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Since its introduction by Owen in [29, 30], the empirical likeli-

hood method has been extensively investigated and widely used to

construct confidence regions and to test hypotheses in the literature.

For a large class of statistics that can be obtained via solving esti-

mating equations, the empirical likelihood function can be formulated

from these estimating equations as proposed by [35]. If only a small

part of parameters is of interest, a profile empirical likelihood method

has to be employed to construct confidence regions, which could be

computationally costly. In this paper we propose a jackknife empiri-

cal likelihood method to overcome this computational burden. This

proposed method is easy to implement and works well in practice.

1. Introduction. Empirical likelihood method was introduced by Owen

([29, 30] ) to construct confidence regions for the mean of a random vector.

Like the bootstrap and jackknife methods, the empirical likelihood method

is a nonparametric one. Without assuming a family of distributions for the
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data, the empirical likelihood ratio statistics can be defined to share similar

properties as the likelihood ratio for parametric distributions. For instance,

the empirical likelihood method produces confidence regions whose shape

and orientation are determined entirely by the data. In comparison with

the normal approximation method and the bootstrap method for construct-

ing confidence intervals, the empirical likelihood method does not require a

pivotal quantity, and it has better small sample performance (see [15]).

As an effective way for interval estimation and goodness-of-fit test, the

empirical likelihood method has been extended and applied in many different

fields such as regression models ([11]), quantile estimation ([9]), additive risk

models ([22]), two-sample problems ([36], [19], [3], [43]), time series models

([16], [14], [8], [28], [27], [4], [5]), heavy-tailed models ([21], [32], [33, 34]),

high dimensional data ([10]) and copulas ([6]).

A common feature in employing the empirical likelihood method is to work

with linear constraints such as linear functionals, and a powerful way in for-

mulating the empirical likelihood ratio statistic is via estimating equations

as in [35]. When the constraints involve nonlinear equations, an important

trick is to transform these nonlinear constraints to some linear constraints by

introducing some link variables. After this transformation, a profile empiri-

cal likelihood method is employed. For example, if one wants to construct an

empirical likelihood confidence interval for the variance θ = E{X − EX}2,

one can introduce a link variable β = E(X) and then formulate the empir-

ical likelihood by using equations E(X) = β and E(X2) = θ + β2. Some

other examples include the study of ROC curves ([12]), copulas ([6]) and

difference of quantiles ([44], [41]). Apparently these extra constraints add
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REDUCE COMPUTATION 3

more computational burden to the empirical likelihood method. Another

computational difficulty arises when the profile empirical likelihood method

involves a large number of nuisance parameters.

Suppose X1, · · · , Xn are independent random vectors with common dis-

tribution function F and there is a q-dimensional parameter θ associated

with F . Let yT denote the transpose of the vector y and

G(x; θ) = (g1(x; θ), · · · , gs(x; θ))T

denote s(≥ q) functionally independent functions, which connect F and

θ through the equations EG(X1; θ) = 0. Write θ = (αT , βT )T , where α

and β are q1-dimensional and q2-dimensional parameters, respectively, and

q1 + q2 = q. In order to construct confidence regions for α, [35] proposed to

use the following profile empirical likelihood ratio

(1.1) l(α) = 2lE((αT , β̂T (α))T ) − 2lE(θ̃),

where lE(θ) =
∑n

i=1 log{1 + tT (θ)G(Xi; θ)}, t = t(θ) is the solution of the

following equation

(1.2) 0 =
1

n

n
∑

i=1

G(Xi; θ)

1 + tT G(Xi; θ)
,

θ̃ = (α̃T , β̃T )T minimizes lE(θ) with respect to θ, and β̂(α) minimizes

lE((αT , βT )T ) with respect to β for fixed α. It has been shown that l(α0)

converges in distribution to χ2
q1

under some regularity conditions, where α0

denotes the true value of α. For the second order properties of the empirical

likelihood method based on estimating equations, we refer to [7].

The computational complexity in using the profile empirical likelihood

method comes from computing lE((αT , β̂T (α))T ). When the nuisance param-

eter β is known, one can simply replace β̂T (α) and β̃ in (1.1) by the true value
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of β so that the computation is reduced significantly. In order to avoid com-

puting lE((αT , β̂T (α))T ), one may choose to replace β̂T (α) by some other dif-

ferent estimator, for example, solving q2 equations of n−1 ∑n
i=1 G(Xi; θ) = 0.

Although this reduces computation especially when one can find an explicit

estimator of β in terms of the sample and α, Wilks’ theorem doesn’t hold,

that is, l(α0) does not converge in distribution to χ2
q1

. Instead, l(α0) generally

converges in distribution to a weighted sum of independent chi-square ran-

dom variables; see [17]. Since the weights in the limit have to be estimated,

this empirical likelihood method does not preserve the important properties

of the standard empirical likelihood method: self-studentization, automati-

cally determined shape of confidence region and Bartlett correction. There-

fore, it is of importance to develop an empirical likelihood method which has

a chi-square limit and is computationally efficient than the profile empiri-

cal likelihood method especially when the number of nuisance parameters

is large. Moreover, when some estimating equations involve U-statistics, the

profile empirical likelihood method is extremely complicated.

Motivated by the recent study on using jackknife empirical likelihood

method to deal with nonlinear constraints in U-statistics ([18]), we propose

a jackknife empirical likelihood method to construct confidence regions for

the interesting parameter α with the nuisance parameter β being simply

replaced by some estimator. The jackknife empirical likelihood ratio statis-

tic is obtained by applying the standard empirical likelihood method to the

jackknife pseudo sample. The jackknife method was originally used to esti-

mate the variance of a statistic and to construct bias-corrected estimators

of parameters. See, e.g., [40] for details. The proposed jackknife empirical
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REDUCE COMPUTATION 5

likelihood method allows us to compute the nuisance parameters simply

through a subset of estimating equations and yet still retains the attractive

chi-square limiting distribution for the empirical likelihood ratio.

We organize this paper as follows. In Section 2, the new methodology

and main results are given. Section 3 presents a simulation study. Section 4

presents two case studies of financial applications. All proofs are given in

Section 5.

2. Methodology and main results. As in the introduction, let G(x; θ) =

(g1(x; θ), · · · , gs(x; θ))T denote s(≥ q) functionally independent functions

with EG(X1; θ0) = 0, where θ0 = (αT
0 , βT

0 )T denotes the true value of

θ = (αT , βT )T , and α and β are q1-dimensional and q2-dimensional pa-

rameters, respectively. Note that only the parameter α is of interest under

consideration. To remove the nuisance parameter β, we propose to first esti-

mate it from some q2 estimating equations, and then work with the remain-

ing s − q2 equations, where β is replaced by the obtained estimator. The

details are as follows.

Define

Ga(x; α, β) =
(

g1(x; α, β), · · · , gs−q2
(x; α, β)

)T

and

Gb(x;α, β) =
(

gs−q2+1(x; α, β), · · · , gs(x; α, β)
)T

.

Without loss of generality, we solve the last q2 equations of n−1 ∑n
i=1 G(Xi; θ)

to get an estimator for β. That is, β̃(α;X) is the solution to

(2.1)
1

n

n
∑

i=1

Gb(Xi; α, β) = 0
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with respect to β for each fixed α, where X = (X1, · · · , Xn)T . Obviously,

the best choice of the q2 equations is to have explicit formula for β̃(α;X), if

possible. Set

Tn(α) =
1

n

n
∑

i=1

Ga(Xi;α, β̃(α,X))

and let β̃(α;X−i) denote the solution to the equations

(2.2)
1

n − 1

n
∑

j=1,j 6=i

Gb(Xj ; α, β) = 0

with respect to β for each fixed α, where X−i = (X1, · · · , Xi−1, Xi+1, · · · , Xn)T .

Similarly, define

Tn,−i(α) =
1

n − 1

n
∑

j=1,j 6=i

Ga(Xj ;α, β̃(α;X−i)).

Then the jackknife pseudo sample is defined as

Yi(α) = (Yi,1(α), · · · , Yi,s−q2
(α))T = nTn(α)−(n−1)Tn,−i(α) for i = 1, · · · , n.

As in [42], one expects that Y ′
i s are approximately independent. This mo-

tivates us to apply the standard empirical likelihood method to the jackknife

sample Y1(α), · · · , Yn(α) for constructing empirical likelihood confidence re-

gions for α. Hence we define the jackknife empirical likelihood function as

LJ(α) = sup
{

Πn
i=1(npi) :

n
∑

i=1

pi = 1,
n

∑

i=1

piYi(α) = 0, p1 ≥ 0, · · · , pn ≥ 0
}

.

It follows from the Lagrange multiplier technique that the above maximiza-

tion is achieved at pi = n−1{1+λT Yi(α)}−1 and the log empirical likelihood

ratio ℓJ(α) = − log LJ(α) is given by

(2.3) ℓJ(α) =
n

∑

i=1

log{1 + λT Yi(α)},
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REDUCE COMPUTATION 7

where λ = λ(α) satisfies

1

n

n
∑

i=1

Yi(α)

1 + λT Yi(α)
= 0.(2.4)

Before we present our main results, we first list the assumptions we need.

For this purpose, denote ∂y
∂x = ( ∂yi

∂xj
)1≤i≤m,1≤j≤n for y = (y1, · · · , ym)T and

x = (x1, · · · , xn)T , and define

α̂ = arg min ℓJ(α), Σ =
(

E{gk(X1; α0, β0)gl(X1;α0, β0)}
)

1≤k,l≤s
= (σk,l)1≤k,l≤s,

Σ1 = E{ ∂

∂β
Gb(X1;α0, β0)}, Σ2 = E{ ∂

∂α
Gb(X1; α0, β0)},

Σ3 = E{ ∂

∂α
Ga(X1; α0, β0)} − E{ ∂

∂β
Ga(X1;α0, β0)}Σ−1

1 Σ2

and Σ∗ = (σ∗
k,l)1≤k,l≤s−q2

, where

σ∗
k,l = σk,l − E{ ∂

∂β gk(X1; α0, β0)}Σ−1
1 (σs−q2+1,l, · · · , σs,l)

T

−E{ ∂
∂β gl(X1;α0, β0)}Σ−1

1 (σs−q2+1,k, · · · , σs,k)
T

+E{ ∂
∂β gk(X1;α0, β0)}Σ−1

1 (σij)s−q2+1≤i,j≤sΣ
−1
1 E{ ∂

∂βT gl(X1;α0, β0)}.

Some regularity conditions are as follows:

• A1) There is a neighborhood of α0 and β0, say Ωα0
× Ωβ0

, such that

Gb(x;α, β) are continuous function of α ∈ Ωα0
and β ∈ Ωβ0

for all

x, and supα∈Ωα0
,β∈Ωβ0

||Gb(x;α, β)||3 ≤ K(x) for some function K

satisfying that EK(X1) < ∞;

• A2) For each α ∈ Ωα0
, there is a function β(α) ∈ Ωβ0

such that

EGb(X1; α, β(α)) = 0;

• A3) || ∂
∂β Gb(x; α, β)||3, || ∂2

∂βT ∂β
gl(x;α, β)||3 and | ∂3

∂βi∂βj∂βm
gl(x; α, β)|

for l = s − q2 + 1, · · · , s, i, j,m = 1, · · · , q2 are bounded by K(x)

uniformly in α ∈ Ωα0
and β ∈ Ωβ0

;
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• A4) β(α) defined in A2) has continuous first derivatives;

• A5) || ∂
∂αGb(x; α, β)||3 and | ∂3

∂αi∂βj∂βm
gl(x; α, β)| for l = s−q2+1, · · · , s,

i = 1, · · · , q1, j, m = 1, · · · , q2 are bounded by K(x) uniformly in

α ∈ Ωα0
and β ∈ Ωβ0

;

• A6) Assume Σ1 is invertible, Σ∗ is positive definite and Σ3 has rank

q1;

• A7) || ∂
∂β Ga(x; α, β)||, ||Ga(x; α, β)||3, | ∂3

∂αk∂βj∂βm
gl(x; α, β)| and

| ∂3

∂βi∂βj∂βm
gl(x; α, β)| for i, j,m = 1, · · · , q2, k = 1, · · · , q1 and l =

1, · · · , s− q2 are bounded by K(x) uniformly in α ∈ Ωα0
and β ∈ Ωβ0

.

The following two propositions show the existence and some properties of

β̃(α;X), β̃(α0;X−i) and α̂.

Proposition 1. i) Under conditions A1) and A2), with probability one,

there exist solutions β̃(α;X) ∈ Ωβ0
and β̃(α;X−i) ∈ Ωβ0

to (2.1) and (2.2),

respectively, such that

(2.5) β̃(α;X) − β(α) = o(1) and max
1≤i≤n

||β̃(α;X−i) − β(α)|| = o(1)

almost surely for each α ∈ Ωα0
.

ii) Under conditions A1)–A3), we have

(2.6) β̃(α0;X) − β0 + Σ−1
1

1

n

n
∑

i=1

Gb(Xi;α0, β0) = Op(n
−1),

(2.7) max
1≤i≤n

||β̃(α0;X−i)−β0+Σ−1
1

1

n − 1

n
∑

j=1,j 6=i

Gb(Xj ; α0, β0)|| = Op(n
−1),

(2.8) max
1≤i≤n

||β̃(α0;X) − β̃(α0;X−i) + Σ−1
n1 Dn(i)|| = op(n

−3/2),
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REDUCE COMPUTATION 9

where

Σn1 =
1

n

n
∑

j=1

∂

∂β
Gb(Xj ; α0, β̃(α0;X)), Dn(i) = (Dn,s−q2+1(i), · · · , Dn,s(i))

T

and

Dn,l(i)

= 1
2n−1GT

b (Xi;α0, β0)Σ
−1
1 E{ ∂2

∂βT ∂β
gl(X1; α0, β0)}Σ−1

1 n−1Gb(Xi; α0, β0)

+n−1gl(Xi; α0, β0) − n−1{ ∂
∂β gl(Xi; α0, β0)}Σ−1

1
1

n−1

∑n
j=1 Gb(Xj ;α0, β0)

+n−1{ ∂
∂β gl(Xi; α0, β0)}Σ−1

1
1

n−1Gb(Xi;α0, β0).

iii) Under conditions A1)-A5), we have

(2.9)











max1≤i≤n || ∂
∂α β̃(α0;X−i) + Σ−1

1 Σ2|| = Op(n
−1/2),

|| ∂
∂α β̃(α0;X) + Σ−1

1 Σ2|| = Op(n
−1/2),

and

(2.10) max
1≤i≤n

|| ∂

∂α
β̃(α0;X) − ∂

∂α
β̃(α0;X−i) + Σ−1

1 Ai|| = op(n
−1),

where Ai = (as−q2+1(i), · · · , as(i))
T and

aT
l (i) = − 1

nGT
b (Xi;α0, β0)Σ

−1
1 E{ ∂2

∂βT ∂α
gl(X1;α0, β0)} + 1

n
∂

∂αgl(Xi;α0, β0)

+ 1
nGT

b (Xi; α0, β0)Σ
−1
1 E{ ∂2

∂βT ∂β
gl(X1; α0, β0)}Σ−1

1 Σ2

− 1
n

∂
∂β gl(Xi; α0, β0)Σ

−1
1 Σ2.

Proposition 2. Under A1)–A7), with probability tending to one, ℓJ(α)

attains its minimum value at some point α̂ in the interior of the ball ||α −

α0|| ≤ n−1/3, and α̂ and λ̂ = λ(α̂) satisfy

Q1n(α̂, λ̂) = 0 and Q2n(α̂, λ̂) = 0,

where

Q1n(α, λ) =
1

n

n
∑

i=1

Yi(α)

1 + λT Yi(α)
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and

Q2n(α, λ) =
1

n

n
∑

i=1

1

1 + λT Yi(α)
{ ∂

∂α
Yi(α)}T λ.

Next we show that Wilks’ theorem holds for the proposed jackknife em-

pirical likelihood method.

Theorem 1. Under conditions A1)–A7), we have LR(α0) := 2ℓJ(α0) −

2ℓJ(α̂) converges in distribution to χ2
q1

, where α̂, β̃(α;X) and β̃(α;X−i) are

given in Propositions 1 and 2.

Based on Theorem 1, an asymptotically accurate 100γ% confidence region

for α is given by

Iγ = {α : LR(α) ≤ χ2
q1

(γ)},

where χ2
q1

(γ) is the γ quantile of a χ2 distribution with q1 degrees of freedom.

Remark 1. When s = q, we have ℓJ(α̂) = 0. Moreover, when β̃(α;X) has

an explicit formula in terms of the sample X and α, the computation of the

proposed jackknife empirical likelihood method is only slightly heavier than

the standard empirical likelihood method. Indeed, the software R package

for the empirical likelihood method can be employed as in our simulation

study.

Remark 2. If one is interested in a part of α = (α̃T
1 , α̃T

2 )T , say α̃1, then we

can show that 2 minα̃2
ℓJ(α)−2ℓJ(α̂) converges in distribution to a chi-square

limit with the degrees of freedom being the length of α̃1. This method may

be called jackknife profile empirical likelihood method, which is appealing

when a part of nuisance parameters can be solved explicitly.

Remark 3. When equations (2.1) are independent of α, then regularity
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conditions involving the partial derivatives of Gb with respect to α can be

removed.

3. Simulation study. Suppose the random vector (X,Y ) has marginal

distribution functions F1, F2 and copula C(x, y) = P (F1(X) ≤ x, F2(Y ) ≤

y). In fitting a parametric family to the copula, a useful quantity is the

Spearman’s rho defined as ρs = 12E{F1(X)F2(Y )} − 3. For example, if one

employs the Gaussian copula

C(u, v; θ) =

∫ Φ−(u)

−∞

∫ Φ−(v)

−∞

1

2π
√

1 − θ2
exp{−s2 − 2θst + t2

2(1 − θ2)
} dsdt,

or the t copula

C(u, v; θ) =

∫ t−
4

(u)

−∞

∫ t−
4

(v)

−∞

1

2π
√

1 − θ2
{1 +

s2 − 2θst + t2

4(1 − θ2)
}−3 dsdt,

where θ ∈ [−1, 1] and Φ− and t−ν denote the inverse function of the standard

normal distribution function and t distribution function with degrees of free-

dom ν, respectively, then ρs = 6π−1 arcsin(θ/2). Hence, Spearman’s rho is

of importance in fitting a parametric copula. Here, we consider constructing

a confidence interval for the Spearman’s rho by fitting either the Gaussian

copula or the t copula and modeling marginals by either a normal distribu-

tion or a t distribution. In this case, a profile empirical likelihood method

can be employed to construct a confidence interval for ρs by considering the

following estimating equations



























ρs = 12E{F1(X;µ1, σ1)F2(Y ;µ2, σ2)} − 3

0 = EX − µ1 = EY − µ2

0 = EX2 − µ2
1 − σ2

1 = EY 2 − µ2
2 − σ2

2
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when F1 and F2 have normal distributions N(µ1, σ
2
1) and N(µ2, σ

2
2), respec-

tively, and











ρs = 12E{F1(X; ν1)F2(Y ; ν2)} − 3

0 = EX2 − ν1/(ν1 − 2) = EY 2 − ν2/(ν2 − 2)

when F1 and F2 have distributions tν1
and tν2

, respectively. On the other

hand, the proposed jackknife empirical likelihood method can be employed

to the above estimating equations as well.

First we draw 10, 000 random samples with sample size n = 100 and

300 from the Gaussian copula and t copula by using the package ’copula’

in R and transform the marginals to have either normal distributions or

t distributions. For computing the coverage probabilities of the proposed

jackknife empirical likelihood method, we employ the package ‘emplik’ in the

software R. For computing the coverage probabilities of the profile empirical

likelihood method, we use the package ‘emplik’ to obtain the likelihood ratio

as a function of nuisance parameters and then use the package ‘nlm’ to find

the minimum. These coverage probabilities are reported in Tables 1–4. From

Tables 1–4, we observe that i) the proposed jackknife empirical likelihood

method performs much better than the profile empirical likelihood method

when n = 100 and marginal distributions follow from t distributions; and ii)

both methods perform well when n = 300 although the jackknife empirical

likelihood method is slightly better.

Second, we calculate the average interval lengths for both methods by

drawing 1, 000 random samples from the above models. Tables 5-8 show that

the interval length of the proposed jackknife empirical likelihood method is

slightly bigger than that of the profile empirical likelihood method.
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Third, we draw 10, 000 random samples from a 3-dimensional normal cop-

ula and t copula with marginal distributions t7, t8, t9 and θ = (θ1, θ2, θ2)
T .

Then we apply the proposed jackknife empirical likelihood method and the

profile empirical likelihood method to construct confidence regions for the

three Spearman’s rho. Coverage probabilities are reported in Tables 9 and

10, which show that the proposed jackknife empirical likelihood method

performs better than the profile empirical likelihood.

In conclusion, the proposed jackknife empirical likelihood method pro-

vides good coverage accuracy and the computation is much simpler than

the profile empirical likelihood method. Moreover, the package “emplik” in

the software R is ready to use for the proposed method.

4. Case studies.

4.1. Testing the drift parameter in the variance gamma model. The class

of variance gamma (VG) distributions was introduced by [25] as an alterna-

tive model for stock returns beyond the usual normal distribution assump-

tion. It has so far been used extensively by financial economists especially

in pricing financial derivatives, see [24] and [23] for applications, and [38] for

a historical account of the development.

The VG process Zt is a time-changed Lévy process where the subordina-

tor is a Gamma process. It is parameterized by three parameters: the drift

parameter µ, the volatility parameter σ, and the subordinator variance pa-

rameter ν. More specifically, let St be a gamma process subordinator with

a unit mean rate and a variance rate ν where ν > 0. Let Wt be a standard

Brownian motion. Then the VG process is defined as dZt = µdSt + σdWSt .

imsart-aos ver. 2006/10/13 file: CJS-Final.tex date: January 8, 2011



14

That is, the calendar time t is now replaced with the time change St. Let

X ≡ Zt+δ − Zt be the increment of Zt with interval δ. The characteristic

function of X is EeiuX = eΨ(u)δ, where the characteristic exponent Ψ(u) is

given by Ψ(u) = − 1
ν log{1 + u2σ2ν

2 − iµνu}.

Given a sample X of increments X with sample size n, we are interested

in the hypothesis H0 : µ = 0. This amounts to asking whether it is suffi-

cient to model the data in interest using a martingale process. For example,

it is interesting to know whether one needs to introduce a drift parameter

for the log change of US/Japan exchange rate process or not. The param-

eter of interest is thus µ, and the two nuisance parameters are (σ, ν). To

employ the jackknife empirical likelihood estimation method in this paper,

we need the estimating equations. One approach would be to just use the

mean equation alone. However, this ignores all higher moments which are

the very reason why financial economists use variance gamma process as an

alternative to Brownian motion with drift. Therefore, below we use a differ-

ent approach based on higher-order moments. The lowest-order moments or

central moments would seem to be natural choices. However, the odd mo-

ments or central moments are all proportional to µ and thus all zero under

the null H0 : µ = 0. Thus we use only the even moments with orders 2, 4

and 6.

By differentiating the characteristic function of the VG process increment,

the raw even moments mj(µ, ν, σ) := EXj can be computed easily and

estimating equations are obtained by equating the empirical moments to

the raw moments. Then we apply the jackknife empirical likelihood method

to the last equation by solving the first two equations for ν and σ.
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REDUCE COMPUTATION 15

We use four different financial time series, namely, the S&P 500 index

(SPX), the CBOE volatility index (VIX), the effective federal funds rate

(FFR), and the exchange rate between the British Pound and US Dollar

(GBP/USD). These four time series are very important in four distinctive

large financial sectors, that is, the equity market, the financial derivative

market, the fixed-income market, and the foreign exchange market. The

sample periods are January 1950 to October 2009 for the SPX, January

1990 to October 2009 for the VIX, July 1954 to September 2009 for the

FFR, and January 1971 to July 2009 for the GBP/USD.

Figure 1 plots these four time series on the same graph. The subplot for

the SPX shows a few significant events, including the amazing run of the

SPX before year 1987, the market crash in 1987, the internet boom in late

90s, the IT bubble burst in 2001, and most recently the subprime mortgage

crisis. From the second subplot, we see that the VIX has been largely stable,

except for the abrupt surge during the recent market turmoil. The FFR has

had quite a few surges, especially during the hyper-inflation period in the

late 70s and early 80s, and has recently reached unprecedented low levels

due to the Fed’s effort to boost the economy. The most noticeable feature

on the GBP/USD subplot is the free fall and fast appreciation of the British

Pound before and after the Plaza Accord in 1985. The recent global financial

crisis has also weakened the British Pound due to the flight to quality by

international investors.

Our samples are the weekly log change processes of the above four fi-

nancial time series, which are plotted in Figure 2. This graph confirms the

common notion that financial data often deviate a lot from the normal dis-
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tribution assumption, see for example [2] or [20]. [26] traces awareness of

this non-normality as far back as year 1915. This nonnormality is especially

true for the times series of the log change of the effective federal funds rate,

where we see a huge kurtosis.

Table 11 reports the test statistic LR(0) for the log changes of the four fi-

nancial time series considered. The statistic is asymptotically χ2
1 distributed,

and the asymptotic p-values are reported. The skewness and kurtosis for each

time series are also included in the table, as well as the result of a naive t-

test. As we would expect, the statistic LR(0) strongly rejects H0 : µ = 0

for the log changes of the S&P 500 index with a p-value of only 0.0002.

However, the statistic cannot reject H0 : µ = 0 for the log changes of the

CBOE volatility index, and the exchange rate between British Pound and

US Dollar. These are the same conclusions one gets from the naive t-test as-

suming that the sample is drawn from a normal distribution with unknown

variance. However, the test on the log changes of FFR is interesting. A naive

t-test suggests that µ = 0, while the test statistic LR(0) rejects µ = 0 at

more than 99% level. This apparent discrepancy might be explained by the

fact that we have used higher-order moments in the estimating equations

and that the empirical distribution of log changes of FFR is very different

from the normal distribution with a very large kurtosis. It also highlights

the advantage of using empirical likelihood estimation over the naive t-test

which assumes a normal distribution.

4.2. Testing whether a normal tempered stable process is normal inverse

Gaussian. A broader class of models that includes the VG process as a spe-

cial case is the so-called normal tempered stable process. See [13]. This class
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of models is obtained by time changing an independent Brownian motion

with drift by a tempered stable subordinator St. The Lévy measure of St

with index A and parameter ν is given by

ρS(x) =
1

Γ(1 − A)

(

1 − A

ν

)1−A e−(1−A)x/ν

xA+1
1x>0,

where ν > 0 and 0 ≤ A < 1 are two constants. The increment X of the

time-changed process Yt again has a closed-form characteristic function with

characteristic exponent as follows

Ψ(u) =
1 − A

νA







1 −
(

1 +
ν(u2σ2/2 − iµu

1 − A

)A






.

Two important special cases are the VG process (where A = 0) and the

normal inverse Gaussian process (where A = 1/2). See [1] and [37] for early

studies on the normal inverse Gaussian process.

We are now interested in the null hypothesis H0 : A = 1/2, that is,

whether the data implies a normal inverse Gaussian process. Thus, the pa-

rameter of interest is A and the nuisance parameters are now (µ, ν, σ). To

employ the jackknife empirical likelihood estimation method, we construct

estimating equations from the raw moments mj(A,µ, ν, σ) := EXj . It turns

out that if µ = 0 in the normal tempered stable process, then the lowest four

moments are not functions of A. Also, if µ = 0, then all odd moments are

zero. Thus, to reliably estimate A using moments when µ is small, we have

to include a moment mj with j ≥ 6. We choose to use the moments m1, m2,

m4 and m6 which can be calculated straightforwardly. Then the jackknife

empirical likelihood method is applied to the last equation by using the first

three equations to compute µ̃(A;X), ν̃(A;X) and σ̃(A;X).
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We apply the above procedure to the same four time series as before. The

results are shown in Table 12. As we see, the test statistic LR(1/2) cannot

reject H0 : A = 1/2 for the log changes of the S&P 500 index, the CBOE

VIX index, and the exchange rate between the British Pound and US Dollar.

However, it strongly rejects A = 1/2 for the log change time series of the

effective federal funds rate.

5. Proofs. Proof of Proposition 1. Since condition A1) implies that

(5.1) max
1≤i≤n

sup
β∈Ωβ0

1

n − 1
||Gb(Xi;α, β)|| = o(n−1/2)

almost surely for each α ∈ Ωα0
, we have

1
n−1

∑n
j=1,j 6=i Gb(Xj ; α, β) = 1

n−1

∑n
j=1 Gb(Xj ;α, β) − 1

n−1Gb(Xi; α, β)

→ EGb(X1;α, β)

almost surely and uniformly in 1 ≤ i ≤ n for α ∈ Ωα0
and β ∈ Ωβ0

. Hence

Part i) follows from the above equation and Theorem B in Section 7.2.1 of

[39].

It follows from Taylor’s expansion that

(5.2)

0 = 1
n−1

∑n
j=1,j 6=i Gb(Xj ; α0, β̃(α0;X−i))

= 1
n−1

∑n
j=1,j 6=i Gb(Xj ; α0, β0)

+ 1
n−1

∑n
j=1,j 6=i{ ∂

∂β Gb(Xj ;α0, γiβ0 + (1 − γi)β̃(α0;X−i))}{β̃(α0;X−i) − β0},

where γi ∈ [0, 1] for each i = 1, · · · , n. Since A1) and (2.5) imply that

(5.3)

max
1≤i≤n

1

n − 1
||Gb(Xi; α0, γiβ0+(1−γi)β̃(α0;X−i))|| = o(n−1/2) almost surely,

imsart-aos ver. 2006/10/13 file: CJS-Final.tex date: January 8, 2011



REDUCE COMPUTATION 19

we have

(5.4)

max
1≤i≤n

|| 1

n − 1

n
∑

j=1,j 6=i

∂

∂β
Gb(Xj ; α0, γiβ0 + (1− γi)β̃(α0;X−i))−Σ1|| = op(1).

Hence (2.7) follows from (5.2) and (5.4). Similarly we can prove (2.6).

By (2.6), (2.7) and (5.3), we have

(5.5)











max1≤i≤n ||β̃(α0;X) − β̃(α0;X−i)|| = op(n
−1/2)

max1≤i≤n ||β̃(α0;X−i) − β0|| = Op(n
−1/2).

It follows from (5.5) and Taylor’s expansion that

0 = 1
n{

∑n
j=1 Gb(Xj ; α0, β̃(α0;X)) − ∑n

j=1,j 6=i Gb(Xj ; α0, β̃(α0;X−i))}

= 1
n

∑n
j=1{Gb(Xj ; α0, β̃(α0;X)) − Gb(Xj ; α0, β̃(α0;X−i))}

+n−1Gb(Xi; α0, β̃(α0;X−i))

= Σ1{β̃(α0;X) − β̃(α0;X−i)} + op(n
−1)

+n−1Gb(Xi; α0, β0) + op(n
−1)

uniformly in 1 ≤ i ≤ n, which implies that

(5.6) max
1≤i≤n

||β̃(α0;X) − β̃(α0;X−i) + Σ−1
1

1

n
Gb(Xi; α0, β0)|| = op(n

−1).

Note that A3) implies that

(5.7) max
1≤i≤n

sup
α∈Ωα0

,β∈Ωβ0

||n−1 ∂2

∂βT ∂β
gl(Xi; α, β)|| = o(n−1/2)

almost surely for l = s − q2 + 1, · · · , s.
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Using (2.7), (5.5)–(5.7) and Taylor’s expansion, we have

0 = 1
n{

∑n
j=1 gl(Xj ; α0, β̃(α0;X)) − ∑n

j=1,j 6=i gl(Xj ; α0, β̃(α0;X−i))}

= 1
n

∑n
j=1{gl(Xj ; α0, β̃(α0;X)) − gl(Xj ; α0, β̃(α0;X−i))}

+n−1gl(Xi; α0, β̃(α0;X−i))

= 1
n

∑n
j=1{ ∂

∂β gl(Xj ;α0, β̃(α0;X))}{β̃(α0;X) − β̃(α0;X−i)}

+ 1
2n

∑n
j=1{β̃(α0;X) − β̃(α0;X−i)}T { ∂2

∂βT ∂β
gl(Xj ; α0, β̃(α0;X))}

{β̃(α0;X) − β̃(α0;X−i)} + n−1gl(Xi; α0, β0)

+n−1{ ∂
∂β gl(Xi;α0, β0)}{β̃(α0;X−i) − β0} + op(n

−3/2)

= 1
n

∑n
j=1{ ∂

∂β gl(Xj ;α0, β̃(α0;X))}{β̃(α0;X) − β̃(α0;X−i)}

+ 1
2n{ 1

nGT
b (Xi;α0, β0)Σ

−1
1 }{∑n

j=1
∂2

∂βT ∂β
gl(Xj ; α0, β̃(α0;X))}

{Σ−1
1

1
nGb(Xi; α0, β0)} + n−1gl(Xi; α0, β0)

−n−1{ ∂
∂β gl(Xi;α0, β0)}Σ−1

1
1

n−1

∑n
j=1,j 6=i Gb(Xj ; α0, β0)

+op(n
−3/2)

= { 1
n

∑n
j=1

∂
∂β gl(Xj ; α0, β̃(α0;X))}{β̃(α0;X) − β̃(α0;X−i)}

+1
2{ 1

nGT
b (Xi; α0, β0)Σ

−1
1 }{E ∂2

∂βT ∂β
gl(X1;α0, β0)}

{Σ−1
1

1
nGb(Xi; α0, β0)} + n−1gl(Xi; α0, β0)

−n−1{ ∂
∂β gl(Xi;α0, β0)}Σ−1

1
1

n−1

∑n
j=1 Gb(Xj ; α0, β0)

+n−1{ ∂
∂β gl(Xi;α0, β0)}Σ−1

1
1

n−1Gb(Xi; α0, β0) + op(n
−3/2)

uniformly in 1 ≤ i ≤ n for l = s − q2 + 1, · · · , s, which imply (2.8).

Since 0 = 1
n−1

∑n
j=1,j 6=i Gb(Xj ; α, β̃(α;X−i)), we have

0 = 1
n−1

∑n
j=1,j 6=i

∂
∂αGb(Xj ; α, β̃(α;X−i))

+ 1
n−1

∑n
j=1,j 6=i{ ∂

∂β Gb(Xj ; α, β̃(α;X−i))} ∂
∂α β̃(α;X−i).

Note that A5) implies that

max
1≤i≤n

1

n − 1
|| ∂

∂α
Gb(Xi; α0, β̃(α0;X−i))|| = o(n−1/2)
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almost surely. Hence

∂

∂α
β̃(α0;X−i) = −Σ−1

1 Σ2 + Op(n
−1/2)

uniformly in 1 ≤ i ≤ n. Similarly, we have

∂

∂α
β̃(α0;X) = −Σ−1

1 Σ2 + Op(n
−1/2),

i.e., (2.9) holds.

It follows from (5.5), (5.6), A3) and A5) that

1
n

∑n
j=1{ ∂

∂αgl(Xj ; α0, β̃(α0;X)) − ∂
∂αgl(Xj ;α0, β̃(α0;X−i))}

= 1
n

∑n
j=1{β̃(α0;X) − β̃(α0;X−i)} ∂2

∂βT ∂α
gl(Xj ; α0, β0) + op(n

−1)

= − 1
nGT

b (Xi; α0, β0)Σ
−1
1 E{ ∂2

∂βT ∂α
gl(X1; α0, β0)} + op(n

−1)

and

1
n

∑n
j=1{ ∂

∂β gl(Xj ;α0, β̃(α0;X)) − ∂
∂β gl(Xj ; α0, β̃(α0;X−i))}

= 1
n

∑n
j=1{β̃(α0;X) − β̃(α0;X−i)} ∂2

∂βT ∂β
gl(Xj ;α0, β0) + op(n

−1)

= − 1
nGT

b (Xi; α0, β0)Σ
−1
1 E{ ∂2

∂βT ∂β
gl(X1; α0, β0)} + op(n

−1)
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uniformly in 1 ≤ i ≤ n for l = s − q2 + 1, · · · , s. Hence

0 = 1
n{

∑n
j=1

∂
∂αgl(Xj ; α0, β̃(α0;X)) − ∑n

j=1,j 6=i
∂

∂αgl(Xj ; α0, β̃(α0;X−i))}

+ 1
n{

∑n
j=1

(

∂
∂β gl(Xj ; α0, β̃(α0;X))

)

∂
∂α β̃(α0;X)

−∑n
j=1,j 6=i

(

∂
∂β gl(Xj ;α0, β̃(α0;X−i))

)

∂
∂α β̃(α0;X−i)}

= 1
n

∑n
j=1{ ∂

∂αgl(Xj ; α0, β̃(α0;X)) − ∂
∂αgl(Xj ; α0, β̃(α0;X−i))}

+ 1
n

∂
∂αgl(Xi; α0, β̃(α0;X−i))

+ 1
n

∑n
j=1{ ∂

∂β gl(Xj ; α0, β̃(α0;X)) − ∂
∂β gl(Xj ; α0, β̃(α0;X−i))} ∂

∂α β̃(α0;X)

+ 1
n

∑n
j=1{ ∂

∂β gl(Xj ; α0, β̃(α0;X−i))}{ ∂
∂α β̃(α0;X) − ∂

∂α β̃(α0;X−i)}

+ 1
n{ ∂

∂β gl(Xi; α0, β̃(α0;X−i))} ∂
∂α β̃(α0;X−i)

= − 1
nGT

b (Xi; α0, β0)Σ
−1
1 E{ ∂2

∂βT ∂α
gl(X1; α0, β0)}

+ 1
n

∂
∂αgl(Xi; α0, β0)

+ 1
nGT

b (Xi;α0, β0)Σ
−1
1 E{ ∂2

∂βT ∂β
gl(X1; α0, β0)}Σ−1

1 Σ2

+{Σ1 + op(1)}{ ∂
∂α β̃(α0;X) − ∂

∂α β̃(α0;X−i)}

− 1
n{ ∂

∂β gl(Xi; α0, β0)}Σ−1
1 Σ2 + op(n

−1)

for l = s − q2 + 1, · · · , s, which imply (2.10).

Before we prove Proposition 2, we need two lemmas.

Lemma 1. Under conditions A1)–A7), we have

1√
n

n
∑

i=1

Yi(α0)
d→ (W1, · · · ,Ws−q2

)T

where for l = 1, · · · , s − q2,

Wl = Zl − E{ ∂

∂β
gl(X1;α0, β0)}Σ−1

1 (Zs−q2+1, · · · , Zs)
T

and (Z1, · · · , Zs)
T ∼ N(0, Σ).
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Proof. Write

Yi,l(α0) =
∑n

j=1{gl(Xj ;α0, β̃(α0;X)) − gl(Xj ; α0, β̃(α0;X−i))}

+gl(Xi;α0, β̃(α0;X−i))

= I1(i, l) + I2(i, l)

for i = 1, · · · , n and l = 1, · · · , s − q2.

By Proposition 1, (5.5) and A7), we have

I1(i, l)

=
∑n

j=1{ ∂
∂β gl(Xj ; α0, β̃(α0,X))}{β̃(α0;X) − β̃(α0;X−i)}

+1
2

∑n
j=1{β̃(α0;X) − β̃(α0;X−i)}T ∂2

∂β∂βT gl(Xj ;α0, β̃(α0;X))

{β̃(α0;X) − β̃(α0;X−i)} + op(n
−1/2)

= −∑n
j=1{ ∂

∂β gl(Xj ; α0, β̃(α0;X))}Σ−1
n1 Dn(i)

+1
2

∑n
j=1 DT

n (i)Σ−1
n1 { ∂2

∂β∂βT gl(Xj ; α0, β̃(α0;X))}Σ−1
n1 Dn(i) + op(n

−1/2)

where op(n
−1/2) holds uniformly in i = 1, · · · , n for l = 1, · · · , s − q2. It

follows from (5.1) that

n
∑n

i=1 Dn(i)

=
∑n

i=1 Gb(Xi;α0, β0)

−{∑n
i=1

∂
∂β Gb(Xi; α0, β0)}Σ−1

1
1

n−1

∑n
j=1 Gb(Xj ; α0, β0) + op(n

1/2)

= n{− 1
nΣ1 + Σ1 − 1

n

∑n
i=1

∂
∂β Gb(Xi; α0, β0)}Σ−1

1
1

n−1

∑n
j=1 Gb(Xj ;α0, β0)

+op(n
1/2)

= op(n
1/2).

Similarly we can verify that n
∑n

i=1 DT
n (i)∆Dn(i) = op(n

1/2) for any q2 × q2

matrix ∆, which is independent of i. Hence,

(5.8)
n

∑

i=1

I1(i, l) = op(n
1/2) for l = 1, · · · , s − q2.
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It follows from Proposition 1 that

∑n
i=1 I2(i, l)

=
∑n

i=1 gl(Xi; α0, β0)

+
∑n

i=1{ ∂
∂β gl(Xi; α0, β0)}{−Σ−1

1 } 1
n−1

∑

k 6=i Gb(Xk; α0, β0) + op(n
1/2)

=
∑n

i=1 gl(Xi; α0, β0)

+ 1
n−1

∑n
i=1{ ∂

∂β gl(Xi; α0, β0)}{−Σ−1
1 }∑n

k=1 Gb(Xk;α0, β0)

− 1
n−1

∑n
i=1{ ∂

∂β gl(Xi; α0, β0)}{−Σ−1
1 }Gb(Xi; α0, β0) + op(n

1/2)

= II1(l) + II2(l) − II3(l) + op(n
1/2).

By (5.1) and A7), we can show that

II3(l) = Op(1) for l = 1, · · · , s − q2,

and

1√
n

n
∑

i=1

(GT
a (Xi; α0, β0), G

T
b (Xi; α0, β0))

T d→ (Z1, · · · , Zs)
T ∼ N(0, Σ),

which imply that

(5.9)

1√
n

n
∑

i=1

I2(i, l)
d→ Zl − E{ ∂

∂β
gl(X1; (α

T
0 , βT

0 )T )}Σ−1
1 (Zs−q2+1, · · · , Zs)

T .

Hence the lemma follows from (5.8) and (5.9).

Lemma 2. Under conditions A1)–A7), we have

1

n

n
∑

i=1

Yi(α0)Y
T
i (α0)

p→ (E{WlWk})1≤k,l≤s−q2
,

where W ′
ks are given in Lemma 1.

Proof. Using the same notation as in the proof of Lemma 1, it follows from

Proposition 1, (5.6) and Taylor’s expansion that

1
n

∑n
i=1 Yi,l(α0)Yi,k(α0)

= 1
n

∑n
i=1{I1(i, l)I1(i, k) + I1(i, l)I2(i, k) + I2(i, l)I1(i, k) + I2(i, l)I2(i, k)},
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1
n

∑n
i=1 I1(i, l)I1(i, k)

= 1
n

∑n
i=1{

∑n
j1=1

∂
∂β gl(Xj1 ; α0, β0)}{−Σ−1

1 }{ 1
nGb(Xi; α0, β0)}

×{ 1
nGT

b (Xi; α0, β0)}{−Σ−1
1 }{∑n

j2=1
∂
∂β gk(Xj2 ;α0, β0)}T + op(1)

p→ {E ∂
∂β gl(X1; α0, β0)}{−Σ−1

1 }E{Gb(X1; α0, β0)G
T
b (X1; α0, β0)}

×{−Σ−1
1 }{E ∂

∂β gk(X1;α0, β0)},

1
n

∑n
i=1 I1(i, l)I2(i, k)

p→ {E ∂
∂β gl(X1;α0, β0){−Σ−1

1 }E{Gb(X1;α0, β0)gk(X1;α0, β0)},

1
n

∑n
i=1 I2(i, l)I1(i, k)

p→ {E ∂
∂β gk(X1;α0, β0){−Σ−1

1 }E{Gb(X1;α0, β0)gl(X1;α0, β0)},
and

1

n

n
∑

i=1

I2(i, l)I2(i, k)
p→ E{gl(X1; α0, β0)gk(X1; α0, β0)}.

Hence

1

n

n
∑

i=1

Yi,l(α0)Yi,k(α0)
p→ σ∗

l,k

for 1 ≤ l, k ≤ s − q2, i.e., the lemma holds.

Proof of Proposition 2. By (2.5), A1)–A4) and Taylor’s expansion, we

have

(5.10)










β̃(α;X) − β0 + Σ−1
1

1
n

∑n
i=1 Gb(Xi; α, β0) = Op(n

−2/3)

sup1≤i≤n |β̃(α;X−i) − β0 + Σ−1
1

1
n−1

∑

j 6=i Gb(Xj ; α, β0)| = Op(n
−2/3)

uniformly in ||α − α0|| ≤ n−1/3. By (5.10), we have

(5.11)

sup1≤i≤n |β̃(α;X) − β̃(α;X−i)|

= sup1≤i≤n | − Σ−1
1 {− 1

n(n−1)

∑n
k=1 Gb(Xk; α, β0) + 1

n−1Gb(Xi;α, β0)}|

+Op(n
−2/3)

= op(n
−1/2)
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uniformly in ||α−α0|| ≤ n−1/3. For i = 1, · · · , n and l = 1, · · · , s−q2, define

II1(i, l) =
n

∑

j=1

{gl(Xj ; α, β̃(α;X)) − gl(Xj ;α, β̃(α;X−i))}.

Then, it follows from (5.11), A7) and Taylor’s expansion that

max
1≤i≤n

|II1(i, l)| = op(n
1/2) uniformly in ||α − α0|| ≤ n−1/3

for l = 1, · · · , s − q2. Hence

(5.12)

max
1≤i≤n

|Yi,l(α)| = max
1≤i≤n

|II1(i, l) + gl(Xi; (α
T , β̃T (α;X−i))

T )| = op(n
1/2)

uniformly in ||α−α0|| ≤ n−1/3 for l = 1, · · · , s− q2. By (5.12), Lemmas 1-2

and similar arguments to the proof of [30], we have

(5.13) λ = { 1

n

n
∑

i=1

Yi(α)Y T
i (α)}−1{ 1

n

n
∑

i=1

Yi(α)} + op(n
−1/3) = Op(n

−1/3)

uniformly in ||α−α0|| ≤ n−1/3. The rest is similar to the proof of Lemma 1

in [35].

Proof of Theorem 1. Note that

n
∑

i=1

Ai
p→ E{ ∂

∂α
Gb(X1;α0, β0)} − E{ ∂

∂β
Gb(X1;α0, β0)}Σ−1

1 Σ2.
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Hence, it follows from Proposition 1 that

1
n

∑n
i=1

∂
∂αYi,l(α0)

= 1
n

∑n
i=1{

∑n
j=1

∂
∂αgl(Xj ; α0, β̃(α0;X))

−∑n
j=1,j 6=i

∂
∂αgl(Xj ; α0, β̃(α0;X−i))

+
∑n

j=1{ ∂
∂β gl(Xj ; α0, β̃(α0;X))}∂β̃(α0;X)

∂α

−∑n
j=1,j 6=i{ ∂

∂β gl(Xj ; α0, β̃(α0;X−i))}∂β̃(α0;X−i)
∂α }

= 1
n

∑n
i=1{−

∑n
j=1

1
nGT

b (Xi; α0, β0)Σ
−1
1

∂2

∂βT ∂α
gl(Xj ; α0, β0)

+ ∂
∂αgl(Xi; α0, β0)

+
∑n

j=1
1
nGT

b (Xi;α0, β0)Σ
−1
1

∂2

∂β∂βT gl(Xj ;α0, β0)Σ
−1
1 Σ2

−∑n
j=1

∂
∂β gl(Xj ; α0, β0)Σ

−1
1 Ai

− ∂
∂β gl(Xi; α0, β0)Σ

−1
1 Σ2} + op(1)

p→ E{ ∂
∂αgl(X1; α0, β0)}

−E{ ∂
∂β gl(X1; α0, β0)}Σ−1

1

(

E{ ∂
∂αGb(X1; α0, β0)}

−E{ ∂
∂β Gb(X1;α0, β0)}Σ−1

1 Σ2

)

−E{ ∂
∂β gl(X1; α0, β0)}Σ−1

1 Σ2

= E{ ∂
∂αgl(X1; α0, β0)} − E{ ∂

∂β gl(X1; α0, β0)}Σ−1
1 Σ2

for l = 1, · · · , s − q2, which imply that

(5.14)
1

n

n
∑

i=1

∂

∂α
Yi(α0)

p→ Σ3.

Put V = {ΣT
3 (Σ∗)−1Σ3}−1. Similar to the proof of Theorem 1 of [35], we

can show that

√
n{α̂ − α0} = −V ΣT

3 (Σ∗)−1√nQ1n(α0, 0) + op(1)

and
√

nλ̂ = (Σ∗)−1{I − Σ3V ΣT
3 (Σ∗)−1}

√
nQ1n(α0, 0) + op(1).
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So,

ℓJ(α̂) =
∑n

i=1 λ̂T Yi(α̂) + 1
2

∑n
i=1 λ̂T Yi(α̂)Y T

i (α̂)λ̂ + op(1)

=
∑n

i=1 λ̂T Yi(α0) +
∑n

i=1 λ̂T ∂
∂αYi(α0)(α̂ − α0)

+1
2

∑n
i=1 λ̂T Yi(α0)Y

T
i (α0)λ̂ + op(1)

= n
2 QT

1n(α0, 0)(Σ∗)−1{I − Σ3V ΣT
3 (Σ∗)−1}Q1n(α0, 0) + op(1).

Similarly

ℓJ(α0) =
n

2
QT

1n(α0, 0)(Σ∗)−1Q1n(α0, 0) + op(1).

Thus

LR(α0)

= {(Σ∗)−1/2 1√
n

∑n
i=1 Yi(α0)}T {(Σ∗)−1/2Σ3V ΣT

3 (Σ∗)−1/2}

{(Σ∗)−1/2 1√
n

∑n
i=1 Yi(α0)} + op(1)

d→ χ2
q1

.
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Table 1

Empirical coverage probabilities for the proposed jackknife empirical likelihood confidence
interval(JELCI) and the profile empirical likelihood confidence interval(PELCI) with

nominal levels 0.9 and 0.95 for the 2-dimensional Gaussian copula and marginal
distributions N(−1, 1) and N(1, 1).

level 0.9 level 0.9 level 0.95 levle 0.95
JELCI PELCI JELCI PELCI

(n, θ) = (100, 0.25) 0.8960 0.8954 0.9464 0.9461
(n, θ) = (100, 0.5) 0.8960 0.8956 0.9456 0.9479
(n, θ) = (100, 0.75) 0.8916 0.9021 0.9429 0.9552

(n, θ) = (300, 0.25) 0.8987 0.8979 0.9491 0.9481
(n, θ) = (300, 0.5) 0.8963 0.8962 0.9497 0.9492
(n, θ) = (300, 0.75) 0.8972 0.8988 0.9499 0.9515

Table 2

Empirical coverage probabilities for the proposed jackknife empirical likelihood confidence
interval(JELCI) and the profile empirical likelihood confidence interval(PELCI) with

nominal levels 0.9 and 0.95 for the 2-dimensional Gaussian copula and marginal
distributions t7 and t8.

level 0.9 level 0.9 level 0.95 levle 0.95
JELCI PELCI JELCI PELCI

(n, θ) = (100, 0.25) 0.8683 0.8001 0.9184 0.8438
(n, θ) = (100, 0.5) 0.8573 0.7970 0.9114 0.8416
(n, θ) = (100, 0.75) 0.8563 0.8066 0.9076 0.8505

(n, θ) = (300, 0.25) 0.8961 0.8950 0.9455 0.9436
(n, θ) = (300, 0.5) 0.8969 0.8960 0.9451 0.9437
(n, θ) = (300, 0.75) 0.8961 0.8945 0.9453 0.9433
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Table 3

Empirical coverage probabilities for the proposed jackknife empirical likelihood confidence
interval(JELCI) and the profile empirical likelihood confidence interval(PELCI) with
nominal levels 0.9 and 0.95 for the 2-dimensional t copula and marginal distributions

N(−1, 1) and N(1, 1).

level 0.9 level 0.9 level 0.95 levle 0.95
JELCI PELCI JELCI PELCI

(n, θ) = (100, 0.25) 0.9031 0.9015 0.9512 0.9499
(n, θ) = (100, 0.5) 0.9011 0.9011 0.9475 0.9477
(n, θ) = (100, 0.75) 0.8969 0.9042 0.9467 0.9540

(n, θ) = (300, 0.25) 0.9011 0.8990 0.9491 0.9480
(n, θ) = (300, 0.5) 0.8947 0.8922 0.9469 0.9448
(n, θ) = (300, 0.75) 0.8893 0.8874 0.9449 0.9436

Table 4

Empirical coverage probabilities for the proposed jackknife empirical likelihood confidence
interval(JELCI) and the profile empirical likelihood confidence interval(PELCI) with

nominal levels 0.9 and 0.95 for the 2-dimensional t copula and marginal distributions t7
and t8.

level 0.9 level 0.9 level 0.95 levle 0.95
JELCI PELCI JELCI PELCI

(n, θ) = (100, 0.25) 0.8679 0.8054 0.9221 0.8518
(n, θ) = (100, 0.5) 0.8605 0.8055 0.9149 0.8531
(n, θ) = (100, 0.75) 0.8575 0.8123 0.9109 0.8612

(n, θ) = (300, 0.25) 0.8948 0.8923 0.9439 0.9420
(n, θ) = (300, 0.5) 0.8963 0.8937 0.9464 0.9439
(n, θ) = (300, 0.75) 0.8935 0.8928 0.9447 0.9434

Table 5

Empirical interval lengths for the proposed jackknife empirical likelihood confidence
interval(JELCI) and the profile empirical likelihood confidence interval(PELCI) with

nominal levels 0.9 and 0.95 for the 2-dimensional Gaussian copula and marginal
distributions N(−1, 1) and N(1, 1).

level 0.9 level 0.9 level 0.95 levle 0.95
JELCI PELCI JELCI PELCI

(n, θ) = (100, 0.25) 0.361 0.354 0.397 0.395
(n, θ) = (100, 0.5) 0.328 0.321 0.382 0.376
(n, θ) = (100, 0.75) 0.286 0.285 0.340 0.334

(n, θ) = (300, 0.25) 0.207 0.205 0.247 0.245
(n, θ) = (300, 0.5) 0.187 0.185 0.224 0.222
(n, θ) = (300, 0.75) 0.163 0.165 0.196 0.203
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Table 6

Empirical interval lengths for the proposed jackknife empirical likelihood confidence
interval(JELCI) and the profile empirical likelihood confidence interval(PELCI) with

nominal levels 0.9 and 0.95 for the 2-dimensional Gaussian copula and marginal
distributions t7 and t8.

level 0.9 level 0.9 level 0.95 levle 0.95
JELCI PELCI JELCI PELCI

(n, θ) = (100, 0.25) 0.949 0.938 1.131 1.117
(n, θ) = (100, 0.5) 1.036 1.011 1.233 1.201
(n, θ) = (100, 0.75) 1.130 0.986 1.348 1.174

(n, θ) = (300, 0.25) 0.548 0.547 0.654 0.652
(n, θ) = (300, 0.5) 0.593 0.590 0.706 0.703
(n, θ) = (300, 0.75) 0.634 0.632 0.755 0.752

Table 7

Empirical interval lengths for the proposed jackknife empirical likelihood confidence
interval(JELCI) and the profile empirical likelihood confidence interval(PELCI) with
nominal levels 0.9 and 0.95 for the 2-dimensional t copula and marginal distributions

N(−1, 1) and N(1, 1).

level 0.9 level 0.9 level 0.95 levle 0.95
JELCI PELCI JELCI PELCI

(n, θ) = (100, 0.25) 0.381 0.376 0.399 0.399
(n, θ) = (100, 0.5) 0.359 0.351 0.394 0.391
(n, θ) = (100, 0.75) 0.314 0.309 0.366 0.359

(n, θ) = (300, 0.25) 0.223 0.220 0.266 0.263
(n, θ) = (300, 0.5) 0.206 0.203 0.246 0.243
(n, θ) = (300, 0.75) 0.178 0.177 0.214 0.215

Table 8

Empirical interval lengths for the proposed jackknife empirical likelihood confidence
interval(JELCI) and the profile empirical likelihood confidence interval(PELCI) with

nominal levels 0.9 and 0.95 for the 2-dimensional t copula and marginal distributions t7
and t8.

level 0.9 level 0.9 level 0.95 levle 0.95
JELCI PELCI JELCI PELCI

(n, θ) = (100, 0.25) 0.956 0.941 1.140 1.121
(n, θ) = (100, 0.5) 1.038 1.015 1.236 1.207
(n, θ) = (100, 0.75) 1.118 0.976 1.334 1.164

(n, θ) = (300, 0.25) 0.553 0.551 0.659 0.657
(n, θ) = (300, 0.5) 0.593 0.590 0.707 0.703
(n, θ) = (300, 0.75) 0.631 0.629 0.752 0.749

imsart-aos ver. 2006/10/13 file: CJS-Final.tex date: January 8, 2011



REDUCE COMPUTATION 35

Table 9

Empirical coverage probabilities for the proposed jackknife empirical likelihood confidence
interval(JELCI) and the profile empirical likelihood confidence interval(PELCI) with

nominal levels 0.9 and 0.95 for the 3-dimensional Gaussian copula and marginal
distributions t7, t8 and t9.

level 0.9 level 0.9 level 0.95 levle 0.95
JELCI PELCI JELCI PELCI

(n, θ1, θ2, θ3) = (100, 0.25, 0.5, 0.25) 0.8216 0.7306 0.8799 0.7746
(n, θ1, θ2, θ3) = (100, 0.5, 0.5, 0.5) 0.8164 0.7363 0.8740 0.7794
(n, θ1, θ2, θ3) = (100, 0.75, 0.5, 0.75) 0.7908 0.7524 0.8497 0.7958

(n, θ1, θ2, θ3) = (300, 0.25, 0.5, 0.25) 0.8934 0.8907 0.9434 0.9384
(n, θ1, θ2, θ3) = (300, 0.5, 0.5, 0.5) 0.8893 0.8872 0.9429 0.9388
(n, θ1, θ2, θ3) = (300, 0.75, 0.5, 0.75) 0.8867 0.8859 0.9406 0.9390

Table 10

Empirical coverage probabilities for the proposed jackknife empirical likelihood confidence
interval(JELCI) and the profile empirical likelihood confidence interval(PELCI) with

nominal levels 0.9 and 0.95 for the 3-dimensional t copula and marginal distributions t7,
t8 and t9.

level 0.9 level 0.9 level 0.95 levle 0.95
JELCI PELCI JELCI PELCI

(n, θ1, θ2, θ3) = (100, 0.25, 0.5, 0.25) 0.8160 0.7341 0.8733 0.7784
(n, θ1, θ2, θ3) = (100, 0.5, 0.5, 0.5) 0.8025 0.7348 0.8648 0.7835
(n, θ1, θ2, θ3) = (100, 0.75, 0.5, 0.75) 0.7860 0.7443 0.8475 0.7920

(n, θ1, θ2, θ3) = (300, 0.25, 0.5, 0.25) 0.8867 0.8819 0.9390 0.9341
(n, θ1, θ2, θ3) = (300, 0.5, 0.5, 0.5) 0.8858 0.8834 0.9372 0.9340
(n, θ1, θ2, θ3) = (300, 0.75, 0.5, 0.75) 0.8842 0.8857 0.9334 0.9352
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Table 11

Jackknife empirical likelihood ratio test for H0 : µ = 0 in the variance gamma model for
financial time series. The samples are the weekly log changes of the SPX, VIX, FFR,

and GBP/USD time series. The skewness and kurtosis of the samples are also reported
as well as the naive t-statistic assuming that the samples are drawn from a normal

distribution with unknown variances.

log change of n skewness kurtosis t-test LR(0) p-value

SPX 3059 −0.54 7.77 3.5451 14.3046 0.0002
VIX 1018 0.39 4.82 0.1005 1.1303 0.2877
FFR 2881 −0.32 55.83 −0.2819 7.8141 0.0052

GBP/USD 1987 −0.43 7.10 −0.6286 0.8917 0.3450

Table 12

Jackknife empirical likelihood ratio test for H0 : A = 1/2 in a normal tempered stable
process for financial time series. The weekly log changes of the SPX, VIX, FFR, and

GBP/USD are studied.

log change of n LR(1/2) p-value

SPX 3059 1.0944 0.2955
VIX 1018 1.2903 0.2560
FFR 2881 10.1324 0.0015

GBP/USD 1987 0.2629 0.6082
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Fig 1. The historical times series of SPX, VIX, FFR and GBP/USD. Here
SPX, VIX, FFR and GBP/USD refer to the S&P 500 index, the CBOE volatility index,
the effective federal funds rate, and the exchange rate between the British Pound and US
Dollar, respectively.
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Fig 2. The historical times series of the log changes of SPX, VIX, FFR and
GBP/USD. Here SPX, VIX, FFR and GBP/USD refer to the S&P 500 index, the CBOE
volatility index, the effective federal funds rate, and the exchange rate between the British
Pound and US Dollar, respectively.
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