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Abstract

We criticize the theories used to explain the size distribution of cities.

They take an empirical fact and work backward to obtain assumptions

on primitives. The induced theoretical assumptions on consumer be-

havior, particularly about their inability to insure against the city-level

productivity shocks in the model, are untenable. With either self insur-

ance or insurance markets, and either an arbitrarily small cost of moving

or the assumption that consumers do not perfectly observe the shocks

to firms’ technologies, the agents will never move. Even without these

frictions, our analysis yields another equilibrium with insurance where

consumers never move. Thus, insurance is a substitute for movement.

We propose an alternative class of models, involving extreme risk against

which consumers will not insure. Instead, they will move, generating

a Fréchet distribution of city sizes that is empirically competitive with
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1 Introduction and Motivation

A small industry has developed that seeks to provide a theory to explain a

singular but robust stylized fact in urban growth: the size distribution of

cities. Zipf’s law or the rank-size rule, as applied to the size distribution of

cities, states that for any country, the rank of a city according to population

(for example, New York is ranked number one in the US) multiplied by its

population is constant. Thus, Los Angeles has half the population of New

York, whereas Chicago has one third the population of New York. This styl-

ized fact holds across many countries and time periods (see Soo, 2005), but

it is only one fact. In general, it is connected to Gibrat’s law, stating that

stochastic proportional growth tends to a lognormal distribution. The most

compelling empirical work in this area shows that the size distribution of cities

is lognormal (Eeckhout, 2004) when the data is not cut off at an arbitrary

rank or population. For those unfamiliar with the empirics associated with

this literature, we display in Figure 1 a graph of Eeckhout’s data, consisting

of more than 25,000 places from U.S. Census 2000. Since population on the

horizontal axis and rank on the vertical axis are both plotted in log scales, the

rank-size rule, taken literally, would say that the plot should be linear with

slope −1. Deviations from the rule or law at the top and bottom of the size

distribution are documented and discussed in the literature. See Gabaix and

Ioannides (2004) for a fine survey of the entire area of research.
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Figure 1: The rank-size rule. Data Source: Census 2000.

Explanation of the stylized fact by a theory has long been an objective of

urban economists; it is quite robust, but also very difficult to theorize about.

Three recent articles, Eeckhout (2004), Duranton (2007), and Rossi-Hansberg

and Wright (2007), have tackled this issue head on.

As we shall see, the assumptions on primitives used in the literature gen-

erally do not look natural, in the sense that if one were formulating a model

of cities from scratch, it would not be obvious that one would want to begin

with these assumptions. In fact, the literature of urban economics prior to

the introduction of these models did not. Moreover, since these models are

constructed for a single purpose, namely to explain a stylized fact, they seem

incapable of explaining other empirical regularities, though they seem to be

judged exclusively on the basis of how well they explain the one stylized fact.1

Finally, it is worthwhile to note that there is likely an infinite number of mod-

els capable of explaining the size distribution of cities, and some of these might

not even be stochastic; see, for example, Fujita and Mori (1997).

1An exception is Duranton (2007), that explains 3 stylized facts.
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We shall focus primarily on the behavior of consumers, in particular the

degree to which they can hedge against risk. Our findings are as follows.

First, the type of risk featured in the literature is city-level risk in the form

of a shock each period to the city-wide production function. The realization

of the shock is known to all before they make their decisions, in particular

consumer decisions about location and consumption bundle. There is no ag-

gregate risk, since the number of cities is large and shocks are i.i.d., and this

is often stated explicitly in the papers. In this context, insurance is a per-

fect substitute for consumer movement. We consider either self insurance,

where a consumer self insures over time by borrowing or saving to smooth

consumption, or insurance markets, where a consumer insures using the fact

that shocks are independent over space at a given time. With either type

of insurance (or a combination), we find an equilibrium that yields the same

period by period utility for each consumer as the one presented in the liter-

ature, where consumers move and generate Zipf’s law or Gibrat’s law. Our

equilibrium features no consumer movement. Moreover, with even arbitrarily

small moving costs or arbitrarily small uncertainty about shocks on the part

of consumers, only our equilibrium survives. The existing literature finds that

initial conditions don’t matter, in that the size distribution of cities eventually

tends toward lognormal. For our equilibrium, initial conditions matter in that

consumers never move. This is inconsistent with the evidence. In summary,

the theoretical literature excludes insurance markets and self insurance when

the models provide a perfect setting for them. When they are included in

the models, the predictions are inconsistent with the evidence. Thus, we put

these models aside.

Second, even aggregate risk is insufficient to generate consumer movement.

For example, if there were a single aggregate shock common to all cities at

each time, consumers could still self insure by smoothing consumption through

saving and borrowing over time and never moving.

Third, our proposed alternative model has aggregate risk of a specific kind.

In the context of perfect competition, each city receives a shock to its produc-

tivity at each time. Only the city with the best technology in an industry

produces at that time, driving out others. Our equilibrium has consumers

moving to the cities producing with the best technology for some industry at

that time. Insurance against shocks is too costly, as it is almost the total wage

in a productive city. Our framework leads not to the central limit theorem or

Gibrat’s law, but rather to extreme value theory (the analog of the central
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limit theorem for maximal values of a sequence of random variables instead

of averages) and the Fisher-Tippett (1928) theorem. The implied functional

form for the size distribution of cities is different from the predictions in the lit-

erature. Independence of shocks across time was a requirement of the original

Fisher-Tippett theorem, but is not required for modern versions.

The motivation for this paper is summarized as follows. First, we propose

a test of consistency of the models in the literature. Is the random variable

representing the uncertainty about a city’s productivity observable to all? If

so, it is quite natural to allow insurance markets. Is insurance available?

The answer to the second question is negative for the models in this literature

we have seen, with no explanation. If insurance is inserted into the model,

will it make a difference in the equilibrium and empirical prediction of the

model? Can insurance cause an efficiency loss? Finally, can self insurance

substitute for both insurance and consumer movement? Thus, we examine

the consequences of completing markets in this class of models.

We provide an alternative model where the random variable is observable

but the agents will never choose to use insurance. The equilibrium allocation is

first best. In contrast with the extant literature, where insurance is implicitly

prohibited but would be taken up if it were available, it seems to us that ours

is a more productive approach.

The paper is organized as follows. First, in section 2, we propose a new type

of model to explain the size distribution of cities, and implement it empirically.

Only in section 3 shall we discuss the related literature that attempts to refine

the stylized fact, namely the rank-size rule, and explain it. Then we shall

raise specific objections, involving insurance or self insurance against city-level

risk, to these models. Section 4 contains a brief discussion of welfare in the

various models. Section 5 discusses our conclusions and directions for future

work. In an Appendix we introduce Eeckhout’s (2004) model and modify it

to make the objections raised in section 3 formal for a specific example.
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2 Modeling the Size Distribution of Cities

2.1 A Model

2.1.1 The Basic Model and Its Equilibrium

This model is loosely based on Duranton (2007), but in the context of perfect

competition2 instead of monopolistic competition. It can also be viewed as

a slice of a larger model that would include both our model and the model

of Eaton and Kortum (2002). Our model adds labor and consumer mobility,

whereas their model has them locationally fixed. In contrast with the other

models in the literature, there is economy-wide risk in addition to city-level

risk. But this in itself is not sufficient to generate consumer movement. For

example, if all cities faced correlated shocks at each time, consumers could still

insure against this risk by smoothing their consumption through borrowing and

saving. Thus, we employ a more extreme form of aggregate risk.

Time is discrete and all consumers are infinitely lived. Assume that there

are many cities (indexed by  = 1 ) and many industries, each producing

one consumption commodity (indexed by  = 1  ). All commodities are

freely mobile. The production function for commodity  in city  at time  is

given by

 =  · 

where  is the output of commodity  in city  at time , and  is labor

input.3 The random variable  ∈ R++ will be discussed in detail shortly.
Suppose that each consumer supplies 1 unit of labor inelastically and that

the total number of consumers as well as total labor supply is given by  .

We justify the assumption of perfect competition by implicitly assuming that

there is a large number of firms in each city capable of producing a commodity

using a constant returns technology, but all experiencing the same city-wide

technology shock.

In each time period , each city  receives a random draw for its productivity

in producing commodity , namely . Since we will be using the Fisher-

Tippet limit theorem from extreme value theory rather than the central limit

theorem, there is no requirement that these random variables be independent.

It is assumed that with probability 1, the random draws for 2 industries at time

2Since there is no market failure built into our model, equilibrium allocations will be

Pareto optimal.
3The assumption of Starrett’s (1978) spatial impossibility theorem that is violated by

this model is the assumption of location-independent production sets.
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 for city  are not both maximal among all cities for these given industries.

In equilibrium, only the cities with the highest draw of the random variable

for some industry will have employees and population. (Alternatively, we

could simply classify cities exogenously by industry, and assume that a city in

an industry receives only a draw for that industry.) Extensions that imply

several cities produce in equilibrium will be discussed shortly, but first we must

explain the basic model.

The wage rate for the (freely mobile) population of consumers is given by

(). In equilibrium, it will be the same across industries.

As is standard in this literature, the utility function of a consumer at time

 is given by

() =
X

=1

1


()



where () is the consumption of commodity  by a consumer at time  and

 ∈ (0 1). Let () be the price of commodity  at time . Assuming that

commodities are freely transportable, a consumer’s budget constraint at time

 is
X

=1

() · () = ()

Let () be the Lagrange multiplier associated with the budget constraint in

the consumer optimization problem. Standard calculations yield demand for

commodity  at time  for a single consumer ():

() =

µ


−() · ()

¶ 1
1−

Aggregate demand is given by

 · () = 

µ


−() · ()

¶ 1
1−

Profit optimization yields, for each :

For  = 1  , for ∗ with ∗ = max
1≤≤, 0≤0≤

0

() ·∗ = ()

Here we are assuming total recall, in that the best technology from the past is

remembered, so new technologies are not used unless they are better than all

the old ones. Also, only the best technology in industry  survives, where the
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best is across all cities and previous time periods. This assumption is made

for convenience. We discuss it more below.

Hence

For  = 1  , for ∗ with ∗ = max
1≤≤, 0≤0≤

0

() =
()

∗
(1)

In other words, even though wage is constant across occupied cities, output

price varies inversely with the production shock. Consumption commodity

market clearance requires, for each :

For  = 1  , for ∗ with ∗ = max
1≤≤, 0≤0≤

0

∗ ·∗ =  · () = 

µ


−() · ()

¶ 1
1−

(2)

This is the key equation for our analysis.

Labor market clearance requires, for each :

X

=1

∗ =  (3)

where ∗ satisfies ∗ = max
1≤≤, 0≤0≤

0

Setting the constant () to be

() = 

µ


−() ·  · ()

¶ 1
1−

and using (1) and (2), we obtain

For  = 1  , for ∗ with ∗ = max
1≤≤, 0≤0≤

0

∗ · (∗)


−1 = ()

Hence

For  = 1  , for ∗ with ∗ = max
1≤≤, 0≤0≤

0 (4)

∗ = () · (∗)


1−

Since   1, labor usage ∗ and the shock ∗ are positively correlated.

Notice that cities that do not have an industry with the largest shock in that

industry at time  are empty.
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Existence of an equilibrium is not an issue here, since the equilibrium prices

and quantities can be solved analytically. For example, at  = 1, setting

1(1) = 1, then(1) = ∗11, (1) = ∗1∗, (1) = − 
∗11

(
P

=1


1−
∗1)

1−,

∗1 = ( 
−(1)∗11

)
1

1−


1−
∗1 , and so forth. Thus, equilibrium is also unique.

The original work on the asymptotic distribution of maxima drawn from

a distribution is due to Fisher and Tippett (1928). Modern, more general

treatments are given in Coles (2001) and Embrechts et al (1997). We shall

return to a discussion of extreme value theory momentarily, but first we will

draw the implications for our analysis.

The bottom line from this literature is that ∗ has an asymptotic distri-

bution of the following form, known as the generalized extreme value (GEV)

distribution:

 () =

(
exp{−[1 +  · (−


)]−

1
 } when  6= 0

exp{− exp[−(−

)]} when  = 0

Notice that there are 3 free parameters to be estimated here, namely ,

, and . Also notice that to use rank as the left hand side variable in the

regression, one simply computes 1− (). But from a pragmatic point of

view, it is easier to use ln( ()) as the left hand side variable.

If there are no upper or lower bounds on the distribution, then  = 0 and

the distribution is Gumbel. If there is an upper bound on the distribution,

then   0 and the distribution is reverse Weibull. If there is a lower bound

on the distribution, for example 0 in our case, then   0 and the distribution

is Fréchet.

Substituting (4),

ln( ()) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
"
1 +  ·

Ã
( 
()

)
1−
 −



!#−1


when  6= 0

− exp
"
−

( 
()

)
1−
 −





#
when  = 0

(5)

Notice that if we use cross section data, then  and hence () is constant.

Thus, in addition to the 3 standard parameters for the GEV distribution of

∗ (namely ,  and ), for the distribution of ∗ there are two additional

parameters, namely  and , that arise from our economic model.

In conclusion, we note that consumers will not want to insure against this

risk. If only a small percentage of cities produce at any time, then insurance

would cost only slightly less than the wage, so the consumers might as well
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move and receive the wage in each period. For example, to keep things simple

suppose that there are 100 industries (or consumption commodities) and 100

cities in each industry (that is, each city is capable of producing only one

commodity). Then there is only one city producing in each industry at each

given time, and 100 cities out of 10,000 producing in each given time. As

time plays out, as long as some consumers are willing to move, each of the

cities producing at a given time will eventually be replaced by another in the

industry. The city using old technology has zero wage and no production.

So if some workers don’t move, their average wage tends to one percent of

the expected new wage with time. Under symmetry of cities in an industry,

actuarially fair insurance would cost 99% of the expected new wage. In other

words, if workers move they will receive the wage next period, but if they

insure they will receive 1% of the wage next period. The only way workers

won’t move is if they all agree to use old, frozen technology in each industry,

and collude so that none will move for a higher wage. In contrast, we assume

competitive behavior.

2.1.2 Extensions of the Basic Model and Further Implications

In fact, what we have presented is an extreme example. All that is needed

to induce consumers to reject insurance and move is that the probability of

unemployment next period is greater than zero if they don’t move. To obtain

stronger results, for example the GEV distribution, stronger assumptions are

required. Thus, there are many models like this in which consumers will not

take up insurance, but that do not require such strong assumptions. We

provide a simple one that is tractable.

We claim that the choice of insurance or moving is essentially a bang-bang

phenomenon, not only in this model but in other models of stochastic growth

belonging to the literature that will be surveyed in section 3. That is, generi-

cally one or the other will be better for consumers, so in equilibrium they will

not coexist. Moreover, in equilibrium there will be no partial insurance. To

see this, notice first that utilities are not state-dependent, so the state only

directly affects budget constraints. Second, the decision to move is a discrete

one: Either all of a moving cost or none of it is incurred by a particular con-

sumer. If competition forces insurance to be priced competitively, implying

both that consumer cost is proportional to price and that it is actuarially fair,

then risk averse consumers will always want to fully insure or move, facing no

uncertainty in equilibrium. The consumers must consider whether the moving
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cost or the cost of full insurance is cheaper. Generically these exogenous pa-

rameters are unequal, so only one or the other will be observed in equilibrium.

Partial insurance will not result unless there is some defect in insurance mar-

kets, whereas the random shock in this entire class of models is assumed to be

observed by all agents. Generically, none would predict partial insurance.

Given the structure of the model and the others in the literature, it is much

more natural to introduce a market imperfection in the labor market: labor

heterogeneity and adverse selection, moral hazard, or search frictions, for ex-

ample. This new source of uncertainty or asymmetric information requires an

additional dimension for states of nature beyond the states we have specified

for production shocks. It leads to a different form of a distortion or market

imperfection than the one in this literature, since for example labor supply

might be distorted. Although individual labor supply is inelastic in our basic

model, it is elastic for example in Eeckhout (2004); see the Appendix below.

Elastic labor supply could easily be put into our model in an additively sep-

arable way at the cost of further notation. The consequences of a distortion

in the labor market would be very different from the introduction of an exoge-

nous mobility cost that varies between zero and infinity, as described in the

previous paragraph. Full or partial insurance would have to be defined over

states of the world associated with a new source of uncertainty or asymmetric

information related to the labor market, in contrast with the one already in

the model that is related to production shocks.

Returning to our basic model, the consumers still might want to insure

against aggregate wage volatility (namely movement in () over time) by

saving and borrowing to smooth consumption, but their spatial distribution is

still as we have laid out.

Returning now to our assumptions and extreme value theory, the original

theory of Fisher and Tippett presumed that, fixing , the random variables,

 in our case, were i.i.d. across  and . Of course, in our context this makes

little sense. In general, the city with the best technology for some good  at

a particular time  is more likely to innovate and produce a better technology

for the next period than an arbitrary city. Moreover, it is possible that cities

nearby are more likely to innovate than an arbitrary city. Fortunately, much

progress has been made in extreme value theory since 1928. The modern ver-

sions of the Fisher-Tippett theorem, as given by Coles (2001, Theorem 5.1) and

Embrechts et al (1997, Theorem 4.4.1) allow some dependence. Specifically,

what is required is that the sequence of random variables be stationary and
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that a form of asymptotic independence (as blocks of random variables become

farther apart in time) hold.4 Since temporal (as well as spatial) correlation

is allowed, the model can explain the persistence of an industry in a given city

over time. For example, the assumption that the process is stationary imposes

some symmetry on the spatial correlation, in that the influence of neighbors

on the productivity of one reference location is the same, independent of the

reference location. However, we note that even the modern versions of the

Fisher-Tippett theorem we have cited give only sufficient conditions for con-

vergence to the GEV distribution. There are yet further generalizations to

non-stationary processes; see Coles (2001, chapter 6) for example. So asym-

metries in space, implying that the process is not stationary, can still lead to

the GEV distribution.

Returning to the case of i.i.d. technology draws, an implication of extreme

value theory (Embrechts et al, 1997, chapter 5.4) is that the time between

new record draws of technology in an industry grow in a roughly exponential

fashion with the passage of time. This implication of the theory might not

hold in more general settings, for example non-stationary ones.

It is also important to note that the model and results can be extended to

the case where more than one city in an industry produces. This could happen,

for example, if there is transportation cost for consumption goods between

cities, so a city with a high realization of productivity for a commodity, but

not the highest, might serve a local market. It turns out that extreme value

theory applies not only to the maximum of a sequence of random variables,

but also to the upper order statistics. A detailed discussion of the results

can be found in Embrechts et al (1997, Section 4.2). It appears that these

extensions of the model require a simulation approach, as the analytics are

difficult. Specifically, the calculation of aggregate demand on the right hand

side of equation (2) becomes difficult due to the endogeneity of market area.

A couple more remarks are in order. First, the role of having different in-

dustries , as in the other models in the literature, is to generate a full distrib-

ution of limiting populations rather than just one realization of the asymptotic

distribution of city populations. Second, in contrast with other models in the

literature, the cities without the best technology for some industry at a given

time have zero population, so they don’t show up in the data because they are

rural.

4An easy way to fit our structure into the theory is to fix an industry  and imagine that

at each time , there are  subperiods. A city  draws its random variable  in subperiod

 of time .
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2.1.3 Stochastic Proportional Growth

As a complement to our basic analysis of the model, it is interesting to see

under what conditions our model will generate stochastic proportional growth

in (occupied) city populations. To examine this, we must specialize and

reinterpret slightly the stochastic part of our model, inspired by Eeckhout

(2004, p. 1447). Suppose that a primitive productivity random variable is

generated by the AR(1) process:

 =  ·(−1) +
1− 


· (−1) (6)

where (−1) is i.i.d. with mean 0 and finite variance, and where 0    1.

For the purpose of approximation, we will be taking  close to 1. Then define

the reduced form random variable  by:

 ≡ exp()

Our previous analysis applies to this more specific model of , for instance

the aforementioned Theorem 4.4.1 of Embrechts et al (1997), along with all of

the results in the subsections above. But with this additional structure, we

can say more.

Consistent with our notation:

For  = 1  , let ∗ be such that ∗ = max
1≤≤, 0≤0≤

0

If the  are small, we claim that

∗ ≈  ·∗(−1) +
1− 


· ∗(−1)

in the sense that the distributions of the two sides of this expression viewed at

time  − 1 are close. The reasoning behind this approximation is as follows.

Fix industry . If ∗(−1) À  · 0(−1) for all 1 ≤  ≤ , 0 ≤ 0 ≤  − 1,
0 6= ∗, then the city with the maximal draw remains the same between periods

−1 and , so the approximation holds according to equation (6). If ∗(−1) ≈
 ·0(−1) for some 1 ≤ 0 ≤ , 0 ≤ 0 ≤ − 1, 0 6= ∗, then the distribution of

 ·∗(−1)+
1−

·∗(−1) conditional on ∗(−1) is close to the distribution of

 ·0(−1)+
1−

· 0(−1) conditional on 0(−1), so the approximation holds.

Dividing equation (4) at time  by its value at time − 1 to the power ,

∗
[∗(−1)]

=
()

[(− 1)] · (
∗

[∗(−1)]
)


1− for each industry  = 1   (7)
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Using (4) and (3),

 =
X

=1

∗

= () ·
X

=1

(∗)


1−

Now

lim
→∞

P
=1(∗)


1−


= [(∗)


1− ]

Hence for  close to 1,

()

[(− 1)] ≈
[(∗(−1))


1− ]

[(∗)


1− ]
≈ 1

Taking logarithms of both sides of equation (7):

ln(∗) =  · ln(∗(−1)) +


1− 
·
1− 


· (−1)

=  · ln(∗(−1)) + (−1)

≈ ln(∗(−1)) + (−1)

This last equation is the form of stochastic proportional city population growth

obtained in Eeckhout (2004).

2.2 Empirical Implementation

Notice that we are not overly concerned with identification of the 5 parameters

in equation (5). In essence, the parameters are identified by the functional

form itself. The economic interpretation of these variables is as follows. The

three parameters of the GEV distribution, , , and , are analogous to the

mean and variance of the lognormal distribution estimated by Eeckhout, or the

regression coefficients estimated for Zipf’s law using a log-log regression. They

have no direct economic interpretation. Since  and  are derived from the

model, they do have an economic interpretation. Standard calculations tell us

that 1
1− is the elasticity of substitution for consumers between consumption

commodities. The endogenous variable  is more difficult to interpret, since

it involves a number of endogenous variables as well as random variables. But

equation (4) gives us the equilibrium relationship between the random variable

representing productivity in an industry (exogenous) and employment in that

industry (endogenous). So () tells us equilibrium employment in an industry

where one unit of labor produces one unit of consumption commodity.
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We use the Census 2000 data set also used by Eeckhout. Table 1 gives the

summary statistics for this data along with the MSA-level data that we use

later for comparison.5

Table 1: Summary Statistics

Unit Sample Size M ean Variance Median Mode Max M in

P lace 25,358 8.232E+03 4.677E+09 1,338 86 8,008,278 1

MSA 922 2.837E+05 9.490E+11 71,800.5 20,411 18,323,002 13,004

As noted in the sources we cite for extreme value theory, the most common

method of estimating extreme value distributions is to use maximum likeli-

hood. The maximum likelihood estimator (MLE) does not yield the smallest

Kolmogorov-Smirnov (KS) statistic in our data set. The KS statistic mea-

sures the maximum distance between a sample distribution and its estimate.

As noted by Goldstein et al (2004) in the context of social networks and later

by Eeckhout (2009) in the context of the size distribution of cities, using a

simple log-log regression can lead to serious statistical problems. The use of

MLE and the KS statistic is preferred. It is interesting to note that both the

literature on estimation of the GEV distribution and the literature on Zipf’s

law seem to be (independently) converging on MLE as the preferred method

of estimation.

For purposes of comparison with Eeckhout (2004), we produce estimates

using each of the lognormal (his) distribution and the generalized extreme value

(our) distribution using equation (5), for both maximum likelihood estimation

and minimization of the KS statistic (MinKS). Table 2 below summarizes

the estimation results. The results of maximum likelihood estimation for the

lognormal distribution are identical to Eeckhout’s. The rightmost columns

contain the KS statistic, the log likelihood of the estimates (LogLH), the Akaike

Information Criterion (AIC), and the Bayesian Information Criterion (BIC).

5For a definition of the spatial units used by the Census, see for example

http://www.genesys-sampling.com/pages/Template2/site2/61/default.aspx
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Table 2: Param eter Estim ates and Related Statistics - US

Unit D istribution Method b b b b b KS LogLH AIC BIC

P lace Lognormal MLE 7.278 1.754 1.895E -02 -2 .3477E+05 4.6955E+05 4.6957E+05

GEV MLE 1.410 .3096 -2.902E -02 57.15 0.8827 8.638E -03 -2.3467E+05 4.6935E+05 4.6939E+05

Lognormal M inKS 7.249 1.738 1.336E -02 -2 .3478E+05 4.6956E+05 4.6958E+05

GEV M inKS 1.592 0.6127 1.592 102.9 .8100 6.970E -03 -2.3470E+05 4.6941E+05 4.6945E+05

MSA Lognormal MLE 11.46 1.190 9.426E -02 -1 .203E+04 2.406E+04 2.407E+04

GEV MLE 4.295 2.192 0.6383 4552 0.6276 2.582E -02 -1.190E+04 2.382E+04 2.384E+04

In the interest of full disclosure, we report both the MLE and MinKS

estimates in Table 2. Notice that the MLE estimate implies a reverse Weibull

distribution whereas MinKS estimates imply a Fréchet distribution. Since

city sizes do not fall below zero, we expect the distribution to follow a Fréchet

distribution. MLE predicts otherwise due to the large, uncensored data set

containing places. The estimated Fréchet distribution under MinKS implies

that the smallest place will have population 1582, and two places actually fall

below this size. Indeed, once we truncate the data to MSA’s, MLE predicts

a Fréchet distribution. So the reverse Weibull GEV distribution is driven by

extremely small populations in the sample of places.

Of course, the comparison between lognormal and GEV is not quite fair.

In general, the more parameters a distribution has, the better its fit to data.

There are only two parameters in the lognormal distribution whereas there

are five parameters in our distribution, and these parameters do not contain

the parameters used for the lognormal distribution. In Table 2, we report

the Akaike and Bayesian information criteria, that penalize distributions with

more parameters. Smaller values for these criteria mean better performance.

Those two statistics indicate that the lognormal and our distribution are still

comparable when an adjustment for the number of parameters is made.

Graphically (in color), the estimates and data plots follow.
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MLE of GEV distribution
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MinKS estimation of GEV distribution
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Figure 2

In summary, estimates using the generalized extreme value distribution are

quite competitive.

3 Relationship to the Literature

3.1 The Older Literature

The innovative work of Gabaix (1999a, 1999b) is the source from which the

modern literature on the size distribution of cities flows. This work uses an

overlapping generations structure where consumers live for two periods. It is

assumed that moving costs are so high that consumers can only choose their

location (city) when they are young. This location decision is made after

shocks to production and amenities are realized for that period, and known to

all. The consumer/workers cannot move again when old. The wages or income

for the old in a city are never even specified, and it is simply assumed that the

young make their decisions in a myopic manner. Moreover, the availability of
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insurance or capital markets is never discussed, so it is unknown whether the

young can hedge against uncertainty about their wage when they are old in

the city they choose.

If the old people are immobile, why is this important? It is important be-

cause when the young make their decisions, they can anticipate what happens

when they are old, and might change their mind about their location decision

when young. In other words, they won’t behave myopically. Without myopia,

insurance becomes important.

3.2 Recent Literature

Chief among recent work are Rossi-Hansberg and Wright (2007), Duranton

(2006), Eeckhout (2004) and Duranton (2007). We focus on the latter two.

Eeckhout’s model has consumers who are infinitely lived with foresight

and who can move each period. There are technological shocks to production

in each city in each time period. It is movement of the consumer/worker

population in response to these shocks that generates Gibrat’s law. The shocks

generate changes in equilibrium wages, rents, and congestion across time and

space that correspond to the consumer movements that equalize utility levels

across space at each time. On p. 1445, the following statement is made:

“Moreover, because there is no aggregate uncertainty over different locations,

and because capital markets are perfect, the location decision in each period

depends only on the current period utility. The problem is therefore a static

problem of maximizing current utility for a given population distribution, and

the population distribution must be such that in all cities, the population 

equates utilities across cities.”

Here we wish to make an important distinction between transfers of con-

sumption across time, namely perfect capital markets, and across states, namely

complete and perfect futures markets.

The actual consumer optimization problem in Eeckhout’s model does not

involve state-dependent assets nor does it allow state-contingent transfers of

income. If it were to allow this, as in a standard model of complete futures

or insurance markets, then agents would never move. They would simply buy

assets at the start of time that would pay them under a bad state in their city

at a particular time, and such that they would pay under a good realization

in their city. In other words, they would insure against the state of nature

in their city. It is important to recognize that in this model there are two

factors determining a worker/consumer’s productivity, namely the city-specific
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shock, and the externality in production induced by total population in the

city. Even if capital markets are perfect, the production externality is not

internalized (even with a land market), so the equilibrium allocation is not

necessarily first best.

The basic model of Duranton (2007) has consumers maximizing an in-

tertemporal utility function subject to an intertemporal budget constraint,

without facing uncertainty. However, once the detailed urban features are

added (in Section V and Duranton, 2006), the model looks similar to Eeck-

hout’s at least in terms of the urban features. One simply needs some depen-

dence of local prices (land rents or wages) on the state of nature. Then utility

equalization implies that people will move depending on the state realization,

but this movement disappears if one allows insurance.

There isn’t enough detail about the urban market in Duranton (2006, 2007)

to make specific statements about how insurance would work, but the con-

sumers in a city face uncertainty about employment due to the uncertainty

about innovations in various industries, so similar insurance arguments should

work if the details of the model are filled in.

Regarding contemporary developments in this literature, Behrens et al

(2010) is a very interesting contribution that does not employ Gibrat’s law

to obtain Zipf’s law. Using a static model, a number of stylized facts are

matched. There is an asymmetric information/adverse selection component

as well as a potentially insurable luck component in the model. There are also

standard issues with indeterminacy of equilibrium (or alternatively existence

of equilibrium, depending on how equilibrium is defined) that are common in

such adverse selection models.

The bottom line here is not that complete and perfect futures markets

are needed to upset the purpose of these rather fragile models. Rather, the

question is whether moving or buying insurance is cheaper for the consumers.

Typically in these models if moving costs are positive, it makes sense for con-

sumers to stay put and insure.

3.3 Criticism of the Literature

3.3.1 How Insurance Reduces Population Movement

So how might this insurance occur in practice? Let’s assume either that

consumers cannot perfectly observe the technology shocks to cities, or moving

has a small cost, or both.

19



� Self insurance. Since consumers can transfer consumption across time,

and they know that shocks are i.i.d., then they can borrow or use their

savings in bad times and save (or pay off their loans) in good, staying

in the same city. In the literature, the intertemporal uncertainty faced

by consumers does not show up in their objective function, whereas the

possibility of self insurance does not show up in the budget constraint.

The earlier quote from Eeckhout seems to imply that this is allowed, but

the formal statement of the consumer budget constraint makes it clear

that this is not allowed. This type of insurance exploits the fact that

for any given city, the shocks are i.i.d. over time. Empirically, the place

to look for self insurance is in the savings response to local employment

shocks.

� Insurance markets. In all of these models, at each time the state of

nature (the random shock to each production function for each city) is

known to all and verifiable6 before consumers make their decisions about

consumption bundles and location. So this is a perfect setting for a

viable insurance market. An insurance firm can step in or the continuum

of consumers can simply pool resources in each period, smoothing their

consumption without changing location so it is independent of the state

in their city. This type of insurance exploits the fact that at any given

time, the shocks are i.i.d. across cities. Empirically, one place to look

for insurance is a cross-country comparison of how varying benefits of

unemployment insurance affect mobility in response to local employment

shocks.

� Futures markets. Consumers formulate plans to sell labor and buy

consumption commodity and housing contingent on every possible state

in every time period. There is no empirical complement. We mention

this for completeness.

Given that for Gibrat’s law to hold, the shocks to each city in each period

must be “small” (see Eeckhout, 2004, p. 1447), it seems reasonable to think

that insurance would yield higher consumer utility than movement, if moving

costs are at all significant or if consumers cannot observe shocks to firms per-

fectly, and thus face even a small amount of uncertainty in their optimization

problems.

6Thus, such models differ from models of human capital, for example, where verification

is not a realistic assumption and thus insurance against fluctuations is not to be expected.
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For models in the literature, consumers will choose to insure instead of

move when insurance is available. A common feature of both the models in

the literature and the model we have presented is the prediction that people

will move and not insure. A major difference between our model and the

balance of the literature is clear: An advantage of our model is that it can

explain endogenously the lack of insurance, whereas the other models in the

literature implicitly assume that such markets, namely insurance or self insur-

ance (saving and borrowing), do not exist. The empirical investigation of the

use of insurance as a substitute for migration, especially when consumer het-

erogeneity is taken into account, seems quite interesting as a topic for future

research. But as a preview, we present in Table 3 the estimates of the models

for Germany and Belgium, where likely insurance mechanisms are more devel-

oped and moving costs are higher compared with the US. Thus, one would

expect deviations from Zipf’s law and lognormal models, but not from GEV,

for Europe as compared to the US. We will remark on the welfare implications

of insurance in section 4 below.

Table 3: Param eter Estim ates and Related Statistics for Europ e

Country Year D istribution M ethod b b b b b KS LogLH AIC BIC

Germany 1998 Lognormal MLE 11.74 0.9865 0.1737 -2577 5158 5164

GEV MLE 2.242 1.159 1.081 3.179E+04 0.5085 0.05415 -2509 5027 5044

Belgium 2000 Lognormal MLE 10.84 .5697 0.2030 -806.3 1617 1594

GEV MLE 1.529 0.01775 .3513 0.6682 .9626 0.1064 -786.6 1583 1621

3.3.2 Possible Objections to the Criticism

We emphasize that the criticism we make is a purely theoretical point concern-

ing models in the literature. Whether or not agents in the real world actually

insure or self insure against city-wide risk is not relevant to the question at

hand. Our point is that in the theoretical worlds of these models, insurance

or self insurance of the sort discussed in the previous subsection is implicitly

excluded. The reasons are not given or, more importantly, included in the

model. If these factors, such as asymmetric information, are included in the

model to explain insurance market breakdown, other competing forces driving

agglomeration can be important; see for example Berliant and Kung (2010),

where it is shown that adverse selection alone can generate agglomeration. In

other words, this criticism of the internal structure of the models, for example
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when there is a non-zero moving cost, is that the consumers are not behaving

rationally if they don’t insure or self insure.

Next we present a discussion of why insurance market breakdown is not

natural in the context of the models. Again, this is not meant to be a statement

about the real world, but rather about whether the exclusion of an insurance

option for consumers in the models makes sense.

The usual cause of a breakdown of insurance markets is adverse selection,

represented for example by cream-skimming on the part of insurance compa-

nies. In the models discussed here, the state is assumed realized and observable

to all before decisions are made in a given time period. So there is no issue of

adverse selection. But one can easily imagine variations of these models that

incorporate some form of information asymmetry. It would not be natural for,

say, only consumers to know the shock to the local economy, since the technol-

ogy shock really affects firms. If only firms knew the realization of the shock

before making their decisions, then consumers could draw inferences from firm

behavior, or the consumers could self insure or insure. It is not clear what

hidden information or hidden action on the part of consumers would cause an

insurance market breakdown in this context, given that the shock is to firms’

technologies. It is natural to assume that amenities are observable.

One can imagine moral hazard at the city level with insurance markets,

in that a city might try to claim a productivity level lower than the actual

one so the residents can collect more insurance money. However, there are

no local governments in the models in the literature to coordinate this, and

the assumption is that local productivity is observable to all, including non-

residents of the city, when they make their location decisions.

Another objection that could be raised is the commitment required on the

part of consumers. In fact, commitment to a plan or contract is a requirement

of models that feature self insurance, insurance or futures markets generally.

For example, a consumer might experience regret over the purchase of a long-

term health insurance contract after the state of the world that tells them

that they are healthy is realized. Or the insurance company might experience

regret if the consumer turns out to be unhealthy. But they are committed to

their contracts. In the models of the size distribution of cities, for example,

one could begin the random process of technological change and at any point

in time, allow insurance and commitment to begin. Then the population

distribution will not change from that point on.

Self insurance through borrowing and saving requires a long term commit-

22



ment to a plan. Insurance cooperatives or firms only require a one period

commitment to stay in a city and work. The latter commitment problem can

be solved with the following time line, a standard time line for insurance in

the real world. First, people are in a city from last period. They make an

insurance premium payment to the insurance company equal to the maximum

possible income for a shock this period less the income workers received from

work last period in the city. This will be “small” since the random shock is

small, as explained in detail in the Appendix. Then they work and the shock

for this period is realized (timing here is not important). Then any insurance

payment is made from the pool to obtain the average income. After that, the

next period begins.

This way, people cannot receive income and then move without sacrificing

their insurance. Since in all equilibria the utility levels in every city in Eeck-

hout’s model are the same, they must lose utility by moving and giving up

insurance (the loss is their premium). Of course, one could then say that the

insurance company could abscond with the money. But this stretches credulity.

One might easily object to even small moving costs or even a small amount

of noise in consumer observations of shocks. Then what we present is an-

other equilibrium, that yields exactly the same period by period utility as the

equilibrium studied in this literature. This alternative equilibrium features a

uniform distribution of consumers, and does not generate Zipf’s law.

Finally, there are costs associated with insurance contracts that, from the

point of view of consumers, must be balanced against the cost of moving. Such

costs involve lawyers and potentially complex transactions. Moreover, unem-

ployment insurance might fulfill the role of explicit contracts. Self insurance

does not suffer from these problems. But credit constraints could limit self

insurance. In any case, insurance does not need to be perfect. If there is

substitution between insurance and mobility, the type of mobility needed to

generate the various empirical distributions of city size can be upset.

But we emphasize again that although these various insurance market im-

perfections can cause insurance market breakdown, their inclusion in a formal

model is necessary to ensure that consumers behave rationally when they don’t

insure, and the consequences of their inclusion are far from obvious.

Even if one takes as an empirical fact that there are no insurance markets

and uses this as an axiom, which we are reluctant to do for methodological

reasons, one still must explain why no self insurance is allowed in the models.

In the Appendix, we modify a model from the literature, Eeckhout (2004),
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to include insurance and to prove our claims formally. This represents an

example. We conjecture that the other models in the literature can be modified

in a similar fashion.

4 Welfare

First, it is important to note that the models of Duranton and Eeckhout fea-

ture equilibrium allocations that are second best, whereas the model we have

developed features an equilibrium allocation that is efficient. In Eeckhout’s

model, equilibrium allocations might be inefficient due to both positive and

negative externalities that are functions of city population, as detailed in the

Appendix. Duranton uses a quality ladder model with imperfect competition.

So statements about welfare in either of these models must account for the

theory of the second best.

In the model we have advanced here, staying in the same location instead

of moving to productive locations has a large cost, both social and private,

in that workers are not at the locations that are producing. Equilibrium

allocations are first best because the workers themselves perceive the cost of

not moving, so they move.

In Eeckhout’s model, the puzzle is: why don’t workers all move to the cities

with the highest productivity? It is obvious that output would rise relative to

the equilibrium allocation. The resolution, almost obvious, is that the negative

crowding externality (represented by the notation −) becomes very important

when city population is large. In fact, since utility is equalized across cities

in equilibrium, although output would rise if all workers moved to the most

productive cities, utility would decline in these cities relative to the equilibrium

level. It is for this reason that the use of insurance does not cause utility to

decline relative to the equilibrium utility level without insurance.

This same puzzle is much more interesting in Duranton’s model. But

we must give some background for the model first. Labor is used in each

industry by the quality leader, a monopolist, and by firms for research to

produce the next innovation. In the basic model, wage is the same in all cities

at equilibrium. In a steady state, it is also constant over time. However,

consumers’ utility rises over time due to decreasing quality adjusted prices of

the commodities they consume. Thus, workers perceive the private cost of

moving, equal to zero. But there may be social value to moving to become

a researcher, since more research would imply a faster decrease in quality

24



adjusted prices, and thus higher utility. Once again, the introduction of

insurance does not change equilibrium utility.

5 Conclusions

So what’s the point? Well, actually, there are several related points.

� First, when a model, markedly different from those found previously

in the literature, is constructed to explain a specific empirical phenom-

enon, the microeconomic, structural assumptions about individual be-

havior and markets must make sense. Here, there is a rather obvious

problem that self insurance and insurance markets are assumed not to

be functional. Models in the literature feature city-level risk, and it

is generally possible to insure against such risk through many vehicles,

barring asymmetric information. The latter does not arise naturally in

these models, since consumers are assumed to know the state of nature

before making their location and consumption decisions.

� With time in the model, it is even possible to insure against aggregate

risk through borrowing and saving.

� However, it is much more difficult to insure against extreme aggregate

risk, so we propose such a model. Our model begins with microfounda-

tions and delivers a different functional form for the size distribution of

cities than has been used in the literature.

In summary, we first propose a model based on primitive assumptions, not

designed to match any particular stylized fact (like the rank size rule), but

rather capturing the following theoretical notion: Insurance is allowed, but

consumers will never use it, as it is very costly. Instead, they move. The new

model is based on extreme value theory and yields a functional form for the

size distribution of cities different from the other models, and this prediction

is empirically competitive with the ones in the literature. Then we advance

a criticism of the literature based on the fact that a primitive assumption in

previous work, that consumers cannot insure (either by borrowing and saving

or by pooling resources) against the random productivity variable for each city

that is observable to all. If insurance is allowed, there is another equilibrium

of the model with a uniform distribution of consumers where there is never any

migration. Instead, consumers insure against the risk, and the utility stream
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they obtain in this manner is the same as that in the equilibrium used in the

literature. If there is any moving cost or residual uncertainty, the equilibrium

used in the literature disappears.

Is insurance or self insurance an important issue for the analysis of the

size distribution of cities and city growth? The presence of insurance has no

effect on our model, since it will never be taken up, and is simply prohib-

ited in the other models in the literature. Thus, direct evidence regarding

insurance or self insurance is insufficient to distinguish between the models

empirically. From the theoretical viewpoint, it makes no difference whether

or not insurance is prohibited in our model, as the equilibrium is unchanged.

But it makes a huge difference whether insurance is prohibited in other models,

as the equilibrium with insurance and the equilibrium without insurance are

vastly different. Other models from the literature that are modified to include

insurance will not generate Zipf’s law or Gibrat’s law. It is in this sense that

abstraction from consideration of insurance or self insurance by other models

in the literature is a first-order issue.

Future work includes testing further predictions of the model, for exam-

ple the wage and rent distributions when transport costs for consumption

commodities are introduced, and applying the model in new (but appropriate)

contexts, such as finance (see Gabaix et al., 2003, for an application of Gibrat’s

law to finance) or crop abundance (see Halloy, 1999, for an application of the

lognormal distribution to crop abundance).

Application to the size distribution of firms is of interest; see, for example,

Axtell (2001) in the context of Zipf’s law or Gabaix (2011) more generally.

Frequent churning might be expected more in firms than in cities. There are

two issues with this idea. First, in an aspatial model, moving between firms is

easy for workers, so our insurance critique will not apply to models using the

lognormal or Pareto distributions, which therefore might be more appropriate.

Second, we are using a competitive model since there is a continuum of firms in

each city producing the same commodity and subject to the same productivity

shock. The competitive assumption might not make as much sense in an

aspatial model where productivity shocks are firm-specific, so only one firm

has the state of the art production technology.

Finally, an interesting direction is to merge our model with that of Eaton

and Kortum (2002), though it is unclear if the added complication would make

simply adding an iceberg transportation cost to our model more worthwhile.
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6 Appendix: A Model from the Literature

Modified to Include Insurance

6.1 Notation

We use the model of Eeckhout (2004) as the basis for the analysis because it

is explicit about consumer behavior, in the form of an optimization problem,

as well as endogenous urban variables, namely local wages and land rents.

The original model is specified as follows. For complete detail, see Eeck-

hout (2004, pp. 1445-1446). In general, there is a large number of cities and

a continuum of identical consumers. Each city produces the same commod-

ity using labor and a constant returns to scale technology. The production

function is dependent on a city-wide shock and on a positive agglomeration

externality that is a function of city population. There is also a negative con-

gestion externality that is a function of city population and that only affects

consumers. On net, the random shocks to productivity cause some, but not

all, population to move each period so as to equalize utility across cities in

equilibrium.

Time is discrete and indexed by . The set of cities is indexed by  ∈ .

Consumers are infinitely lived and identical. In city  at time , consumption

good is , housing or land consumption is  whereas leisure is 1− for labor
supply  ∈ [0 1]. Utility for a consumer in city  at time  is Cobb-Douglas:

(  ) = 

(1− )

1−−

with   +  ∈ (0 1).
Production is constant returns to scale. The measure of population in

city  at time  is . Let  be the technological productivity parameter of

city  at time . This parameter follows the law of motion:

 = −1(1 + ) (8)

where  is the exogenous technological shock to city  at time . It is

assumed that  is i.i.d. with mean 0, symmetrically distributed, and satisfies
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1 +   0. The positive local externality (spillover) function is given by

+()  0, where 0+()  0. The marginal product of a worker in city 

at time  is given by

 = +()

For prices, let the consumption good be numéraire, the price of housing or

land in city  at time  be , and let the wage in city  at time  be . The

local negative externality or congestion function is given by −() ∈ [0 1],
where 0−()  0. The optimization problem of a consumer in city  at time

 is:

max
{}



(1− )

1−−

subject to

 +  ≤ 

where  = +() and  = −(). Total land or housing in a city

is .

Using the first order conditions from this optimization problem and market

clearance, equilibrium (denoted by asterisks) in city  at time  as a function

of population  can be found:

∗ =
+()−()


∗ = +()

∗ = +()−()

∗ =



∗ = + 

The last equation in particular, indicating that labor supply is independent

of population, is an artifact of the Cobb-Douglas specification.

Substituting back into the utility function, indirect equilibrium utility as a

function of population ∗() can be written as

∗() = [ · +()−()]
− 

[1− − ]1−− (9)

Under free mobility of consumers, indirect utility is equated across cities in

each time period, determining their populations as a function of their produc-

tivity and their realized history of shocks, summarized by . Instantaneous

utility is constant over both time and location in equilibrium. Again using

Eeckhout’s notation, call this instantaneous utility level  .
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6.2 Insurance

Let the discount factor be denoted by  ∈ (0 1]. In correspondence with the
assumption of complete capital markets, it is assumed that all consumers can

borrow or lend at rate 1

− 1. The consumer optimization problem (at time 0)

becomes:

max
{}

∞X

=1

 · 

(1− )

1−−

subject to
∞X

=1

 · ( + ) ≤
∞X

=1

 · 

As stated by Eeckhout, the problem reduces to the one period optimization

problem if there are no insurance or futures markets. Formally, there should

be an expectation in the objective function and a requirement that the budget

constraint hold for every state of nature. However, this is omitted in the

literature since the problem is reduced to a static optimization problem where

the state of nature is observed before consumers make their choices.

There are several important points to be made at this juncture. First, it is

useful to imagine the consumers stepping back at  = 0 and making decisions

about their cities of residence and their consumption bundles for the entire

time stream of their infinite lives, contingent on state realizations at each

time. Second, and more important, it does not matter which interpretation

of the model one employs. Specifically, resources can be transferred across

states of the world (at any given time) in one or more of several ways. In the

end, what a consumer is choosing is their residence and consumption bundle

for every time and for every possible state of the world, optimizing utility

subject to the budget constraint. The state of the world at time  affects the

optimization problem through the prices,  and , and income (through

−() and ) only. These variables depend on  both directly and

indirectly, the latter because  depends on  in equilibrium. The state

of the world at time  does not enter into the consumer optimization problem

otherwise. For example, it does not enter into the utility function. We could

index these prices and incomes by the state of the world, but that would only

serve to complicate notation.

As already mentioned, what will matter are only the lifetime choices of

residence and consumption bundles, contingent on the state of the world in
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each period. The method used to actually implement them, via transfers

across states in a time period as opposed to across time periods, does not

matter; there are many possibilities. With complete futures markets, at time

 = 0 the consumers can sell their labor in every future time period and state,

buying consumption good and housing in every future time period and state.

With insurance markets, at  = 0 the consumers can buy actuarially fair

insurance against price and income changes. With self insurance, they can

commit to a plan of borrowing and saving under all possible scenarios, namely

realizations of states in each time period.

To get the basic idea across, in the next subsection we show how insur-

ance would work from the beginning when all cities have the same initial

state (productivity) and population. This yields no movement at any time

in equilibrium. In the next subsection, we discuss how to extend this so that

insurance can begin from equilibrium of the model at any time . From that

time on, there is no consumer movement unless the insurance is switched off.

6.2.1 Insurance when the initial state is the same for all cities

To illustrate the ideas behind insurance, we begin with an example where all

cities begin with the same state at time 0 and consumers insure from then on.

For notational purposes, let  be the mean population of cities, that is

 =


∈ 
||

, where |  | is the cardinality of the set . Let 0 = 0

denote the common initial technology level for all the identical cities before

the process begins. Let 0 =  for all cities , so they all have the same

initial population. We assume that

 = ∗() = [0 · +()−()]


−
[1− − ]1−−

Thus, we assume for illustrative purposes that the initial configuration of shock

0 and uniform population distribution  generate the instantaneous equilib-

rium utility. This is to get the idea across; in the next section, we will show

how to start insurance from equilibrium at an arbitrary given time. In either

case, no consumer movement will occur once insurance begins.

With insurance, self insurance, or a futures market (or some combination

of all 3), we propose the following equilibrium solution for all cities  and times
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:

 =
0+()−()


 = 0+()

 = 0+()−()

 =



 = + 

In other words, this is the allocation generated by a constant, over both

time and state, allocation with a uniform distribution of consumers. By con-

struction, it generates the same instantaneous utility stream for all consumers

in all cities and in all times as both the initial distribution and the equilibrium

studied by Eeckhout.

But how does this work in a pragmatic sense? Regarding futures markets,

each consumer works the same hours, independent of state. If the state

realization is good, i.e. if the consumer is in city  at time 0 and  

0, income in excess of 0+() · ( + ) is paid to the market. If the

state realization is bad, then the consumer receives income from the market,

smoothing consumption. Under self insurance, the consumer commits to

a plan of saving income in a good state, and withdrawing from savings or

borrowing in a bad state, thus smoothing consumption. The banks know that

() = 0, so they are willing to lend. Under mutual insurance, the same

type of idea, with commitment, has consumers who are in cities with good

states at time  contributing to an insurance pool, and those in cities with

bad states receiving payments from an insurance pool. If the number of cities

is large, the law of large numbers implies that the mutual insurance pool is

solvent.

It is interesting to note that the phenomenon we describe is something like

another manifestation of Starrett’s spatial impossibility theorem (see Mills,

1967; Starrett, 1978; Fujita, 1986; and Fujita and Thisse, 2002 chapter 2.3),

though here markets are incomplete due to the presence of unpriced local ex-

ternalities, both positive (+) and negative (−). In particular, we obtain a

uniform distribution of economic activity, in spite of the violation of one of

the hypotheses of the Theorem, namely perfect and complete markets. It is

well-known (from these cites) that the hypotheses of Starrett’s Theorem are

sufficient but not necessary for the conclusion, namely the lack of agglomera-

tion.
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In summary, the equilibrium time path of utility for every consumer is the

same, and constant, under insurance and under the equilibrium that generates

movement and eventually becomes lognormal. At the very least, a discussion

of why the latter equilibrium is selected should be offered in the literature.

With any moving cost, the insurance or futures market equilibrium (the

one denoted with bars) clearly dominates the path with asterisks, the one put

forth in the literature. Given a choice between moving along the equilibrium

path or insuring at  = 0, each consumer will individually choose to insure.

A second, and perhaps more reasonable possibility, is that consumers ob-

serve  imperfectly when they make their location decisions each period.

In that case as well, the consumers will insure rather than move, since they

are risk averse. This can be seen in equation (9). When consumers cannot

perfectly observe  when optimizing, equilibrium expected utility will vary

in proportion to ()
.

6.2.2 Insurance starting when the state is an equilibrium at a given

time

The preceding subsection was provided to give intuition. However, it has

drawbacks in terms of commitment on the part of consumers if they use mutual

insurance at each given time, and on the part of banks and consumers at time

0 if the consumers use self insurance. Moreover, there is a strong assumption

that at time 0, 0 is the same across cities, each city has the same population

, and this combination produces the instantaneous equilibrium utility level.

Here we discuss how to dispense with some of these assumptions.

Suppose that we start running the model without insurance, so that con-

sumers are generally moving around, and stop it at some arbitrary time . At

this time, the instantaneous utility level of each consumer is, of course,  .

Consider a consumer in city  and the possibility of self insurance. At that

point, the productivity parameter in the city is , and everyone knows from

equation (8) that for 0  , (0) = . So if the consumers in that city

freeze their consumption bundle at whatever it is at that time, and commit to

staying in that city and consuming that consumption bundle forever through

a plan of borrowing and saving, they will obtain utility level  in each period.

This exploits the law of large numbers over time.

Mutual insurance, exploiting the law of large numbers over space at a

given time, is more interesting. Pick an arbitrary time  and freeze all the

consumers in their equilibrium locations as well as their consumption bundles.
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All consumers obtain utility  in this situation at time . Now consider what

would happen if they maintain the same location and consumption bundle in

time + 1. Given equation (8), the surplus or deficit in total wage payments

for city  relative to the benchmark inherited from the previous period  is

+1 · · +() · (+ ) ·  (10)

Thus, to ensure that this system of mutual insurance across cities is solvent at

time + 1, it is necessary that

X

∈

1

|  |
· +1 · · +() · (+ ) ·  = 0

Although this cannot be assured for finite |  |, we can see that as the number

of cities |  | tends to infinity, the limiting result is a consequence of a law of

large numbers with weights given by 1
||
· · +() · (+ ) · .

Since the support of the random variable 1 +  is contained in (0 2),

equation (8) implies that the size of  at given time  can be bounded over

 by 20. Since  and  are positively related, there is also a bound for

 and thus for the continuous function +() for fixed  over . There is

an extensive literature on law of large numbers for sums of weighted random

variables. Our framework would fit, for example, in Cabrera and Volodin

(2005, Corollary 1).

Notice that there is no commitment required under mutual insurance be-

yond the next period. So it can be switched on and off as desired, with no

consumer movement when it is on, and movement when it is off. If insurance

is carried on to period  + 2, then expression (10) updated to time  + 2 rep-

resents the change in the surplus or deficit in total wage payments for city 

relative to time +1, so solvency at time +2 requires that these changes sum

to zero across cities.
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