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1. Introduction

The present paper revisits the analyses of the dynamics of a duopoly game a la
Bertrand (1883) augmented with bounded rational players (firms) and horizontal
product differentiation by Zhang et al. (2009).!

Given the importance of product differentiation in the current industrial
organization literature (see Singh and Vives, 1984), in this paper we develop, different
from Zhang et al. (2009), a model with sound microeconomic foundations that
determine the demand of differentiated goods and services faced by each firm in the
market. This leads to discover, by using the degree of product differentiation as the
key factor, some new dynamical behaviours which are of importance in both
mathematics and economics. From the former point of view, we establish that the
unique positive fixed point of the two-dimensional system (the sole which is relevant
from an economic point of view): (1) may lose stability exclusively through a flip or
period-doubling bifurcation, and (2) the route of chaos is of the “quasi-periodic” type.
From the latter point of view, we show that if firms work in such a way that products
tend to become more homogeneous or complements, then the Bertrand-Nash
equilibrium is more likely to be destabilised.” Therefore, policies aiming at reducing
the degree of product market differentiation tend to destabilise the economy.

Moreover, we extend the model to incorporate another sound microeconomic
foundation that concerns the cost of production of each firm, that is the case of non-
linear (quadratic) costs. Both the “mathematical” and “economic” results above
mentioned are qualitatively confirmed in this case, but the parametric stability region
is smaller than when production costs are linear, so that the loss of stability when
either the degree of substitutability or degree of complementarity between goods and
services increases is more likely to be observed in such a case.

The rest of the paper is organised as follows. Section 2 develops the model and
discusses the main analytical results. Section 3 performs numerical simulations
showing the occurrence of a “quasi-periodic” route to chaos as well as a large gamma of
strange attractors for the cases of both substitutability or complementarity. Section 4
concludes.

2. The economy

Since our dynamic analysis focuses on the effects on stability of a duopolistic market a
la Bertrand (1883) with product differentiation, it is of importance to set up the
microeconomic foundations of the differentiated commodity setting and clarify the
economic reasons why we assume specific demand and cost functions.

We assume the existence of an economy with two types of agents: firms and
consumers. The economy is bi-sectorial, i.e. there exist a competitive sector that
produces the numeraire good Yy, and a duopolistic sector with two firms, namely firm 1

and firm 2, each of which produces a differentiated good or service. Let p and g

denote the firm i’s price and quantity, respectively, with i = {1,2}.

! For the notion of differentiated goods and services see the original contributions by Hotelling (1929)
and Chamberlin (1933).

2 By passing, we note that neither the mathematical findings of the present paper nor their economic
interpretation do appear in Zhang et al. (2009). Moreover they do not consider the case of non-linear
production costs.
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There exists a continuum of identical consumers which have preferences towards q
and y represented by a separable utility function V(q; y), which is linear in the
numeraire good. The representative consumer maximises V(g;y)=U(q)+y with
respect to quantities subject to the budget constraint pg, +p,q,+y=M , where
q:(oﬂ,qz), g and g, are non-negative and M denotes the consumer’s exogenously
given income. The utility function U(q) is assumed to be continuously differentiable
and satisfies the standard properties required in consumer theory (see, e.g., Singh and
Vives, 1984, pp. 551-552). Since V(q; y) is separable and linear in y, there are no
income effects on the duopolistic sector. This implies that for a large enough level of
income, the representative consumer’s optimisation problem can be reduced to choose
g to maximise U (q)— P, — p.g, +M . Utility maximization, therefore, yields the

inverse demand functions (i.e., the price of good i as a function of quantities):

P, :3—5 = Fi’(q), for ¢ >0 and i :{1,2}. Inverting the inverse demand system gives the

direct demand functions (i.e., the quantity of good i as a function of prices): g = Q(p),

where p= (pl, p2) and p, and p, are non-negative.

To proceed further with the analysis of the duopolistic market, it is required to have
explicit demand functions for goods and services of variety 1 and 2. Then, specific
utility functions should be assumed. To this end, the usual specification in the
economic literature is the quadratic utility function proposed by Dixit (1979) and
subsequently used, amongst many others, by Singh and Vives (1984), Vives (1985),
Qiu (1997), Hackner (2000), Correa-Lopez and Naylor (2004) and Gosh and Mitra
(2010). The important feature of such a utility function is that it generates a system of
linear demand functions.

Therefore, we assume that preferences of the representative consumer over q are

given by:
U( i’qi)za(qi+qi)_%(qi2+qu+2dqiqj)’ (1)

where a >0 is a parameter that captures the size of the market demand and -1<d <1
represents the degree of horizontal product differentiation. Some clarifications on the
parameter d are now in order. If d =0, then goods of variety 1 and 2 are independent.
This implies that each firm behaves as if it were a monopolist in its specific market; if
d =1, then goods 1 and 2 are perfect substitutes or, alternatively, homogeneous (in
that case, the Bertrand’s model with price competition implies that the unique Nash
equilibrium of the economy is determined in such a way that every firms in the
market sets the price to be equal to the marginal cost); 0<d <1 describes the case of
imperfect substitutability between goods. The degree of substitutability increases, or
equivalently, the extent of product differentiation decreases as the parameter d raises;
a negative value of d instead implies that goods 1 and 2 are complements, while
d = -1 reflects the case of perfect complementarity.

The inverse demand functions of products of variety 1 and 2 that come from the
maximisation by the representative consumer of Eq. (1) with respect to quantities,
subject to the budget constraint pg, + p,q, + y=M, are given by p,( i,qj)= a-gqg —dg;.

Therefore, from the inverse demands we can easily obtain the following system of
direct demand functions of products of variety 1 and 2, that is:

q(p.0,)=a-p -dg,, (2.1)
3
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Q2(p2’0a):a_ p, —dg,. (2.2)
Combining now Egs. (2.1) and (2.2) definitely gives the system of direct demands as
a function of prices of both products:

1
a(p, p2)=ﬁ[a(1-d)- P +dpy], (3.1)

1
(P, p2)=ﬁ[a(1-d)- p,+dp)]. (3.2)

Following Correa-Lépez and Naylor (2004), we assume that firm i produces output of
variety i through the following production function with constant (marginal) returns
to labour: g =L, , where L, represents the labour force employed by firm i. Firms face
the same (constant) average and marginal cost w=0 for every unit of output
produced. Therefore, the firm i’s cost function is linear and described by:

Ci(qi):WLi =W(q . (4)
Profits of firm i in every period can be written as follows:
7= p ¢ -wg =(p -w)q. (5)

In the Bertrand’s model, each player (firm) chooses the price to maximise profits given
the expectation about the price sets by the rival. In a dynamic setting, each firm must
form at every date t an expectation about the next period rival’s price to compute its
own profit-maximising price at time t +1.

Therefore, let p, be the firm i’s price at time t =01,2,..., where i :{1,2}. Then, p .,
is obtained through the following optimisation programmes:

P =AgMaX 771(p1,t, pez,m), (6.1)
Py = AGMAX , 71,(PFLiet, Py ). (6.2)

where p° .1 represents the price that the rival (firm j) today (time t) expects will be
set by firm i in the future (time t +1).
Substituting Eqgs. (3.1) and (3.2) into Eq. (5) to eliminate ¢, profit maximisation by

firm i ={1,2} are given by:

mex,, 77(p,, p,) = - al-d) - p +dpy], (7.1)
max., 7z,(p;, p,) = Ez__d‘iv[a(l-d)- p, +dp,]. (7.2)
Therefore, marginal profits are obtained as:
anl(pl’ pz) — a(l_d)_ 2p, +dp, +w (8.1)
op, 1-d? ’
om,(p.p,) _ all-d)-2p, +dp +w. (8.2)
ap, 1-d?

The reaction or best reply functions of firms 1 and 2 are computed as the unique
solution of Egs. (8.1) and (8.2) for p, and p,, respectively, and they are given by:

anlg%l, P)_g .. pl(pz)zé[a(l_d)mpﬁw], 9.1)
anz‘()f;l, P) o .. pz(pl):%[a(l—d)+dpl+w]_ (9.2)

We assume that both firms have bounded rational expectations about the level of
the price that should be set in the future to maximise profits (see Zhang et al., 2009).

4
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Therefore, each player uses information on current profit in such a way to increase or
decrease the price at time t+1 depending on whether marginal profits are either
positive or negative. Following Dixit (1986), the adjustment mechanism of prices over
time of the i th bounded rational player is described by:

on
pl,t+1: pu,t +aip|,t£h|t, (10)

where a, >0 is a coefficient that captures the speed of adjustment of firm i’s price
with respect to a marginal change in profits when p varies.

Using Eq. (10), the two-dimensional system that describes the dynamics of this
simple Bertrand duopoly game with horizontal product differentiation is the following:

o= Pt ap, 28
Jt+1 t t aplyt
; (11)
Do = oy
2,t+1 2,t 2.t apzyt
where, for simplicity, we set a, =a, =a. Combining now Egs. (8.1), (8.2) and (11)
gives:
a
Presa = P t 1_pcli't2 [a(l_ d) =2p, +dpy, * W]
ap . (12)
Poisn = Poy * 1- étz [a(l_ d) —2p,, +dp, + W]

The equilibrium or fixed points of the two-dimensional system (12) are obtained
when p,,=p,=p and p,,,, = P,; = P,. Therefore, the fixed points E(p*l, p*z) of (12)

are defined by the non-negative solutions of the following system:

%[rﬁl(l-d)-Zpﬁdpz+M=O

, (13)
161'322 [a(L-d)-2p, +dp, +w] =0
and they are given by:
E,=(00), E :(O,%[a(l—d)+w]j, E, :(%[a(l—d)+w],0), (14.1)
and
E, :(a(lg(_j21+w’a(1;fizi+w) (14.2)

Eq. (14.2) defines the unique interior Nash equilibrium of this simple duopoly game a
la Bertrand. Of course, since every firm faces the same linear cost function, then
Pi1=p2=p . Substituting out the equilibrium price p into the direct demand
functions Egs. (3.1) and (3.2), and profit functions Eq. (5), yields the equilibrium
values of both quantities and profits of both firms, respectively:

9= (2—6;;;: d)’ (15)
- _(a-wf(i-d)
s (2—d)2(i+ d) (16
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From Eq. (15) it can easily be seen that a>w must hold to ensure q >0, while from
Eqgs. (14.2) and (16) we observe that the case of perfect substitutability between goods
of variety 1 and 2 (d =1) perfectly replicates the original result by Bertrand (1883), as
prices of both firms equal the average and marginal cost w and profits are zero in
such a case.’

2.1. Local stability analysis

In this section we exclusively restrict attention to the analysis of the local stability
properties of the positive Bertrand-Nash equilibrium E, of the two-dimensional
dynamic system (12), which is the sole economically meaningful fixed point because
prices should be strictly positive. For doing so, we build on the Jacobian matrix J
evaluated at the equilibrium E,, that is:

*

a . adp
1 1- -p(a-
J(ES):(jn jlzj: +1—d2[a( a((jj)r-)tw P ( d)] . 1-d? .(17)
2 vz e 1+1_d2[a(1—d)+w— o'(a-d)
where p = a(l;fdzi-l-w , J,=J,, and J,=J, . The trace and determinant of the
Jacobian matrix (17) are respectively given by:
T::Tr(J):ZJll:2+%[a(1—d)+w— p*(4-d)], (18)
» _ A2 _ - _ .
D= Det(J) =J-J% = [d *aad a(a+W)+4a ; ][d(l-'-ijl)ci o a(a+W) Lraap ] (19)
The characteristic polynomial of (17) is the following:
G(A)=A2-TA+D, (20)

whose discriminant is Z:=T?-4D.

As is known, bifurcation theory describes the way topological features of the system
(such as the number of stationary points or their stability) vary as some parameter
values continuously change (the Jury’s conditions, see, e.g., Medio, 1992; Gandolfo,
2010). For a system in two dimensions, the stability conditions ensuring that both
eigenvalues remain within the unit circle* are the following:

3 Note that this result cannot be observed in Zhang et al. (2009), since they build on both the direct and
inverse market demand functions with no microeconomic foundations, and without restricting the
parameter d to vary between —1 and 1. Indeed, if one computes the equilibrium values of prices,
quantities and profits in the model by Zhang et al. (2009) under the case of perfect substitutability (by
assuming, for simplicity, the same average and marginal costs for both firms, and setting the parameter
b =1, which represents the slope of the direct linear demand functions of goods of variety 1 and 2, see

Zhang et al.,, 2009, Eq. 1, p. 2049), one obtains the following results: p* =at+tw, q* =a and

T = a(a+ W) > 0. As can easily be ascertained, prices are higher than the average and marginal cost

W and profits are positive. This result is at odds with the original Bertrand’s findings and does not
have economic sense.

* If no eigenvalues of the linearised system around the fixed points of a first order discrete system lie on
the unit circle, then such points are defined hyperbolic. Roughly speaking, at non-hyperbolic points
topological features are not structurally stable.
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(i): F=1+T+D>0
@i);: TC=1-T+D>0. (21)
@ii): H=1-D>0
The violation of any single inequality in (21), with the other two being
simultaneously fulfilled leads to: (i) a flip bifurcation (a real eigenvalue that passes
through —1) when F =0; (ii) a fold or transcritical bifurcation (a real eigenvalue that

passes through +1) when TC =0; (iiz) a Neimark-Sacker bifurcation (i.e., the modulus
of a complex eigenvalue pair that passes through 1) when H =0, namely D =1, and

T<2.

For the particular case of the Jacobian matrix defined by (17), the stability
conditions in (21) become the following:

): F= [— 2d? + gad —a(a+ w)+ 2][2d3 _(4—aa)d2 +[a(a—w)—2]d +2a(a+w)+4] -0
-oFe-a)
i): Tc=2 2[a((11_- ;jz))j(‘j_zgz)* )50 ©2)
(i): H = a[a+w—ad][— (4-aa)d® +ala-w)d —2a(a+w)+4] o0
L-d*f(2-a)

From (22) it is clear that the Nash equilibrium E, of the two-dimensional dynamic

system (12) cannot loose stability through a transcritical or fold bifurcation, as
condition (i) in (22) is always satisfied. However, conditions (i) and (iiz) can be
violated.

Since in the present paper we are wondering about the stability effects of horizontal
product differentiation, in what follows we take d as the parameter of interest. It is
known from the existing literature on the dynamics of oligopoly models (see, amongst
many others, Bischi and Naimzada, 1999; Agiza and Elsadany, 2003, 2004; Zhang et
al., 2007; 2009; Tramontana, 2009) that when at least one of the two players have
bounded rational expectations, the higher the speed of adjustment a, the more likely
the destabilisation of an equilibrium of a two-dimensional map. Therefore, by fixing
the coefficient @, we now analyse how the fixed point E; of system (12) can loose
stability when d continuously changes.

From the flip and Neimark-Sacker bifurcation surfaces F and H in (22), it is clear
that several values of d exist that makes F =0 and H =0 in the (F,d) and (H,d)
planes, respectively. In particular, the numerator of F is a fifth order polynomial in
d, while the numerator of H is a third order polynomial in d .° Therefore, the

® This result strongly differs from Zhang et al. (2009). Indeed, by assuming only for comparison
purposes that firms face the same constant average and marginal cost, namely W, =W, =W, b=1 and
a, =a, = Q, the stability condition by Zhang et al. (2009) that correspond to those stated in (22) in the
e = lala+w)-2fd[afa+w)+2]+2a(a+w)- 4
2-d

2 2

a+w)(2+d ala+w +w)+2ala+w)-4
e} (26) gy - ol wadla v 2afa )=

the bifurcation surfaces F and H are first order polynomials in d, there exists one and only one

7
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existence of horizontal product differentiation introduces the possibility to observe
very interesting dynamical events.

Below we develop the usual one-parameter bifurcation analysis by studying how the
stability properties of the unique positive equilibrium E, changes when the degree of

product market differentiation varies within its domain of definition -1<d<1.
Unfortunately, since closed form solutions for d from F and H in (22) cannot be dealt
with in a neat analytical form, we now perform numerical simulations to study the
dynamics of the model. Indeed, since E; can a priori be destabilised through either a

flip or Neimark-Sacker bifurcation, we have to check, by starting from a stability
situation, which of them occurs before the other one when d varies.

Since from an economic point of view the case d =0 implies independence of goods
of variety 1 and 2 (that is, there exist two separate monopolistic firms that produce
distinct goods), it is interesting to study the stability properties of E, when strategic

interaction between firms exists either by increasing the degree of substitutability or
complementarity between goods, that is when d varies either from 0 to 1 or from 0 to
-1, respectively.

The fixed point E, of the dynamical system (12) may undergo a flip or Neimark-
Sacker bifurcation depending on the ranking of the bifurcation values of the
parameter d, i.e., the roots of F=0 and H =0. Indeed, although the bifurcation
values of d crucially depend on the other parameters of the problem, namely a, a
and w, we are able to set up a ranking of bifurcation values of it, which is always
preserved at least when the fixed point E, of the two-dimensional system (12) is stable

when the two firms act as two separate monopolists that independently produce goods
of variety 1 and 2 in their own markets, starting from the case d =0 and moving
either towards the case of perfect substitutability (d =1) or perfect complementarity
(d =-1). Therefore, we are able to give general results as regards the role of the degree
of horizontal product differentiation on stability of the Bertrand-Nash equilibrium of a
Bertrand duopoly market.

As an example, we choose the following parameter set: @ =05, a=3 and w=05.°

_22-ala+w)

solution to each of them for d in such a case, namely d=d% = and
2+ala+w)

_22-a(a+w)
ala+w)

their model can loose stability exclusively through a flip bifurcation, while Zhang et al. (2009, p. 2055)
refer to the case of Neimark-Sacker bifurcations, which cannot occur because the discriminant Eq. (15)
of the Jacobian matrix (13) (see, Zhang et al., 2009, p. 2053) is always positive.

5 However, through extensive numerical experiments not reported here for economy of space, we feel
confident that the shape of the bifurcation loci F and H in (22), depicted in Figures 1 and 2,
respectively, holds true for any meaningful parameter sets such that the positive fixed point E; is

stable when d =0.

dZdZHZ

, where d’r <d”y . Therefore, the unique interior Nash equilibrium in
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F_

-04-

-06

-ng
Figure 1. Flip bifurcation locus F when d varies (Parameter values: a =05, a=3
and w=0.5).

H_

0.5

054
Figure 2. Neimark-Sacker bifurcation locus H when d varies (Parameter values:
a=05,a=3 and w=0.5).

Figure 1 (2) depicts the flip (Neimark-Sacker) bifurcation locus when d varies within
the range (-1,1) and shows the existence of four (two) roots of d in the (F,d) ((H,d))
planes. Starting from the left (negative values of d) and moving towards the right
(higher values of d), we define the flip bifurcation values as d,., d,., d;. and d,,

and the Neimark-Sacker bifurcation values as d,, and d,, . For the configuration of
parameters chosen above, Figures 1 and 2 show, respectively, that d,. =-05,
d,. =-0.1403, d;. =0.3596 and d,. =0.8903 , and d,, =-0.2623 and d,, =0.7623 .
Therefore, the following results generically hold.

Result 1. For any meaningful configuration of parameters such that the fixed point E,

of the two-dimensional system (12) is stable when d =0 (i.e., firms 1 and 2 behave as
two separate monopolists), the existence of strategic interaction with horizontal product

9
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differentiation implies the existence of two negative flip bifurcation values of d, i.e.
d,r <d,. and two positive flip bifurcation values of d, i.e. d; <d, .

Result 2. For any meaningful configuration of parameters such that the fixed point E,
of the two-dimensional system (12) is stable when d =0, an increase in the degree of
substitutability between goods of variety 1 and 2, i.e. the parameter d moves from 0 to
1, implies that the Bertrand-Nash equilibrium E, looses stability exclusively through a

flip or period-doubling bifurcation, as d,. <d,, always holds.

Result 3. For any meaningful configuration of parameters such that the fixed point E,

of the two-dimensional system (12) is stable when d =0, an increase in the degree of
complementarity between goods of variety 1 and 2, i.e. the parameter d moves from 0
to —1, implies that the Bertrand-Nash equilibrium E, looses stability exclusively

through a flip or period-doubling bifurcation, as ‘dZ’F‘ < ‘dLH‘ always holds.

3. Numerical simulations

In this section the dynamical behaviours of a duopoly model with product
differentiation are investigated through numerical simulations. To provide some
numerical evidence for the existence of chaotic motions, we use several standard tools,
such as bifurcations diagrams, phase portraits with basin of attractions and shape of
attractors, Lyapunov exponents, sensitive dependence on initial conditions and so on.
In order to study the local and global dynamical properties of the map defined by Eq.
(12) conveniently, in dependence of the different characteristics of the variety of goods
1 and 2, we take the degree of differentiation d as the bifurcation parameter and the
illustrative parameter values a =05, a=3 and w=0.5.

10
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3,00
274

2,50

1,00
075

0.50

0,00 -
05 0.4 03 0.2 -0.1 oo 01 0z 03 04 05 08 07

d
Figure 3.a. Bifurcation diagram for d. Initial conditions: p,, =0.2 and p,,=0.3
(Parameter values: @ =0.5, a=3 and w=0.5).

0588 0587 0588 05809 0590 0591 0592 0593 0594 0595 0596 0,597 0,598

Figure 3.b. Bifurcation diagram for d. An enlarged view for 0.585<d <0.598 and
0.65< p <1.46.
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0,59250 0,59275 0,59300 0,59325 0,58350 0,58375 0,58400 0,50425 0,58450

Figure 3.c. Bifurcation diagram for d. An enlarged view 0.592<d <0.5946 and
0.67<p <0.937.

0,625 0,630 0,635 0,640 d 0,645 0,650 0,655 0,580

Figure 3.d. Bifurcation diagram for d. An enlarged view for 0.624 <d <0.662 and
0.3< p <1.46.

Starting from a stability situation when d =0, Figure 3.a shows that an increase in
the degree of substitutability, or equivalently, a reduction in the extent of product

12
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differentiation (i.e., the parameter d moves from 0 to 1), implies that the map (12)
converges to a fixed point for —0.1403< d <0.3596. Starting from this interval, in which
the positive equilibrium of system (12) is stable, Figure 3a shows that E, undergoes a

flip bifurcation both at d,. =-0.1403 (when the parameter d decreases or,
alternatively, the degree of complementarity increases) and d,. =0.3596 (when the

parameter d increases or, alternatively, the degree of substitutability increases).

On the one hand, starting from d =-0.1403, a further decrease in d, i.e. an increase
in the degree of complementarity between products of variety 1 and 2, implies that:
for —0.2823<d < -0.1403 a two-period cycle emerges; for —0.3207 < d <-0.2823 a four-
period cycle emerges; for —0.36 <d <-0.3207 the map (12) converges to a quasi periodic
attractor, while within the interval -0.415<d <-0.36 it converges to a chaotic
attractor, except for a number of periodic windows; finally, when d <-0.415 the map
(12) does not converge. On the other hand, starting from d =0.3596, a further increase
in d, i.e. an increase in the degree of substitutability between products of variety 1
and 2 , implies that: for 0.3596<d<0.588 a two-period cycle emerges; for
0.588 < d <0.65 the map (12) converges to a quasi periodic attractor, while within the
interval 0.65<d <0.7021 it converges to a chaotic attractor, except for a number of
periodic windows; for d >0.7021 the map (12) does not converge.

Figures 3.b-3.d depict several enlarged views of the bifurcation diagram 3.a, where
it is clearly shown both a quasi-period route to chaos (and not a period-doubling
cascade, as argued by Zhang et al. (2009, p. 2055) (Figures 3.b and 3.c) and a complex
dynamic behaviour interspersed by parametric intervals of periodic behaviour (Figure
3.d).

In Figures 4 and 5 we depict the phase portraits for several different values of d,
corresponding to the bifurcation diagram plotted in Figure 3.a, when: (i) the extent of
the degree of substitutability between goods of variety 1 and 2 increases for positive
values of d and (ii) the extent of the degree of complementarity between goods of
variety 1 and 2 increases for negative values of d.
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Figure 4. Case 0<d <1. Phase portrait for different values of d (the degree of
substitutability between goods of variety 1 and 2 increases): (a) d =0.59, (b) d =0.595,
(c) d=0.64, (d) d=0.6491 (e) d =0.65, (f) d =0.655, (g) d =0.675, (h) d =0.685, (i)
d=0.69, (j) d=0.695, (k) d =0.696 and (1) d =0.701 (Parameter values: a =0.5, a=3
and w=0.5).

A main result of the present paper, which is detailed below, is that the bifurcation
diagrams (Figures 3.a-3.d), phase portraits (Figures 4-5), Lyapunov exponents (Figure
6) and time trajectories for arbitrarily close initial conditions (Figures 7a and 7.b), are
all convergent in identifying a “quasi-periodic” route to chaos as the typical route to
chaos of a Bertrand duopoly economy with product differentiation (see Eq. 12).

We now briefly recall that nonlinear dynamical systems with chaotic behaviour
exhibit a number of well characterised routes to chaotic behaviour (see Bergé et al.,
1986; Medio, 1992). If we limit us to consider the generic “co-dimension one route to
chaos” (i.e., transitions to chaos characterised by local or global bifurcations occurring
when only a single parameter varies) we may, loosely speaking, distinguish four types
of routes: (1) period-doubling; (2) intermittency (or explosion); (3) saddle connection (or
“blue-sky catastrophe”); (4) quasi-periodic. These routes present universal properties,
that allow to classify nonlinear systems in universality classes formed by systems with
completely different microscopic interactions. Transitions to chaos through quasi-
periodic motions have deeply been investigated, at least starting from Ruelle and
Takens (1971), in particular the transition from two-frequency quasi-periodic
behaviour to low-dimensional chaotic behaviour, which is the typical route identified
in the present economic dynamic model. Typically, the literature (see, e.g., Curry and
Yorke, 1977 and, in particular, the studies on the simplified circle map, Feigenbaum et
al., 1982) has shown that this transition to chaos usually proceeds through the
interaction of resonances (mode-locking),” that lead to a wrinkling or corrugation of
the torus, and ultimately to a strange attractor.

"However, it has also been shown that 2D-tori can lead to a strange attractor without mode-locked
states (see, e.g. Moon, 1997).
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Figure 4 shows the attractor and basin of attraction in the case 0<d <1 and for
increasing values of the degree of substitutability between goods of variety 1 and 2.
The figure shows the different shape of the attractor when d increases. Figures 4.a,
4b and 4.c clearly show two increasing invariant closed curves when d=0.59,
d =0.595 and d =0.64. Such figures illustrate, in addition to the local flip bifurcation
above mentioned in Results 2 and 3, that we can observe that the initially stable two-
period cycle (which is born when the fixed point E;, undergoes a flip bifurcation at

d =0.3596) loses stability almost at d =0.589 through the so-called Neimark-Sacker
bifurcation (the pair of complex conjugate eigenvalues cross the unit circle) and two
limit cycles are born.

If we interpret, in order to better understand our numerical results, our two-
dimensional plots as Poincaré surfaces of sections of continuous solutions of
differential equations, we know that the fixed point corresponds to a stable limit cycle.
This limit cycle evolves into a torus through a Neimark-Sacker bifurcation.® The torus
represents a quasi-periodic (one-frequency periodic) behaviour of continuous solutions
and is responsible for the invariant orbits on the Poincaré surface of sections. This is
illustrated in Figure 4.a, where the two invariant symmetric circles represent the 2D-
torus on the Poincaré map.

The invariant circles grow as the parameter d continues to change, and then lose
their smoothness (see Figure 4.d, where several chaotic pieces appears at d =0.6491
and where the attractors now cease to be even topologically a circle).” When d =0.65,
Figure 4.d shows that a cycle of period 18 emerges. As long as the parameter d
increases the figures show a double ring chaotic area, unless a cycle of period 18 that
appears when d =0.695 (see Figure 4.j).

Another interesting observation concerns the bifurcation of attracting invariant
closed curves from many periodic points. For instance, for the case of complementarity
between products of variety 1 and 2, Figure 5.c shows a 20-periodic orbit, which is
created by so-called mode-locking (and for which the rotation number is rational), and
for slight increases in the (modulus) of d a 60-period cycle occurs, which is not shown
here for economy of space). Indeed, when the modulus of d increases further on, we
initially observe the bifurcation of a 60-periodic orbit with the emergence of 60
invariant “circles” (see Figure 5.e), clustered in four “archipelagos” and subsequently

8 More specifically, the co-dimension-one bifurcations concerning a periodic orbit (such as the stable two
period-cycle surrounding the positive equilibrium point emerged through a flip bifurcation), which are
responsible for the loss of stability or disappearance of such an orbit, can briefly be classified according
to whether the periodic orbit: (1) collapses into an equilibrium state through a supercritical Neimark-
Sacker bifurcation; (2) collides with an unstable periodic orbit (acquiring a multiplier equal to +1) and
then vanishes; (3) becomes a homoclinic loop to a saddle equilibrium state; (4) transforms itself into a
homoclinic loop of a saddle-node equilibrium state; (5) a period doubling or flip bifurcation, where a
multiplier of the orbit decreases through —1, occurs (note that the stability of the original orbit is
inherited by an orbit of doubled period); (6) a secondary Neimark-Sacker bifurcation, where a pair of
complex-conjugate multipliers of the periodic orbit crosses the unit circle outwards, occurs and the
periodic orbit becomes a two-dimensional invariant torus. Note that the fifth and sixth possibilities (i)
require at least a continuous-time 3D system (a 2D Poincaré map), and (i) are characterised by the fact
that the periodic orbit no longer disappears at the bifurcation but only loses its stability through either
a flip or Hopf-Neimark-Sacker bifurcation (e.g., Andronov et al. 1971; Shilnikov et al., 2001).

? As noted by Kopel (1996, p. 2043), the loss of smoothness of the invariant circles can often be related to
behaviour associated with the existence of homoclinic and heteroclinic points, and differently from the
local bifurcations discussed in our model in Results 1-3, to the occurrence of global bifurcation
phenomena (in particular homoclinic bifurcations).
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the bifurcation of the set of 60 closed curves which lose their smoothness and result in
a strange attractor (see Figures 5.f and 5.g)."

Similar comments concern Figures 4.1, 4.k, 4.1 and 5.h-5-1 (reported here for the
remarkable aesthetic beauty of these attractors).

In order to investigate if an aperiodic behaviour occurs, we study the largest
Lyapunov exponent (Lel) as a function of d. If Lel lies on zero (is positive), then there
is evidence for “quasi-periodicity” (chaos). Figure 6 displays, for the case of
substitutability between products of variety 1 and 2, the intervals of the (positive
values of the) parameter d for which the two-dimensional system (12) converges to
cycles, quasi-periodicity and chaotic behaviour. Note the agreement of the predictions
of Figure 6 with those of Figures 3, 4 and 5 together with corresponding comments.

As known, the sensitivity to initial conditions is a characteristic of deterministic
chaos. In order to show the sensitivity to initial conditions of system (12), we have
computed two orbits of the variable p, whose coordinates of initial conditions differ by

0.000001. Figures 7.a and 7.b depict the orbits of p, with initial conditions p,, =0.2
and p,,=0.3, and p,,=0.200001 and p,, =0.300001 at d =0.62(corresponding to the

quasi-periodic parametric region), and d=0.701 (corresponding to the chaotic
parametric region), respectively. As expected, while when d =0.62 the orbits remain
similar irrespective of initial conditions, when d =0.701 the orbits rapidly separate
each other, thus indicating the existence of chaotic motions.

Furthermore, since strange attractors must typically be characterised by fractal
dimensions, we have calculated the attractor dimension according to the Kaplan-Yorke
conjecture obtaining, as a confirmation of the presence of chaos, a dimension smaller
than 2. The values are not reported here for brevity, but are of course available on
request.

Finally, we note that the dynamic behaviour discussed above is at all typical of
quadratic 2D maps (of which the present model (eq. 21) is a case — typical for duopoly
models with bounded rational firms — with four non-linearity), such as the coupled
logistic equations dynamic behaviour analysed by Kopel (1996). For recent papers
offering an overview of some important issues related to the general case of the
dynamics of general 2D quadratic maps), especially predicting the strange attractors
and their properties, see, for instance, Elhadj and Sprott, 2008, 2010)."

19 As is known, the intermittent periodic behaviour (mode-locking) comes about when the two
characteristic frequencies on the torus are in the ratio of two integers. Higher bifurcations of the torus
occur as the system moves out of the quasi-periodic region by further increase in d . These bifurcations
are characterised by the folding of the boundaries onto itself and eventually the break-up of the torus
(see Kopel, 1996, p. 2045).

1 See also the papers by Bischi et al. (1998), Bischi et al. (1999) and Bischi and Gardini (2000).
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ey
Figure 5. Case —1<d <0. Phase portrait for different values of d (the degree of
complementarity between goods of variety 1 and 2 increases): (a) d =-0.32, (b)
d =-0.325, (¢c) d =-0.33, (d) d =-0.33326348, (e) d =-0.34, (f) d =-0.355, (g) d =-0.362,
(h) d =-0.37, (i) d =-0.39, (j) d =-0.395, (k) d =-0.405 and (1) d =-0.414 (Parameter
values: d =05, a=3 and w=0.5).
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Figure 6. The largest Lyapunov exponent for 0.585<d <0.705 (one million iterations).
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Figure 7.a. Sensitivity dependence to initial conditions ( p, versus time). Initial

conditions: p,, =0.2 and p,, =0.3 red and p,, =0.200001 and p,, =0.300001 blue
(Parameter values: a =05, a=3, w=0.5 and d =0.622).
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Figure 7.b. Sensitivity dependence to initial conditions ( p, versus time). Initial

conditions: p,, =0.2 and p,, =0.3 red and p,, =0.200001 and p,, =0.300001 blue
(Parameter values: a =05, a=3, w=0.5 and d =0.701).
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2.2. The case with quadratic costs

In this section we relax the hypothesis of constant marginal returns to labour, which
leads each firm facing with a linear cost function, and assume, following Fanti and
Meccheri (2011), that decreasing returns to labour exist. The production function of

firm i that produces output of variety i therefore becomes g = \/: , Where L, =qi2 is

the labour force employed by firm i. The hypothesis of decreasing returns to labour
implies that firms have quadratic costs, that is:

Ci(qi):WLi =qu2’ (23)
so that average and marginal costs do not coincide and, in particular, marginal costs
are higher than average costs for every g >0.

Profits of firm i in every period can be written as follows:
T =pg-wg'. (24)
Following the same line of reasoning as in Section 2, profit maximisation with respect
to prices gives the following marginal profits:

or(py. p,) _ [al-d)+dp,J1-d? +2w)-2(1-d +w)p,

2 , (25.1)
ap, (i-a2)

075(p,, ;) _ [all~d)+ dpJ-d” + 2w)- 201~ o” + wlp, (25.2)
ap, (- a2f

Therefore, the reaction- or best-reply functions of firms 1 and 2 are obtained as the
unique solution of Eqs. (25.1) and (25.2) for p, and p,, respectively, and they are
given by:

or(pup) _ _[a(t-d)+dp, + w]L-d?+ 2w)

o p.(p.) o=+ v , (26.1)
075,y p,) _ _ [al1-d)+ dp, +w]i1 - o? + 2w)
apz =0 pZ(pl)_ 2(1—d2 +W) : (26.2)

Under the hypothesis of bounded rational expectations by firms, the two-
dimensional system that describes the dynamics of the Bertrand duopoly economy
with horizontal product differentiation and quadratic costs is the following:

ap
Priva = Py * 2t 2 {[a(l_ d) + dpz,t](l_ d?+ ZW)_ 2(1_ d+ W)pl,t}
il—d )
(27)
a p2,t

Pot+1 = Pay + m{[a(l_ d) + dpl,t](l_ d*+ ZW)_ 2(1_ d*+ W)pz,t}

The fixed points of the two-dimensional time map (27) are obtained when
P = Py =P, and P,y = P, = P, hold. Therefore, the fixed points E(p*l, p*z) of (27)

are defined by the non-negative solutions of the following system:

P {lali-a)+ cp)ft- o7 + 2w)- 21~ o + wp} =0
(L-a?) , (28)

(22l olf-a s 20)- 2o =0

and they are given by:
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i) (it

‘%=[z€9;;+§éYLyzég;§+§éYLJ' (25.2)

where E, is the unique interior Nash equilibrium and p:1=p2=p . Substituting out

E, =(00), a=@,

and

the equilibrium price p into the direct demand functions Egs. (3.1) and (3.2), and
profit functions Eq. (24), yields the equilibrium values of both quantities and profits of
both firms, respectively:

a
21+w)+d(1-d)’

2 2
go @loditw) (31)

[2(1+w) +d(1-d)*

Building on the Jacobian matrix from the two-dimensional system (27) and
computing both the trace and determinant, it is possible to show that Results 1-4
above qualitatively hold even in the case of quadratic costs, that is the Nash
equilibrium E; of the dynamical system (27) always undergoes flip or period-doubling

bifurcation when, starting from a stability situation when d =0, either the degree of
substitutability or the degree of complementarity between goods of variety 1 and 2
increases.

What is interesting now is to compare the role of the relative degree of product
differentiation when firms face linear or quadratic costs. In what follow, therefore, we
contrast the flip and Neimark-Sacker bifurcation loci (Figures 8 and 9), while also
showing the bifurcation diagrams (Figures 10 and 11), in the case of both linear and
quadratic costs.

q = (30)

F linear costs

Figure 8. Flip bifurcation loci F when d varies in the case of linear (solid line) and
quadratic (dashed line) costs (¢ =05, a=1.2 and w=0.5).
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Figure 9. Neimark-Sacker bifurcation loci H when d varies in the case of linear
(solid line) and quadratic (dashed line) costs (a =0.5, a=1.2 and w=0.5).

Therefore, the following results hold.

Result 4. For any meaningful configuration of parameters such that the fixed points
E, described by Egs. (14.2) and (29.2) of the two-dimensional systems (12) and (27) are
stable when d =0, an increase in the degree of substitutability between goods of variety
1and 2, i.e. the parameter d moves from 0 to 1, implies that the Bertrand-Nash
equilibrium E, is more likely to undergo a flip or period-doubling bifurcation under
quadratic costs than under linear costs.

Result 5. For any meaningful configuration of parameters such that the fixed points
E, described by Egs. (14.2) and (29.2) of the two-dimensional systems (12) and (27) are
stable when d =0, an increase in the degree of complementarity between goods of
variety 1 and 2, i.e. the parameter d moves from 0 to —1, implies that the Bertrand-
Nash equilibrium E, is more likely to undergo a flip or period-doubling bifurcation
under quadratic costs than under linear costs.
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Figure 10. Bifurcation diagram for d in the case of linear costs. Initial conditions:
P =02 and p,, =0.3 (Parameter values: a =05, a=1.2 and w=0.5).
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Figure 11. Bifurcation diagram for d in the case of quadratic costs. Initial conditions:
P =02 and p,, =0.3 (Parameter values: a =05, a=1.2 and w=0.5).

3. Conclusions
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We revisited the dynamics of a Bertrand duopoly and bounded rational firms analysed
by Zhang et al. (2009), by introducing the mainstream microeconomic foundations of
the demand of differentiated products faced by each firm in the market.

Some new results as regards dynamical behaviours — which are of importance in
both mathematics and economics — are established. By using the degree of product
differentiation as the key factor, we show that: (i) from a mathematical point of view,
the unique interior fixed point: (1) may loss stability only through a flip bifurcation, (2)
the route of chaos is of the “quasi-periodic” type, (3) a wide variety of possible
attractors exists (most of which are “aesthetically” interesting); (ii) from an economic
point of view, we have established the relationship between market stability and the
degree of product market differentiation, i.e. the variety of goods and services, showing
that if firms work to make products either homogeneous or complements between
them, the market equilibrium tends to be destabilised.' Moreover, extending the
model to consider non-linear costs, we also show that, while both the mathematical
and economic results obtained for the linear cost case qualitatively hold, the market
instability is more likely to occur in the latter case.
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