Badunenko, Oleg and Henderson, Daniel J. and Kumbhakar, Subal C. (2011): When, where and how to perform efficiency estimation. Forthcoming in: Journal of the Royal Statistical Society, Series A
Preview |
PDF
MPRA_paper_33467.pdf Download (758kB) | Preview |
Abstract
In this paper we compare two flexible estimators of technical efficiency in a cross-sectional setting: the nonparametric kernel SFA estimator of Fan, Li and Weersink (1996) to the nonparametric bias corrected DEA estimator of Kneip, Simar andWilson (2008). We assess the finite sample performance of each estimator via Monte Carlo simulations and empirical examples. We find that the reliability of efficiency scores critically hinges upon the ratio of the variation in efficiency to the variation in noise. These results should be a valuable resource to both academic researchers and practitioners.
Item Type: | MPRA Paper |
---|---|
Original Title: | When, where and how to perform efficiency estimation |
Language: | English |
Keywords: | Bootstrap; Nonparametric kernel; Technical efficiency |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General |
Item ID: | 33467 |
Depositing User: | Daniel J. Henderson |
Date Deposited: | 19 Sep 2011 15:42 |
Last Modified: | 28 Sep 2019 15:38 |
References: | Aigner, D., Lovell, C. K. and Schmidt, P.: 1977, Formulation and estimation of stochastic frontier production function models, Journal of Econometrics 6(1), 21–37. Amato, L. H. and Amato, C. H.: 2000, The impact of high tech production techniques on productivity and profitability in selected U.S. manufacturing industries, Review of Industrial Organization 16(4), 327–342. Banker, R. D., Gadh, V. M. and Gorr, W. L.: 1993, A monte carlo comparison of two production frontier estimation methods: Corrected ordinary least squares and data envelopment analysis, European Journal of Operational Research 167(3), 332–343. Berndt, E. R. and Morrison, C. J.: 1995, High-tech capital formation and economic performance in U.S. manufacturing industries: An exploratory analysis, Journal of Econometrics 65(1), 9–43. Bojanic, A. N., Caudill, S. B. and Ford, J. M.: 1998, Small-sample properties of ML, COLS, and DEA estimators of frontier models in the presence of heteroscedasticity, European Journal of Operational Research 180(1), 140–148. Charnes, A., Cooper, W. W. and Rhodes, E.: 1978, Measuring the efficiency of decision making units, European Journal of Operational Research 84(4), 655–676. Cubbin, J.: 2005, Efficiency in the water industry, Utilities Policy 13(4), 289–293. Cubbin, J. and Tzanidakis, G.: 1998, Regression versus Data Envelopment Analysis for efficiency measurement: an application to the England and Wales regulated water industry, Utilities Policy 7(2), 63–119. Dassler, T., Parker, D. and Saal, D. S.: 2006, Methods and trends of performance benchmarking in UK utility regulation, Utilities Policy 14(3), 166–174. Fan, Y., Li, Q. and Weersink, A.: 1996, Semiparametric estimation of stochastic production frontier models, Journal of Business & Economic Statistics 14(4), 460–468. Farrell, M. J.: 1957, The measurement of productive efficiency, Journal of the Royal Statistical Society. Series A (General) 120(3), 253–290. Gong, B.-H. and Sickles, R.: 1992, Finite sample evidence on the performance of stochastic frontiers and Data Envelopment Analysis using panel data, Journal of Econometrics 51(1-2), 259–284. Guilkey, D. K., Lovell, C. A. K. and Sickles, R. C.: 1983, A comparison of the performance of three flexible functional forms, International Economic Review 24(3), 591– 616. Hastie, T. J. and Tibshirani, R. J.: 1993, Varying-coefficient models, Journal of the Royal Statistical Society Series B-Methodological 55(4), 757–796. Hayfield, T. and Racine, J. S.: 2008, Nonparametric econometrics: The np package, Journal of Statistical Software 27(5), 1–32. URL: http://www.jstatsoft.org/v27/i05/ Henderson, D. J. and Russell, R. R.: 2005, Human capital and convergence: A production frontier approach, International Economic Review 46(4), 1167–1205. Horrace, W. C. and Schmidt, P.: 1996, Confidence statements for efficiency estimates from stochastic frontier models, Journal of Productivity Analysis 7(2-3), 257–282. Hurvich, C. M., Simonoff, J. S. and Tsai, C. L.: 1998, Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion, Journal of the Royal Statistical Society, Series B 60(2), 271–293. Jondrow, J., Knox Lovell, C. A., Materov, I. S. and Schmidt, P.: 1982, On the estimation of technical inefficiency in the stochastic frontier production function model, Journal of Econometrics 19(2-3), 233–238. Kneip, A. and Simar, L.: 1996, A general framework for frontier estimation with panel data, Journal of Productivity Analysis 7(2-3), 187–212. Kneip, A., Simar, L. and Wilson, P. W.: 2008, Asymptotics for dea estimators in non-parametric frontier models, Econometric Theory 24, 1663–1697. Kumbhakar, S. C. and Lovell, C. A. K.: 2003, Stochastic Frontier Analysis, number 9780521666633 in Cambridge Books, Cambridge University Press. Kumbhakar, S. C. and Tsionas, E. G.: 2011, Stochastic error specification in primal and dual production systems, Journal of Applied Econometrics 26(2), 270–297. Lien, G., Størdal, S. and Baardsen, S.: 2007, Technical efficiency in timber production and effects of other income sources, Small-Scale Forestry 6(1), 65–78. Meeusen, W. and van den Broeck, J.: 1977, Efficiency estimation from Cobb-Douglas production functions with composed error, International Economic Review 18(2), 435– 444. Morrison Paul, C. J., Johnston, W. E. and Frengley, G. A. G.: 2000, Efficiency in New Zealand sheep and beef farming: The impacts of regulatory reform, Review of Economics and Statistics 82(2), 325–337. Park, S.-U. and Lesourd, J.-B.: 2000, The efficiency of conventional fuel power plants in South Korea: A comparison of parametric and non-parametric approaches, International Journal Production Economics 63(1), 59–67. R Development Core Team: 2008, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. URL: http://www.R-project.org Ruggiero, J.: 2007, A comparison of dea and stochastic frontier model using panel data, International Transactions in Operational Research 14(3), 259–266. Schmidt, P. and Lin, T.-F.: 1984, Simple tests of alternative specifications in stochastic frontier models, Journal of Econometrics 24(3), 349–361. Shephard, R. W.: 1970, Theory of Cost and Production Functions, Princeton University Press, Princeton, N. J. Simar, L. andWilson, P.: 1998, Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models, Management Science 44(1), 49–61. Simar, L. and Wilson, P.: 2000, A general methodology for bootstrapping in non-parametric frontier models, Journal of Applied Statistics 27(6), 779–802. Smith, P. C. and Street, A.: 2005, Measuring the efficiency of public services, Journal of the Royal Statistical Society, Series A 168(2), 401–417. Stone, M.: 2002, How not to measure the efficiency of public services (and how one might), Journal of the Royal Statistical Society, Series A 165(3), 405–434. Thanassoulis, E.: 1993, A comparison of regression analysis and data envelopment analysis as alternative methods for performance assessments, Journal of the Operational Research Society 44(11), 1129–1144. Thanassoulis, E.: 2000a, DEA and its use in the regulation of water companies, European Journal of Operational Research 127(1), 1–13. Thanassoulis, E.: 2000b, The use of Data Envelopment Analysis in the regulation of UK water utilities: Water distribution, European Journal of Operational Research 126(2), 436–453. Wilson, P. W.: 2008, FEAR: A software package for frontier efficiency analysis with R, Socio-Economic Planning Sciences 42, 247–254. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/33467 |