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Abstract 

We propose a simple and intuitive method for estimating betas when factors are measured with 

error: ordinary least squares instrumental variable estimator (OLIVE).  OLIVE performs well 

when the number of instruments becomes large, while the performance of conventional 

instrumental variable methods becomes poor or even infeasible.  In an empirical application, 

OLIVE beta estimates improve R-squared significantly.  More importantly, our results help 

resolve two puzzling findings in the prior literature: first, the sign of average risk premium on the 

beta for market return changes from negative to positive; second, the estimated value of average 

zero-beta rate is no longer too high. 

 

JEL Classifications: C30, G12. 
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I. Introduction 

In financial economics, we often need to estimate asset return betas (factor loadings).  Ordinary 

least squares (OLS) is the simplest and most widely used method by both academic researchers 

and practitioners.  However, factors, especially those constructed using macroeconomic data, are 

known to contain large measurement error (e.g., Chen, Roll, and Ross 1986; Connor and 

Korajczyk 1986, 1991; Ferson and Harvey 1999).  In addition, even when a factor is measured 

accurately, it may still be different from the true underlying factor.  For example, the return on 

the stock market index is perhaps measured reasonably accurately, but it may still contain large 

“measurement error” in the sense that it may be an imperfect proxy for the return on the true 

market portfolio (Roll 1977).  Under these circumstances, the OLS beta estimator will be 

inconsistent.  Furthermore, in the Fama and MacBeth (1973) two-pass framework, if the first-

pass beta estimates are inconsistent because of measurement error in factors, the second-pass risk 

premia and zero-beta rate estimates will be inconsistent as well.   

Instrumental variable (IV) estimation is the usual solution to the measurement error 

problem.  Intuitively, because all asset returns vary together with a common set of factors, one 

can use information contained in other asset returns to improve the beta estimate for a given 

asset.  This is often a large N and small T setting, because there are typically more assets or 

stocks than periods.  Ideally, we would want to use all available information, that is, all valid 

instruments (the other (N-1) asset returns), but conventional instrumental variable estimators 

such as two-stage least squares (2SLS) perform poorly when the number of instruments is large.  

This is similar to the “weak instruments” problem (Hahn and Hausman 2002).  Furthermore, 

these methods cannot accommodate more instruments than the sample size. 
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In this article, we propose a simple method for estimating betas when factors are 

measured with error: ordinary least squares instrumental variable estimator (OLIVE).  OLIVE 

easily allows for large numbers of instruments (can be larger than the sample size).  It is 

intuitive, easy to implement, and achieves better performance in simulations than other 

instrumental variable estimators such as 2SLS, bias-corrected two-stage least squares (B2SLS), 

limited information maximum likelihood (LIML), and the Fuller (1977) estimator (FULLER), 

especially when the number of potential instruments (N-1) is large and the sample size (T) is 

small. 

We show that OLIVE is a consistent estimator under the assumption that idiosyncratic 

errors are cross-sectionally independent (Proposition 1).  Consistency is obtained when the 

number of assets (N) is fixed or goes to infinity.  When idiosyncratic errors are cross-sectionally 

correlated, returns of other assets as instruments are invalid in the conventional sense because 

they are correlated with the regression errors.  We show that even in this case, OLIVE beta 

estimates remain consistent, provided that N is large (Proposition 2).  In a sense, we exploit the 

large N of panel data to arrive at a consistent estimator.  Because conventional generalized 

method of moments (GMM) breaks down for N T> , and consistency in the absence of valid 

instruments requires large N, OLIVE’s ability to handle large N is appealing. 

OLIVE can be viewed as a one-step GMM estimator using the identity weighting matrix.  

When N is larger than T, the optimal weighting matrix in the GMM estimation cannot be 

consistently estimated in the usual unconstrained way.  However, in our setting we are able to 

derive the two-step equation-by-equation GMM estimator, as well as the joint GMM estimator, 

based on the restrictions implied by the model.  Even though the two-step GMM estimator is 

asymptotically optimal, it performs worse than OLIVE in simulations.  This is because the two-
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step GMM estimator has poor finite sample properties caused by imprecise estimation of the 

optimal weighting matrix. 

Previous studies also show that the two-step GMM estimator that is optimal in the 

asymptotic sense can be severely biased in finite samples of reasonable size (e.g., Ferson and 

Foerster 1994; Hansen, Heaton, and Yaron 1996; Newey and Smith 2004; Doran and Schmidt 

2006).  One-step GMM estimators use weighting matrices that are independent of estimated 

parameters, whereas the efficient two-step GMM estimator weighs the moment conditions by a 

consistent estimate of their covariance matrix.
1
  Given the difficulty in estimating the optimal 

weighting matrix, especially when N is large, using the identity weighing matrix becomes an 

intuitive option.  OLIVE can be viewed as a GMM estimator using the identity weighting matrix. 

Fama and MacBeth’s (1973) two-pass method can be modified by using OLIVE instead 

of OLS to estimate betas in the first pass.  As an empirical application, we reexamine Lettau and 

Ludvigson’s (2001b) test of the conditional/consumption capital asset pricing model ((C)CAPM) 

using this modified Fama-MacBeth method.  Lettau and Ludvigson’s factor cay is found to have 

strong forecasting power for excess returns on aggregate stock market indices.  The factor cay is 

the cointegrating residual between log consumption c, log asset wealth a, and log labor income y.  

Macroeconomic variables usually contain large measurement error.  We find that in regressions 

where macroeconomic factors are included, using OLIVE instead of OLS improves the R
2
 

significantly (e.g., from 31% to 80%). 

More important, our results based on OLIVE beta estimates help resolve two puzzling 

findings in the prior literature.  If we use OLS when factors are measured with error, both the 

                                                 
1
 Wyhowski (1998) performs simulations and shows the GMM estimator performs well if the true optimal weighting 

matrix is used.  Methods to correct the bias problem include, for example, using a subset of the moment conditions 

and normal quasi-MLE.  Other solutions to this problem use higher order expansions to construct weighting matrix 

estimators, or use generalized empirical likelihood (GEL) estimators as in Newey and Smith (2004).  Doran and 

Schmidt (2006) suggest using principal components of the weighting matrix. 
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first-pass beta estimates and the second-pass risk premia and zero-beta rate estimates will be 

inconsistent.  Conversely, because OLIVE beta estimates are consistent even when factors 

contain measurement error, the risk premia and zero-beta rate can be consistently estimated in 

the second pass if OLIVE is used in the first pass to estimate betas.  First, Lettau and Ludvigson 

(2001b) find that their estimated average risk price on the beta for the value-weighted return is 

negative.  Jagannathan and Wang (1996) report a similar finding.  Using OLIVE instead of OLS 

estimation in the first pass changes the sign of the average risk premium on the beta for the 

value-weighted market index from negative to positive, which is in accordance with the theory.  

Second, in Lettau and Ludvigson, the estimated value of the average zero-beta rate is too high.  

As the authors observe, this finding is not uncommon in studies that use macroeconomic factors.  

We find that when OLIVE beta estimates from the first pass are used, the estimated value of the 

average zero-beta rate in the second pass is no longer too high (e.g., from 5.19% to 1.91% per 

quarter).  Our results suggest that measurement error in factors is the cause of this problem. 

In contrast, it makes almost no difference whether we use OLIVE or OLS to estimate 

betas for the Fama-French three-factor model, where the factors may contain little measurement 

error as they are constructed from stock returns.  Overall, our results from this empirical 

application validate the use of OLIVE to help improve beta estimation when factors are 

measured with error. 

Many existing empirical asset pricing models implicitly assume that macroeconomic 

variables are measured without error, for example, Chen, Roll, and Ross (1986).  Previous 

studies have noted the measurement error problem in this context (e.g., Ferson and Harvey 

1999).  Connor and Korajczyk (1991) develop and apply a procedure similar to 2SLS.  However, 

since the fitted values are linear combinations of statistical factors, they do not contain any more 
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information beyond statistical factors, which lack clear economic interpretations.  Wei, Lee, and 

Chen (1991) also note the presence of errors-in-variables problem in factors.  They use the 

standard econometric treatment: instrumental variables approach (IV or 2SLS).  Both their 

factors and instruments are size-based portfolios.  Even if there is measurement error in size-

based portfolio returns, the problem would not be solved by using other size-based portfolio 

returns as instruments.  As one would expect, they find extremely high first-stage R
2
.  This 

means their IV results will be very similar to OLS results, and indeed that is what they find. 

 

II. Estimation Framework 

Model Setup 

To describe the model, we begin by assuming that asset returns are generated by a linear multi-

factor model: 

* ' ,it t i ity x B e= +      (1) 

where i = 1, …, N, t = 1, …, T, yit is asset i’s return at time t, xt* is an 1M ×  vector of true 

factors at time t, and βi is an 1M ×  vector of factor loadings for asset i.  However, the true 

factors xt* are observed with error: 

* ,t t tx x v= +       (2) 

where vt is an 1M ×  vector of measurement error.  This is similar to the setup in Connor and 

Korajczyk (1991) and Wansbeek and Meijer (2000).  Using (2), we can rewrite (1) as:  

' ,it t i ity x B ε= +      (3) 

where ' .it it t ie v Bε = −  
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We cannot use OLS to estimate βi equation-by-equation, even though xt is observable, 

because the error term εit is correlated with the observable factors xt due to the measurement error 

vt. 

For a fixed asset i, rewrite (3) as  

,i i iY XB ε= +  (4) 

where Yi is a T vector of asset returns, 1[ , ( ,... ) ']TX x xι≡  is a ( 1)T M× +  matrix of observable 

factors (ι is a T vector of 1’s), and Bi is an (M+1) vector of factor loadings.  As noted before, 

OLS produces inconsistent estimates of factor loadings:  

l 1( ' ) ' .
OLS

i iB X X X Y−=      (5) 

Let 1 1 1[ ,... , ,..., ]i i i NY Y Y Y Y− − +≡  be a ( 1)T N× − matrix of all asset returns excluding the ith 

asset.  Then Y-i can serve as instrumental variables. Let [ , ],i iZ Yι −≡  multiply both sides of 

equation (4) by Zi to obtain: 

' ' ' .i i i i i iZ Y Z XB Z ε= +     (6) 

It can be shown that the usual IV or 2SLS is equivalent to running Feasible GLS on (6); 

that is,  

l 2
1 1 1( ' ( ' ) ' ) ' ( ' ) ' .

SLS

i i i i i i i i i iB X Z Z Z Z X X Z Z Z Z Y− − −=    (7) 

The idea of 2SLS is first to project the regressors (X) onto the space of instruments ( iZ ), 

and then to regress the dependent variables ( iY ) on fitted values of regressors instead of 

regressors themselves.  It is well known that two-staged least squares (2SLS) estimators may 

perform poorly when the instruments are weak or when number of instruments is large.  In this 

case 2SLS tends to suffer from substantial small sample biases. 
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OLIVE 

The motivation behind our approach begins with the fact that 2SLS only works when N (number 

of instruments) is much smaller than T (sample size), which is not the case for most finance 

applications.  To illustrate the problem, imagine the case where N = T.  Then the fitted values are 

the same as original regressors, and 2SLS becomes the same as OLS.  This problem of 2SLS is 

related to the “weak instruments” literature in econometrics, which has grown rapidly in recent 

years; see for example Hahn and Hausman (2002). 

We propose to estimate factor loadings Bi by simply running OLS on equation (6).  We 

call it Ordinary Least-squares Instrumental Variable Estimator (OLIVE): 

l 1( ' ' ) ' ' .
OLIVE

i i i i i iB X Z Z X X Z Z Y−=      (8) 

Proposition 1.  Under the assumption that idiosyncratic errors ite  are cross-sectionally 

independent, then for either fixed N or N going to infinity, the OLIVE estimator is T  consistent 

and asymptotically normal. 

See Appendix A for a proof of Proposition 1.  Proposition 1 relies on the assumption of 

valid instruments.  That is, jte  is uncorrelated with ite  ( j i≠ ).  However, if the idiosyncratic 

errors are also cross-sectionally correlated, none of the instruments will be valid in the 

conventional sense.  For example, if the objective is to estimate 1B , by equation (3), 

1 1 1 't t te B vε = − .  When 1te  is correlated with jte , jty  will be correlated with 1tε .  Thus jty  will 

not be a valid instrument.  However, we can still establish the consistency of the OLIVE, 

provided that the cross-sectional correlation is not too strong and N is large.  To this end, let 

( )ij it jtE e eγ = .  We assume  
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1

N

ij

j

Cγ
=

≤ < ∞∑       (9) 

for each i.  This condition is analogous to the sum of autocovariances being bounded in the time 

series context, a requirement for a time series being weakly correlated.  Bai (2003) shows that 

the condition implies (3) being an approximate factor model of Chamberlain and Rothschild 

(1983). 

 Proposition 2.  Under the assumption of weak cross-sectional correlation for the 

idiosyncratic errors as stated in (9), if / 0T N → , then the OLIVE estimator is T  consistent 

and asymptotically normal. 

 A proof of Proposition 2 is provided in Appendix B.  Mere consistency would only 

require 1/ 0N → .  It is the T  consistency and asymptotic normality that require / 0T N → .  

Note that under fixed N, all IV estimators discussed in the next section including OLIVE (using 

jty  as instruments) will be inconsistent due to the lack of valid instruments.  In a sense, we 

exploit the large N of panel data to arrive at a consistent estimator.  Far from being a nuisance, 

large N is clearly beneficial.  In view that conventional GMM breaks down for N T>  and 

consistency in the absence of valid instruments requires large N, OLIVE’s ability to handle large 

N is appealing. 

Let � lOLIVE

ii iY X Bε = −  and l � �2 1
' ,

1
i i i

T M
σ ε ε=

− −
 the variance-covariance matrix of l

OLIVE

iB  

is a ( 1) ( 1)M M+ × +  matrix: 

l l 2
1 1( ' ' ) ( ' ' ' )( ' ' ) .i i i i i i i i i iX Z Z X X Z Z Z Z X X Z Z Xσ − −Ω =   (10) 

The above estimation is done for each i = 1, …, N.  With the Bi obtained for each i, we 

can estimate xt* using a cross-section regression based on equation (1).  This is done for each t = 
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1, …, T.  Given estimated xt*, the estimated risk premia can then be recovered as in Black, 

Jensen, and Scholes (1972) and Campbell, Lo, and MacKinlay (1997, Chapter 6). 

The above setup also allows us to test the validity of the multi-factor models.  When the 

instrumental variables are [ , ],i iZ Yι −≡  the constant regressor ι  itself is an instrumental variable.  

The test for the constant coefficient’s being zero is 
�

l11

ia
t =

Ω

, where l
11

Ω is the first diagonal 

element of the inverse matrix l
1

i

−

Ω . 

There is an alternative method for estimating the true factors, i.e., the method of Connor 

and Korajczyk (1991).  They first regress the observed factors on APC estimated statistical 

factors and use the fitted values as estimates of the true factors (rotate observed factors onto 

statistical factors).  They find the R-squared to be quite small, and they interpret this as evidence 

for much measurement error in the observed factors.  APC should have good performance 

theoretically and empirically.  However, the statistical factors using the principle-components 

method lack clear economic interpretations.  In contrast, note that estimated factors xt* using 

OLIVE has the same interpretations as xt, the observable factors.  Thus the estimated risk premia 

also have economic interpretations. 

 

Other IV Estimators 

We compare the performance of OLIVE with OLS and several well known IV estimators: 2SLS, 

LIML, B2SLS, as well as FULLER.  OLS is to be considered as a benchmark.  2SLS is the most 

widely used IV estimator.  It has finite sample bias that depends on the number of instruments 

used (K) and inversely on the R
2
 of the first-stage regression (Hahn and Hausman 2002).  The 

higher-order mean bias of 2SLS is proportional to the number of instruments K. However 2SLS 
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can have smaller higher-order mean squared error (MSE) than LIML using the second-order 

approximations when the number of instruments is not too large.  LIML is known not to have 

finite sample moments of any order.  LIML is also known to be median unbiased to second order 

and to be admissible for median unbiased estimators (Rothenberg 1983). The higher-order mean 

bias for LIML does not depend on K.  B2SLS denotes a bias adjusted version of 2SLS. 

The formulae for these estimators are as follows: 

Let 1( ' ) 'P Z Z Z Z−=  be the idempotent projection matrix, M I P= − , [ , ]W Y X≡ , 

1 2 1 1( , , , , , , )i i NZ y y y y y− += " " , then: 

l

l

l � �

l

l i i

l

1

1

2

1

1

2

1

1

( ' ) '

( ' ) '

( '( ) ) '( )

( '( ) ) '( )

( '( ) ) '( )

( ' ' ) ' '

OLS

SLS

LIML

B SLS

FULLER

OLIVE

X X X Y

X PX X PY

X P M X X P M Y

X P M X X P M Y

X P M X X P M Y

X ZZ X X ZZ Y

β

β

β λ λ

β λ λ

β λ λ

β

−

−

−

−

−

−

=

=

= − −

= − −

= − −

=

.  (11) 

For the above equations, 2SLS, LIML, B2SLS, and FULLER can all be regarded as κ-

class estimators given by
' '

' '

X PY X MY

X PX X MX

κ

κ

−

−
.  For 0κ = , we get 2SLS.  For �κ λ=  , which is the 

smallest eigenvalue of the matrix 1' ( ' )W PW W MW − , we obtain LIML.  Forκ λ= , which equals 

2K

T

−
, we obtain B2SLS.  For iκ λ= , which equals �

T K

α
λ −

−
, we obtain FULLER.  Following 

Hahn, Hausman, and Kuersteiner (2004), we consider the choice of α to be either 1 or 4 in our 

simulation studies later (Section IV).  The choice of 1α = is advocated by Davidson and 

McKinnon (1993), which has the smallest bias, while 4α = has a nonzero higher mean bias, but 

a smaller MSE according to calculation based on Rothenberg’s (1983) analysis. 



 11

There are other solutions to the errors-in-variables problem, for example, Coën and 

Racicot (2007) propose a higher moment estimator, and find that estimators based on moments 

of order higher than two performed better than ordinary least squares estimators in terms of root 

mean squared errors and also in terms of size of type I errors of standard tests.  The estimator 

may be interpreted in its simplest version as a linear matrix combination of the generalized 

version Durbin’s estimator (1954) and Pal’s estimator (1980).  Kim (1995) proposes a correction 

for the EIV problem in the estimation of the price of beta risk within the two-pass estimation 

framework. The intuition is to incorporate the extracted information about the relationship 

between the measurement error variance and the idiosyncratic error variance into the maximum 

likelihood estimation under either homoscedasticity or heteroscedasticity of the disturbance term 

of the market model.  Chao and Swanson (2005) show that the use of many weak instruments 

may improve the performance of certain point estimators since the consistent estimation depends 

importantly on the strength and the number of instruments.  Hussman (1993) demonstrates that 

using monthly returns data, the cross-sectional regression approach will accept the null 

hypothesis of no relation between β and stock returns even when the underlying model is true, 

because the average excess market return is typically small relative to its standard error. 

Using portfolios of asset returns as instruments to reduce errors-in-variables is another 

interesting and feasible alternative.  Starting with Fama and MacBeth (1973), studies in the two-

pass tradition try to solve the EIV problem by grouping the firms into portfolios.  In a recent 

paper, Barnes and Hughes (2002) propose a quantile regression and show the quantile estimator 

is inconsistent under EIV.  When the ordering of the instruments is given, Donald and Newey 

(2001) propose an information criterion approach to choose the number of instruments.  Since 

we do not assume the ordering of the instruments to be known, there are too many potential 
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models, hence exhaustive search of optimal instruments are not possible.  Our method makes use 

of all available instruments without the need to assume any ordering of the instruments or 

determine the optimal number of instruments.  The simplicity of our method is therefore 

appealing. 

 

III. Efficient Two-Step GMM 

What makes OLIVE appealing is its ease of use.  Since OLIVE is a GMM estimator when setting 

the weighting matrix to an identity matrix, it is natural to try to improve the efficiency of the 

estimator by using the optimal weighting matrix.  Traditional unconstrained GMM will break 

down when N>T (the estimated weighting matrix is not invertible).  We will derive the 

theoretical weighting matrix, which depends on far fewer number of parameters.  Replacing the 

unknown parameters by their estimated counterparts will result in an estimated theoretical 

weighting matrix, which is invertible even for N>T. 

 

Equation-by-Equation GMM 

Consider estimating Bi for equation i.  By definition, ' 'it it t i it t iy x B e v Bε = − = − .  For every j 

)( ij ≠ , jty  can serve as an instrument.  Let ( * ' )( ' )ijt jt it t j jt it t iu y x B e e v Bε= = + − .  Under the 

assumption that ite , jte , tv , and *tx  are mutually independent, the moment conditions, or 

orthogonality conditions, will be satisfied at the true value of iB : 

( )( ) ' 0ijt jt it t iE u E y y x B = − =  .    (12) 

Each of the (N-1) moment equations corresponds to a sample moment, and we write these (N-1) 

sample moments as: 
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1

1
( ) ( )

T

ij i ijt i

t

u B u B
T =

= ∑ .     (13) 

Let ( )i iu B  be defined by stacking ( )ij iu B  over j.  For a given weighting matrix iW , the equation-

by-equation GMM is estimated by minimizing: 1min ( ) ' ( )
i

i ii i i
B

u B W u B− .  For each i, t, let itu  be 

the (N-1) vector by stacking ijtu  over j.  The optimal weighting matrix is ( ')i it itW E u u= .  Given 

the above functional form for ijtu , iW  can be parameterized in terms of var( )ite  and Bi for each i, 

var( )tv , and var( *) var( ) var( )t t tx x v= − . 

We now derive the expression of Wi.  The (j, k)th element of Wi ( ,j i k i≠ ≠ ) is given by: 

( )

( ) ( ) ( )

( )( )

* *

*

*

( ) ( ' )( ' )

var( ) ' var( )

' ' var( ) 'var( )

' var( ) var( ) var( ) 'var( )

' var( ) var(

ijt ikt jt it t i it i t kt

jt it i t i kt

j t jt t k kt it i t i

j t k jk jt it i t i

j t k jk

E u u E y e v B e B v y

E y e B v B y

E B x e x B e e B v B

E B x B e e B v B

B x B e

δ

δ

 = − − 
 = + 
 = + + + 
 = + + 

= +( )( )) var( ) ' var( )jt it i t ie B v B+

 ,  (14) 

where 1jkδ =  if j k= , and zero otherwise.  In the last equality, Bjs are assumed non random 

coefficients. 

For example, suppose 1i = , then the above covariance matrix is simply the following.  

Let  

2

3

1

N

B

B

B

−

 
 
 Λ =
 
 
 

#
,       (15) 

then the (N-1) by (N-1) covariance matrix W1 is given by: 

( )( )1 1 1 1 1 1 1var( ) ' var( ) var( *) 't t tW e B v B x− − −= + Λ Λ +Ω ,   (16) 
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where 1−Ω  is a diagonal matrix of dimension (N-1), that is  

1 2(var( ), , var( ))t Ntdiag e e−Ω = " .   (17) 

Note that ( )1 1 1var( ) 'var( )t te B v B+  is a scalar, which is the variance of the OLS residual 

1tε , thus can be estimated by � 2

1

1 T

it

tT
ε

=
∑ . 

For a general i, the formula for Wi becomes: 

( )( )var( ) 'var( ) var( *) 'i it i t i i t i iW e B v B x− − −= + Λ Λ +Ω . (18) 

The analytical expression for the inverse of Wi is: 

( )

( )( )

1
* 1

1

1
1 1 * 1 1 1

var( )

var( ) 'var( )

var( ) ' '

var( )

i t i i

i

it i t i

i i i t i i i i i

it

x
W

e B v B

x

ε

−−
− − −−

−
− − − − −

− − − − − − − −

Λ Λ +Ω
=

+

Ω −Ω Λ +Λ Ω Λ Λ Ω
=

  (19) 

The estimation procedure is then as follows. 

First we use OLIVE  to obtain, for each asset i, iiB  and � i'it it t iy x Bε = − , which equals an 

estimate of 'it t ie v B− .  The denominator of 1

iW −  is computed by the sample variance of � itε . 

Second, given iiB , we run cross-sectional regression to obtain *tx  for each t, and then 

estimate var( *)tx .  Also, given *tx , we can estimate i*it it t ie y x B= −� , so that var( )ite  are 

computed for each i. 

Third, we use the above estimates to construct a consistent estimate of ( ')t tE u u , and use 

that to do two-step GMM.  For each asset i, there is an (N-1)×( N-1) weighing matrix Wi. 

The estimate of beta is: 

l l l1 1
1( ' ' ) ' 'i i ii i i i iB X Z W Z X X Z W Z Y

− −
−= .     (20) 
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The choice of Wi is optimal in the sense that it leads to the smallest asymptotic variance 

matrix for the GMM estimate.  However, a number of papers have found that GMM estimators 

using all of the available moment conditions may have poor finite sample properties in highly 

identified models.  With many moment conditions, the optimal weighting matrix is poorly 

estimated.  The problem becomes more severe when many of the moment conditions (implicit 

instruments) are “weak.”  The poor finite sample performance of the estimates has two aspects, 

as noted by Doran and Schmidt (2006).  First, the estimates may be seriously biased.  This is 

generally believed to be a result of correlation between the estimated weighting matrix liW  and 

the sample moment conditions in equation (13).  Second, the asymptotic variance expression 

may seriously understate the finite sample variance of the estimates, so that the estimates are 

spuriously precise. 

 

Joint GMM 

In this subsection, we discuss joint GMM estimation of ( )1 2', ', , ' 'NB B B B= " .  Let tu  be the 

vector with elements ijtu  for all i, j pairs ( )j i≠ .  The optimal GMM weighting matrix, ( ')t tE u u , 

is difficult  to estimate in the usual unconstrained way because the number of moment 

conditions, N(N-1), can be much larger than T.  Under our model specification, however, 

( ')t tE u u  can also be parameterized in terms of var( )ite , Bi , var( )tv , and var( *)tx . 

The N(N-1) by N(N-1) weighting matrix W can be partitioned into N
2
 block matrices, 

each being (N-1) by (N-1).  We denote these block matrices ( ')ih it htW E u u= , for all i, h = 1, …, 

N.  The block diagonal matrix iiW  corresponds to the equation-by-equation weighting matrix iW , 
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as derived in equation (14) in the previous subsection.  In short, the ( ),j k th element of the block 

diagonal matrix iiW  (denoted as ii

jkw ) is: 

( )( )*

( ) ( ' )( ' )

' var( ) var( ) var( ) ' var( )

ii

jk ijt ikt jt it t i it i t kt

j t k jk jt it i t i

w E u u E y e v B e B v y

B x B e e B v Bδ

 = = − − 

= + +
.  (21) 

The block off-diagonal matrix ihW  ( i h≠ ) represents the variance-covariance matrix 

between the orthogonality conditions for assets i and h.  This matrix is nonzero because an 

instrument used for asset i may also be used for asset h.  In addition, asset i is also an instrument 

for asset h and vice versa.  Thus the orthogonality conditions associated with different equations 

are correlated.  The ( ),j k th element of this matrix, ih

jkw , equals 

( ) ( ' )( ' )ijt hkt jt it t i ht h t ktE u u E y e v B e B v y = − −  , where j i≠  and k h≠  by definition of IV.  We 

derive the formulae for ih

jkw , the ( ),j k th element of the block off-diagonal matrix ihW , in each 

of the four possible cases in Appendix C. 

We now have the whole weighting matrix W.  GMM is estimated by minimizing 

1min ( ) ' ( )
B

u B W u B− .  The estimate of beta is: 

l l l1 1
1(( ) ' '( )) ( ) ' 'B I X ZW Z I X I X ZW Z Y

− −
−= ⊗ ⊗ ⊗ ,   (22) 

where ( )1 ', , ' 'NY Y Y= " .  Z is a block diagonal matrix, with 1 2( , ,..., )NZ diag Z Z Z= , where 

[ , ]i iZ Yι −≡ .  Joint GMM will not be used later in this paper because the number of moment 

conditions, N(N-1), is too large.  But if N is small, joint GMM will be useful. 

 

 

 



 17

IV. Simulation Study 

Simulation Design 

We conduct a Monte Carlo simulation study to compare the performance of our simple OLIVE 

estimator with other estimators.  The data generating process (DGP) for our simulation study is 

as follows.  We assume no intercept, i.e., arbitrage pricing theory (APT) or capital asset pricing 

model (CAPM) holds, as in Connor and Korajczyk (1993) and Jones (2001).  Although the 

estimation framework is general for any factor model, we implement our simulation with a stock 

market application in mind.  The DGP below is very similar to the one in Connor and Korajczyk 

(1993). 

We first generate a security 0ty  (as in the following equation), with a true beta of one, 

which is to be estimated. 

0 0 0

2

0

2

0

' * , 1,...,

* ( , )

(0, )

t t t

J

t x

J

t e

y x e i N

x MVN I

e N

β

π σ

β ι

σ

= + =

=

∼

∼

     (23) 

Then we generate K = N-1 instruments using the following: 

2

2

2

2

, 1 2 1, 1,

* , 1,...,

' * ' ( ' ) ' , 1,...,

* ( , )
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( , )
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β

β β β β ε
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 (24) 

We use K = (2, 10, 45, 150, 600), T = 60, π = 0.1, σx = 0.1, σβ = 1 and 1000 replications. 

Without loss of generality, we assume J, the number of explanatory variables to be 1, which 

makes the model specification equivalent to the CAPM for the excess return.  We allow x and β 
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to be normally generated.  One advantage of OLIVE is that when K is larger than T, it still works 

while most other IV estimators do not. 

Two important parameters for the performance of the estimators are the standard 

deviation of the error in returns, eσ , and the standard deviation of the measurement error, vσ .  

We allow these two parameters to change from low (0.01), medium (0.1), to high (1), i.e., eσ  ∈ 

(0.01, 0.1, 1) and vσ  ∈ (0.01, 0.1, 1).  When eσ increases from 0.01 to 1, the instruments 

becomes weaker.  When vσ increases from 0.01 to 1, the magnitude of measurement error 

increases.  Panel A of Table 1 presents simulation results when both vσ  and eσ  are set equal to 

0.1, which is the medium measurement error and medium instruments case.  Panel B of Table 1 

presents simulation results when both vσ  and eσ  are set equal to 1, which is the large 

measurement error and weak instruments case.
2
 

[INSERT TABLE 1 HERE] 

We further conduct simulation study allowing for weak cross-sectional correlation among 

securities.  The setup is similar except that the cross-sectional error term ite  is generated as an 

AR(1) process, i.e., 1,it t i t ite a e η−= + , where ( 0.5,0.5)ta U −∼  and (0,1)it MVNη ∼ .  These 

simulation results are reported in Table 2. 

 

Simulation Results 

In Tables 1 and 2, a variety of summary statistics is computed for each estimator.  When K is set 

from 1 to 45 (K<T), all estimators are computed.  When K>T, only OLS, OLIVE, and the two-

step equation-by-equation GMM estimator (2GMM) are computed because other IV estimators 

                                                 
2
 We also run simulations using different levels of these two parameters and show that our findings are robust.  The 

results are not reported due to space constraints, but are available upon request. 
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become infeasible.  Following Donald and Newey (2001), we compute the mean bias and the 

mean absolute deviation (AD), for each estimator from the true value of β generated.  We 

examine dispersion of each estimator using both the inter-quartile range (IQR) and the difference 

between the 1st and 9th deciles (Dec. Rge) in the distribution of each estimator.  Throughout, 

OLS offers the smallest dispersion in terms of both IQR and Dec. Rge.  This finding is consistent 

with Hahn, Hausman, and Kuersteiner (2004).  We also report the coverage rate of a nominal 

95% confidence interval (Cov. Rate).  Panel A of Table 1 presents simulation results when both 

vσ  and eσ  are set equal to 0.1, which is the medium measurement error and medium instruments 

case.  Panel B of Table 1 presents simulation results when both vσ  and eσ  are set equal to 1, 

which is the large measurement error and weak instruments case.  Table 2 reports results when 

we allow for weak cross-sectional correlation among securities. 

We first focus our discussion on simulation results in Table 1 Panel A, the medium 

measurement error and medium instruments case.  When there is only one instrument, 2SLS, 

LIML, OLIVE, and 2GMM are all equivalent.  Throughout, both OLS and 2GMM seem to be 

biased downwards.  As Newey and Smith (2004) point out, the asymptotic bias of GMM often 

grows with the number of moment restrictions.  Our simulation results show that the 

performance of the two-step GMM estimator becomes worse as the number of instruments 

grows.  As the number of instruments becomes very large (e.g., when K = 150 and 600), 2GMM 

has even worse performance than OLS. 

As expected, LIML performs well in terms of median Bias when it is feasible (when K = 

2, 10, and 45).  In terms of mean Bias, FULLER1 usually performs well (when K = 2, 10, and 

45).  In general, OLIVE does quite well in terms of bias.  It is comparable to these “unbiased” 
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estimators and sometimes the bias of OLIVE is even smaller (for example, when K = 2, 10, and 

45 for mean bias). 

As the number of instruments increase, the advantage of OLIVE in terms of absolute 

deviation becomes more significant.  When K equals 10 and larger, OLIVE has the smallest 

median and mean absolute deviations.  Moreover, when K is larger than 10, OLIVE also has the 

smallest mean squared error. 

When the number of instruments is larger than the number of time periods (K>T), 

instrumental variable estimators such as 2SLS, LIML, B2SLS, and FULLER all become 

infeasible.  Among the three estimators that are still feasible, OLIVE performs significantly 

better than both OLS and 2GMM in terms of median and mean bias, median and mean absolute 

deviation, and mean squared error. 

Overall, when the number of instruments increases, the advantage of OLIVE becomes 

more and more significant (this is also true in the supplemental tables).  The performance of 

OLIVE improves almost monotonically as the number of instruments increases (levels off when 

K becomes very large).  On the other hand, other IV estimators usually peak at a certain number 

of instruments then deteriorate as the number of instruments further increase.  This demonstrates 

another advantage of OLIVE: one can simply use all valid instruments at hand without having to 

select instruments or determine the optimal number of instruments. 

Table 1 Panel B presents simulation results for the large measurement error and weak 

instruments case.  It is not surprising that when measurement error is large and instruments are 

weak, none of the instrumental variable estimators perform well.  In fact, they do not perform 

better than the OLS estimator.  In this case, OLIVE, like other instrumental variable estimators, 

does not perform well either.  Table 2 presents results when we allow for weak cross-sectional 
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correlation among securities.  These results are qualitatively similar to those in Table 1 Panel A.  

OLIVE performs well compared to other instrumental variable estimators, especially when the 

number of instruments (K) is large.  These simulation results confirm our theoretical prediction 

in Proposition 2. 

[INSERT TABLE 2 HERE] 

 

V. Empirical Application 

Background 

One of the most successful multifactor models for explaining the cross-section of stock returns is 

the Fama-French three-factor model.  Fama and French (1993) argue that the new factors they 

identify, “small-minus-big” (SMB) and “high-minus-low” (HML), proxy for unobserved 

common risk factors.  However, both SMB and HML are based on returns on stock portfolios 

sorted by firm characteristics, and it is not clear what underlying economic risk factors they 

proxy for.  On the other hand, even though macroeconomic factors are theoretically easy to 

motivate and intuitively appealing, they have had little success in explaining the cross-section of 

stock returns. 

Lettau and Ludvigson (2001b) specify a macroeconomic model that does almost as well 

as the Fama-French three-factor model in explaining the 25 Fama-French portfolio returns.  They 

explore the ability of conditional versions of the CAPM and the Consumption CAPM (CCAPM) 

to explain the cross-section of average stock returns.  They express a conditional linear factor 

model as an unconditional multifactor model in which additional factors are constructed by 

scaling the original factors.  This methodology builds on the work in Cochrane (1996), Campbell 

and Cochrane (1999), and Ferson and Harvey (1999).  The choice of the conditioning (scaling) 
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variable in Lettau and Ludvigson (2001b) is unique: cay - a cointegrating residual between log 

consumption c, log asset wealth a, and log labor income y.  Lettau and Ludvigson (2001a) finds 

that cay has strong forecasting power for excess returns on aggregate stock market indices.  

Lettau and Ludvigson (2001b) argue that cay may have important advantages as a scaling 

variable in cross-sectional asset pricing tests because it summarizes investor expectations about 

the entire market portfolio. 

We conjecture that, as with most factors constructed using macroeconomic data, cay may 

contain measurement error.  If so, our OLIVE method should improve the findings in Lettau and 

Ludvigson (2001b).  Indeed, our empirical results suggest the presence of large measurement 

error in cay and other macroeconomic factors, but not in return-based factors, such as the Fama-

French factors. 

 

Data and Methodology 

Our sample is formed using data from the third quarter of 1963 to the third quarter of 1998.  We 

choose the same time period as Lettau and Ludvigson (2001b), so that our results are directly 

comparable.  As in Lettau and Ludvigson (2001b), the returns data are for the 25 Fama-French 

(1992, 1993) portfolios.  These data are value-weighted returns for the intersections of five size 

portfolios and five book-to-market equity (BE/ME) portfolios on NYSE, AMEX and NASDAQ 

stocks in CRSP and Compustat.  We convert the monthly portfolio returns to quarterly data.  The 

Fama-French factors, SMB and HML, are constructed the same way as in Fama and French 

(1993).  Rvw is the value-weighted CRSP index return.  The conditioning variable, cay, is 

constructed as in Lettau and Ludvigson (2001a, b).  We use the measure of labor income growth, 

∆y, advocated by Jagannathan and Wang (1996).  Labor income growth is measured as the 
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growth in total personal, per capita income less dividend payments from the National Income 

and Product Accounts published by the Bureau of Economic Analysis.  Labor income is lagged 

one month to capture lags in the official reports of aggregate income. 

Our methodology can be viewed as a modified version of Fama and MacBeth’s (1973) 

two-pass method.  Lettau and Ludvigson (2001b) discuss different methods available, and argue 

that the Fama-MacBeth procedure has important advantages for their application.  In the first 

pass, the time-series betas are computed in one multiple regression of the portfolio returns on the 

factors.  In addition to estimating betas by running time-series OLS regressions like in Lettau and 

Ludvigson (2001b), we also use OLIVE to estimate betas.  For a given portfolio (Ri), returns on 

the other portfolios serve as “instruments” (R-i).  As shown by our simulation results, if factors 

contain measurement error, betas estimated using OLIVE are much more precise than betas 

estimated using OLS (and more precise than other IV methods). 

In the second pass, cross-sectional OLS regressions using 25 Fama-French portfolio 

returns are run on betas estimated using either OLS or OLIVE in the first pass to draw 

comparisons: 

, 1 0,( ) ( ) 'i t t iE R E R β λ+ = + .     (25) 

 

Empirical Results 

Tables 3 and 4 report the Fama-MacBeth cross-sectional regression (second pass) coefficients, λ, 

with two t-statistics in parentheses for each coefficient estimate.  The top t-statistic uses 

uncorrected Fama-MacBeth standard errors, and the bottom t-statistic uses the Shanken (1992) 

correction.  The cross-sectional R
2
 is also reported.  Table 3 (Table 4) corresponds to Table 1 

(Table 3) in Lettau and Ludvigson (2001b), with the same row numbers representing the same 
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models.  For each row, the OLS results are replications of Lettau and Ludvigson (2001b).  After 

numerous correspondences with the authors (we are grateful for their timely responses), we are 

able to obtain very similar results, though not completely identical.  The OLIVE results are based 

on our OLIVE beta estimates in the first pass. 

[INSERT TABLE 3 HERE] 

 

Unconditional Models.  Following Lettau and Ludvigson (2001b), we begin by presenting results 

from three unconditional models. 

Row 1 of Table 3 presents results from the static CAPM, with the CRSP value-weighted 

return, Rvw, used as a proxy for the unobservable market return.  This model implies the 

following cross-sectional specification: 

, 1 0,( ) ( )i t t vwi vwE R E R β λ+ = + .     (26) 

The OLS results in Row 1 highlight the failure of the static CAPM, as documented by previous 

studies (e.g., Fama and French 1992).  Only 1% of the cross-sectional variation in average 

returns can be explained by the beta for the market return.  The estimated value of λvw is 

statistically insignificant and has the wrong sign (negative instead of positive) according the 

CAPM theory.  The constant term, which is an estimate of the zero-beta rate, is too high (4.18% 

per quarter).  Estimating betas using OLIVE instead of OLS provides little improvement in terms 

of cross-sectional explanatory power: the R
2
 is still 1%.  However, the sign of the estimated 

value of λvw changes from negative to positive, though still statistically insignificant, and the 

estimated zero-beta rate decreases from 4.18% to 3.48% per quarter.  We expect the advantage of 

OLIVE estimation to be small here, since Rvw is a return-based factor likely with little 

measurement error. 
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Row 2 of Table 3 presents results for the human capital CAPM, which adds the beta for 

labor income growth, ∆y, into the static CAPM (Jagannathan and Wang 1996): 

, 1 0,( ) ( )i t t vwi vw yi yE R E R β λ β λ+ ∆ ∆= + + .    (27) 

The human capital CAPM performs much better than the static CAPM, explaining 58% of the 

cross-sectional variation in returns.  Labor income growth is a macroeconomic factor, which 

probably contains measurement error.  When OLIVE is used to estimate betas, the R
2
 jumps 

from 58% to 78%.  However, for both OLS and OLIVE results, the estimated value of λvw has the 

wrong sign and the estimated zero-beta rate is too high. 

Row 3 of Table 3 presents results for the Fama-French three-factor model: 

, 1 0,( ) ( )i t t vwi vw SMBi SMB HMLi HMLE R E R β λ β λ β λ+ = + + + .   (28) 

This specification performs extremely well with OLS estimated betas: the R
2
 becomes 81%; the 

estimated value of λvw has the correct positive sign; and the estimated zero-beta rate is reasonable 

(1.76% per quarter).  The Fama-French factors should contain little measurement error, since 

they are constructed from stock returns.  As one would expect, using OLIVE estimated betas 

yields almost identical coefficient estimates.  The R
2
 only marginally improves to 83%. 

 

Conditional/Scaled Factor Models.  Row 4 of Table 3 reports results from the scaled, conditional 

CAPM with one fundamental factor, the market return, and a single scaling variable, mcay : 

, 1 0,( ) ( )i t t cayi cay vwi vw vwcayi vwcayE R E R β λ β λ β λ+ = + + + .   (29) 

Under this specification, using OLIVE instead of OLS to estimate betas dramatically improves 

the cross-sectional explanatory power from 31% to 80%, which is similar to the performance of 

the Fama-French three-factor model.  This is consistent with our conjecture that since mcay  is 
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constructed using macroeconomic data, it contains large measurement error.  Using OLIVE also 

changes the sign of the estimated value of λvw from negative to positive, though the estimated 

coefficients are close to zero for both OLS and OLIVE.  Using OLIVE also reduces the 

estimated zero-beta rate from 3.69% to 3.09% per quarter, though they are still too high. 

Rows 5 and 5’ are variations of Row 4.  Given the finding that the estimated value of λcay 

is not statistically different from zero in Row 4, Row 5 omits βcayi as an explanatory variable in 

the second-pass cross-sectional regressions, but still includes mcay  in the first-pass time-series 

regressions.  Row 5’ further excludes mcay  in the first-pass time-series regressions.  Results in 

Rows 5 and 5’ are very similar to those in Row 4, suggesting that the time-varying component of 

the intercept is not an important determinant of cross-sectional returns.  The impact of using 

OLIVE to estimate betas is also very similar: the cross-sectional R
2
 jumps from about 30% to 

about 80%. 

Row 6 of Table 3 reports results from the scaled, conditional version of the human capital 

CAPM: 

, 1 0,( ) ( )i t t cayi cay vwi vw yi y vwcayi vwcay ycayi ycayE R E R β λ β λ β λ β λ β λ+ ∆ ∆ ∆ ∆= + + + + + . (30) 

We focus our discussions on this “complete” specification.  Using OLIVE instead of OLS in the 

first pass to estimate betas improves the second-pass cross-sectional R
2
 from 77% to 83% 

(similar to the performance of the Fama-French three-factor model). 

More importantly, our results here help to resolve two puzzling findings by Lettau and 

Ludvigson (2001b) and Jagannathan and Wang (1996).  First, Lettau and Ludvigson (2001b) 

note that “a problem with this model, however, is that there is a negative average risk price on 

the beta for the value-weighted return.”  Jagannathan and Wang (1996) report a similar finding 

for the signs of the risk prices on the market and human capital betas.  Indeed, in our OLS results 
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in Row 6 of Table 3, the estimated value of λvw (coefficient on the market return beta) is -2.00, 

and the estimated value of ycayλ∆  (coefficient on the scaled human capital beta) is -0.17, both 

negative which is inconsistent with the theory.  However, when we use OLIVE to estimate betas 

in the first pass, the estimated value of λvw becomes positive (1.33), and the estimated value of 

ycayλ∆  becomes close to zero (-0.0005), more consistent with the theory. 

Second, Lettau and Ludvigson (2001b) state that “the average zero-beta rate should be 

between the average ‘riskless’ borrowing and lending rates, and the estimated value is 

implausibly high for the average investor.”  Jagannathan and Wang (1996) report similar 

findings.  The authors note that “it is possible that the greater sampling error we find in the 

estimated betas of the scaled models with macro factors is contributing to an upward bias in the 

zero-beta estimates of those models relative to the estimates for models with only financial 

factors.”  They also note that “such arguments for large zero-beta estimates have a long tradition 

in the cross-sectional asset pricing literature (e.g., Black et al. 1972; Miller and Scholes 1972).”  

However, the authors conclude that “procedures for discriminating the sampling error 

explanation for these large estimates of the zero-beta rate from others are not obvious, and its 

development is left to future research.”  Our results suggest that measurement error in factors is 

the cause of this problem.  Sampling error is a second-order issue; it becomes negligible as the 

sample size T becomes large.  Unlike sampling error, the measurement error problem does not 

diminish as the sample size T becomes large.  When macroeconomic factors with measurement 

error are included in the model, OLIVE can provide more precise beta estimates in the first pass, 

which lead to more precise estimates of the zero-beta rate in the second pass.  In Row 6 of Table 

2, the estimated zero-beta rate based on OLS estimated betas is too high at 5.19% per quarter.  
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However, when we use OLIVE to estimate betas, the estimated zero-beta rate drops dramatically 

to a reasonable 1.91% per quarter. 

Rows 7 and 7’ are variations of Row 6.  Row 7 omits βcayi as an explanatory variable in 

the second-pass cross-sectional regressions, but still includes mcay  in the first-pass time-series 

regressions.  Row 7’ further excludes mcay  in the first-pass time-series regressions.  Results in 

Rows 7 and 7’ are very similar to those in Row 6.  The impact of using OLIVE instead of OLS to 

estimate betas is also very similar: the cross-sectional R
2
 increases; the sign of the estimated 

value of λvw changes from negative to positive; and the estimated zero-beta rate drops 

significantly to a reasonable magnitude. 

To summarize, our results in Table 3 confirm the existence of large measurement error in 

macroeconomic factors, such as mcay  and labor income growth, and validate the use of OLIVE to 

help improve beta estimation under these circumstances. 

 

Consumption CAPM.  Table 4 presents, for the consumption CAPM, the same results presented 

in Table 3 for the static CAPM and the human capital CAPM.  The scaled multifactor 

consumption CAPM, with mcay  as the single conditioning variable takes the form: 

, 1 0,( ) ( )i t t cayi cay ci c ccayi ccayE R E R β λ β λ β λ+ ∆ ∆ ∆ ∆= + + + ,   (31) 

where ∆c denotes consumption growth (log difference in consumption), as measured in Lettau 

and Ludvigson (2001a). 

[INSERT TABLE 4 HERE] 

As a comparison, Row 1 of Table 4 reports results of the unconditional consumption 

CAPM.  The performance of this specification is poor, explaining only 16% of the cross-
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sectional variation in portfolio returns.  Using OLIVE beta estimates seems to have made the 

performance even worse. 

Row 2 of Table 4 presents the results of estimating the scaled specification in equation 

(31).  The R
2
 jumps to 70%, in sharp contrast to the unconditional results in Row 1.  When 

OLIVE is used to estimate betas, the R
2
 further increases to 82%.  For both OLS and OLIVE 

results, the estimated value of ccayλ∆  (scaled consumption growth) is positive and statistically 

significant. 

Row 3 excludes βcayi as an explanatory variable in the second-pass cross-sectional 

regressions, but still includes mcay  in the first-pass time-series regressions.  This seems to have 

made very little difference, as the results in Row 3 are very similar to those in Row 2.  Again, 

when OLIVE estimated betas are used, the R
2
 increases from 69% to 81%. 

Row 3’ further excludes mcay  in the first-pass time-series regressions.  As noted by Lettau 

and Ludvigson (2001b), the results here are somewhat sensitive to this exclusion (see their 

footnote 25).  The R
2
 drops to 27% for OLS results and 34% for OLIVE results.  These results 

suggest that including the scaling variable mcay as a factor in the pricing kernel can be important 

even when the beta for this factor is not priced in the cross-section. 

Our results in Table 4 suggest that using OLIVE instead of OLS to estimate betas in the 

conditional consumption CAPM generally increases the cross-sectional variation of portfolio 

returns explained by the model, as measured by the R
2
.  However, unlike in Table 3, the 

estimated zero-beta rates remain high. 
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VI. Conclusion 

In this paper, we put forth a simple method for estimating betas (factor loadings) when factors 

are measured with error, which we call OLIVE.  OLIVE uses all available instruments at hand, 

and is intuitive and easy to implement.  OLIVE achieves better performance in simulations than 

OLS and other instrumental variable estimators such as 2SLS, B2SLS, LIML, and FULLER, 

when the number of instruments is large.  OLIVE can be interpreted as a GMM estimator when 

setting the weighting matrix equal to the identity matrix and it has better finite sample properties 

than the efficient two-step GMM estimator.  OLIVE also has an important advantage over the 

Asymptotic Principle Components (APC) because the statistical factors of the principle 

components method lack clear economic interpretations, while OLIVE directly makes use of the 

observed economic factors. 

OLIVE has many potential empirical applications and is especially suitable for estimating 

asset return betas when factors are measured with error, since this is often a large N and small T 

setting.  Intuitively, since all asset returns vary together with a common set of factors, one can 

use information contained in other asset returns to improve the beta estimate for a given asset. 

As an empirical application, we reexamine Lettau and Ludvigson’s (2001b) test of the 

(C)CAPM using OLIVE in addition to OLS to estimate betas.  Lettau and Ludvigson’s factor cay 

has been found to have strong forecasting power for excess returns on aggregate stock market 

indices, but may contain measurement error.  We find that in regressions where macroeconomic 

factors are included, using OLIVE instead of OLS improves the R
2
 significantly.  Perhaps more 

importantly, our results from OLIVE estimation help to resolve two puzzling findings by Lettau 

and Ludvigson (2001b) and Jagannathan and Wang (1996): first, the sign of the average risk 

premium on the beta for the market return changes from negative to positive, which is in 
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accordance with the theory; second, the estimated value of average zero-beta rate is no longer too 

high.  These results suggest that when macroeconomic factors with measurement error are 

included in the model, OLIVE can provide more precise beta estimates in the first pass, which 

lead to more precise estimates of the risk premia and zero-beta rate in the second pass.  Our 

results from this empirical application validate the use of OLIVE to help improve beta estimation 

when factors are measured with error.  Our findings are also consistent with the theme in Ferson, 

Sarkissian, and Simin (2008) that the (C)CAPMs might work better than previously recognized 

in the literature. 

 



 32

Appendix A. Proof of Proposition 1 

To simplify notation, we consider a more abstract setting.  Let  

' 't t t t ty x xβ ε β ε= + = + ,      (A1) 

where tx  and β  are 1M ×  vectors, ( ) 0t tE x ε ≠ , and *t t tx x v= + .  Let ' *it i t itz x eβ= +  be 

instruments (i = 1, …, N; t = 1, …, T).  Here we assume there are N instruments (i.e., N+1 

assets).  For example, to estimate 1B  in the notation of Section II, we let 1Bβ = , and 1t ty y= , 

1t teε = , and 1,it i tz y +=  for 1i ≥ .  Then 

1 1 1

1 1 1
'

T T T

it t it t it t

t t t

z y z x z
T T T

β ε
= = =

= +∑ ∑ ∑ ,     (A2) 

or it can be simplified as  

'i iiy x β ε= + ,      (A3) 

where 
1

1
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x x z
T =

= ∑ , 
1

1 T

i it t
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1

1 T

it ti
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y z y
T =

= ∑ .  The estimator OLIVE is 

l ( )
1
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Therefore,  
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 33
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where 
1

1
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N
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dependent through the common term 
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T
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x ε
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determined by true factor *tx : 
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 We have  
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1/ 2
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 To see (A12) is 1/ 2( )pO N − , we write  
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Since ( ) ( )1/ 2

iT iT pD E D O T −− = , term I is dominated by II.  From 
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we have ( )1/ 2

pII O N −= . 

 If N is fixed, (A12) is ( )1pO  and is not negligible.  This term will contribute to the 

limiting distribution; but the T  consistency and the asymptotic normality still hold. 

 

Appendix B. Proof of Proposition 2 

The proof of Proposition 1 remains valid up to (A11).  We show (A12) is still asymptotically 

negligible if / 0T N → .  It is sufficient to consider II in (A13).  Let ( )i it tE eγ ε= , with 0iγ ≠ , 

equation (A14) will no longer hold.  But it can be rewritten as  

( )
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 The first term on the right hand side is ( )1pO .  Assuming i Mβ ≤  for all i, the second 

term is bounded by ( ) ( )
1

/ /
N

i

i

M T N O T Nγ
=

=∑  because 
1

(1)
N

i

i

Oγ
=

=∑  by assumption (9).  

Thus (B1) is (1) ( / )p pO O T N+ .  This implies that, noting the extra term 1/ 2N − , II in (A13) is 

equal to ( )1/ 2 ( / )p pO N O T N− + , which converges to zero if / 0T N → . 

 

Appendix C. Derivations for Joint GMM 

We derive the formulae for ih

jkw , the ( ),j k th element of the block off-diagonal matrix ihW , in 

each of the following four possible cases. 
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 ,   (C1) 

where 1jkδ =  if j k= , and zero otherwise. 

Case 2: j h and k i= ≠ . 
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Case 3, j h≠  and k i= .  This is the mirror case of Case 2.  In short, the formula is: 

*

( ) ( ' )( ' )

'var( ) 'var( )

ih

jk ijt hkt jt it t i ht h t it

i t j h t i

w E u u E y e v B e B v y

B x B B v B

 = = − − 
= i

.  (C3) 

Case 4: j h and k i= = . 
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TABLE 1. Simulation Results. 

 

TABLE 1. PANEL A. Medium Measurement Error, Medium Instruments.  σv=0.1, σe=0.1. 

K Estimator Mean Bias Mean AD SQRT. MSE IQR Dec. Rge Cov. Rate 

OLS -0.3300 0.3300 0.3440 0.1251 0.2499 1.0000 

2SLS 0.0028 0.1236 0.1625 0.1999 0.3831 1.0000 

LIML 0.0104 0.1378 0.2607 0.1997 0.3865 0.9980 

B2SLS 0.0028 0.1236 0.1625 0.1999 0.3831 1.0000 

FULLER1 0.0009 0.1227 0.1620 0.1962 0.3769 1.0000 

FULLER4 -0.0336 0.1159 0.1473 0.1823 0.3444 1.0000 

OLIVE 0.0111 0.1249 0.1641 0.2024 0.3854 1.0000 

2 

2GMM 0.0025 0.1239 0.1615 0.2038 0.3780 1.0000 

OLS -0.3305 0.3305 0.3444 0.1306 0.2416 1.0000 

2SLS -0.0657 0.1161 0.1425 0.1641 0.3097 1.0000 

LIML 0.0092 0.1117 0.1442 0.1820 0.3503 1.0000 

B2SLS -0.0008 0.1137 0.1466 0.1836 0.3550 1.0000 

FULLER1 0.0000 0.1100 0.1408 0.1773 0.3427 1.0000 

FULLER4 -0.0265 0.1076 0.1354 0.1693 0.3175 1.0000 

OLIVE 0.0055 0.1073 0.1385 0.1818 0.3369 1.0000 

10 

2GMM -0.0050 0.2826 2.1224 0.1822 0.3814 0.9900 

OLS -0.3300 0.3300 0.3432 0.1271 0.2384 1.0000 

2SLS -0.2672 0.2676 0.2851 0.1318 0.2497 1.0000 

LIML 0.0297 0.1530 0.2170 0.2414 0.4661 0.9990 

B2SLS -0.0114 0.1829 0.2529 0.2657 0.5385 0.9990 

FULLER1 0.0186 0.1479 0.2044 0.2337 0.4514 1.0000 

FULLER4 -0.0121 0.1372 0.1804 0.2132 0.4182 1.0000 

OLIVE 0.0061 0.1036 0.1325 0.1760 0.3320 1.0000 

45 

2GMM -0.4270 0.5082 3.9644 0.2098 0.4392 0.9880 

OLS -0.3317 0.3317 0.3453 0.1330 0.2443 1.0000 

OLIVE 0.0040 0.1032 0.1315 0.1773 0.3239 1.0000 150 

2GMM -0.3492 0.5876 1.3594 0.2679 0.6326 0.9760 

OLS -0.3336 0.3336 0.3469 0.1268 0.2483 1.0000 

OLIVE 0.0099 0.1055 0.1318 0.1806 0.3353 1.0000 600 

2GMM -0.9429 1.1228 5.4738 0.3163 0.8479 0.9570 
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TABLE 1. PANEL B. Large Measurement Error, Weak Instruments.  σv=1, σe=1. 

K Estimator Mean Bias Mean AD SQRT. MSE IQR Dec. Rge Cov. Rate 

OLS -0.9874 0.9874 0.9965 0.1788 0.3459 1.0000 

2SLS -1.1503 1.5473 6.1335 1.0882 2.5046 0.8440 

LIML -9.8045 12.5131 276.1521 1.9171 5.9127 0.6640 

B2SLS -1.1503 1.5473 6.1335 1.0882 2.5046 0.8440 

FULLER1 -0.9446 0.9604 1.0804 0.6494 1.3348 0.9750 

FULLER4 -0.9695 0.9695 1.0025 0.3166 0.6293 0.9990 

OLIVE -1.1474 1.5594 6.4277 1.0981 2.6147 0.8410 

2 

2GMM -0.7191 1.7035 4.7551 1.1113 2.6944 0.8230 

OLS -0.9839 0.9839 0.9918 0.1685 0.3182 1.0000 

2SLS -0.9523 0.9548 1.0224 0.4443 0.9014 0.9910 

LIML -1.2332 4.5724 21.8788 2.1373 6.5960 0.6440 

B2SLS -0.0264 4.1301 28.0351 1.3482 4.3566 0.7460 

FULLER1 -0.8979 0.9889 1.2033 1.1304 2.1220 0.8960 

FULLER4 -0.9425 0.9437 1.0214 0.5661 1.0293 0.9970 

OLIVE -0.9447 0.9495 1.0284 0.4911 0.9903 0.9890 

10 

2GMM -1.0307 1.1889 4.8548 0.5351 1.0949 0.9720 

OLS -0.9755 0.9755 0.9840 0.1672 0.3238 1.0000 

2SLS -0.9660 0.9660 0.9770 0.1964 0.3701 1.0000 

LIML -1.3414 4.5150 18.5643 2.0296 6.7210 0.6470 

B2SLS 0.8161 6.2762 63.5363 1.3027 3.9060 0.7640 

FULLER1 -0.9182 1.2109 1.5134 1.5227 3.1658 0.7920 

FULLER4 -0.9311 0.9555 1.1331 1.0281 1.6975 0.9430 

OLIVE -0.9371 0.9371 0.9605 0.2548 0.5220 1.0000 

45 

2GMM -0.9600 1.0554 1.9130 0.2843 0.5908 0.9780 

OLS -0.9747 0.9747 0.9835 0.1716 0.3191 1.0000 

OLIVE -0.9376 0.9376 0.9537 0.2304 0.4401 1.0000 150 

2GMM -0.8838 1.4939 6.8534 0.2629 0.6783 0.9540 

OLS -0.9724 0.9724 0.9814 0.1746 0.3246 1.0000 

OLIVE -0.9338 0.9338 0.9468 0.1939 0.3728 1.0000 600 

2GMM -0.9629 1.8064 9.3302 0.3039 1.0251 0.9230 

 

Note: This table presents the simulation results.  We compare OLIVE with other IV estimators including 

2SLS, LIML, B2SLS, FULLER1 and FULLER4 (the choice of the α parameter is either 1 or 4), as well as 

the two-step equation-by-equation GMM estimator (2GMM).  We first generate a security with a true beta 

of one, which is to be estimated using the above estimators.  Then we generate K = N-1 other securities 

which serve as instruments using the data generating process (DGP) detailed in Section IV.  We use K = 

(2, 10, 45, 150, 600), T = 60, π = 0.1, σx = 0.1, σβ = 1, and 1,000 replications.  Without loss of generality, 

we set J, the number of explanatory variables to be 1, which makes the model specification equivalent to 

the CAPM for the excess return.  We allow x and β to be normally generated.  One advantage of OLIVE 

is that when K is larger than T, it still works while most other IV estimators no longer do.  This is why we 

can only compare the performance of OLS, OLIVE, and 2GMM for K = (150, 600).  The statistics 
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reported include mean bias (Mean Bias), mean absolute deviation (Mean AD), squared-root of mean 

squared error (SQRT. MSE), inter-quartile range (IQR), the difference between the 1st and 9th deciles 

(Dec. Rge), and the coverage rate of a nominal 95% confidence interval (Cov. Rate). In Panel A we set σv 

= 0.1 and σe = 0.1 (medium measurement error and medium instruments).  In Panel B we set σv = 1 and σe 

= 1 (large measurement error and weak instruments). 
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TABLE 2. Simulation Results, Allowing for Weak Cross-Sectional Correlation. 

 

K Estimator Mean Bias Mean AD SQRT. MSE IQR Dec. Rge Cov. Rate 

OLS -0.3296 0.3296 0.3446 0.1368 0.2562 1.0000 

2SLS 0.0106 0.1335 0.2009 0.2065 0.4021 0.9990 

LIML 0.0254 0.1414 0.2278 0.2141 0.4186 0.9980 

B2SLS -0.0106 0.1335 0.2009 0.2065 0.4021 0.9990 

FULLER1 0.0062 0.1276 0.1698 0.2047 0.4059 1.0000 

FULLER4 -0.0323 0.1190 0.1508 0.1902 0.3683 1.0000 

OLIVE 0.0190 0.1355 0.2016 0.2096 0.4090 0.9990 

2 

2GMM 0.0120 0.1379 0.2116 0.2102 0.4088 0.9990 

OLS -0.3300 0.3300 0.3433 0.1307 0.2386 1.0000 

2SLS -0.0669 0.1153 0.1406 0.1461 0.3099 1.0000 

LIML 0.0067 0.1103 0.1401 0.1884 0.3434 1.0000 

B2SLS -0.0023 0.1124 0.1430 0.1896 0.3500 1.0000 

FULLER1 -0.0025 0.1086 0.1371 0.1835 0.3345 1.0000 

FULLER4 -0.0288 0.1066 0.1327 0.1715 0.3205 1.0000 

OLIVE 0.0051 0.1074 0.1356 0.1810 0.3401 1.0000 

10 

2GMM -0.0540 0.1755 0.6182 0.1919 0.3629 0.9930 

OLS -0.3329 0.3329 0.3462 0.1255 0.2384 1.0000 

2SLS -0.2701 0.2701 0.2879 0.1360 0.2557 1.0000 

LIML 0.0316 0.1588 0.2209 0.2508 0.4924 0.9990 

B2SLS -0.0130 0.1805 0.2380 0.2830 0.5421 1.000 

FULLER1 0.0198 0.1528 0.2049 0.2424 0.4823 1.0000 

FULLER4 -0.0117 0.1403 0.1817 0.2254 0.4482 1.0000 

OLIVE 0.0144 0.1071 0.1377 0.1760 0.3361 1.0000 

45 

2GMM -0.2680 0.3699 2.7643 0.2040 0.4195 0.9850 

OLS -0.3339 0.3339 0.3475 0.1273 0.2515 1.0000 

OLIVE 0.0026 0.1091 0.1400 0.1822 0.3351 1.0000 150 

2GMM -0.3814 0.5515 1.0523 0.2612 0.6299 0.9760 

OLS -0.3303 0.3303 0.3435 0.1253 0.2394 1.0000 

OLIVE 0.0133 0.1056 0.1336 0.1805 0.3375 1.0000 600 

2GMM 0.9979 2.5784 50.2473 0.2964 0.8726 0.9550 

 

Note: This table presents the simulation results, allowing for weak cross-sectional correlation among 

securities.  We compare OLIVE with other IV estimators including 2SLS, LIML, B2SLS, FULLER1 and 

FULLER4 (the choice of the α parameter is either 1 or 4), as well as the two-step equation-by-equation 

GMM estimator (2GMM).  We first generate a security with a true beta of one, which is to be estimated 

using the above estimators.  Then we generate K = N-1 other securities which serve as instruments using 

the data generating process (DGP) detailed in Section IV.  We use K = (2, 10, 45, 150, 600), T = 60, π = 

0.1, σx = 0.1, σβ = 1, and 1,000 replications.  Without loss of generality, we set J, the number of 

explanatory variables to be 1, which makes the model specification equivalent to the CAPM for the 

excess return.  We allow x and β to be normally generated.  One advantage of OLIVE is that when K is 

larger than T, it still works while most other IV estimators no longer do.  This is why we can only 
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compare the performance of OLS, OLIVE, and 2GMM for K = (150, 600).  The statistics reported include 

mean bias (Mean Bias), mean absolute deviation (Mean AD), squared-root of mean squared error (SQRT. 

MSE), inter-quartile range (IQR), the difference between the 1st and 9th deciles (Dec. Rge), and the 

coverage rate of a nominal 95% confidence interval (Cov. Rate). 
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TABLE 3. Fama-MacBeth Regressions Using 25 Fama-French Portfolios: λj Coefficient Estimates 

on Betas in Cross-Sectional Regression 

 

   1Factorst+   m
1Factorsttcay +⋅   

Row Constant m
tcay  Rvw ∆y SMB HML 

 
Rvw ∆y R

2
 

1-OLS 

4.18 

(4.47) 

(4.47) 
 

-0.32 

(-0.27) 

(-0.27) 

      0.01 

1-OLIVE 

3.48 

(4.71) 

(4.70) 

 

0.25 

(0.30) 

(0.30) 

      0.01 

2-OLS 

4.47 

(4.78) 

(2.66) 

 

-1.10 

(-0.95) 

(-0.53) 

1.26 

(3.40) 

(1.89) 

     0.58 

2-OLIVE 

4.42 

(5.76) 

(5.69) 

 

-1.22 

(-1.32) 

(-1.29) 

0.06 

(3.55) 

(4.49) 

     0.78 

3-OLS 

1.76 

(1.22) 

(1.12) 

 

1.44 

(0.89) 

(0.82) 

 

0.49 

(0.97) 

(0.89) 

1.49 

(3.31) 

(3.03) 

   0.81 

3-OLIVE 

1.79 

(1.63) 

(1.49) 

 

1.41 

(1.11) 

(1.01) 

 

0.48 

(0.96) 

(0.88) 

1.53 

(3.39) 

(3.10) 

   0.83 

4-OLS 

3.69 

(3.90) 

(2.62) 

-0.04 

(-0.19) 

(-0.13) 

-0.07 

(-0.06) 

(-0.04) 

    

1.14 

(3.60) 

(2.41) 

 0.31 

4-OLIVE 

3.09 

(4.20) 

(4.18) 

-0.02 

(-0.60) 

(-0.58) 

0.13 

(0.15) 

(0.15) 

    

0.10 

(3.54) 

(3.51) 

 0.80 

5-OLS 

3.70 

(3.86) 

(2.61) 

 

-0.09 

(-0.07) 

(-0.05) 

    

1.17 

(3.59) 

(2.41) 

 0.31 

5-OLIVE 

3.54 

(2.84) 

(2.82) 

 

-0.43 

(-0.26) 

(-0.25) 

    

0.11 

(2.93) 

(2.90) 

 0.78 

5’-OLS 

3.83 

(4.06) 

(2.62) 

 

-0.23 

(-0.19) 

(-0.12) 

    

1.27 

(3.60) 

(2.31) 

 0.30 

5’-OLIVE 

3.15 

(4.20) 

(4.18) 

 

0.06 

(0.07) 

(0.07) 

    

0.10 

(3.65) 

(3.62) 

 0.80 
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TABLE 3 Continued 

 

   1Factorst+   m
1Factorsttcay +⋅   

Row Constant m
tcay  Rvw ∆y SMB HML 

 
Rvw ∆y R

2
 

6-OLS 

5.19 

(5.60) 

(3.33) 

-0.44 

(-1.59) 

(-0.94) 

-2.00 

(-1.74) 

(-1.03) 

0.56 

(2.11) 

(1.25) 

   

0.35 

(1.69) 

(1.00) 

-0.17 

(-2.39) 

(-1.42) 

0.77 

6-OLIVE 

1.91 

(1.80) 

(1.76) 

0.01 

(0.16) 

(0.15) 

1.33 

(1.07) 

(1.04) 

0.02 

(0.67) 

(0.66) 

   

0.10 

(2.00) 

(1.95) 

-0.0005 

(-0.05) 

(-0.05) 

0.83 

7-OLS 

5.14 

(5.59) 

(3.85) 

 

-1.98 

(-1.73) 

(-1.19) 

0.59 

(2.20) 

(1.51) 

   

0.60 

(2.71) 

(1.86) 

-0.08 

(-2.52) 

(-1.73) 

0.75 

7-OLIVE 

2.00 

(2.30) 

(2.26) 

 

1.26 

(1.25) 

(1.22) 

0.02 

(0.66) 

(0.64) 

   

0.10 

(1.89) 

(1.85) 

-0.002 

(-1.00) 

(-0.98) 

0.83 

7’-OLS 

4.26 

(4.58) 

(3.40) 

 

-0.97 

(-0.84) 

(-0.51) 

0.91 

(2.96) 

(1.80) 

   

0.43 

(2.10) 

(1.28) 

-0.10 

(-1.65) 

(-1.00) 

0.71 

7’-OLIVE 

2.14 

(2.17) 

(2.13) 

 

1.06 

(0.91) 

(0.89) 

0.01 

(0.24) 

(0.23) 

   

0.15 

(2.60) 

(2.54) 

0.002 

(0.20) 

(0.20) 

0.83 

 

Note: This table corresponds to Table 1 in Lettau and Ludvigson (2001b).  The table presents λ estimates 

from cross-sectional Fama-MacBeth regressions using returns of 25 Fama-French portfolios: 

, 1 0,( ) ( ) 'i t t iE R E R β λ+ = + . 

The individual λj estimates (from the second-pass cross-sectional regression) for the beta of the factor 

listed in the column heading are reported.  In the first pass, the time-series betas βi are computed in one 

multiple regression of the portfolio returns on the factors, using either OLS or OLIVE as noted in each 

row.  Rvw is the CRSP value-weighted index return, ∆y is labor income growth, and SMB and HML are 

the Fama-French mimicking portfolios related to size and book-to-market equity ratios.  The scaling 

variable is mcay .  The table reports the Fama-MacBeth cross-sectional regression coefficients, with two t-

statistics in parentheses for each coefficient estimate.  The top t-statistic uses uncorrected Fama-MacBeth 

standard errors, and the bottom t-statistic uses the Shanken (1992) correction.  The cross-sectional R
2
 is 

reported.  The model is estimated using data from 1963:Q3 to 1998:Q3.  The coefficient estimates of the 

factors are multiplied by 100, and the estimates of the scaled terms are multiplied by 1,000. 
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TABLE 4. Consumption CAPM, Fama-MacBeth Regressions Using 25 Fama-French Portfolios:  

λj Coefficient Estimates on Betas in Cross-Sectional Regression 

 

Row Constant m
tcay  ∆ct+1 

m
1ttcay c +⋅ ∆  R

2
 

1-OLS 

3.25 

(4.94) 

(4.50) 

 

0.22 

(1.26) 

(1.14) 

 0.16 

1-OLIVE 

3.34 

(4.74) 

(0.88) 

 

0.003 

(0.46) 

(0.45) 

 0.03 

2-OLS 

4.27 

(6.10) 

(4.24) 

-0.12 

(-0.42) 

(-0.29) 

0.03 

(0.22) 

(0.15) 

0.06 

(3.14) 

(2.18) 

0.70 

2-OLIVE 

4.72 

(3.70) 

(3.67) 

0.04 

(0.90) 

(0.88) 

-0.004 

(-0.27) 

(-0.27) 

0.009 

(3.44) 

(3.40) 

0.82 

3-OLS 

4.09 

(6.81) 

(5.13) 

 

-0.02 

(-0.12) 

(-0.09) 

0.07 

(3.22) 

(2.41) 

0.69 

3-OLIVE 

3.49 

(5.85) 

(5.83) 

 

0.006 

(0.42) 

(0.41) 

0.007 

(3.36) 

(3.34) 

0.81 

3’-OLS 

2.77 

(4.37) 

(3.77) 

 

0.01 

(0.09) 

(0.07) 

0.04 

(2.36) 

(2.03) 

0.27 

3’-OLIVE 

5.40 

(6.07) 

(6.05) 

 

0.04 

(2.95) 

(2.92) 

-0.005 

(-2.29) 

(-2.27) 

0.34 

 

Note: This table corresponds to Table 3 in Lettau and Ludvigson (2001b).  The table presents λ estimates 

from cross-sectional Fama-MacBeth regressions using returns of 25 Fama-French portfolios: 

, 1 0,( ) ( ) 'i t t iE R E R β λ+ = + . 

The individual λj estimates (from the second-pass cross-sectional regression) for the beta of the factor 

listed in the column heading are reported.  In the first pass, the time-series betas βi are computed in one 

multiple regression of the portfolio returns on the factors, using either OLS or OLIVE as noted in each 

row.  ∆c denotes consumption growth (log difference in consumption).  The scaling variable is mcay .  The 

table reports the Fama-MacBeth cross-sectional regression coefficients, with two t-statistics in 

parentheses for each coefficient estimate.  The top t-statistic uses uncorrected Fama-MacBeth standard 

errors, and the bottom t-statistic uses the Shanken (1992) correction.  The cross-sectional R
2
 is reported.  

The model is estimated using data from 1963:Q3 to 1998:Q3.  The coefficient estimates of the factors are 

multiplied by 100, and the estimates of the scaled terms are multiplied by 1,000. 

 


