. Assume that a time instant t given the past realisation of a profile
A player w of type k has information I.

a) If player’s portfolio x has positive z%_, and pB—Mf(I) € [(1=h)-pi(t—1), (14h)-
pi(t—1)] and i is the only share considered by w such that pB—Mf(I) > (1—-h)-p;(t—1),
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then each strategy of w with pPM + pBM, (I) or "M < % is weakly dominated

in &2 with the set of strategies of w constrained with respect to I.
b) If player’s portfolio 2% has positive x%, , and pBMf(I) > (1+h)-pi(t—1) and
i is the only share considered by w such that pBM?(I) > (1 —h)-pj(t—1), then

each strategy of w with pP* < pred ((1+ h) - pi(t — 1)) or ¢?M < % is weakly

dominated in 2 with the set of strategies of w constrained with respect to I.
c) If player’s portfolio x has positive z¥_ | and pBBf(I) e [(1=h)-pi(t—1),(1+h)-
pi(t—1)] and it is the only share considered by w such that pBBf(I) > (1—h)-p;(t—1),

then each strategy of w with pPB # pBBf(I) or gfP? < —(;;g()ii%)l

in &2 with the set of strategies of w constrained with respect to I.

d) If player’s portfolio x* has positive x%, | and pBBf(I) > (1+h)-pi(t—1) and
it is the only share considered by w such that pBB?(I) > (1 —h)-p;(t—1), then
(1-C)-zfy
piBB(HCJ'r)l
dominated in 2 with the set of strategies of w constrained with respect to I.

is weakly dominated

each strategy of w with pPP < pred ((1+ h) - p;(t — 1)) or ¢PP < is weakly

Proof.
Analogous to the proof of 4.
|

Proposition 6. Assume that a time instant t given the past realisation of a pro-
file A player w of type k investing only in share ¢ and having constant e has in-
formation I. If player’s w portfolio x* has positive z; , and x ,, the threshold

prices pBMf(I ) and pBBf(I ) are greater or equal to the lower limit of variability
and p_Sf(I ) is less or equal to the upper limit of variability, than the strategy of w

—k v ——k —C)a® —k . . .
((pBMi (1), p?#ﬁim)’ (pBB; (1), %5,3%—1:8), (pS; (1), z¥), e) is weakly dominant in

B2 with the set of strategies of w constrained with respect to I.

Proof.
As of proof 4.
|

4. IMPLICATIONS FOR PREDICTION
From now on we shall assume that players use only strategies consistent with their
information. We shall answer the question, what may happen if a strong (i.e. large
and having a considerable portion of assets) group of players uses the same prognostic
technique and they obtain the same information.
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We assume that there is at least a small group of stochastic players. The reason
is that in the case when all players have identical prognostic technique, the stock ex-
change cannot work — we need at least a small fraction of players having expectations
to some extent opposite than the majority.

4.1. Self-verifying beliefs. It is obvious from this model, but also from the real
life, that the beliefs can influence prices. In this context, the most interesting thing
to consider is the question, whether and to what extent the ways of predicting prices
can force the prices behave according to the beliefs — we have to match the abstract
“information” the players obtain with their interpretation of future prices.

Fundamental analysis. The simplest example of self-verifying beliefs is fun-
damental analysis. We shall consider a game starting at time ¢, with a vector of
reference prices p(to — 1). Assume that there is a strong group of fundamental play-
ers with identical {F;(¢)}, and assume that there is also a small group of stochas-
tic players investing in 4, possessing ¢ as well as bonds or money. Consider any
time instant ¢ such that reaching the fundamental value is theoretically possible, i.e.
Fi(t) € PO [(1 = R0 py(t — 1), (1 + h)=0 - py(t — 1))

First, we have to define what we understand by a strong group of players in &2
—a group that can dominate the market.

Definition 5. We call a set of players Q C ) strong in &2

a) inshare ¢ (fori=1,...,n)if [(1—h)-p;(t—1)- X¢(t)dA\(w) > fQ\Q Xe(t)-
(1-0C)+ X2 ,(t)d\w);

b) in bonds if f, X2, (£) (1= C)AN) = Sy fona(1h) pilt— 1) X2 (H)Aw);

¢) in money if [o X5 (H)dA(w) = 270, [oi(1+h) - pilt — 1) - X¢(t)dA(w);

d) in risk free assets [5 X2, (t) - (1 —C) + X2 ,(t)d\(w) > Y7, fQ\Q(l +h) -
pi(t —1) - X (t)dA\(w).

Definition 6. A set of players Q C Q is strong in asset(s) i if for every t < sup,cq T,
and every profile A the set Q) is strong in &2 in asset(s) i.

Proposition 7. Let Q be a set of fundamental players with identical Fi(t) and let
A be a belief distorted Nash equilibrium.

a) If Q is strong in i in &2, then p;(t) will not exceed max(p_SZ(Fi(t)), (1—nh)-
pi(t —1)).

b) IfQ is strong in money in &2, then p;(t) will not be less than mln(pB—Mf(F,(t)), (1+
h) - pi(t — 1)),

c) If Q) is strong in bonds in &2, then p;(t) will not be less than min(pBTB{(Fi(t), (1+
h) - pi(t —1))).
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Proof.

The probability that a set of stochastic players possessing shares ¢ of positive
measure will get a selling signal and the probability that a set of stochastic players
of positive measure possessing money or bonds will get a buying signal are equal to
1. Let us note that the threshold selling price for stochastic players getting selling
signal is below (1 —h) - p;(t —1). Therefore we shall have some selling orders with the
price limit greater or equal to lower limit of variability as well as some buying orders
with the price limit greater or equal to upper limit of variability.

Therefore at each price greater or equal to ﬁf(Fz(t)) the volume is equal to the
demand, which is nonincreasing.

Assume that price of i at time ¢ is equal to p; > P_sf(Fl(t)) This would imply
the demand is constant at the interval [ﬁf(FZ(t)), pi], as well as the disequilibrium.
Now let us check criterion 3. In our case we want to minimise the number of shares
in selling order with price limit greater than the market price. The minimum cannot
be attained at p;, only in P_sf(Fl(t)), which contradicts our assumption.

b) and ¢) are proven analogously. First we assume that a lower price was chosen.
In this case the volume is equal to the supply. Thus it is constant at the corresponding
interval, as well as disequilibrium, but then criterion 3 is not satisfied.

|

Thus we get fast convergence to quite a narrow interval of prices.

Technical analysis. Similar self-verification results can be proven for technical
analysis. Nevertheless, they cannot be treated as a proof of validity of technical
analysis as a cognition device.

Formation of cat. In order to show how technical analysis can make the prices
behave as it predicts we shall show an abstract formation, previously defined in
Wiszniewska-Matyszkiel [40], and consider the results of its popularization among
investors. This formation has not existed in technical analysis and is not reflected by
data. It will be formulated as in textbooks on technical analysis and "explained” by
a similar quasi-sociological explanation (see e.g. Pring [19]) and it will turn out to
be approximately self-verifying.

Formation of Cat starts by a moderate increase of prices of shares (back of the
neck), then prices rapidly rice, and afterwards fall (left ear), then there is a flat
summit (crown of the head) and the third summit similar to the first one (right ear),
ending by a moderate fall of price (forehead) starting from the base of the right ear
and lasting at least as long as the right ear. The volumes at the crown of the head
are always low.

If the volume at the top of the right ear is less than at the top of the left ear,
then the cat is looking down, if the converse holds, the cat is looking up. Since cats
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are contrary animals, cats looking up forecast fall of prices, while cat looking down
forecast rise of prices, and the absolute value of changes is at least one and a half of
the height of the ears.

Figure 1

fma

volu.mc

Volume mnm

Now we construct a quasi-sociological explanation as from textbooks on technical
analysis.

A moderate but quite stable increase of prices causes an exaggerated optimism
among players, which increases the demand. At the top of left ear strong (better
informed) players sell their shares to weak (worse informed) players, constituting
majority. Then there is a correction and weak players sell their shares. When the
price reaches the level of the end of the back of the neck, players observe the market
waiting for signals, therefore the volume is low. If the optimism wins, the right ear
is formed. High volume at right ear means strong distribution: strong players sell
their shares to weak players, which are prone to panic in the case of fall of prices.
Low volumes at right ear mean that the majority of shares is in the hands of strong
players, which usually do not panic, since by their information they expect increase
of prices.

To simplify the analysis, we assume that we consider only players investing in share
i. We shall denote the height of the ears by U. Assume that technical players using
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the cat formation either have no further signals or treat them as less important than
the cat formation and that there is also a small set of stochastic players possessing
shares and risk free assets.

Proposition 8. Let A be a relisation of a profile and let t be a time instant at
which the cat formed as a result of playing A up tot. If the set ) of technical players
believing in cat formation is strong in risk free assets in &2, then at every belief
distorted Nash equilibrium the cat looking down implies an increase of price of © at

t—1)+3U

least to pred <pi((l+c) ), while if Q) is strong in i in &2, then the cat looking up

Pi(t_l)_%U>

implies a decrease of prices at least to succ ( =)

Proof.
Let us consider the cat looking down. Since technical players expect increase of

(t—1)43
price, their threshold price at each time instant is equal to pred <%> First

it can be above the upper variability limit. In each of such time instants ¢ the price
limit in buying orders of technical players will be equal to pred (p;(t — 1) - (1 4+ h)).
As in the proof of proposition 7, we get that the market price is equal to the price

limit of the strongest group of players. Finally, technical players will have the price

pi(t—1)+2U
(l—i—C)z

The reasoning for the cat looking up is analogous.

limit equal to the threshold price pred ( ), which will be the market price.

Strong signals in technical analysis. In the case of strong signals in technical
analysis, especially when technical players expect a change of the trend, they expect
changes of prices of large absolute value.

Proposition 9. Let A be a belief distorted Nash equilibrium and let t be a time
instant at which a strong signal was observed and indentically interpreted as Ap; by
a set §) of technical players.

a) Assume Ap; << —h - p;i(t — 1) (a selling signal). If Q is strong in i in &> and
there is a set of stochastic players of positive measure investing in this company still
possessing risk free assets at t, then with probability 1 prices of share v will fall and

the fall will be to at least succ <p—i(t(_li)g)Ap 1)

b) Assume Ap; >> h-pi(t — 1) (a buying signal). If Q invests only in company i
or for other companies j considered by players from Q pBM?(I) <(1—=nh) pi(t—1)
and if Q is strong in risk free assets in &2 and there is a set of stochastic players of

positive measure still possessing ¢ at t, then with probability 1 prices of i will grow

pi(t_1)+Api> .

and the increase will be to at least pred < 1+0)
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Proof.
The proof is analogous to that of the cat formation.
|

4.2. Self-falsifying beliefs. Here we want to show that not all beliefs are self-
verifying.

To simplify the analysis, we again consider players investing in share ¢ only, and
money or bonds, and assume that they consider strategy sets constrained with respect
to information.

CAPM. Now we shall consider the case in which there is a strong group of
portfolio players and a small group of stochastic players. We also assume that C' is
small.

The basic result in the papers about CAPM cited in the introduction, is that
prices adjust such that the return of each asset is equal to its theoretical p;. However,
there was assumption that there is an equilibrium and no dynamics was considered.
We get the result, that in the case of starting from aggregate returns differing from
pi, we do not have to converge to it. Conversely, rather divergence can be expected.

Proposition 10. Let A be a relisation of a profile, let t be a time instant and let )
be a set of porfolio players. Portfolio analysis is self-falsifying in the sense, that

a) if R; is essentially greater than p;, Q is strong in money in 2 and there is a
set of stochastic players of positive measure investing in ¢ still possessing i at t, then
R;(t) will be greater than R;;

b) if R; is greater than p; + C? 4 2C, Q is strong in risk free assets in &> and
there is a set of stochastic players of positive measure investing in ¢ still possessing i
at t, then R;(t) will be greater than R;;

c) if R; is essentially less than p; + C? — 2C, §) is strong in i in &> and there is
a set of stochastic players of positive measure investing in ¢ still possessing risk free
assets at t, then R;(t) will be less than R;.

Proof.

a) Here R; > p; and portfolio players are strong in money. In this case we shall
calculate their return in the case when the market price equals their threshold price

Then the return at time t fulfills

D)
1+R; ) pi(t—1)
pred % —pi(t—1)

(l—l—Ri)Q .
Ri(t) = =) Z g 1 Iﬁ, where ¢ is a small

number defining the precision of price representation in the part of P under consid-

- \2
(1+R:) " pit=1) pred (p;) > p; —e. If the

eration, i.e. such a number that for p; = o
1
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- \2 — \2
difference between_Ri and p; is large enough, then <11+ +P:¢) — pi(til) > (11:123 = R,
therefore R;(t) > R;.

In the buying for money orders of portfolio players the price limit is equal to the
threshold price.

As in the proof of proposition 7, we get that the market price is greater or equal
to the price limit in the buying orders of the strongest group of players, in this case
the threshold price pBM, (R;, p;(t — 1)) for the porfolio players.

b) Now let us assume a greater difference R; > p; + C% + 2C and let us assume
that portfolio players are strong in bonds.

If the market price equals the threshold price pBB. (R;, pi(t — 1)), then

14R; ) pit—1)
pred (%) —plt=)
R(t) = ()

pi(t—1) Z 1502420+ 1- (t 0 If the difference
P _\2
_ . 1+R; o -
between R; and p;+C?+2C is large enough, then 1+(02+26)'+pi — pi(f_l) (1+Ri) — R,

therefore R;(t) > R;.
The market price will be greater or equal either to pBB, (R;, pi(t—1)) or pBM. (R;, p; (t—

(if [o Xe 5(t)d\(w) > 0), for which we have already proven the inequality.
) Now let us consider the case when C? — 2C + p; > R; and Q is strong in i.

. . 1+R; pz(t 1)
The threshold price pS.(R;, pi(t — 1)) is succ (((kgw

market price is equal to this threshold price, the return fulfills

(1+Ri)2pi(t—1))
SUCC | —mq—cveaa —pi(t - 1) _ 2 =2
R;(t) = ( (= e (+R:)" 5 (1+R:)

pilt —1) ors 1t e = oo, LT
, for € such that for p; =

, therefore if the

_\2
pz(t 1 % succ (p;) < pi+e. If the difference between
- \2 = \2
pi+02—2_0 and R; is large enough, then 1+(cl2+iic)+pi pi(til) < (1;:23 = R;, therefore
R;(t) < R;. Analogously to the reasoning for the buying orders, the market price is
less or equal to the price limit of selling order of portfolio players pS; (R;, p;(t — 1)).

The facts stated in proposition may lead to trends of accelerating increases or
accelerating decreases of prices.

Econometric models. We cannot state anything precise about econometric
models in general. Depending on the specific type of the model they can be either
approximately self-verifying or self-falsifying. If we treat them literally, they will be
usually self-falsifying: increases and decreases of prices are prior to the moment they
were prognosed for. Nevertheless, econometric models used as tools to foresee general
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tendencies are approximately self-verifying.

5. NUMERICAL SIMULATIONS
The following simulations were made with the programme SGPW [22]. In each of
them we assumed existence of a small group of stochastic players with constant flow
of money and possessing a small fraction of shares considered.

5.1. Convergence to the fundamental value. The figures below illustrate con-
vergence to the fundamental value (given the initial price of a share from WSE) in
the game with a large group of fundamental analysts.

Figure 2
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5.2. Trends caused by chartists. A group of chartist and trends caused by
them given various initial values form WSE:
Figure 4

AMERBANK

s il
B0
a0

Price 40
30
20
10441~

U‘iﬁl142231 3947 5664 ?38‘1 BIS 9‘810‘812‘013‘214415818818‘019‘2

day

Figure 5

Fywies

LB L AR LR LA
4514 2332 41 5058 67 76 8593104116128 140152164 176188



STOCK MARKET AS A DYNAMIC GAME WITH CONTINUUM OF PLAYERS 25

For comparison, if we consider stochastic players only, we get something similar
to a random walk: at each time instant we either go up the upper variability limit if
the measure of the set of players obtaining selling signal is less than the measure of
the set of players obtaining the buying signal or to the lower variability limit if the
measure of the set of players obtaining selling signal is greater than the measure of
the set of players obtaining the buying signal.

5.3. Trends caused by portfolio players. For the case of a strong group of
portfolio players the results are exactly as stated in the model — either an exponential
growth of the prices or an exponential decrease.

5.4. Some econometric models. In this case we present two econometric mod-
els: one of them considering linear trend and sinusoidal weekly periodicity and length
of prognosis 2, and the other one with the average of some of past prices. The former
one is approximately self-verifying only because the linear trend dominates. However,
the oscillations are translated. The latter one becomes self-verifying after a period of
transition.

Figure 6
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6. CONCLUSIONS

The paper presents a model of stock exchange as a game with a continuum of players
taking into account various prognostic techniques. The continuum was used to model
insignificance of any single player, while prices, and consequently, players payoffs are
solely a result of players decisions. One of the results of the paper is that usually the
strategies of telling the actual threshold prices are weakly dominant, while strategies
of not telling the actual threshold prices are weakly dominated in a sequence of
subgames with distorted information along the profile, therefore they constitute a
belief distorted Nash equilibrium.
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One of the consequences of that is the problem of self-verification of various prog-
nostic techniques used by strong (i.e. large and possessing a large portion of assets)
groups of players at presence of a small group of stochastic players and, possibly, other
types. This is the feature of fundamental analysis and technical analysis. Taking this
into account, learning about many, even absolutely senseless, techniques may turn
out to be useful if they are used by many players.

The technique based on CAPM does not have this property, it is self-falsifying,
while techniques based on various econometric models may be either self-verifying or
self-falsifying.
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