Application of Keynesian theory and new economic geography in Portugal. An alternative analysis

Martinho, Vítor João Pereira Domingues

Escola Superior Agrária, Instituto Politécnico de Viseu

2011
APPLICATION OF KEYNESIAN THEORY AND NEW ECONOMIC GEOGRAPHY IN PORTUGAL. AN ALTERNATIVE ANALYSIS

Vitor João Pereira Domingues Martinho

Unidade de I&D do Instituto Politécnico de Viseu
Av. Cor. José Maria Vale de Andrade
Campus Politécnico
3504 - 510 Viseu
(PORTUGAL)
e-mail: vdmartinho@esav.ipv.pt

ABSTRACT

This work aims to test the Verdoorn Law, with the alternative specifications of (1) Kaldor (1966), for five Portuguese regions (NUTS II) from 1986 to 1994. It is intended to test, even in this work, the alternative interpretation of (2) Rowthorn (1975) of the Verdoorn's Law for the same regions and periods. The results of this work will be complemented with estimates of these relationships to other sectors of the economy than the industry (agriculture and services sectors) and for the total economy of each region. This work aims, yet, to study the Portuguese regional agglomeration process, using the linear form the New Economic Geography models that emphasize the importance of spatial factors (distance, costs of transport and communication) in explaining of the concentration of economic activity in certain locations. In a theoretical context, it is intended, also, to explain the complementarily of clustering models, associated with the New Economic Geography, and polarization associated with the Keynesian tradition, describing the mechanisms by which these processes are based.

Keywords: agglomeration; polarization; Portuguese regions; linear models.

1. INTRODUCTION

With this work it is intended to explain the complementarily, similarities and differences between the clustering models, associated with the New Economic Geography (3)(Fujita et al., 2000), and polarization, associated with the Keynesian tradition (4)(Targetti et al., 1989). It is pretended also studying the Portuguese regional agglomeration and polarization processes. For the agglomeration process we use the linear form of the New Economic Geography models that emphasize the importance of factors in explaining the spatial concentration of economic activity in certain locations. The polarization process is mainly based in the very known Verdoorn law. (5) Verdoorn (1949) was the first author to reveal the importance of the positive relationship between the growth of labor productivity and output growth, arguing that the causality is from output to productivity, thus assuming that labor productivity is endogenous. An important finding of the empirical relationship is the elasticity of labor productivity with respect to output that according to Verdoorn is approximately 0.45 on average, external limits between 0.41 and 0.57. This author also found that the relationship between productivity growth and output growth reflects a kind of production technology and the existence of increasing returns to scale, which contradicts the hypothesis of neoclassical constant returns to scale, or decreasing, and absolute convergence Regional.

2. DESCRIPTION OF THE MODELS

The models of the keynesian theory and new economic geography are developed in several works like (6-7) Martinho (2011a and 2011b).

3. DATA ANALYSIS

Considering the variables on the models referred previously and the availability of statistical information, we used the following data disaggregated at regional level. Annual data for the periods 1986 to 1994 and 1987 to 1994 corresponding to the five regions of mainland Portugal (NUTS II), for the different economic sectors and the total economy of these regions. These data were obtained from Eurostat (Eurostat Regio of Statistics 2000).

4. EMPIRICAL EVIDENCE OF THE VERDOORN'S LAW

The results in Table 1, obtained in the estimations carried out with the equations of Verdoorn, Kaldor and Rowthorn for each of the sectors of the economy and for the total economy of each of the five regions...
The industry is the sector that has the biggest increasing returns to scale, followed by agriculture and service sector. Services without the public sector presents values for the income scale unacceptable and manufacturing presents surprisingly very low values, reflecting a more intensive use of labor.

It should be noted, finally, for this set of results the following: Verdoorn's equation is the most satisfactory in terms of statistical significance of the coefficient obtained and the degree of explanation in the various estimations. There is, therefore, that productivity is endogenous and generated by the growth of regional and sectoral output.

Table 1: Analysis of economies of scale through the equation Verdoorn, Kaldor and Rowthorn, for each of the economic sectors and the five NUTS II of Portugal, for the period 1986 to 1994

<table>
<thead>
<tr>
<th>Sector</th>
<th>Constant</th>
<th>Coefficient</th>
<th>DW</th>
<th>R²</th>
<th>G.L.</th>
<th>E.E. (1/(1-b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verdoorn</td>
<td>0.042*</td>
<td>0.878*</td>
<td>1.696</td>
<td>0.805</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Kaldor</td>
<td>-0.042*</td>
<td>0.123**</td>
<td>1.696</td>
<td>0.075</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Rowthorn1</td>
<td>-0.010</td>
<td>-0.621**</td>
<td>1.568</td>
<td>0.087</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Rowthorn2</td>
<td>-0.010</td>
<td>0.379</td>
<td>1.568</td>
<td>0.034</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.197</td>
</tr>
<tr>
<td>Verdoorn</td>
<td>-12.725*</td>
<td>0.992*</td>
<td>2.001</td>
<td>0.587</td>
<td>37</td>
<td>125.000</td>
</tr>
<tr>
<td>Kaldor</td>
<td>12.725*</td>
<td>0.008</td>
<td>2.001</td>
<td>0.869</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Rowthorn1</td>
<td>15.346*</td>
<td>-0.449*</td>
<td>1.889</td>
<td>0.326</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Rowthorn2</td>
<td>15.346*</td>
<td>0.551*</td>
<td>1.889</td>
<td>0.776</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Manufactured Industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.468</td>
</tr>
<tr>
<td>Verdoorn</td>
<td>8.296*</td>
<td>0.319*</td>
<td>1.679</td>
<td>0.139</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Kaldor</td>
<td>-8.296*</td>
<td>0.681*</td>
<td>1.679</td>
<td>0.887</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Rowthorn1</td>
<td>12.522*</td>
<td>-0.240*</td>
<td>1.842</td>
<td>0.269</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Rowthorn2</td>
<td>12.522*</td>
<td>0.760*</td>
<td>1.842</td>
<td>0.891</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verdoorn</td>
<td>-0.045*</td>
<td>0.802*</td>
<td>1.728</td>
<td>0.506</td>
<td>38</td>
<td>5.051</td>
</tr>
<tr>
<td>Kaldor</td>
<td>0.045*</td>
<td>0.198</td>
<td>1.728</td>
<td>0.059</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Rowthorn1</td>
<td>0.071*</td>
<td>-0.694*</td>
<td>1.817</td>
<td>0.255</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Rowthorn2</td>
<td>0.071*</td>
<td>0.306</td>
<td>1.817</td>
<td>0.063</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Services (without public sector)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verdoorn</td>
<td>-0.074*</td>
<td>1.020*</td>
<td>1.786</td>
<td>0.609</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Kaldor</td>
<td>0.074*</td>
<td>-0.020</td>
<td>1.786</td>
<td>0.001</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Rowthorn1</td>
<td>0.076*</td>
<td>-0.903*</td>
<td>1.847</td>
<td>0.371</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Rowthorn2</td>
<td>0.076*</td>
<td>0.097</td>
<td>1.847</td>
<td>0.007</td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>

All Sectors

<table>
<thead>
<tr>
<th>Constant</th>
<th>Coefficient</th>
<th>DW</th>
<th>R²</th>
<th>G.L.</th>
<th>E.E. (1/(1-b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alert! This author has published many duplicate versions of very similar papers with slightly different titles, but without an appropriate notice. This may apply to this contribution, too.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. EQUATION LINEARIZED AND REDUCED OF THE REAL WAGES, WITH THE VARIABLES INDEPENDENT NATIONALLY AGGREGATED

Thus, the equation of real wages that will be estimated in its linear form, will be a function of the following explanatory variables:

\[
\ln \omega_{rt} = f_0 + f_1 \ln Y_{pt} + f_2 \ln T_{rpt} + f_3 \ln G_{pt} + f_4 \ln \lambda_{pt} + f_5 \ln w_{pt} + f_6 \ln T_{prt} + f_7 \ln P_r, \tag{1}
\]

where:
- \(\omega_{rt} \) is the real wage in region \(r \) (5 regions) for each of the manufacturing industries (9 industries);
- \(Y_{pt} \) is the gross value added of each of the manufacturing industries at the national level;
- \(G_{pt} \) is the price index at the national level;
- \(\lambda_{pt} \) is the number of workers in each industry, at national level;
- \(W_{pt} \) is the nominal wage for each of the industries at the national level;
- \(T_{rpt} \) is the flow of goods from each of the regions to Portugal;
- \(T_{prt} \) is the flow of goods from each of the regions from Portugal;
- \(P_r \) is the regional productivity for each industry;
- \(p \) indicates Portugal and \(r \) refers to each of the regions.

The results obtained in the estimations of this equation are shown in Tables 2 and 3.

Table 2: Estimation of the equation of real wages with the independent variables aggregated at national level (without productivity), 1987-1994

| Variable | lnY
| lnT
| lnG
| ln\(\lambda \)
| lnW
| lnT |
Coefficient	f_1	f_2*	f_3*	f_4	f_5*	f_6*	R^2	DW
LSDV	f_7*	f_7*						
Coefficients	-0.038	0.674	-0.967	0.025	0.937	-0.594	0.810	1.516
T-stat.	(-0.970)	(4.227)	(-7.509)	(0.011)	(15.239)	(-3.787)	(0.000)	
L. signif.	(0.333)	(0.000)	(0.000)	(0.610)	(0.000)	(0.000)		
Degrees of freedom	290							
Number of observations	302							
Standard deviation	0.146							

(*) Coefficient statistically significant at 5%.

Table 3: Estimation of the equation of real wages with the independent variables aggregated at national level (with productivity), 1987-1994

| Variable | lnY
| lnT
| lnG
| ln\(\lambda \)
| lnW
| lnT |
Coefficient	f_1*	f_2*	f_3*	f_4*	f_5*	f_6*	R^2	DW
LSDV	f_7*	f_7*						
Coefficients	-0.259	0.557	-0.884	0.256	0.883	-0.493	0.258	1.560
L. signif.	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)		
Degrees of freedom	289							
Number of observations	302							
Standard deviation	0.126							

(*) Coefficient statistically significant at 5%.

Alert! This author has published many duplicate versions of very similar papers with slightly different titles, but without an appropriate notice. This may apply to this contribution, too.
This equation 1 estimated of real wages presents satisfactory results in terms of statistical significance of coefficients, the degree of adjustment and autocorrelation of errors. For the signs of the estimated coefficients that represent the respective elasticities, taking into account the expected by the economic theory, we confirm that, apart the gross value added, the price index and the nominal wages per employee, all coefficients have the expected signs.

6. LINEARIZED AND REDUCED EQUATION OF REAL WAGES, WITH THE VARIABLES INDEPENDENT REGIONALLY DISAGGREGATED

Following the equation of real wages reduced and in a linear form, but now with the independent variables disaggregated at regional level, in other words, considered only for the region being analyzed, and not for the whole of Portugal, as in the previous equation. Although this equation does not consider the effect of nearby regions of r in this region, aims to be a simulation to determine the effect of the regions in their real wages, that is:

\[\ln \omega_{rt} = f_0 + f_1 \ln Y_{rt} + f_2 \ln T_{rpt} + f_3 \ln G_{rt} + f_4 \ln \bar{\lambda}_{rt} + f_5 \ln w_{rt} + f_6 \ln T_{prt} \] (2)

where:
- \(\omega_{rt} \) is the real wage in the region r, for each of the manufacturing industries;
- \(Y_{rt} \) is the gross value added of each of the manufacturing industries at the regional level;
- \(G_{rt} \) is the price index at the regional level;
- \(\bar{\lambda}_{rt} \) is the number of workers in each industry, at regional level;
- \(w_{rt} \) is the nominal wage per employee in each of the manufacturing industries at regional level;
- \(T_{rpt} \) is the flow of goods from each region to Portugal;
- \(T_{prt} \) is the flow of goods to each of the regions from Portugal.

Table 4 presents the results of estimating equation 2 where the independent variables are disaggregated at regional level. About the signs of the coefficients, it appears that these are the expected, given the theory, the same can not be said of the variable \(\bar{\lambda}_{rt} \) (number of employees). However, it is not surprising given the economic characteristics of regions like the Norte (many employees and low wages) and Alentejo (few employees and high salaries), two atypical cases precisely for opposite reasons. Analyzing the results in Tables 2, 3 and 4 we confirm the greater explanatory power of the variables when considered in aggregate at the national level.

Table 4: Estimation of the equation of real wages with the independent variables disaggregated at the regional level

<table>
<thead>
<tr>
<th>Variables</th>
<th>Const.</th>
<th>(\ln Y_{rt})</th>
<th>(\ln T_{rpt})</th>
<th>(\ln G_{rt})</th>
<th>(\ln \bar{\lambda}_{rt})</th>
<th>(\ln w_{rt})</th>
<th>(\ln T_{prt})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficients</td>
<td>(f_0)</td>
<td>(f_1)</td>
<td>(f_2)</td>
<td>(f_3)</td>
<td>(f_4)</td>
<td>(f_5)</td>
<td>(f_6)</td>
</tr>
<tr>
<td>Random effects</td>
<td>R²</td>
<td>DW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-stat.</td>
<td>1.530</td>
<td>0.098*</td>
<td>0.670</td>
<td>1.858</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. signif.</td>
<td>(3.355)</td>
<td>(4.129)</td>
<td>(-3.511)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSDV</td>
<td>0.101</td>
<td>0.595*</td>
<td>-0.624*</td>
<td>-0.155*</td>
<td>0.619*</td>
<td>-0.411*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.147)</td>
<td>(4.449)</td>
<td>(-11.380)</td>
<td>(-6.130)</td>
<td>(16.784)</td>
<td>(-3.511)</td>
<td></td>
</tr>
<tr>
<td>Degrees of freedom</td>
<td>295 - 289</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of observations</td>
<td>302 - 302</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.155 - 0.165</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(* Coefficient statistically significant at 5%.

7. ALTERNATIVE EQUATIONS TO THE EQUATIONS 1 AND 2

We also made two alternative estimates in order to test the existence of multicollinearity among the explanatory variables, considering all the variables by the weight of the work in every industry and every region in the total industry in this region for the equation 1 and the weight of work in every industry and every region in the national total of this industry for the equation 2, following procedures of (8)Hanson (1998). It is noted that the results are very similar to those previously presented to the estimates of equations 1 and 2, which allows us to verify the absence of statistics infractions.
8. EQUATION OF THE AGGLOMERATION

In the analysis of the Portuguese regional agglomeration process, using models of New Economic Geography in the linear form, we pretend to identify whether there are between Portuguese regions, or not, forces of concentration of economic activity and population in one or a few regions (centripetal forces). These forces of attraction to this theory, are the differences that arise in real wages, since locations with higher real wages, have better conditions to begin the process of agglomeration. Therefore, it pretends to analyze the factors that originate convergence or divergence in real wages between Portuguese regions. Thus, given the characteristics of these regions will be used as the dependent variable, the ratio of real wages in each region and the region's leading real wages in this case (Lisboa e Vale do Tejo), following procedures of (9)Armstrong (1995) and (10)Dewhurst and Mutis-Gaitan (1995). So, which contribute to the increase in this ratio is a force that works against clutter (centrifugal force) and vice versa.

Thus:

\[
\ln \left(\frac{\omega_{it}}{\omega_{jt}} \right) = a_0 + a_1 \ln Y_{it} + a_2 \ln T_{it} + a_3 \ln L_{it} + a_4 \ln P_{it} + a_5 \ln RL_{ilt} + a_6 \ln RL_{igt} + a_7 \ln RL_{rmt} + a_8 \ln RL_{rnt} \quad (3)
\]

where:
- \(Y_{it} \) is the national gross value added of each of the manufacturing industries considered in the database used;
- \(T_{it} \) is the flow of goods from each region to Lisboa e Vale do Tejo, representing the transportation costs;
- \(L_{it} \) is the number of employees in manufacturing at the national level;
- \(P_{it} \) is the regional productivity (ratio of regional gross value added in manufacturing and the regional number of employees employed in this activity);
- \(RL_{rmt} \) is the ratio between the total number of employees in regional manufacturing and the regional number of employees, in each manufacturing (agglomeration forces represent inter-industry, at regional level);
- \(RL_{rmt} \) is the ratio between the number of regional employees in each manufacturing and regional total in all activities (represent agglomeration forces intra-industry, at regional level);
- \(RL_{igt} \) is the ratio between the number of regional employees in each manufacturing and regional area (representing forces of agglomeration related to the size of the region);
- \(RL_{rnt} \) is the ratio between the number of regional employees, in each of the manufacturing industries, and the national total in each industry (agglomeration forces represent inter-regions in each of the manufacturing industries considered).

The index \(r (1, \ldots, 5) \) represents the respective region, \(t \) is the time period (8 years), \(n \) the entire national territory, \(k \) the area (km2), \(l \) the region Lisboa e Vale do Tejo, \(g \) all sectors and \(m \) manufacturing activity (9 industries).

The results of the estimations made regarding equation 3 are shown in Tables 5 and 6. Two different estimates were made, one without the variable productivity (whose results are presented in Table 5) and one with this variable (Table 6).

Table 5: Estimation of the agglomeration equation without the productivity

<table>
<thead>
<tr>
<th>Variab.</th>
<th>Constant</th>
<th>lnY_{it}</th>
<th>lnT_{it}</th>
<th>lnL_{it}</th>
<th>lnRL_{rmt}</th>
<th>lnRL_{igt}</th>
<th>lnRL_{rnt}</th>
<th>lnRL_{rnt}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coef.</td>
<td>(a_0)</td>
<td>(a_1)</td>
<td>(a_2)</td>
<td>(a_3)</td>
<td>(a_4)</td>
<td>(a_5)</td>
<td>(a_6)</td>
<td>(a_7)</td>
</tr>
<tr>
<td>R^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random ef.</td>
<td>V.Coeff.</td>
<td>T-stat.</td>
<td>L. sign.</td>
<td>Degrees of freedom</td>
<td>Standard deviation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-3.991</td>
<td>-0.040</td>
<td>0.012</td>
<td>293</td>
<td>0.126</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-3.317)</td>
<td>(-1.353)</td>
<td>(1.469)</td>
<td></td>
<td>T.HAUSMAN - 1.870</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| (*) Coefficient statistically significant at 5%.
| (**) Coefficient statistically significant at 10%.

Table 6: Estimation of the agglomeration equation with the productivity

\[
\ln \left(\frac{\omega_{nt}}{\omega_{bt}} \right) = a_0 + a_1 \ln Y_{nt} + a_2 \ln T_{dt} + a_3 \ln L_{nt} + a_4 \ln P_{rt} + a_5 \ln RL_{rmt} + a_6 \ln RL_{rgt} + a_7 \ln RL_{rkt} + a_8 \ln RL_{rnt}
\]

<table>
<thead>
<tr>
<th>Variab.</th>
<th>Coef.</th>
<th>Random eff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>(a_0^*)</td>
<td>-3.053 (-2.991)</td>
</tr>
<tr>
<td>lnY_{nt}</td>
<td>(a_1^*)</td>
<td>-0.240 (-7.182)</td>
</tr>
<tr>
<td>lnT_{dt}</td>
<td>(a_2^*)</td>
<td>0.015 (2.026)</td>
</tr>
<tr>
<td>lnL_{nt}</td>
<td>(a_3^*)</td>
<td>0.486 (5.934)</td>
</tr>
<tr>
<td>lnP_{rt}</td>
<td>(a_4^*)</td>
<td>0.218 (8.850)</td>
</tr>
<tr>
<td>lnRL_{rmt}</td>
<td>(a_5^*)</td>
<td>-0.266 (-3.494)</td>
</tr>
<tr>
<td>lnRL_{rgt}</td>
<td>(a_6^*)</td>
<td>-0.333 (-3.102)</td>
</tr>
<tr>
<td>lnRL_{rkt}</td>
<td>(a_7^*)</td>
<td>-0.141 (-3.067)</td>
</tr>
<tr>
<td>lnRL_{rnt}</td>
<td>(a_8^*)</td>
<td>-0.266 (-3.067)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.486</td>
<td>1.516</td>
</tr>
<tr>
<td>DW</td>
<td>0.649</td>
<td>1.504</td>
</tr>
</tbody>
</table>

Degrees of freedom: 292 - 285
Number of observations: 302 - 302
Standard deviation: 0.116 - 0.136

(*) Coefficient statistically significant at 5%

Comparing the values of two tables is confirmed again the importance of productivity (Prt) in explaining the wage differences. On the other hand improves the statistical significance of coefficients and the degree of explanation.

9. SOME FINAL CONCLUSIONS

In the estimates made for each of the economic sectors, with the Verdoorn law, it appears that the industry is the largest that has increasing returns to scale, followed by agriculture and service sector.

With the new economic geography models, it appears that the explanatory power of the independent variables considered, is more reasonable, when these variables are considered in their original form, in other words, in the aggregate form for all locations with strong business with that we are considering (in the case studied, aggregated at national level to mainland Portugal). On the other hand, given the existence of "backward and forward" linkages and agglomeration economies, represented in the variables Rlrmt and RLrgt, we can affirm the existence of growing scale economies in the Portuguese manufacturing industry during the period considered. It should be noted also that different estimates were made without the productivity variable and with this variable in order to be analyzed the importance of this variable in explaining the phenomenon of agglomeration. It seems important to carry out this analysis, because despite the economic theory consider the wages that can be explained by productivity, the new economic geography ignores it, at least explicitly, in their models, for reasons already mentioned widely, particular those related to the need to make the models tractable.

For this period the new economic geography and the Keynesian theory say the same about the Portuguese regions development.

10. REFERENCES