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Abstract

This paper applies a heterogeneous agent asset pricing model, featuring fundamen-

talists and chartists, to the price-dividend and price-earnings ratios of the S&P500 index.

Agents update their beliefs according to macroeconomic information, as an alternative

to evolutionary dynamics. For estimation, a STAR model is introduced, with a transi-

tion function depending on multiple transition variables. A procedure based on linearity

testing is proposed to select the appropriate transition variables, and simultaneously es-

timate their respective weights. The results show that during periods of favorable eco-

nomic conditions the fraction of chartists increases, causing stock prices to decouple

from fundamentals.
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1 Introduction

Asset pricing models based on the efficient market hypothesis (EMH) have a difficult time ex-

plaining the observed dynamics of financial markets. According to these models, asset prices

reflect a rational forecast by the market of future cash flows (dividends) generated by the as-

set and are therefore expected to be smoother than the actual cash flows. However, financial

asset prices such as stock prices are historically more volatile than real economic activity

including corporate earnings and dividends. Several studies (e.g. LeRoy and Porter, 1981;

Shiller, 1981; West, 1988; Campbell and Shiller, 1988, 2001) discuss this excess volatility in

financial markets and conclude that stock prices can not be explained by expected dividends

alone.

Heterogeneous agent models provide an alternative to the EMH. In these models, the

single representative rational agent is replaced by boundedly rational agents who are hetero-

geneous in beliefs, are not necessarily forecasting future dividends and may switch between

trading strategies over time. Hommes (2006) and Manzan (2009) provide surveys of such

models in economics and finance. I use data on the S&P500 index to estimate a heteroge-

neous agent model in which macroeconomic and financial variables simultaneously govern

the agents’ switching between strategies. This framework can infer the economic conditions

under which different types of investor behavior are observed. I find that during periods

of economic growth and financial stability, agents loose sight of fundamentals and become

more interested in following recent trends in asset prices, which causes asset price bubbles to

inflate.

The model in this paper is based on the work by Brock and Hommes (1997, 1998), who

introduce a simple analytically tractable heterogeneous agent model with two types of agents:

Fundamentalists and chartists. Fundamentalists believe, in accordance with the EMH, that

asset prices will adjust toward their fundamental value. Chartists (or trend-followers) specu-
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late on the persistence of deviations from the fundamental value, which generates asset price

bubbles if the chartists are dominating the market.

Heterogeneous agent models are typically estimated empirically using regime-switching re-

gression models, with the distinct regimes representing the expected asset pricing processes

according to each type of agent. In particular smooth-transition regime-switching models

such as the smooth-transition autoregressive (STAR) models (Teräsvirta, 1994) are suitable,

as the modeled process is a time-varying weighted average of the distinct regimes. The time-

varying weights of the regimes are then interpretable as the fractions of agents belonging to

each type.

Recent studies have estimated asset pricing models featuring chartists and fundamental-

ists for several types of asset prices including exchange rates (Manzan and Westerhoff, 2007;

De Jong et al., 2010), option prices (Frijns et al., 2010), oil prices (Reitz and Slopek, 2009)

and other commodity prices (Reitz and Westerhoff, 2007). Boswijk et al. (2007) apply the

model by Brock and Hommes (1998) to price-dividend (PD) and price-earnings (PE) ratios

of the US stock market, finding that the unprecedented stock valuations observed during the

1990s are the result of a prolonged dominant position of the chartist type over the fundamen-

talist type. Boswijk et al. (2007) follow Brock and Hommes (1998) in assuming that agents

switch between strategies based on evolutionary considerations, i.e. based on the realized

profits of each type. The transition between regimes can therefore be expressed as a function

depending only on lags of the dependent variable, making the model univariate.

The model in this paper is similar to that in Boswijk et al. (2007). The main difference

is that the agents’ choice of strategy is based on a wider set if information set including

macroeconomic variables. In practice, this means I estimate a STAR model, in which the

transition function depends on a linear combination of exogenous or predetermined variables.

Estimating this multivariate model raises two difficulties compared to the univariate STAR:
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Selection of the transition variables to include, and estimation of their weights. Only few

earlier applications of STAR models exist that allow for unknown weights of the transition

variables. Examples include Medeiros and Veiga (2005) and Becker and Osborn (2011). In

both of those papers, however, the models are univariate as the transition function depends

on a linear combination of different lagged values of the dependent variable. I propose to

apply the linearity test by Luukkonen et al. (1988) to select the transition variables from a

large set of information and simultaneously estimate their respective weights in the transition

function.

The next section presents the heterogeneous agent model and the STAR specification

in more detail. Data descriptions and linearity tests are given in section 3 while section 4

presents estimation results, interpretation and diagnostic checks. Section 5 concludes.

2 The model

In a simple present-value asset pricing model, consistent with the efficient market hypothesis,

the price of a financial asset (Pt) equals the discounted sum of the expected asset price next

period and any expected cash flows (dividends, Dt+1) paid out on the asset in the coming

period (Gordon, 1959). Iterating forward, the price can be expressed as a infinite sum of

discounted expected dividends:

Pt = Et

[
Pt+1 +Dt+1

1+ rt+1

]
=

∞

∑
i=1

Et

[(
i

∏
j=1

1

1+ rt+ j

)
Dt+i

]
, (1)

in which the discount factor is given by (1+ rt)
−1. By introducing the dividend growth rate

gt , such that Dt = (1+gt)Dt−1, this equation can be rewritten as:

Pt

Dt
=

∞

∑
i=1

Et

[(
i

∏
j=1

1+gt+ j

1+ rt+ j

)]
. (2)
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According to equation (2), any movements of the PD ratio ( Pt

Dt
) can be caused only by changed

expectations on future dividend growth rates or discount factors. Under the assumption of a

constant discount factor, an increase in the PD ratio should predict an increase in future div-

idends and vice versa. However, Campbell and Shiller (2001) argue that neither the PD nor

the PE ratio are good predictors for future dividend growth rates. Instead, both valuation ra-

tios work well as a predictor for future stock returns. High valuation ratios predict decreasing

stock prices, while low ratios predict increasing prices (Campbell and Shiller, 2001).

The assumption of a constant discount factor is very restrictive. Instead, modern asset

pricing models often incorporate a stochastic discount factor (SDF), representing the time-

varying risk aversion of the representative agent (Cochrane, 2011). Nevertheless, Campbell

and Shiller (1988) show that the finding of excess volatility is robust to several time-varying

discount factors, including discount factors based on consumption, output, interest rates and

return volatility.

Brock and Hommes (1998) provide an alternative to the present-value relationship (1), by

allowing asset prices to depend on the expectations of H different types of boundedly ratio-

nal agents:

Pt =
1

1+ r

H

∑
h=1

Gh,tE
h
t [Pt+1 +Dt+1] , (3)

with Eh
t [·] representing the beliefs of agent type h. The fraction of agents following trading

strategy h at time t is denoted by Gh,t . For analytical tractability, Brock and Hommes (1998)

assume a constant discount factor. This model nests the standard present-value model; when

all types have rational beliefs (i.e. Eh
t [·] = Et [·] ∀h), model (3) reduces to (1). Boswijk et al.

(2007) show that if dividends are specified as a geometric random walk process, model (3)

can be reformulated as follows:
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yt =
1

1+ r

H

∑
h=1

Gh,tE
h
t [yt+1] , (4)

in which yt is defined as the PD ratio in deviation from its fundamental value. The results of

Campbell and Shiller (2001) suggest to estimate mispricings in the market as the PD ratio in

deviation from its long-run average:

yt =
Pt

Dt
−µ, (5)

in which µ = 1
T

T

∑
t=1

Pt

Dt
represents an estimate of the fundamental value of the PD ratio. yt gives

the size of the bubble in the market, which can be negative as well as positive. The asset is

over-valued if yt > 0 and under-valued if yt < 0. The price of the asset Pt can be decomposed

in an estimated fundamental value µDt and bubble ytDt :

Pt = µDt + ytDt (6)

A widely cited example of model (3) distinguishes two types of agents, fundamentalists and

chartists, who are both aware of the fundamental value, but disagree about the persistence

of the deviation from this fundamental value. The fundamentalists’ strategy is to buy stocks

when the market is undervalued and sell when the market is overvalued. They believe in

mean reversion; mispricings in the market should disappear over time: EF
t [yt+1] = ηFyt−1,

with ηF < 1+ r. Chartists (or trend-followers), on the other hand, speculate that the stock

market will continue to diverge from its fundamental valuation: EC
t [yt+1] = ηCyt−1 ,

with ηC > 1+ r.

By allowing the fraction of chartists and fundamentalists to change over time, the asset
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pricing process can be described by a smooth-transition autoregressive (STAR) process:

yt = αFyt−1(1−Gt)+αCyt−1Gt + εt , (7)

with αF = ηF/(1+ r) < 1 and αC = ηC/(1+ r) > 1. The transition function Gt defines the

fraction of chartist in the market. The fraction of fundamentalists is in this two-type model is

given by 1−Gt . Although both types use a linear prediction rule, the time-varying fractions

of each agent type makes the process nonlinear and, under certain parametrizations, chaotic

(Brock and Hommes, 1998).

Boswijk et al. (2007) estimate a variant of this model for both the PD and PE ratio of

the S&P 500 index, in deviation from their mean, for the period 1871 to 2003. They follow

Brock and Hommes (1998) by letting agents update their beliefs based on the realized profits

of each type in the previous period. Under these evolutionary dynamics, agents switch from

the less profitable strategy to the more profitable strategy. The transition function therefore

depends on lagged values of the dependent variable:

Gt = (1+ exp[−γ(ηC −ηF)yt−3(yt−1 − (1+ r)yt−2)])
−1 , (8)

in which γ represents the intensity of choice of the agents. If γ → ∞ all agents choose the

strategy that was most profitable in the previous period. On the other hand, if γ = 0, the

fraction of both types is exactly 50% in all periods, independent of the realized profits.

Instead of these evolutionary dynamics, I let the agents base their choice of strategy on

macroeconomic and financial information, which can be interpreted as an extension of the

agents’ information set. Of interest is to find which economic conditions can be associated

with each type of agent.

The transition function Gt is a logistic function, as in the logistic STAR model (Teräsvirta,
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1994):

Gt = (1+ exp[−γ(xt−1 − c)])−1 . (9)

I consider the logistic STAR only, since a logistic transition function follows directly from

the logit switching rule in the model by Brock and Hommes (1998). In principle, however,

the transition may also be expressed by other specifications such as an exponential function

(Teräsvirta, 1994). The transition variable xt−1 is usually a lagged value or lagged difference

of the dependent variable, but can be any predetermined or exogenous variable. The transition

function may also depend on a linear combination of variables:

Gt =
(
1+ exp[−γ(X ′

t−1β − c)]
)−1

, (10)

with Xt−1 =
[
x1,t−1 . . .xp,t−1

]′
and p is the number of included transition variables. For this

model; γ , c and β can not be all identified. This problem can be solved by placing a restriction

on β . In this paper, the elements of β are restricted to sum to one, so that X ′
t−1β is a weighted

average of multiple transition variables.

3 Data and linearity tests

Figure 1 shows quarterly data of the PD (left) and PE (right) ratios of the S&P500 index since

18811. These valuation ratios show the level of the S&P500 index relative to the cash flows

that the indexed stocks are generating. In particular the path of the PE ratio (right) seems

stable or mean-reverting in the long run. Even after reaching record levels around the start

of this century, the PE ratio recently dropped again below its average value during the credit

crisis in 2008. This latest peak is comparable in size to earlier episodes, most notably the

1920s. For the PD ratio, this pattern is less clear. Due to relatively low dividend payouts by

1Source: Robert Shiller, http://www.irrationalexuberance.com/index.htm
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listed firms in recent decades (Fama and French, 2001), the PD ratio climbs during the 1990s

to much higher levels than during any earlier peaks in the market. Although the model in

section 2 is expressed in terms of the PD ratio, I estimate the STAR model with both these

valuation ratios as the dependent variable. I smooth earnings over a period of ten years,

creating the so-called cyclically adjusted PE ratio. Both valuation ratios are taken in logs and

in deviation from their average value.

I follow the specification, estimation and evaluation cycle for STAR models proposed

by Teräsvirta (1994). The specification stage includes the selection of the appropriate lag

structure and justification of STAR modeling by testing for linearity. To find the optimal lag

length, I estimate linear AR(q) models including up to six lags for both the PD and PE ra-

tio. Table 1 shows the Akaike (1974) Information Criteria (AIC) for all specifications. For

both valuation ratios, the AR(1) model is selected as the appropriate specification. The STAR

model is therefore estimated with an autoregressive structure of one lag, as in equation (7). At

the end of this paper, I verify the sufficiency of this lag structure by submitting the residuals

from the final STAR model to a test of serial independence.

The next step is to test for linearity and simultaneously select the transition variables. I

consider a set of stock market indicators, business cycle indicators, interest rates and mon-

etary aggregates as potential transition variables2. The stock market indicators include both

dependent variables (PD and PE) and the volatility of the S&P500 index, defined as the

variance of daily returns in each quarter (VOL). The business cycle indicators are real GDP

(GDP), industrial production (IP), consumer sentiment (CS) and the Aruoba-Diebold-Scotti

Business Conditions Index (ADS), which is a measure of business conditions in the US,

based on a number of real-time macroeconomic variables (Aruoba et al., 2009). The inter-

2 Source: FRED® (Federal Reserve Economic Data)
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est rates include short- and long-term rates as well as sovereign and commercial rates: The

yield on 3-month US treasury bills (INT3m), on ten-year US treasury notes (INT10y) and on

Aaa-rated commercial bonds (INTAaa). From these interest rates I also derive the term spread

(SPR10y−3m = INT10y − INT3m) and the yield spread of commercial bonds over sovereign

bonds (SPRAaa−US = INTAaa − INT10y). The monetary aggregates are given by M2 and the

stock of consumer credit outstanding (M2 and CC). For GDP, IP, M2 and CC I take quarter-

on-quarter growth rates. For the interest rates I take both levels and first differences (denoted

by △). These data are not available for the full period of S&P500 data, so the model is

estimated for 1961Q1-2009Q3. All variables are standardized (demeaned and divided by

their standard deviation), to accommodate numerical estimation of the nonlinear model. All

explanatory variables are lagged one period with respect to the dependent variable, so are

predetermined.

To determine which of these variables are valid transition variables in the STAR model,

they are submitted to a linearity test based on a Taylor approximation of the STAR model

following Luukkonen et al. (1988). First, I consider the univariate transition function (9). A

third-order Taylor approximation of (7) with univariate transition function (9) around γ = 0

gives:

yt = φ0 +φ1yt−1 +
3

∑
i=1

φ1+iyt−1xi
t−1 + et . (11)

Linearity can now be tested by estimating this Taylor approximation by OLS and testing the

null hypothesis Ho : φ2 = φ3 = φ4 = 0. Rejection of linearity implies that x is a valid transition

variable.

Results of the linearity tests are given in Table 2, which shows the test statistics and cor-

responding p-values. The test statistic is asymptotically F(n,T −k−n−1) distributed under

the null, with T = 199 (observations), k = 2 (unrestricted parameters) and n = 3 (restricted

parameters). An asymptotically equivalent χ2-test may be applied here as well, but the F-test
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has preferable properties in small samples (Teräsvirta et al., 2010). Table 2 shows that with

both valuation ratios, linearity can not be rejected when the transition variable is a lag of

the dependent variable. This result does not imply that PD and PE are not regime-switching

processes, but rather that it is not the level of their lagged values that triggers a regime switch.

In fact, the results in Table 2 show that several variables are valid transition variables, with

linearity rejected at the 1% level. Teräsvirta (1994) proposes to estimate the STAR model

with the transition variable for which rejection of linearity is the strongest. However, the fact

that linearity is rejected for different transition variables suggests to incorporate more than

one variable in the transition function.

Allowing for a multivariate transition function, I now propose a similar procedure based

on linearity tests to select the appropriate transition variables X = [x1 . . .xp] and simultane-

ously estimate their respective weights β . A first-order Taylor approximation of (7), with a

multivariate transition function (10) around γ = 0:

yt = φ0 +φ1yt−1 +φ2yt−1(X
′
t−1β )+ et , (12)

or:

yt = φ0 +φ1yt−1 +
p

∑
i=1

θiyt−1xi,t−1 + et , (13)

such that θi = φ2βi. The restriction φ2 = 0 is identical to the restriction θ1 = ... = θp = 0. I

estimate (13) for several sets of explanatory variables, test for linearity (Ho : θ1 = ...= θp = 0)

and choose the set of variables that leads to the strongest rejection of the null-hypothesis. This

exercise includes all possible sets of one to five variables, which never include more than one

variable out of each of the following five groups: Stock market indicators, business cycle

indicators, interest rates, interest rate spreads and monetary aggregates. This approach limits

the number of sets under consideration and avoids multicollinarity.
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The test statistic is asymptotically F(n,T − k − n− 1) distributed under the null, with

n = p. This test is based on a first-order Taylor approximation rather the than third-order

approximation in the univariate case. Besides computational efficiency, this first-order test

has the advantage that the test results reveal the estimated weights β of the selected transition

variables, as I show below. After selecting the set of transition variables, I use the OLS

estimates θ̂ and the initial condition
p

∑
i=1

βi = 1 to derive estimates of β :

θi = φ2βi

p

∑
i=1

βi = φ−1
2

p

∑
i=1

θi = 1

φ2 =
p

∑
i=1

θi

β̃ j =

(
p

∑
i=1

θ̂i

)−1

θ̂ j. (14)

With y=PD, the set of transition variables found by this procedure consists of three variables:

IP, △INT10y and SPR10y−3m. In the test based on equation (13) these variables result in an

F-statistic of 6.58 with p-value 2.97×10−4. The vector of weights of the transition variables,

derived with equation (14), is β̃ = (0.58,0.72,−0.30)′. As a robustness check, I substitute

xt = X ′
t β̃ into the third order Taylor approximation (11) and run the original linearity test,

which gives an F-statistic of 9.59 with p-value 6.22× 10−6; a stronger rejection of linearity

than for any variable in Table 2.

With y = PE, the set of transition variables consists of IP and SPRAaa−US. These vari-

ables give an F-statistic of 9.68 with p-value 9.90× 10−5. The vector of weights is β̃ =

(−1.43,2.43)′. Substituting xt = X ′
t β̃ into (11) gives an F-statistic of 7.56 with p-value

8.31×10−5.

In the next section, I use these transition variables and estimates of β to estimate the STAR

model. The section starts by estimating the model with a univariate transition function, using
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the results in Table 2.

4 Results

Since the test results in Table 2 are very close for some potential transition variables, I esti-

mate the STAR model (7) with univariate transition function (9) with two different transition

variables for each dependent variable: With y = PD the two variables giving the strongest

rejection of linearity are ADS and IP, while with y = PE these are ADS and SPRAaa−US.

Table 3 shows the parameter estimates for all four STAR models, estimated by nonlinear

least squares. Starting values for the parameters are found with a two-dimensional grid search

for γ and c. The autoregressive parameters of each regime are denoted by α1 and α2, rather

than αC and αF , because the latter notation implies restrictions on these parameters that I

do not impose during estimation. Table 3 also shows the R2 and AIC for both the STAR

model and for an alternative linear model yt = ω1yt−1 +ω2xt−1, which includes the same

explanatory variable. According to the AIC, all four nonlinear models fit the data better than

their linear alternatives. They also provide a fit better than the univariate AR(q) models in

Table 1.

Although the models outperform their linear alternatives, these results are not entirely

consistent with the spirit of the heterogeneous agent model by Brock and Hommes (1998).

None of the four estimated specifications has an autoregressive parameter significantly larger

than one. If both autoregressive parameters are smaller than one, it seems incorrect to speak

of a model with chartists and fundamentalists. Instead, there are two different types of funda-

mentalists. They disagree about the pace of adjustment, but agree that the price must converge

towards its fundamental value. Moreover, the intensity of choice parameter γ is so high that

the fraction of of each type is either zero or one. The entire population of agents makes the

same switch simultaneously, which is inconsistent with the concept of heterogeneous beliefs.
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To solve these issues, I proceed by estimating the model with a multivariate transition func-

tion, as in equation (10).

Using the set of transition variables found in section section 2, I estimate γ , c and α with

NLS in the same manner as for the univariate case, while keeping β̃ fixed at the levels derived

with equation (14). As a final stage, I estimate all parameters once more, with the previous

estimates as starting values, fixing none of the parameters (except
p

∑
i=1

βi = 1). I find in prac-

tice that the final parameter estimates stay close to the starting values, suggesting that the

Taylor approximation (13) produces reasonable estimates of β . Table 4 presents all param-

eter estimates and goodness-of-fit measures. The R2 and AIC show that both these models

outperform their linear alternatives as well as the STAR models with univariate transition

functions in Table 3.

In both estimated models, two distinct regimes are identified. Each specification has

one autoregressive parameter significantly smaller than one (representing the fundamentalist

type), while the other autoregressive parameter is significantly greater than one (representing

the chartist type).

For both models, all elements of β are significant at the 1% level. Interpreting β reveals

that chartists become more dominant during periods of high (expected) growth, while the

fraction of fundamentalists increases during (expected) economic downturns. For y = PD

Industrial production growth (IP) has a positive coefficient, implying in this case it supports

the chartist type: An increase in industrial production causes an increase in the fraction of

chartists in the economy.

The differenced yield on ten-year treasury notes (△INT10y) also has a positive coefficient,

while the coefficient for term spread (SPR10y−3m) is negative. Decreasing rates on treasury

notes and high term spreads signal an increased preference of relatively safe assets to riskier

assets. The role of interest rates and spreads in predicting economic downturns is discussed
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by several authors including Bernanke (1990); Estrella and Mishkin (1998); Estrella (2005).

These signals increase the fraction of fundamentalists.

With y = PE, the model does not include the exact same set of transition variables, but

the results tell a similar story: Chartists are dominant with high industrial production growth

and low spreads of Aaa-rated commercial bonds over treasury notes. Also these yield spreads

signal financial stress, as widening spreads are a sign of investors preferring treasury notes to

riskier commercial bonds.

An intuitive interpretation of the results is found by giving (7) the alternative formulation

of an AR(1) process with a time-varying parameter:

yt = δtyt−1 + εt , (15)

in which δt = α1(1−Gt)+α2Gt , which can be interpreted as an indicator of market senti-

ment. When δt > 1 the valuation ratio is diverging from its mean, implying that the chartist

regime is dominant, while the valuation ratio is adjusting towards its mean when δt < 1.

Figure 2 offers a graphical evaluation of both estimated models by showing plots of δt over

time as well as scatter plots of Gt against X ′
t−1β . Because of the relatively low value of the

intensity of choice parameter γ , both scatter plots on the right side of Figure 2 clearly show

a logistic curve. At almost every point in time, both chartists and fundamentalists are rep-

resented in the economy: A considerable proportion of the population speculates on further

deviation from the fundamental value, with δt close to one. On several occasions, however,

the market turns almost completely to the fundamentalist type, which causes bubbles to de-

flate. The end of the "dot-com" era in 2001 and the credit-crisis in 2008 are recent examples

of such episodes.

Figure 2 shows furthermore that when the model is applied to the PD ratio, the distribu-
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tion of agents is more skewed towards the chartist regime. An explanation for this result is

given in Figure 1. The bubble during the 1990s is much larger in terms of the PD ratio than

in terms of the PE ratio, as a result of disappearing dividends (Fama and French, 2001).

Finally, the estimated models in Table 4 are evaluated with diagnostic checks. Table 5

presents results on tests of serial independence, parameter constancy and no remaining non-

linearity. Eitrheim and Teräsvirta (1996) provide technical details on all three tests.

The test of serial independence test the null hypothesis of no qth order autocorrelation

in the residuals. This Lagrange Multiplier test is a generalization of the test for serial inde-

pendence in linear models by Godfrey (1988). For a qth order test, the resulting test statistic

is asymptotically F(q,T − q− 4) distributed under the null, with T = 199 (sample size). I

execute this test for first- up to fourth-order autocorrelation. For both models, the test results

give no reason the reject the null hypothesis. This finding confirms the sufficiency of an

autoregressive structure of only one lag.

Under the null hypothesis of no time-variation of the parameters in (7) and (10), the

parameter constancy test statistic is asymptotically F(6,T − 10) distributed. Also this test

gives no reason to reject the specification.

The test of no remaining nonlinearity checks whether any variable has a significant non-

linear effect on the residuals. This could be the case when a transition variable is omitted,

or when these variables have an effect on yt through some other nonlinear channel. The test

statistic is asymptotically F(3,T − 6) distributed under the null. I repeat this test for all po-

tential transition variables considered in this paper. Table 5 shows the test statistics for the

same variables as listed in Table 2. For the majority of the variables, the null hypothesis of no

remaining non-linearity can not be rejected. When the model is estimated with the PE ratio,

the null is rejected for VOL and M2, but including these variables in the transition function

does not improve the fit of the model. Given that the test is repeated for many variables,
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it is possible that the two rejections are simply Type I errors. Overall, the results of these

diagnostic checks are positive and provide support to the specification of the model.

5 Conclusion

In this paper, I identify two types of agents: fundamentalists and chartists. The presence

of chartists, who are predicting trends rather than fundamentals, explains the existence of

bubbles in asset prices. To estimate the effects of macroeconomic conditions on the behavior

of agents, I propose a STAR model with a multivariate transition function. This STAR model

outperforms STAR models with a single transition variable as well as linear alternatives in

terms of goodness-of-fit.

Agents are more willing to believe in the persistence of bubbles during times of positive

macroeconomic news. Chartists gain influence during periods of favorable economic con-

ditions, measured by industrial production growth and tranquility on the bond market. The

fraction of fundamentalists increases during economic downturns and expectations thereof

(signalled by a flight to safe assets), which encourage agents to focus on fundamentals.

I apply the model to US stock prices in deviation from an estimated fundamental value

based on dividends or earnings. This framework is, however, suitable to find the conditions

under which any asset price deviates from some measure of fundamental value. Other ap-

plications may include the deviation of exchange rates from purchasing power parity (see

e.g. Rogoff, 1996), or the term structure of interest rates in deviation from the expectations

hypothesis (see e.g. Mankiw and Miron, 1986).
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Tables and charts
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Figure 1: S&P 500 index 1881-2009: price-dividend ratio (left) and price-earnings ratio (right).

TABLE 1. AIC: Univariate linear autoregressions

lags 1 2 3 4 5 6

yt = PD -634.6 -633.4 -629.2 -624.9 -618.7 -613.4

yt = PE -555.8 -555.0 -550.3 -546.1 -540.5 -535.2

Notes: Akaike Information Criteria for AR(q) models. Sample size

(for yt = PD and yt = PE) is 199 observations: 1960Q2-2009Q4.
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TABLE 2. Linearity tests

yt = PD yt = PE

xt−1 F-statistic p-value F-statistic p-value

PD 0.364 0.779 2.090 0.103

PE 1.399 0.244 1.289 0.279

VOL 0.510 0.676 2.341 0.075

GDP 2.367 0.072 1.020 0.385

IP 4.174 0.007 4.038 0.008

CS 1.746 0.159 0.795 0.498

ADS 3.922 0.010 4.239 0.006

INT3m 1.004 0.392 1.011 0.389

△INT3m 0.295 0.829 0.141 0.935

INT10y 0.233 0.873 0.388 0.762

△INT10y 0.721 0.540 1.690 0.170

INTAaa 0.242 0.867 0.786 0.503

△INTAaa 0.224 0.880 1.604 0.190

SPR10y−3m 1.958 0.122 3.619 0.014

SPRAaa−US 2.172 0.093 4.283 0.006

M2 0.678 0.567 0.454 0.715

CC 1.564 0.200 0.993 0.397

Notes: Test statistics and corresponding p-values for

Ho : φ2 = φ3 = φ4 = 0 in equation (11).

TABLE 3. Parameter estimates: univariate transition function

yt xt−1 α1 α2 γ c R2 AIC

PD IP
0.814 1.002 70.78 -1.226 0.964 -645.8

(0.012) (0.004) (30.49) (0.012) {0.961} {-631.5}

PD ADS
0.829 1.000 15.15 -1.376 0.963 -641.4

(0.0145) (0.004) (5.086) (0.048) {0.961} {-631.0}

PE ADS
0.819 0.997 404.9 -1.278 0.945 -563.3

(0.009) (0.004) (337.2) (3.734) {0.941} {-551.9}

PE SPRAaa−US

0.994 0.750 25.94 0.807 0.946 -566.2

(0.004) (0.013) (8.487) (0.0157) {0.942} {-554.4}

Notes: NLS parameter estimates for model (7) with univariate transition function (9).

Standard errors in parenthesis. Sum of Squared Residuals and Akaike Information Criterion

are reported for the STAR model and the linear model yt = ω1yt−1 +ω2xt−1 + εt . The latter

are reported in accolades. All estimated models include a constant, which are not

significantly different from zero and are therefore not reported.
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TABLE 4. Parameter estimates: multivariate transition function

yt Xt−1 α1 α2 γ c β1 β2 β3 R2 AIC

PD
(
IP,△INT10y,SPR10y−3m

)′ 0.722 1.034 1.781 -1.496 1.04 0.629 -0.666 0.965 -649.1

(0.024) (0.009) (0.249) (0.238) (0.084) (0.049) (0.123) {0.961} {-630.8}

PE (IP,SPRAaa−US)
′

1.08 0.789 0.532 1.024 -1.742 2.742 . 0.947 -568.5

(0.016) (0.016) (0.154) (0.378) (0.615) (0.615) . {0.942} {-552.6}

Notes: NLS parameter estimates for model (7) with multivariate transition function (10). Standard errors in parenthesis. Sum of

Squared Residuals and Akaike Information Criterion are reported for the STAR model and the linear model

yt = ω1yt−1 +ω ′
2Xt−1 + εt . The latter are reported in accolades. All estimated models include a constant, which are not significantly

different from zero and are therefore not reported.

yt = PDt
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Figure 2 :Regression results: Plot (left) of δt = α1(1−Gt)+α2Gt over time and scatterplot (right) of Gt against

X ′
t−1β , evaluated at parameter estimates in Table 4.
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TABLE 5. Diagnostic tests

yt = PD yt = PE

F-statistic p-value F-statistic p-value

Serial independence: 1st 0.563 0.454 1.154 0.284

2nd 0.620 0.539 0.738 0.480

3rd 0.416 0.742 0.521 0.669

4th 0.365 0.833 0.398 0.810

Parameter constancy: 0.574 0.751 0.564 0.759

No remaining nonlinearity: PD 0.893 0.446 2.051 0.108

PE 0.229 0.876 0.657 0.580

VOL 0.190 0.903 2.639 0.051

GDP 1.444 0.231 1.262 0.289

ADS 0.567 0.638 1.366 0.255

IP 0.333 0.801 0.718 0.542

CS 0.121 0.948 0.637 0.592

INT3m 0.108 0.955 0.551 0.648

△INT3m 2.040 0.110 1.170 0.322

INT10y 0.511 0.675 0.242 0.867

△INT10y 1.341 0.262 1.664 0.176

INTAaa 0.823 0.483 0.285 0.836

△INTAaa 1.249 0.293 2.335 0.075

SPR10y−3m 0.468 0.705 0.440 0.724

SPRAaa−US 0.632 0.595 0.189 0.904

M2 0.989 0.399 3.162 0.026

CC 0.133 0.940 0.392 0.759

Notes: Test statistics and corresponding p-values for first- to fourth-order serial

independence, parameter constancy and no remaining non-linearity (Eitrheim and Teräsvirta,

1996)
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