Schooling, employer learning, and internal labor market effect: Wage dynamics and human capital investment in the Japanese steel industry, 1930-1960s

Masaki Nakabayashi

Institute of Social Science, The University of Tokyo

29. April 2011

Online at http://mpra.ub.uni-muenchen.de/33162/
MPRA Paper No. 33162, posted 5. September 2011 11:28 UTC
Schooling, employer learning,
and internal labor market effect
Wage dynamics and human capital investment
in the Japanese steel industry, 1930-1960s*

ISS Discussion Paper Series
F-153
May 2011
Masaki Nakabayashi†

Institute of Social Science
The University of Tokyo

Abstract
Schooling, an observable signal, decreases its impact on wages as employers “publicly” learn workers’ hidden types over workers’ experience in the market. This symmetric employer learning hypothesis has been empirically contested by, first, asymmetry of incumbent and entrant employers, and second, larger-than-imagined complementarity between schooling and work experience, which could enshroud learning effect. Microanalysis of Japanese steel industry shows, 1) experience before entering the long-term employment is complementary to schooling, 2) employer learning effect dominates the complementarity effect after workers’ joining the long-term employment. It suggests that reported evidences of employer learning have in fact captured internal labor market effect.

Key words: employer learning, schooling and wages, internal labor market effect.

*This research has been funded by the JSPS Grant-in-Aid (22243022) and the Mitsubishi Foundation.
†The author is thankful to support from the Kamaishi Iron Works, Nippon Steel Company. He also appreciates helpful comments from Daiji Kawaguchi, Yuji Genda, Hideo Owan, Ryuichi Tanaka, Konosuke Odaka, Takashi Kuroasaki, Soohyung Lee, Norihito Abe, Chiaki Moriguchi, Rasmus Lentz, Peter Howlett, Janet Hunter, Keisuke Nakamura, Naofumi Nakamura, Michio Nitta, Junichiro Ishida, Keiko Yoshida, and the participants of the Osaka Workshop on Economics of Institutions and Organizations, the Contract Theory Workshop, and seminars at the University of Tokyo, London School of Economics and Political Science, Free University of Berlin, University of Tübingen, Hitotsubashi University, and University of California, Irvine. Corresponding address: Institute of Social Science, The University of Tokyo, Hongo 7-3-1, 103-0033 Tokyo, Japan. e-mail: mn@iss.u-tokyo.ac.jp
1 Introduction

1.1 Total experience or tenure?: Employers’ asymmetric learning and employees’ human capital investment

While human capital of individual workers are hard to observe, educational background is one of observable proxies supposed to be correlated to skill and future performance. It entices employers to statistically discriminate employees based on educational background, and the statistical discrimination could lead to considerable gap between wages and realized performance.\(^1\) Wage could grow either because human capital is invested in after employed or because the employer learns employees’ ability endowed before employed, and it is generally difficult to empirically distinguish them.\(^2\) Inspired by the screening hypothesis, rich empirical results supporting “sheepskin effects” of schooling have been presented for the US and other several economies.\(^3\) While there are evidences that schooling could enhance productivity, not only work just as a signal, and the quality of education, not only diploma, does matter,\(^4\) it does not necessarily contradict with screening hypothesis. Schooling works as a strong signal as well as increases productivity. It has been established that “sheepskin effects” exist in someway in all of developed, developing, and even planed economies. Then the issue in the literature has come to how the effects differ due to institutional arrangements, such as possible discrimination of gender, ethnic, or racial minority, ownership structure of firm, or regime of state.

Employer learning is one of the most exciting focal points of such a comparative analysis. The founders of screening models had interests both in education as a screening device itself and in social benefit of screening device to improve matching in the job market. Focusing on the former and considering rich empirical results supporting it, the employer learning

model established by Farber and Gibbons (1996) and Altonji and Pierret (2001) provides a clear prediction that impact of schooling on wage decreases over workers’ experience in the labor market as employers “publicly” learn workers’ types hidden at the time when they join the competitive labor market. This learning effect is in estimation practice captured by non-increasing coefficient of the interaction term of schooling and experience in a wage regression, and their empirical results support the prediction quite well, followed by supporting works about the US labor market.\(^5\)

At the same time, this symmetric version of employer learning hypothesis has been empirically contested by mainly two strands.

The first one is reality of asymmetry in employer learning. A simple, but not negligible feature of Farber and Gibbons (1996) and Altonji and Pierret (2001) is in that they do not differentiate workers’ experience before and after entering long-term employment, hence implicitly assume that learning goes through “publicly,” or, symmetrically between incumbent employer and entrant employers, and that interaction between schooling and experience in principle do not change before and after workers are successfully employed by a large firm that commits to long-term employment. The symmetric learning assumption is questioned by Pinkston (2009), which shows the US data in fact incumbent employers are learning better than entrant employers.

The other issue discussed is about workers’ attitude to human capital investment. Non-increasing coefficient of interaction term between schooling and experience implies not only that the employer is learning but also that schooling and experience are not complements, or their complementarity effect is sufficiently weak to be dominated by the employer learning effect.\(^6\) If non-increasing coefficient of interaction between schooling and experience observed, then complementarity between schooling and work experience is sufficiently weak, which does not seem to always hold under technology-skill/education complementarity. Indeed, Bauer and Haisken-DeNew (2001) showed that interaction term between schooling and work experience has significantly positive coefficient for the German data set and concluded that employer learning is not observed in the German labor market. While Lluis (2005) then found some evidence of employer learning in the German data set, the effect of employer learning seems to be weaker than that in the US. The extent of complementarity between schooling and worker experience is largely affected by the extent of human capital specificity, which is easily expected to be diverse over economies.

These two suggested questions indicate that the employer learning effect and the complementarity between general knowledge taught at schools and general human capital invested in workplaces differ over economies and this could be a key of comparative analysis of the labor market and the firm organization.

The employer learning model and suggested questions are, of course, not necessarily exclusive to each other. Let us depict a possible life course of a worker.

As Gathmann and Schoenberg (2010) clearly demonstrates, young workers are expected to typically invest in “potable” general human capital as switching jobs several times in their

early stages of career, and then enter employment of long-term basis.7 Also, productivity of labor and education of worker are thought to be closely correlated since the early 20th century, as industrial economies have experienced technology-skill/education complementary development.8 Rather, educational background of workers has accordingly emerged as the important proxy of ability in workplaces exactly on this context of technology-skill/education complementarity.

Under the technology-skill/education complementary development, workers likely choose work experiences to invest in general human capital complementary to their educational background before he/she joins a firm that commits to long-term employment and internal promotion, \textit{i.e.}, internal labor market policy. Thus schooling and experience might be complements in work experiences of short-term basis. This effect would work to make coefficient of interaction term between schooling and work experience in a wage regression increasing over time.

On the other hand, if the current employee commits to long-term employment and internal promotion, then the employee has incentives of investment in the industry-specific and/or firm-specific human capital,9 which might be less complementary to schooling, an opportunity of investment in general human capital. If complementarity between schooling and industry- and/or firm-specific skill is sufficiently weak to be dominated by the employer learning effect, then the interaction term between schooling and tenure in the firm is expected to have non-increasing coefficient over time.

While the employer learning model is entitled as a “public” learning model, its prediction in fact seems to better fit with employer learning process within internal labor market of large firms from the viewpoint of dynamics of workers’ investment in human capital, instead of the competitive outside market.

Succeeding close interest in the original employer learning model, Galindo-Rueda (2003), Schönb erg (2007), Pinkston (2009) are conscious of a possible asymmetry in employer learning and thus in particular effect of tenure in total experience, Bauer and Haisken-DeNew (2001) deals with human capital investment complementary to schooling, and Baker, Gibbs and Holmstrom (1994b) and LLuis (2005) inquire wage dynamics of internal labor markets. Knitting up these three attractive strands, this research tries to distinguish learning effects in wage growth in and out of internal labor market, using panel data of the Japanese steel industry exactly at the time when it introduced internal labor market policy.

7Gathmann and Schoenberg (2010), pp. 10-36.
9Based on the NLSY, Parent (2000), pp. 308-320, shows that industry-specificity has larger impact on wages than firm-specificity alone, which intuitively persuasive to us as a wage earner and seems to be applicable to other economies than the US. In addition, Weinberg (2001), pp.236-247, verifies that industry specificity does shield wages from exogenous shocks. Then, Poletaev and Robinson (2008), pp. 402-413, extracts impact of skill-specificity on wages, embedded in industry-specificity. At the same time, Shaw and Lazer (2008), pp. 717-720, extracts specific productivity gain of tenure at a specific firm, which implies the existence of firm-specific human capital at least to some extent. Therefore, more correctly, we had better state that internal labor market of a specific firm exists and it consists of industry-specificity and specific composition of skills. For simplicity, we tentatively skip the logical step here.
1.2 Technology, skill, and organization

Desirable structure of organization depends on prevalence of relevant information, and technological conditions shape informational structure. Technological changes affect organizational structure in this way. It particularly holds for labor organization within a firm. Technological changes affect type of necessary skill, and it could determine which player, either employees or the firm, knows the skill better. If the firm knows better about necessary skill, then direct control of labor organization could provide employees with better incentives. Given technology, skill and information structure, a firm chooses a better organization to reduce loss from asymmetric information. In other words, through the firm’s decision, combination of technology, skill, and informational structure shapes labor organization. Internal labor market is a candidate when a firm knows necessary skills well and the skills are complementary to each other and/or firm-specific.\(^{10}\)

Internal labor markets characterized by long-term employment and internal promotion are widely seen for high-skilled workers of large companies in developed economies. Labor organizations of white-collar employees and high-class engineers are not uniquely determined by technology and are often firm-specific, so internal labor markets are widely applied on white-collar employees and engineers. It is also introduced for ordinary blue-collar employees of manufacturing in some industries where systematic procedures are required as typically in steel, petroleum refineries, paper mills, and so on.\(^{11}\) These industries, at the same time, are the very ones which Goldin and Katz (1998) asserts have grown with technology-skill/education complementarity since the early 20th century.\(^{12}\)

Empirical and descriptive works on the issue in the last two decades have rejected the traditional conjecture that, either in the US and in Japan, the internal labor market drives wage dynamics irre relevantly to performance or merit. Rather, it is a evaluation device as a second best approach to make wages sensitive to performance of employees and to give employees incentives of investment in industry- and/or firm-specific human capital under asymmetric information between employer and employee. Thus it is expected that wages do not depart from the market price equal to marginal productivity in the long term on average, though they are not necessarily one-to-one equal in the short term.\(^{13}\)

Japanese manufacturing, led by the steel industry as in the US, headed that way in the 1920s, and after the Second World War, developed even more internal-labor-market-oriented. Then “life time employment” came to be known as a feature of the Japanese manufacturing. As the US firms of good performance have continuously managed long-term employment,\(^{14}\) it is not a unique culture of Japanese firm, while it is true that post-war Japanese firms have more

\(^{11}\)Doeringer and Piore (1971), pp. 6, 50-51, 58.
steeply tilted to long-term employment and wage growth with tenure.15 The point is arguably in that Japan experienced a faster and deeper transition of the same direction shared with other developed economies.

1.3 Transformation in the steel industry

Different from typically 20th century industries like petroleum refineries, transition to the internal labor markets in major industries with longer tradition was accompanied by dissolution of autonomous intermediary labor organization into well organized labor organization directly and systematically planned by firms, as originally pointed out by the radical economists and then redefined as transition to a more efficient second best organization by new institutional economists.16 Such a transition would proceed with technological transformation that provides firms with informational advantages in acquisition of relevant human capital, which makes direct control by the firm relatively efficient.

As to the Japanese steel industry, big two phases of technological transition were seen in the 1920s and in the 1950s as larger open-hearth furnaces were introduced, and in the 1960s when converter furnaces were introduced under the American influence. Along with the technological transition, traditional skill ascriptive to individual senior employees was transformed to the skill manualized and known to the management.17 As with in the American steel industry,18 it was the core in the transition to frame a work organization with systematic wage and promotion scheme.

This research deals with wage growth of blue-collar employees from 1929 to 1969 of the Kamaishi Iron Works,19 a leading iron works then in Japan, and approaches to employer learning and human capital specificity in wage dynamics during formation of internal labor market. To be analyzed is micro data of 1490 employees of the Kamaishi Iron Works.

The section 2 presents the estimation model. The section 3 describes the data and then verifies existence of internal labor market at the case firm. The section 4 gives empirical results.

17In the case of department of maintenance, the Kamaishi Iron Works, intangible knowledge that had bee inherited from senior workers to younger workers was made standardized, written as a rich manual and controlled by the firm in the early 1970s. Nakamura (2010), pp. 24-25.

19belonged to Fuji Iron and Steel Corporation then, now belongs to Nippon Steel Corporation.
2 Estimation model under internal labor market effect

2.1 Employer learning

Consider a random effect model of panel least square regression of the ith employee’s wage (w_i) at time t,

$$w_{i,t} = \alpha_0 + \alpha_1 yos_i + \alpha_2 yos_i \times t + \alpha_3 t + \zeta_i + \epsilon_{i,t},$$

where yos_i stands for years of schooling that is observable to employer and stochastic ζ_i captures time-invariant characteristics unobserved by the employer.

And put

$$\Delta_t w_{i,t} = \alpha_2 yos_i + \alpha_3 + \Delta_t E(\zeta_i \mid yos_i, t - 1) + \Delta_t \epsilon_{i,t} = \alpha_2 yos_i + \alpha_3 + \varphi_{i,t},$$

where $\varphi_{i,t}$ is shock in the tth year.

Then inference based on the “public” employer learning model by Farber and Gibbons (1996) and Altonji and Pierret (2001) brings a straightforward prediction as a benchmark. Linear projection of $w_{i,t}$ gives

$$E(w_{i,t} \mid yos_i) = \hat{\alpha}_0 + \hat{\alpha}_1 yos_i + \hat{\alpha}_2 yos_i \times t + \hat{\alpha}_3 t$$

$$= \hat{\alpha}_0 + \hat{\alpha}_1 yos_i + \frac{\text{Cov}(w_{i,t}, yos_i \times t)}{V(yos_i \times t)} yos_i \times t + \hat{\alpha}_3 t$$

$$= \hat{\alpha}_0 + \hat{\alpha}_1 yos_i + \sum_{\tau=2}^{t} \frac{\text{Cov}(\varphi_{i,\tau}, yos_i \times \tau)}{V(yos_i \times t)} yos_i \times t + \hat{\alpha}_3 t.$$

First, if schooling and experience are complements ($\partial^2 y / \partial yos \partial \tau > 0$), then $\text{Cov}_i(\varphi_{i, yos \times \tau}) > 0$, and otherwise $\text{Cov}_i(\varphi_{i, yos \times \tau}) \leq 0$, for each τ ($\tau = 2, \ldots, t$). Second, if the employer learns employees’ characteristics hidden when recruiting, which is captured by ζ_i, then $\text{Cov}_i(\varphi_{i, yos \times \tau}) = 0$ for each i.

Suppose that wages, with marginal productivity, increase over experience and standardize variables by taking logarithmic terms. Then, predicted are,

(a) If the employer learns employees’ hidden characteristics over time, and if schooling and experience are not complements or the effect of their complementarity is dominated by that of employer learning, then $\hat{\alpha}_2$ is expected to be negative.\(^{22}\)

\(^{21}\)While the standard wage estimation of Mincer style regresses logarithmic term of wage on raw level numbers, here in this research regressors are also transformed to logarithmic terms because estimation of the equation (4) with controlling all of cohort effects requires already many independent variables. The standard estimation model needs to contain squared terms of experience and tenure to allow their effects to be marginally decreasing, but adding squared terms here makes estimation results less readable. To allow experience and tenure effects to be marginally decreasing, here their logarithmic terms are used as regressors instead of squared terms of raw level.

\(^{22}\)In the raw level term, non complementarity implies significantly zero of $\hat{\alpha}_2$. Standardization taking logarithmic term means, with increase of relative impact of time variant factors such as tenure, relative impact of interaction between schooling and tenure decreases over time if they are not complementary, which implies a negative sign.
If schooling and experience are complements and the effect of complementarity dominates that of employer learning, then α_2 is expected to be positive.

Based on the National Longitudinal Survey of Youth of the US, empirical evidences to support (a) have been presented.23 It is also doomed that employer learning progresses fast especially in the first few years.24

2.2 Asymmetric learning, employees’ incentives, and diversified labor markets

An interesting issue to improve learning model is the extent of asymmetry in employer learning. About the US labor market, Pinkston (2009) finds that informational structure in employer learning is asymmetrically favorable to incumbent employers and thus tenure has impact on learning additional to total experience,25 while Schönberg (2007) evaluates that the asymmetry is not so large as it affects the speed of employer learning.26 About the UK, on the other hand, as Galindo-Rueda (2003) recognizes strong evidence of employer learning, it also finds stronger learning effect of tenure, instead of total experience of workers, and asserts that incumbent employers have informational advantage in learning over entrant employers.27 As later shown on Table 3, the same effect is clearly observed in the Japanese labor market.

Another point to be considered is specificity of human capital. The prediction of employer learning does not explicitly consider workers’ dynamic decision making in human capital investment. Workers are reasonably expected to choose workplaces to maximize lifetime income, given their educational background. While both of the schooling market and the labor market have frictions, friction with choice of schools seems to be much larger.28 It was the case especially prewar Japan where public elementary and secondary schools were dominant, and districts of elementary schools were determined by the government as they are now. Children typically enrolled in assigned schools, graduated them, and finally made their own conscious decision when they chose workplaces.

Without particular constraints or distortions, people in the competitive open market, especially under employment contracts of short-term basis, are naturally to choose work experiences such that schooling and work experiences are complements if other conditions are the same. This direction of human capital investment has become even more desirable since the early 20th century, as technology-skill/education complementarity has become augmented with transition of production process from artisanal shops to factory system, continuous production system, and “computerized” production line.29

25Pinkston (2009), pp. 381-389.

26Schönberg (2007), pp. 672-678.

27Galindo-Rueda (2003), pp. 13-15.

28In addition, kids themselves tend to be ignorant about return of schooling as reported by Jensen (2010).

On the other hand, if the current employer commits to operating internal labor market policy consisting of long-term employment and internal promotion, then the employees could have incentives to invest in industry- and/or firm-specific human capital that might be less complementary to general skills that have been taught at schools. Indeed, in the case of the US, industry-specificity of human capital obviously decrease mobility of workers, and induce firms to protect wages and employment of experienced workers against exogenous shocks more than they do for young workers. That kind of commitment is necessary to entice workers invest in industry- and/or firm-specific human capital.30

The intensity of technology-skill/educatoin complementarity and employers’ adjustment to it could affect institutional arrangement in the labor market and accordingly employer learning process. In the German case, after Bauer and Haisken-DeNew (2001) found the dominant effect of complementarity between schooling and work experience and did not recognize the employer learning effect,31 Lluis (2005) succeeded in carefully mining some evidence of employer learning by controlling job-rank effects.32 The German labor market appears to be modeled as friendly to investment in general human capital, compared with those in the US, the UK,33 and Japan inquired by this research.

Diversity of labor markets consists of institutional framework that encourages human capital investment and informational structure that enables employers to learn workers’ types. The coefficient of interaction term between schooling and experience is a tractable measure of employer learning. At the same time, the measure also captures diversity of labor markets, which varies with institutions of human capital investment and informational structure about workers’ types.

\subsection{2.3 Identification of the internal labor market effect in the wage growth}

With concerns about investment in human capital, workers are expected to invest in general human capital both at schools and workplaces if their employers do not commit to internal labor market policy. On the other hand, employers generally do not have incentives to invest in general human capital of employees. If any, employers willingly invest in environments favorable to accumulation of firm-specific human capital. Then employees could have incentives of investment in firm-specific human capital if their employers do commit to internal labor market policy.

To capture this effect of internal labor market that potentially slips into strings of wage determination, empirical exercise later separates \textit{i}th employee’s experiences before and after he joined the firm that commits to internal labor market policy such as \(t = epr = pvr + \text{ten} \), where \(pvr \) is experience before he joined the case firm, \(\text{ten} \) is tenure at the firm, and \(epr \) is

30Weinberg (2001), pp. 236-251.
31Bauer and Haisken-DeNew (2001), pp. 163-177.
32Lluis (2005), pp. 749-755.
33Galindo-Rueda (2003), pp. 8-17.
total experience. Then the wage regression equation (3) is reformulated as

$$w_{i,t} = \beta_0 + \beta_1 \text{yos}_i$$

$$+ \beta_2 \text{yos}_i \times \text{pvr} + \beta_3 \text{yos}_i \times \text{ten}$$

$$+ \beta_4 \text{epr} + \beta_5 \text{ten} + \gamma^T \mathbf{x}_i + \delta^T \mathbf{x}_i \times \text{ten} + \zeta_i + \epsilon_{i,t},$$

where \mathbf{x}_i stands for time-invariant characteristics vector other than educational background.\(^{34}\)

Taking logarithmic terms of variables, predictions from employer learning combined with workers’ concerns about investment in human capital are,

Prediction 1. *the interaction term between years of schooling and previous experience before employed by the firm ($\text{yos} \times \text{pvr}$) is expected to have positive coefficient ($\hat{\beta}_2 > 0$), which indicates that complementarity between schooling and work experiences is strong enough to dominate the employer learning effect,*

and,

Prediction 2. *the interaction term between years of schooling and tenure after employed by the firm ($\text{yos} \times \text{ten}$) is expected to have negative coefficient ($\hat{\beta}_3 < 0$), which indicates that the firm learns employees’ hidden characteristics over tenure, and that schooling and tenure are not complements, or the learning effect dominates their complementarity effect if any.*

It is examined in the section 4.3 whether this prediction is supported or not.

3 The case firm and the data

3.1 Kamaishi Iron Works on its historical context

Kamaishi Iron Works is the oldest iron works in Japan, opened by the Nambu Domain in 1857. After nationalized in 1873 and privatized again in 1884, new blast furnaces were built and began continuous production pig iron and steel in 1903. After owned by the Mitsui holdings, the largest conglomerate, in 1924, it was merged with other major iron works into Nippon Iron and Steel in 1933. The merge was coordinated by the government for technological improvement.

Then, Japan entered the war against the US, and during the wartime isolation, Japanese steel industry turned out to be even more backward. After the Second World War, steel companies as well as other important manufacturing companies were induced to invest in new

\(^{34}\)Bauer and Haiksen-DeNew (2001), pp. 163-170, applies this formulation of regression on the German data to inquire whether employer learning goes “publicly” in the labor market (through workers’ total experience) or “privately” (thorough tenure at specific firms), and denies any employer learning effect, which is strikingly different result from the US and Japan cases. We will be back to this point in the section 5.1. Also, Schönberg (2007), pp. 664-666, and Pinkston (2009), pp. 384-389, add tenure as regressors in the wage regression, to inquire possible difference in learning processes of incumbent and outside employers, and the latter emphasizes asymmetry between incumbent and entrant employers.
technology with long-term financing coordinated by the government. For the iron and steal industry, three coordinated modernization investments were planned. The “1st plan” was 1951-1954, the “2nd plan” was 1956-1960, and the “3rd plan” was 1961-1964. Through the plan, for the Kamaishi Iron Works, then an iron works of Fuji Iron and Steel, and now of Nippon Steel, improvement of efficiency in iron and steel production and expansion of fine steel production were emphasized, but replacement of old blast furnaces was not planned.

A big change during the modernization since the 1950s at production lines was standardization, or “manualization,” of production procedures. Before the Second World War, in the iron and steal industry, sophisticated procedures of production were developed by employees and taught to younger employees by the elder. Since the 1950s, however, procedures of productions lines became manualized by better educated engineers, and the best practices at the shop floor came to be known to the firm.35

As a part of company wide investment plan, Fuji Iron and Steel decided to build a new state-of-the-art plant then named Tokai in Nagoya, now Nagoya Iron Works of Nippon Steel. Because it was a new plant, skilled workers were not there. About iron production capacity, the firm decided to decrease Kamaishi’s and to increase other new plants such as Tokai, and to relocate skilled workers of Kamaishi and other old iron works to Tokai. Then 1,678 skilled workers moved from Kamaishi to Tokai in 1964, 1967, 1968, and 1969.36

3.2 The data

This research uses preserved 1,490 relocated Kamaishi employees’ panel data of wages, tracking from the late 1920s or later, depending on employee, to the 1960s, when they left Kamaishi. This data set has both considerable disadvantage and advantage.

The disadvantage is in selection and survival biases. Selection for relocation was handled under close dialogues and coordination between the firm and the union, and, in principle, anyone who was willing to move were allowed to be relocated. Thus, there was not a clear and intended measure to select employees for relocation.37 However, it is not followed that this is an unbiased sample set. First, employees who willingly moved to Nagoya were those who believed that they would get successfully used to the most advanced plant. They were more ambitious and/or self-confident employees than average. Second, all of the sample employees were those who had worked until they moved to Nagoya in the 1960s. The “losers” in the internal competition at Kamaishi who dropped are not included. Selected employees were likely to be the employees trained to get used to new technology, and well built-in internal labor market that was formed during the technological transition.

At the same time, the data set also has advantages respectable especially for this research. Intrinsically to original personnel documents, the documents contain all important information on employees’ CV when they were employed. It enables us to recover their whole life from the time when they were born to the late 1960s when they were relocated. The information

36With 1,678 from Kamaishi, 908 from Muroran, 972 from Hirohata, and 127 from Kawasaki were relocated. Umezaki (2010), pp. 33-38.
37Umezaki (2010), pp.47-49.
includes records of previous working experiences not only educational record, and physical features such as height, weight, and lung capacity, which were thought to be important for blue-collar workers.

Each individual wage record includes:

1. Educational background (yos).
2. Physical characteristics when employed: height (hgt), weight and lung capacity.
3. Panel data of
 (1) record of in-house training if the employee completed one:
 - Systematic programs for those selected from newly employed employees:
 1927-1935: “Youth Development Center (Seinen Kunrenjo)” (ydc). Three days a week, 4 years, 300 hours as total.
 1935-1948: “School for Youth (Seinen Gakko)” (sy). Halftime, three days a week.
 1939-1946: “Development Center for Technicians (Ginosha Yoseijo)” (dct). Fulltime, 3 years, 6,453 hours as total.
 1946-1973: “Development Center (Kyoshujo)” (dc). Three days a week, 2 years (by 1950), 6 days a week (from 1950). From 1953, only high school graduates were admitted.
 - Short term programs (ex. elementary calculus).
 (2) licenses the employee held.
 (3) family composition.
 (4) clinical history.
 (5) basic wages.
 (6) promotion and deployment: classes, division and department assignment, and job assignment. The 49 divisions, 174 departments and 110 jobs have been recorded in the total.

The panel data of the basic wage starts when the employee joined the firm, and ends at the time when he moved to the Tokai Iron Works, varying from 1964 to 1969.

Composition of cohorts is shown on Table 1. A small peak is across from 1938 to 1942, when the wartime effort hit the peak with invasion to China in earnest from 1937 and the attack to the Pearl Harbor in 1941, followed by the American backfire including carpet bombing on the city of Kamaishi, and a bigger peak is across from 1948 to 1951, when the Japanese economy began to recover from the wartime destruction.

An especially important feature of the data set is in that those who were employed immediately after graduation are not dominant, which might not look a typically Japanese firm. The recruitment practice to employ new graduates was being prevailed for blue-collar workers since the mid 1960s, and not typical at all before that time. Indeed, the mean of previous
experience (years after graduating school and before being employed by the firm, p_{vt}) is even not monotonically decreasing.

Since the late 19th century, when the heavy manufacturing was introduced from the Western world, career path of experiencing several workplaces to acquire skill and then being employed by a large firm in the long-term basis, or starting own workshop became a typical one among skilled workers. This tradition is not only well exploited by this research strategy on the equation (4). So-called “port of entry” practice of typically “Japanese firm,” under which employees are recruited immediately after they graduate schools without experience at any other workplace was not prevailed for blue-collar workers even at the leading firm of the steel industry, the core industry then, in the covered period. It could allow empirical results of this research to be comparable to other industrial economies.

Compulsory education was extended from 6 years to 9 years in 1947, as shown in the minimum years of schooling on Table 1. Difference of educational background across employees who graduated before 1947 is distributed mainly between 6 years of completing mandatory elementary school and 8 years composed of mandatory 6 years and 2 years of completing high elementary school. Table 1 shows graduates of high elementary school were majority before 1947.\footnote{Already in the 1920s, major factories of heavy industry had preference of graduates of high elementary schools to those of elementary schools, especially for candidates of foremen. Sugayama (2011), p. 37.} Difference of employees who graduated after 1947 is distributed mainly between the mandatory 9 years of elementary school (6 years) and junior high school (3 years) and the 12 years of mandatory 9 years plus additional 3 years of high school. High school graduates were minority still in the 1960s.

3.3 Verifying existence of internal labor market

Before estimating the equation (4), the existence of internal labor market policy, which somehow “shields” wage determination from the outside market, itself to be empirically established. We basically follow the strategy presented by Baker et al. (1994b).\footnote{Baker et al. (1994b), pp. 923, 933-940. Baker and Holmstrom (1995), pp. 258-259.}

If a firm offers competitive wages to revealed characteristics such as educational background of prospective employees in the market when the firm recruits workers, and if the firm adopts internal labor market policy under which wages are determined based on internal rules or evaluation that more or less “shields” internal wage dynamics from the market price, then wage growth of each cohort could share common trend “shielded” from the market price. Thus survival of cohort effect is a useful indicator of existence of internal labor market that somehow “shields” wage determination from the outside price mechanism at each point, though it does not imply that the wage dynamics deviates from the market price in the long term.

Table 2 contains regression of real daily wages (rw) on experience in the labor market (e_{pr}), tenure (ten), years joined dummy (yj), and interaction between years joined dummy and tenure ($yj \times ten$). To control composition effect of educational background varying over cohorts, years of schooling (yos) is also inserted as a regressor. The period saw a rapid growth of average productivity, which is controlled by year dummies. On the model 1-2, to allow
Cohort effect marginally decreasing, interaction term of years joined dummy and tenure \((y j \times ten)\) is inserted as a regressor instead of tenure \((ten)\).\(^{40}\)

Cohort effects generally survive among employees of all cohorts. The internal labor market at the Kamaishi Iron Works seems to have been formed in the 1930s. This statistical inference is consistent with descriptive picture based on documents and hearings.\(^{41}\)

Thus the basic wage at the first year shows the open market price of his labor, and the growth of the basic wage in the following year shows the firm’s evaluation of his labor based on some internal measures.

As Baker et al. (1994b) describes, serial correlation of wage growth is another useful marker of internal labor market.\(^{42}\) In the competitive market where wage increments are serially independent, the first-lagged is expected to have 1 as the coefficient in auto regression of wage. If the firm “shields” wage determination from the market by some wage policy, the result would different.

Auto regression with random effects of real wage \((rw_{ten})\), with years of education \((yos_i)\) and year dummies inserted, gives,\(^{43}\)

\[
\log rw_{ten} = 0.3424 - 0.0080yos + 0.8426 \log rw_{ten-1},
\]

where absolute value of the coefficient of lagged term \((rw_{ten-1})\) is smaller than 1, which means each history of wage is a contraction mapping.\(^{44}\) If the shock of each year is serially independent innovation as the pure learning model of Farber and Gibbons (1996) assumes, the coefficient of lagged term should be 1, which is rejected by the equation (5). At the same time, the coefficient smaller than 1 of the equation (5) mentions that each wage history is heading for somewhere stationary, in a sense consistent of employer learning story over tenure.

Furthermore, a regression of real wage on more lagged terms gives with random effects

\(^{40}\)Our approach differs from Baker et al. (1994b) in some important points. In order to avoid identification difficulty and still to extract cohort effect, Baker et al. (1994b) assumes that tenure effect on wage growth is linear, estimates the coefficient of linear regression of wages on tenure, deducts the estimated tenure effect from cohort average wage, and regress this adjusted cohort average wage on cohort dummies. However, in this data set, as decreasing impact of past wage in the equation (6) below shows, tenure effect is not linear. Also, two-staged estimation seems to have cohort effect appear larger than real. Hence, to deal with identification problem, we simply bind adjacent two cohorts together into one group, and then regress wages on two-cohort groups.

\(^{41}\)Umezaki (2010), pp. 42-51.

\(^{42}\)Baker et al. (1994b), pp. 943-953.

\(^{43}\)Estimation: Panel estimated generalized least squares with cross-section random effects. Year dummies: Yes. Sample periods: 40 (1930-1969). Cross-sections included: 1,482. Total panel observations: 20,511. The \(t\) statistics are within parentheses, where ** stands for significance smaller than 1 percent. Adjusted \(R^2\): 0.9691. \(F\)-statistic: 15, 706.8328**.

\(^{44}\)It implies that extended growth curve of wage has unique fixed point.
and year dummies gives,

\[
\log r_{w_{\text{ten}}} = 0.3338 - 0.0004y_{\text{os}}
\]

\[
+ 0.4450 \log r_{w_{\text{ten}}-1} + 0.1485 \log r_{w_{\text{ten}}-2}
\]

\[
+ 0.0765 \log r_{w_{\text{ten}}-3} + 0.0592 \log r_{w_{\text{ten}}-4}
\]

\[
+ 0.0640 \log r_{w_{\text{ten}}-5} + 0.0394 \log r_{w_{\text{ten}}-6}
\]

\[
+ 0.0332 \log r_{w_{\text{ten}}-7} + 0.0226 \log r_{w_{\text{ten}}-8}.
\]

(6)

While the past has significant impact on the current wage growth, the impact is monotonically decreasing, with each wage history going to some stable phase.46

Periods in concern saw rapid growth of labor productivity in the industry, hence average wage accordingly rapidly grew on average. On the equations (5) and (6), however, the effect is controlled by the year dummies inserted.

Following serial correlations seen on the equations (5) and (6), first, the sample employees are heterogeneous and there were “systematic winners and losers”47 probably due to different ability of human capital accumulation,48 and second, wage dynamics is on trajectory to some steady state, which is supposed to be true value of the employee’s “latent” ability, as pictured by descriptive formulation of Baker et al. (1994b). Though this process with serial correlation is not directly drawn from the “pure” employer learning model, it is consistent with secondary story derived from the employer learning model. If the employer, for instance, uses accumulated information for assignment of employees, then such a regularly serial correlation could be observed 49

Thus the monotonic shape of trajectory is at least partly due to the employer learning process.

4 Empirical results

4.1 Overview: Tenure, employer learning, and in-house training

Before directly going to estimation of the equation (4), let us give an overview based on the ordinary regression equation (3). Table 3 gives results of random effect estimation regressing

46Absolute values of all real roots of \(1 - 0.4450z - 0.1485z^2 - 0.0765z^3 - 0.0592z^4 - 0.0640z^5 - 0.0394z^6 - 0.0332z^7 - 0.0226z^8 = 0, z = -1.8900, 1.0476, 1.0476,\) are greater than 1, which implies the auto-regression equation (6) is stationary as the equation (5) is.

real wage (rw) on height when employed by the firm (hgt), years of schooling the employee had completed (yos), total experience in the labor market (epr), tenure at the firm (ten), interaction of height and experience (hgt × epr), interaction of height and tenure (hgt × ten), interaction of years of schooling and experience (yos × epr), interaction of years of schooling and tenure (yos × ten), dummy variables of completing in-house training programs, Development Center for Youth (dcy, operated in 1927-1935), School of Youth (sy, operated in 1935-1948), Development Center for Technicians (dct, operated in 1939-1946), Development Center (dc, operated in 1946-1973), interaction of them and tenure (dcy × ten, sy × ten, dct × ten, dc × ten).\(^{50}\) The compulsory schooling was extended from 6 years of elementary school to 9 years of 6-year elementary school and 3-year junior high school in 1947. Since extension of compulsory schooling could have big impact on productivity and wages,\(^{51}\) the postwar education generation dummy (psw) is inserted.

Tenure is robustly significant in all regressions. Experience within the firm strongly contributed to wage growth. At the same time, the employer learning hypothesis strongly holds without controlling cohort effect. On Table 3, interaction terms of years of schooling both with experience after graduation (yos × epr) and tenure (yos × ten) have significantly negative coefficients in the models of 3-2 and 3-4. Negatively significant coefficient of yos × ten indicates that the current employer learned better than previous employers, as the American and the British cases.\(^{52}\)

As well as years of schooling, a proxy of ability observable to the employer when recruited is physical characteristics such as height. Height is thought to sometime affect wages,\(^{53}\) while the channel is still ambiguous especially for white-collar workers.\(^{54}\) In the case of blue-collar workers in the steel industry, the industry of masculine then, however, the physical strength was definitely critical especially in the department of pig iron production where workers were required to be tough against extremely high-temperature and to still make difficult decision about how to manage blast-furnace that determined the quality of pig iron, the raw material of high-value-added of fine steel. Height is a good proxy of such physical strength. Again, also about height, the employer learning hypothesis holds. Interaction terms of height with tenure (hgt × ten) has significantly negative coefficient in the models 3-3 and 3-4.

4.2 Schooling and in-house training programs

Table 3 also shows that role of training programs changed over the period. The interaction of postwar program with tenure (dc × ten) has significantly negative coefficient while the interaction terms of prewar programs with tenure (dcy × ten, sy × ten, dct × ten) have significantly positive ones in the models 3-1, 3-2, 3-3, and 3-4.

All of Development Center for Youth, School of Youth, Development Center for Technicians, and Development Center were operated exclusively for newly employed employees at
entry-level. As some of entry-level employees were chosen, the employer had not yet learned hidden types of employees and the firm likely used some proxy to choose trainees from newly employed employees. In particular, the change in sign of interaction terms with tenure from the prewar programs \((dcy \times \text{ten}, sy \times \text{ten}, dct \times \text{ten})\) to the postwar program \((dc \times \text{ten})\) can be attributed to selection policy of Development Center \((dc)\), which admitted only high school graduates since 1953. Closely linked to educational background, the effect of in-house training program also came to decrease over tenure as the employer learned types of employees hidden when recruited.

4.3 Internal labor market effect

The empirical overview so far has established that employer learning hypothesis saliently holds particularly after employed as interactions of years of schooling and height with tenure \((yos \times \text{ten}, hgt \times \text{ten})\) have significantly negative coefficients. Next we proceed to extraction of some information about interaction between employees’ history before employed by the firm and wages.

Now examine the equation (4) and the Prediction 1 and Prediction 2 in the section 2.3. Table 4 presents a regression of real wage \((rw)\) with random effects on years of schooling \((yos)\), experience after graduation and before employed by the firm \((pvr)\), tenure after employed by the firm \((\text{ten})\), interaction term of cohort dummy, years of schooling and previous experience before employed by the firm \((yj \times yos \times pvr)\), interaction term of cohort dummy, years of schooling and tenure \((yj \times yos \times \text{ten})\), with controlling training programs \((dcy, sy, dct, dc)\), interaction terms between training programs and tenure \((dcy \times \text{ten}, sy \times \text{ten}, dct \times \text{ten}, dc \times \text{ten})\), and interactions between year dummy and years of schooling \((dy \times yos)\) to capture changes in return of schooling over the period.

Then, except for early cohorts up to the mid 1930s, interaction term between years of schooling and tenure \((yos \times \text{ten})\) has significantly negative coefficients also here, which supports the employer learning hypothesis by Farber and Gibbons (1996) and Altonji and Pierret (2001) as well as the Prediction 2 in the section 2.3. However, interaction term between years of schooling and previous experience \((yos \times pvr)\) has significantly positive coefficient, which violates the employer learning hypothesis and supports the Predictions 1 of workers’ behavior in human capital investment in the section 2.3.

An immediate interpretation of the result on Table 4, considering average years of previous experience on Table 1, is that workers had chosen workplace experiences given their educational background such that they were in fact complementary to schooling before employed by the firm in the first several years in their job career, and, after employed by the firm, invested in firm-specific human capital not necessarily complementary to schooling, as the firm also learned employees’ ability that was not informed by educational background. Workers invested in general human capital at schools and workplaces before they joined the internal labor market, and turned to investment in human capital less complementary to schooling after they joined the firm. This is a story consistent with the result.

While regression of wages on the interaction term between years of schooling and experience \((yos \times epr)\) on Table 3 suggests that employer learning holds, the results on Table
indicates that coefficient of the interaction term between years of schooling and experience \((\text{yos} \times \text{epr})\) could be divided into two effects of before and after employed by the firm \((\text{yos} \times \text{pvr}, \text{yos} \times \text{ten})\), whose coefficients’ signs are opposite.

The original employer learning hypothesis assumed small significance of complementarity between schooling and work experience in workers’ young days, and “public” learning in the competitive labor market and (Farber and Gibbons (1996)). However, the result here shows first that learning effect does not dominate complementary effect of schooling and experience as workers invested in general capital in their early stages of career, which is the phenomenon observed even longer in the German case as clarified by Bauer and Haisken-DeNew (2001), and second that employer learning is asymmetric that goes much more effective, as the American and the British cases presented by Pinkston (2009) and Galindo-Rueda (2003), after workers join long-term employment instead of “publicly” going through in the competitive market. Interaction term between years of schooling and experience \((\text{yos} \times \text{epr})\) on Table 3 appears to support employer learning, but it is not because the workers’ ability came to be “publicly” learned in the market over total experience, but because the long-term employer learned much better after employees were incorporated to the internal labor market.

Indeed, coefficient of the interaction term between years of schooling and previous experience \((\text{yos} \times \text{pvr})\) is significantly positive, as that between years of schooling and experience after employed by the firm \((\text{yos} \times \text{ten})\) is significantly negative on Table 4. Because the latter effect is large enough, it appears, coefficient of interaction between years of schooling and experience \((\text{yos} \times \text{epr})\) on Table 3 is negative. In this sense, significantly negative coefficient of the interaction term between years of schooling and and experience \((\text{yos} \times \text{epr})\) seems to capture an effect of the internal labor market.

5 Discussion: implication of the empirical result

5.1 Identification of internal labor market effect and comparative analysis of labor markets

As the original employer learning hypothesis assumes learning is “publicly” going in the labor market, the corresponding empirical studies such as those based on the NLSY have not differentiated employer learning outside and within the firm (Farber and Gibbons (1996), Altonji and Pierret (2001)). However, following results for the American and the British cases require modification of the story (Pinkston (2009), Galindo-Rueda (2003)).

While the representative works of modern approach to the internal labor market does not provide clear answer to the mixed picture, which partly supports employer learning, on-the-job training, or comparative advantage hypotheses (Baker et al. (1994b), Gibbons et al. (2005), Lluis (2005)), this Japanese case seems to support the hypothesis of effective employer learning within internal labor markets suggested by Baker et al. (1994b).\(^{35}\)

Generalization of the Japanese experience too much might not sound plausible. Some empirical evidences, however, indicate that long-term employment is seen and does have positive

\(^{35}\)Baker et al. (1994b), pp. 952-954.
impact wages and job protection in the American workplaces, to encourage industry-, firm-, and/or skill-specific human capital. In addition, since the 1930s, basic wages of American workers in fact have been even more shielded to exogenous demand shocks than Japanese and British counterparts due to institutional settings of the labor market, and some empirical results support the existence of implicit contract to shield wages from macroeconomic shocks in the US.

Furthermore, exactly based on the NLSY, Parent (1999) shows, first, current employers reward on-the-job training completed with themselves, second, current employers also reward on-the-job training their employees completed with previous employers, and third, employees who have completed on-the-job training with current employers have lower separation rate. The result mentions that young American workers join long-term basis employment after they accumulate experiences to be appreciated by the last employer.

Moreover, conjecture of faster employer learning in early stages has succeeded in provision of concrete empirical studies in an intra-firm data set, while a study based on the NLSY, which include mixed ingredients of employees who are already incorporated into long-term employment and yet to be, provides less clear result. Also here in the intra-firm data set of Japanese steel industry, the faster employer learning the earlier stage principle is presented very clearly on Table 4, as later cohorts, which capture employer learning effects on early stages, show larger absolute value of negative coefficients of interaction term between years of schooling and tenure (yos × ten).

Along with the evidences, this case study suggests probability that existent empirical results to support the employer learning has been affected either by the effect of incumbent employers’ asymmetric learning or by investment in industry- and/or firm-specific human capital, instead of symmetric learning in the competitive labor market.

Obviously, the extent of asymmetry of employer learning and the extent of complementarity between schooling and experience could vary over economies. As Galindo-Rueda (2003), Schönberg (2007) and Pinkston (2009) together mention that employer learning goes a little more symmetrically in the US than in the UK. Also, investment in human capital in Germany inquired by Bauer and Haisken-DeNew (2001) seems to concentrate in industry-specificity instead of firm-specificity even more than in the US labor market studied by Weinberg (2001). If skill is perfectly standardized within each industry, and if secondary schooling emphasizes vocational education for specific industries more, instead of liberal arts, then skill is almost

57American firms seem to adjust workdays instead of basic wages to demand shocks. Gordon (1982), pp. 18-42.
58Beaudry and DiNardo (1991), pp. 675-685. Similar results for Canada are presented by McDonald and Worswick (1999), pp. 886-888. The same institutional setting of “shielding” could make wages sensitive to the employer’s prosperity instead of the market and thus serial correlational, as shown by Dohmen (2004), pp. 746-752.
61Gibbons et al. (2005), pp. 698-714.
always general to the most workers who do not change industry in their life courses and schooling and work experience should be intrinsically complements.

Compared with the presented evidences for the US, the UK, and Germany, the result of this research suggests that the Japanese labor market in the early half of the 20th century was closer to the contemporary British than to the contemporary American in terms of symmetry of informational structure for employer learning, and closer to the contemporary American than to the contemporary German in terms of comparative emphasis on industry- or firm-specificity of human capital investment.

To proceed such a comparative analysis, further inquiry based on panel data of employees who work for specific firms is desired. In this sense, the literature following Lluis (2005) that focused on employer learning and matching within internal labor markets are hoped to be enriched, and this case study hopefully is one of them.

5.2 Learning in early stages

Table 4 also shows that coefficient of interaction between years of schooling and tenure ($yos \times ten$) decreases as cohort goes down. It indicates that employer learning went faster in the late periods. Since later cohorts had shorter tenure, the employer learning observed with later cohorts show employer learning in the early years after employees joined the firm. Lluis (2005) infers that learning effect had larger impact in earlier tenure in internal labor markets, based on the German data.64 The result here is consistent with the inference.

5.3 Schooling, internal labor market, and dual structure

After the Second World War, the Japanese government extended mandatory schooling from 6 years to 9 years, and the number of high schools drastically increased. The explosive expansion of secondary schooling, which proceeded in the 1920s in the US, occurred in Japan from the 1950s to the 1960s. Secondary school system in prewar Japan, introduced from Europe, was the one to train a small group of elites. It was completely transformed into massive investment in human capital of majority people, which was a case of convergence to the American system of secondary education, along with convergence to the US-led technology-skill complementary development.65

Postwar junior high schools and most of high schools have focused on general education, not vocational education concentrating on particular and inflexible skills. The “uniquely-American invention”66 of extended secondary school in the early 20th century was introduced to Japan after the Second World War, accompanied with rapid increase of capital-labor ratio, in the economic race to catch up with the US.67 It directly led to supply of higher educated blue-collar workforce to the manufacturing sector. In despite of the rapid increase of better educated workers, the significantly positive coefficient of postwar education dummy (psw)

64Lluis (2005), pp. 745-755.
67Godo and Hayami (2002), pp. 968-974.
Table 3 means that return of schooling rather increased after the Second World War. It indicates that, responding to increased supply of higher-educated workforce, technology-skill/education complementarity was augmented along with manualization of production line, and the transition rather increased demand for more educated workers and pulled up return on education, as happened in the US from the 1920s to the 1940s. Also, massive investment in public education by the government apparently succeeded in release of the society from the “low skill trap” equilibrium. As result, productivity of the Japanese manufacturing sector is estimated to overtake the British in the 1970s, and the German in the 1980s, closing the gap with the American though still behind.

The Kamaishi Iron Works rode the trend and invested more in higher educated workers after the Second World War, as the negative coefficient of interaction between years of schooling and Development Center dummy \((yos \times dc)\) on Table 3 mentions.

While “port of entry,” where only young workers are employed and are assigned to the lowest ladder, is a symbolic characterization of internal labor market suggested by Doeringer and Piore (1971), it is not always empirically supported. In the case of Japanese manufacturing, it became a dominant practice in the 1960s, much later than formation of internal labor market in the 1930s. It had become a common practice of personnel management of major firms to hire new graduates and apply internal promotion not only for white collar employees also for blue collar employees in the 1960s, and on-the-job training closely linked educational background became a persistent personnel policy in Japanese firms. More investment in freshmen who had just graduated high school at Kamaishi was a part of the ongoing prevalence.

This analysis of the micro data is consistent with the story “dual” labor market of the Japanese manufacturing in the macroeconomic context: Better educated graduates get into major firms, and, while internal labor markets are dominant among major factories with advanced technologies such as the Kamaishi Iron Works, it is not among small and medium sized

68 This is mainly because coverage of this research is up to the 1960s. An empirical study on the manufacturing sector as a whole indicates that wage premium with graduation of high school or more hit the highest in the mid 1960s, and had gradually declined since then (Ohkusa and Ohta (1994), p. 180-181). Ueshima (2003) argues that the educational wage differential was squeezed by rapidly increased supply of high-school graduates (Ueshima (2003), pp. 47-48.), as it was in the US in the mid 20th century, though institutional factors had a significant role in the US (Goldin and Margo (1992), pp. 17-32. Goldin (1999), pp. s80-s92.). As the most of a cohort came to enrol high school by the end of the 1970s, and the educational wage differential became an issue between college graduates and high school graduates. In the 1980s, while wage differential between college and high school graduates rose astonishingly in the US, the rise in Japan was relatively modest (Katz and Revenga (1989), pp. 526-535.). Katz and Revenga (1989) suggests that it was at least partly because high school graduates in the Japanese manufacturing were better adjusted to technological changes with support from on-the-job-training enhanced in Japanese firms (Katz and Revenga (1989), p. 545.), which is a consistent with the result that relative importance of tenure over total experience is larger in Japan (Abe (2000), p. 264.).

69 This possible story is consistent with the theoretical prediction such as Kiley (1999), pp. 712-720.

firms. Better education and investment in firm-specific human capital brought higher wages. Once an employee left a major firm, he could get hired only by small or medium sized firms with lower technology that paid worse. The quasi-rent provided employees of major firms with strong incentives to commit to internal labor market. This structural feature is thought to have emerged in the 1920s and had still been persistent in the 1980s.\footnote{Ujihara (1966), pp. 402-425. Chuma (1998), p. 262. Ishikawa (2001), pp. 241-282. Odaka (2003), pp. 126-136. The more educated, the longer tenure is still the dominant principle among large Japanese firms. Ono (2010), pp. 13-17.}

As manufacturing firms began to form internal labor markets with modernization effort, the government increased investment in public education. Workers invested in general human capital at schools and short-term employment, and in firm-specific human capital in internal labor markets. The society-wide transition to this direction formed divided labor markets, and this structural feature of the labor market can be seen even in micro data.

References

26

Sugayama, Shinji. “Shusha” shakai no tanjo: Blue collar kara white collar he (Birth of the corporate society: from blue collar to white collar), Nagoya: Nagoya University Press, 2011.

Table 1: Employee numbers, years of schooling, and previous experience across cohorts.

<table>
<thead>
<tr>
<th>Year joined</th>
<th>Number of employees who joined</th>
<th>Number of observations</th>
<th>Years of schooling (yos)</th>
<th>Years of previous experience (pvr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>maximum</td>
<td>minimum</td>
</tr>
<tr>
<td>yj1928</td>
<td>1</td>
<td>24</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>yj1929</td>
<td>1</td>
<td>38</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>yj1930</td>
<td>1</td>
<td>28</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>yj1931</td>
<td>0</td>
<td>0</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>yj1932</td>
<td>0</td>
<td>0</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>yj1933</td>
<td>3</td>
<td>81</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>yj1934</td>
<td>2</td>
<td>56</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>yj1935</td>
<td>5</td>
<td>141</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>yj1936</td>
<td>7</td>
<td>152</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>yj1937</td>
<td>7</td>
<td>193</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>yj1938</td>
<td>18</td>
<td>495</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>yj1939</td>
<td>39</td>
<td>1,010</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>yj1940</td>
<td>41</td>
<td>1,053</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>yj1941</td>
<td>44</td>
<td>998</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>yj1942</td>
<td>29</td>
<td>651</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>yj1943</td>
<td>23</td>
<td>522</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>yj1944</td>
<td>26</td>
<td>564</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>yj1945</td>
<td>17</td>
<td>376</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>yj1946</td>
<td>17</td>
<td>344</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>yj1947</td>
<td>11</td>
<td>203</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>yj1948</td>
<td>283</td>
<td>5,298</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>yj1949</td>
<td>259</td>
<td>4,532</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>yj1950</td>
<td>37</td>
<td>609</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>yj1951</td>
<td>53</td>
<td>857</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>yj1952</td>
<td>7</td>
<td>104</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>yj1953</td>
<td>13</td>
<td>154</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>yj1954</td>
<td>19</td>
<td>220</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>yj1955</td>
<td>11</td>
<td>122</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>yj1956</td>
<td>91</td>
<td>910</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>yj1957</td>
<td>69</td>
<td>620</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>yj1958</td>
<td>25</td>
<td>189</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>yj1959</td>
<td>87</td>
<td>586</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>yj1960</td>
<td>47</td>
<td>250</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>yj1961</td>
<td>35</td>
<td>148</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>yj1962</td>
<td>84</td>
<td>279</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>yj1963</td>
<td>41</td>
<td>71</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>yj1964</td>
<td>15</td>
<td>71</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>yj1965</td>
<td>9</td>
<td>29</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>yj1966</td>
<td>10</td>
<td>20</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>yj1967</td>
<td>8</td>
<td>15</td>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

Notes: Previous experience: Years after graduating school, before employed by the firm.
Table 2 Cohort effect in panel estimations.

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>2-1 coefficient</th>
<th>t statistic</th>
<th>probability</th>
<th>2-2 coefficient</th>
<th>t statistic</th>
<th>probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>-0.3643</td>
<td>-18.0062</td>
<td>0.0000</td>
<td>-0.2349</td>
<td>-9.7127</td>
<td>0.0000</td>
</tr>
<tr>
<td>log(yos)</td>
<td>0.1785</td>
<td>26.2363</td>
<td>0.0000</td>
<td>0.1828</td>
<td>27.1514</td>
<td>0.0000</td>
</tr>
<tr>
<td>log(epr)</td>
<td>0.2175</td>
<td>85.1986</td>
<td>0.0000</td>
<td>0.2444</td>
<td>84.4775</td>
<td>0.0000</td>
</tr>
<tr>
<td>log(ten)</td>
<td>0.0356</td>
<td>13.1963</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yj1928-1929</td>
<td>0.6802</td>
<td>30.3373</td>
<td>0.0000</td>
<td>-0.1048</td>
<td>-1.4048</td>
<td>0.1601</td>
</tr>
<tr>
<td>yj1930-1931</td>
<td>0.6972</td>
<td>25.1817</td>
<td>0.0000</td>
<td>-0.0351</td>
<td>-0.4159</td>
<td>0.6775</td>
</tr>
<tr>
<td>yj1932-1933</td>
<td>0.6147</td>
<td>30.7214</td>
<td>0.0000</td>
<td>-0.0795</td>
<td>-1.2426</td>
<td>0.2140</td>
</tr>
<tr>
<td>yj1934-1935</td>
<td>0.6670</td>
<td>39.1088</td>
<td>0.0000</td>
<td>-0.0924</td>
<td>-1.6770</td>
<td>0.0936</td>
</tr>
<tr>
<td>yj1936-1937</td>
<td>0.6295</td>
<td>40.1487</td>
<td>0.0000</td>
<td>-0.0815</td>
<td>-1.6164</td>
<td>0.1060</td>
</tr>
<tr>
<td>yj1938-1939</td>
<td>0.6341</td>
<td>44.3434</td>
<td>0.0000</td>
<td>-0.0899</td>
<td>-1.9786</td>
<td>0.0479</td>
</tr>
<tr>
<td>yj1940-1941</td>
<td>0.5896</td>
<td>42.3080</td>
<td>0.0000</td>
<td>-0.0898</td>
<td>-2.1161</td>
<td>0.0343</td>
</tr>
<tr>
<td>yj1942-1943</td>
<td>0.5479</td>
<td>39.5355</td>
<td>0.0000</td>
<td>-0.0658</td>
<td>-1.6606</td>
<td>0.0968</td>
</tr>
<tr>
<td>yj1944-1945</td>
<td>0.4828</td>
<td>35.2916</td>
<td>0.0000</td>
<td>-0.0991</td>
<td>-2.6911</td>
<td>0.0071</td>
</tr>
<tr>
<td>yj1946-1947</td>
<td>0.4485</td>
<td>32.4434</td>
<td>0.0000</td>
<td>-0.1235</td>
<td>-3.5827</td>
<td>0.0003</td>
</tr>
<tr>
<td>yj1948-1949</td>
<td>0.4336</td>
<td>34.2090</td>
<td>0.0000</td>
<td>-0.0557</td>
<td>-1.8772</td>
<td>0.0605</td>
</tr>
<tr>
<td>yj1950-1951</td>
<td>0.3628</td>
<td>28.6223</td>
<td>0.0000</td>
<td>-0.0817</td>
<td>-2.9965</td>
<td>0.0027</td>
</tr>
<tr>
<td>yj1952-1953</td>
<td>0.3265</td>
<td>23.1302</td>
<td>0.0000</td>
<td>-0.0431</td>
<td>-1.5500</td>
<td>0.1212</td>
</tr>
<tr>
<td>yj1954-1955</td>
<td>0.3004</td>
<td>22.3837</td>
<td>0.0000</td>
<td>-0.0303</td>
<td>-0.1311</td>
<td>0.8957</td>
</tr>
<tr>
<td>yj1956-1957</td>
<td>0.1744</td>
<td>14.5807</td>
<td>0.0000</td>
<td>-0.1139</td>
<td>-5.9023</td>
<td>0.0000</td>
</tr>
<tr>
<td>yj1958-1959</td>
<td>0.1253</td>
<td>10.3818</td>
<td>0.0000</td>
<td>-0.0738</td>
<td>-4.1333</td>
<td>0.0000</td>
</tr>
<tr>
<td>yj1960-1961</td>
<td>0.0865</td>
<td>6.8358</td>
<td>0.0000</td>
<td>-0.0634</td>
<td>-3.4739</td>
<td>0.0005</td>
</tr>
<tr>
<td>yj1962-1963</td>
<td>0.1120</td>
<td>9.0093</td>
<td>0.0000</td>
<td>0.0287</td>
<td>1.5465</td>
<td>0.1220</td>
</tr>
<tr>
<td>yj1964-1965</td>
<td>0.0081</td>
<td>0.5814</td>
<td>0.5610</td>
<td>-0.0077</td>
<td>-0.2447</td>
<td>0.8067</td>
</tr>
<tr>
<td>yj1966-1967</td>
<td>0.1772</td>
<td>7.5325</td>
<td>0.0000</td>
<td>0.2381</td>
<td>3.6260</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Cohort effect in panel estimations.

<table>
<thead>
<tr>
<th>year dummies</th>
<th>yes</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cross-sections included</td>
<td>1,490</td>
<td>1,490</td>
</tr>
<tr>
<td>periods included (years)</td>
<td>41 (1929-1969)</td>
<td>41 (1929-1969)</td>
</tr>
<tr>
<td>included observations</td>
<td>22,045</td>
<td>22,045</td>
</tr>
<tr>
<td>adjusted R²</td>
<td>0.9622</td>
<td>0.9631</td>
</tr>
<tr>
<td>F statistic</td>
<td>8,911.6042</td>
<td>7,016.7697</td>
</tr>
<tr>
<td>Estimation method</td>
<td>panel generalized least squares</td>
<td>3-1</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Dependent variable</td>
<td>log(rw)</td>
<td></td>
</tr>
<tr>
<td>Cross-section</td>
<td>random effect</td>
<td></td>
</tr>
<tr>
<td>Period (year)</td>
<td>pooled (no year dummies inserted)</td>
<td></td>
</tr>
<tr>
<td>Independent variables</td>
<td>coefficient</td>
<td>t statistic</td>
</tr>
<tr>
<td>c</td>
<td>-4.4206</td>
<td>-49.4743</td>
</tr>
<tr>
<td>log(hgt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>log(yos)</td>
<td>1.6045</td>
<td>39.8490</td>
</tr>
<tr>
<td>psr</td>
<td>0.4504</td>
<td>45.3885</td>
</tr>
<tr>
<td>log(epr)</td>
<td>0.4876</td>
<td>67.0161</td>
</tr>
<tr>
<td>log(ten)</td>
<td>1.4919</td>
<td>40.2076</td>
</tr>
<tr>
<td>log(hgt)×log(epr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>log(yos)×log(epr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>log(yos)×log(ten)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dcy</td>
<td>-0.4035</td>
<td>-3.4469</td>
</tr>
<tr>
<td>dcy×log(ten)</td>
<td>0.1640</td>
<td>3.3196</td>
</tr>
<tr>
<td>sy</td>
<td>-0.3545</td>
<td>-19.3835</td>
</tr>
<tr>
<td>sy×log(ten)</td>
<td>0.1529</td>
<td>19.8530</td>
</tr>
<tr>
<td>dct</td>
<td>-0.2782</td>
<td>-8.4644</td>
</tr>
<tr>
<td>dct×log(ten)</td>
<td>0.0861</td>
<td>6.5971</td>
</tr>
<tr>
<td>dc</td>
<td>0.2875</td>
<td>16.9174</td>
</tr>
<tr>
<td>dc×log(ten)</td>
<td>-0.1194</td>
<td>-14.9293</td>
</tr>
<tr>
<td>cross-sections included</td>
<td>1,495</td>
<td></td>
</tr>
<tr>
<td>included observations</td>
<td>22,126</td>
<td></td>
</tr>
<tr>
<td>adjusted R^2</td>
<td>0.7153</td>
<td></td>
</tr>
<tr>
<td>F statistic</td>
<td>4,276.9504</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
Table 4 Interaction of education and tenure/previous experience.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2786</td>
<td>0.4701</td>
<td>-0.0552</td>
<td>0.3021</td>
<td>-0.0762</td>
<td>-0.0721</td>
<td>-0.0547</td>
<td>0.0394</td>
<td>0.0647</td>
<td>0.0679</td>
<td>0.0725</td>
<td>0.0878</td>
<td>0.0751</td>
<td>0.0698</td>
<td>0.1001</td>
<td>0.0917</td>
<td>0.0608</td>
<td>0.0392</td>
<td>0.0441</td>
<td>0.0421</td>
<td>0.0366</td>
<td>0.0087</td>
<td>-0.0118</td>
<td>-0.0095</td>
<td>-0.0193</td>
<td>-0.0316</td>
<td>-0.0318</td>
<td>-0.0343</td>
<td>-0.0732</td>
<td>-0.0726</td>
<td>-0.0931</td>
<td>-0.0943</td>
<td>-0.0914</td>
<td>-0.1022</td>
<td>-0.1132</td>
<td>-0.1106</td>
<td>-0.0777</td>
<td>-0.1435</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0340</td>
<td>0.2379</td>
<td>0.0207</td>
<td>0.0001</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- c, log(yos), log(pvr) included
- log(ten) included
- Interactions of year dummy and yos: dy×yos
- dc×log(ten), sy×log(ten), dct×log(ten)
- Adjusted $R^2 = 0.9652$
- F statistic $= 6,717.5996$
Appendix List of variables.

<table>
<thead>
<tr>
<th>variable</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>rw</td>
<td>real daily wage.</td>
</tr>
<tr>
<td>hgt</td>
<td>height when employed by the firm.</td>
</tr>
<tr>
<td>yos</td>
<td>years of schooling.</td>
</tr>
<tr>
<td>psw</td>
<td>postwar education generation (12 years old or younger in 1947). dummy variable</td>
</tr>
<tr>
<td>epr</td>
<td>experience in the labor market: age−(5+yos)+1.</td>
</tr>
<tr>
<td>pve</td>
<td>previous experience: age−(5+yos+ten)+1. Note: Every sample</td>
</tr>
<tr>
<td>yj19XX</td>
<td>dummy of year joined: =1 if joined the firm in 19XX. dummy variable</td>
</tr>
<tr>
<td>yj19XX-19YY</td>
<td>dummy of year joined: =1 if joined the firm from 19XX to 19YY. dummy variable</td>
</tr>
<tr>
<td>dy19XX</td>
<td>year dummy.</td>
</tr>
<tr>
<td>ten</td>
<td>tenure: (years after employed by the firm)+1.</td>
</tr>
<tr>
<td>dcy</td>
<td>1 if completed Development Center for Youth (from 1927 to 1935). dummy variable</td>
</tr>
<tr>
<td>sy</td>
<td>1 if completed School for Youth (from 1935 to 1948). dummy variable</td>
</tr>
<tr>
<td>dct</td>
<td>1 if completed Development Center for Technician (from 1939 to 1946). dummy variable</td>
</tr>
<tr>
<td>dc</td>
<td>1 if completed Development Center (from 1946 to 1973). dummy variable</td>
</tr>
</tbody>
</table>