
Munich Personal RePEc Archive

Queuing theory applied to the optimal

management of bank excess reserves

Taufemback, Cleiton and Da Silva, Sergio

Federal University of Santa Catarina

2011

Online at https://mpra.ub.uni-muenchen.de/33529/

MPRA Paper No. 33529, posted 20 Sep 2011 01:36 UTC



Queuing theory applied to the optimal 

management of bank excess reserves 
 

Cleiton Taufemback, Sergio Da Silva 
 

Graduate Program in Economics, Federal University of Santa Catarina, 
Florianopolis SC 88049-970, Brazil 

 
Abstract. Although the economic literature on the optimal management of bank excess 
reserves is age-old and large, here we suggest a fresh, more practical approach based on 
queuing theory. 
 
Keywords: commercial bank excess reserves; queuing theory 
 
PACS: 89.65.Gh Economics; econophysics, financial markets, business and 
management; 89.20.-a Interdisciplinary applications of physics 

 

1. Introduction 

 

Commercial bank reserves are funds held by depository institutions, which can be used 
to meet the institution’s legal reserve requirement. In the United States these funds are 
held either as balances on deposit at the Federal Reserve or as cash in the bank’s vault. 
Reserves that are applied toward an institution’s legal requirement are called required, 
while additional reserves, if any, are called excess. 
 Banks face a trade-off when deciding their levels of excess reserves. The more 
the excess reserves, the less the risks of bankruptcy in case of a bank run; but this also 
means lower profits in terms of reduced loans [1]. 
 Strictly speaking, banks do not create money based on the reserve of cash they 
keep. Banks create electronic money based on legal reference, not the reserve. For 
example, for any amount of cash on deposit, banks are legally allowed to create, say, 90 
percent of that amount as new electronic money. Thus, if one deposited $100 in a bank, 
the bank would be allowed to create (through loans) $90 new dollars. It is impossible 
for everyone to possess all their money as cash at the same time because the total 
amount of cash is less than the total amount of the two types of money, cash and 
electronic. 
 Figure 1 shows the excess reserves of American depository institutions. The 
monthly data are in billions of dollars and range from 1st January 1959 to 1st December 
2010. As can be seen, the quantity of reserves in the U.S. banking system has risen 
dramatically since September 2008. However, because the quantity of bank reserves is 
determined by the size of the Federal Reserve’s policy initiatives, the recent rise is 
unlikely to be related to commercial bank lending. Also, such large increase in bank 
reserves need not be inflationary, because the payment of interest on reserves allows the 
Federal Reserve to adjust short-term interest rates independent of the level of reserves 
[2]. For decades, holders of liabilities of banks in the United States had felt secure with 
the protection of the modest equity-capital cushion at 10 percent, allowing banks to lend 
lavishly. From September 2008 onwards, however, investors seemed to require 14 
percent capital rather than the long-standing 10 percent [3]. 
 



 
Figure 1. Historical values of excess reserves of depository institutions in the United 
States. Monthly data from January 1959 to December 2010. Values are shown in 
logarithms. Source: Board of Governors of the Federal Reserve System. 
 
 The economic literature on the optimal management of excess bank reserves is 
age-old and large, the issue being debated since the banking crisis of the early 1930s 

[4]. The problem is usually tackled using econometrics (see for instance Refs. [5−7] and 
further references therein). Here in this paper, we contribute to the literature by 
suggesting a new, more practical approach based on queuing theory. The probabilistic 
tools originated in queuing theory have many traditional applications in areas, such as 
telecommunications and traffic engineering but, as far as we know, they have not been 
applied to economic and financial problems hitherto. 
 Thus, in Section 2 we present a brief introduction to queuing theory and show 
the deduction of the famous Erlang B and C formulas. In Section 3 we show how 
queuing theory can be applied for the excess reserves problem and in Section 4 we 
conclude the study. 
 
2. Queuing theory 

 
Working with telephone lines, Agner K. Erlang showed in 1917 [8] that traffic requests 
follow a Poisson process, that is, calls are independent and the activity of a channel is 
exponentially distributed (the longer the duration of a call, the likelier for the user to 
finish the connection), and the probability of a user to reach a situation where no more 
channels are available can be determined by some characteristics of the system, such as 
the number of channels and the average duration of a call. Erlang’s work prompted the 
development of queuing theory [9]. 
 The most important tools of queuing theory are the Erlang B and Erlang C 
formulas. The Erlang B and C formulas are generally used to define the probability that 
a user cannot make use of a resource at a given time. In the case of telephone lines, this 
means the probability of no free lines, that is, 
 

 (blocking) (all channels are in use)P P= .                                                          (1) 

 
Using Kendall’s [9] notation, the Erlang B is described as an / / /M M C C  system and 

the Erlang C is an / / /M M C ∞  (Table 1). The main difference between the Erlang B 



and C formulas is that in the Erlang C the user is allowed to wait for sometime to access 
the resource, so there is no limit of users. 
 
Table 1. Kendall’s notation for the Erlang B and Erlang C. 

M  Exponentially distributed inter-arrival times (Poisson process) 

M  Exponential service time distribution 
C  Number of servers in the queue 

/C ∞  Maximum number of customers who can be there in the system 

 
 As for the Erlang B for telephone systems it is possible to describe a continuous 
system with discrete observations under particular conditions using Markov chains [10]. 
Here, the idea is to sample in a δ  time interval, where δ  is a small positive number. If 

kN , or ( )N kδ , is the number of busy channels at time kδ , then kN  can be described as 

a discrete Markov chain, and [0, ]kN C∈ . Thus, the probability of state transition ,i jP  is 

given by 
 

 { }, 1 |i j k kP P N j N i+= = = .                                                                                  (2) 

 
Figure 2 shows the state diagram of this system where λ  is the average arrival rate, H  

is the average call length, 1
H

µ =
 
, and

 
A Hλ=  is total traffic intensity measured in 

Erlangs, which are a dimensionless quantity. 
 

 
Figure 2. State diagram for the Erlang B of telephone line systems. 
 
 To understand the diagram in Figure 2, first assume there is no channel in use 
(state 0 ). After a while the probability of continuing to be in state 0  is 1 λδ− . Starting 

from state 1, the probability of returning to state 0  is µδ  and the probability of 

continuing to be in state 1 is 1 λδ µδ− − . Of course, the sum of all probabilities must 

equal one. When the system reaches a state k  the probability that k  channels are in use 

equals 1k −  channels times λδ . Then 

 

 1 ,    k kP k P k Cλδ µδ− = ≤ .                                                                                    (3) 

 
Equation (3) is known as the global balance equation because 
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 For 1k = , equation (3) becomes 
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For many values of k  one has 
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 Inserting equation (6) into (7) yields 
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According to equation (6), the probability of blocking for C  channels is given by 
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Plugging equation (8) in (9) gives 
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Because total traffic is given by A H λ
µλ= = , equation (10) can be rewritten as 
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which is the Erlang B formula for C  channels. 

 The derivation of the Erlang C formula is similar to that of the Erlang B apart 
from the fact that there is no user limit after the system has overblown its capacity. 



Figure 3 shows the state diagram for the corresponding Erlang C of telephone line 
systems. 
 

 
Figure 3. State diagram for the Erlang C of telephone line systems. 
 
 For k C≤ , equation (3) becomes 
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and, for k C> , 
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Thus, 
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The global balance equation now becomes 
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Thus, 
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 Using equation (14), the probability that all the channels are in use when a new 
call occurs is given by 
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Equation (17) is valid for 1
C
λ
µ <  only, that is, C A> . This is expected since C A<  

would mean total traffic greater than the quantity of channels available, this meaning 
that the customers will wait for service indefinitely. 
 Considering equation (16) in (17) yields 
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Using the fact A H λ
µλ= =  in equation (18) yields the Erlang C formula: 
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Accordingly, the probability that a delay will exceed a given time t  is given by 

 



 (delay ) (delay 0) (delay | delay 0)P t P P t> = > > >                                           (20) 

 
or 
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3. Using the Erlang B and C formulas to manage excess reserves 

 

Now we can adapt the variables in Section 2 used for telephone line systems to consider 
the problem faced by a commercial bank to manage its excess reserves. The main 
difference between the telephone system and the bank transactions is that in the 
telephone system each user uses only one channel per time while in the bank transaction 
system a user can occupy many channels (represented by cash) at the same time. To 
address this issue, we have two alternatives: (1) to multiply the number of users by the 
bank average withdrawals, or (2) to divide the total amount of cash by the bank average 
withdrawals, and then treat each lump of cash as a single channel. Here, we decide to 
consider the second alternative. 
 As a result, the new meanings of the variables are shown in Table 2. 
 
Table 2. Definition of the variables. 

Uλ  Total withdrawal requests per time unit over all users and channels. 

H  
 
µ  

Average time between withdrawals and deposits, or average time to return the 
cash to the bank 

1 H  
w  The bank average withdrawals 
C  Fraction of the bank liabilities over w    
U  Users 

 

  A more proper notation is /C L wγ= , 0 1γ≤ ≤ , where L  stands for the bank 

liabilities. As long as H  and Uλ  are stable in time, one has U UA Hλ=  and UA A U= , 

where A  and UA  are, respectively, the amount of cash flow for all the users and for a 

single user. As a result, equations (11) and (19) can be rewritten as 
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and 
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 Customers’ demands for withdrawals of cash are memoryless, that is, demands 
are random. Also, the probability of a customer to keep cash on hand is exponentially 



distributed, that is, it is less likely the customer will keep cash for a long time vis-a-vis 
for a short time. 

 Thus, given U  and UA , the bank can set the proper amount of cash on hand to 

meet their customers’ demands for withdrawals of cash. As a result, the proper amount 
destined to loans is also set. 
 How the Erlang B and Erlang C formulas can be used here is now illustrated 
with the help of two examples. 
 
Example 1. The T-account of the bank is as shown in Table 3, and the customers’ 
characteristics are depicted in Table 4. For that amount of money on deposit with the 
bank, how much money is allowed to be lent such that the probability that a customer is 
caught blocked from any demands for withdrawal of cash is less than one per cent? 
 
 
Table 3. T-account of the bank prior to the optimal management of excess reserves, 
millions of dollars. 
Assets Liabilities 

Required reserves                              $10 Checkable deposits                                 $100 
Excess reserves                                  $90
 
Table 4. Customers’ characteristics 

Uλ  0.025 requests per day, per customer, and per channel 

H  3 days 
U  1,000,000 customers 
w  $ 100 

 
 What we are looking for here is the value of parameter C (or /L wγ ) which 

satisfies equation (22) at the one percent probability of blocking. Thus, using the 
customers’ characteristics in Table 4, C  was found using a Matlab recurrence routine 

(available on http://www.mathworks.com/matlabcentral/fileexchange/824). We found 
74,340C =  and 7,434,000L Cwγ = = . This means the bank should use approximately 

$82.5 million for loans. The new T-account for the bank after the optimal management 
of excess reserves is shown in Table 5. 
 
Table 5. T-account of the bank after the optimal management of excess reserves using 
the Erlang B formula, millions of dollars. 
 Assets Liabilities 

Required reserves                              $10 
Loans                                              $82.5 

Checkable deposits                                 $100 

Excess reserves                                 $7.5
 
Example 2. In Example 1 above, if it happens for a customer to be blocked, the best that 
a banker can do is to ask him to come back later. However, the service could be 
improved if the banker decided that no more than 10 percent of the customers blocked 
will have to wait for more than 15 minutes to make their withdrawals.  
 Using equation (21) for the situation of blocking, one has 
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Isolating C  in equation (24) yields 

 

 
ln (delay  15min | delay)H P

C A
t

>
= − .                                                          (25) 

 
Solving equation (25) by considering the values in Table 4 produces 75,663C =  and 

7,566,300Lγ = . Inserting this result into equation (23) yields (delay 0) 0.0089P > = . 

Finally, the probability that a customer is made to wait for more than 15 minutes is 
given by the joint probability 
 

 (delay > 15 min) (delay) (delay > 15 min | delay)P P P=                                   (26) 

 

    40.0089 0.1 8.9 10−= × = ×  

 
or 0.089 percent. 
 

In the examples above the bank balance sheets considered checkable deposits 
only. Equity has been omitted from the liabilities because we are focused on liquidity, 
that is, excess reserve management. Thus, we do not consider the possibility of 
insolvency, which is incidentally what Figure 1 illustrates. Bank runs are not considered 
either. A bank facing a run may collapse even if still solvent. An example is that of the 
Icelandic banks in October 2008. Considering bank runs compromises our model 
assumption that withdrawals are random. This is because in a liquidity crisis 
withdrawals become highly correlated. Future work should then try to overcome this 
limitation by considering arrival times which are not exponentially distributed. 
 
4. Conclusion 
 
We put forward a new, more practical approach for the optimal management of excess 
reserves of commercial banks. Although the economic literature on the issue is age-old 
and large, there is no attempt so far to tackle the problem using queuing theory which is 
commonly employed in other more established areas such as telecommunications and 
traffic engineering. We show how the Erlang B and Erlang C formulas of queuing 
theory applied to the telephone line system can be properly adapted to the problem 
faced by a bank in its choice of the optimal amount of excess reserves. Two examples 
were shown for the T-account of a bank. 
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