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1 Introduction

Many real-world cooperation dilemmas permit multiple modes of cooperation. Cab drivers at a

taxi stand are assigned to passengers according to an agreed upon order, whereas roaming cabbies

divvy up the dispatcher’s calls on a case-by-base basis, mostly by proximity to the passenger’s

location. Siblings can divide household chores in a given week on a volunteer basis or by taking

turns. Firms that face one another in multiple markets can collude by alternately competing

and acquiescing in markets or by staying out of less profitable markets.

Why are some cooperative dilemmas resolved by taking turns or alternating, while others

are best dealt with by conditioning one’s cooperative behavior on the value to defection, that is,

cutoff cooperation? In this paper, we aim to understand the features of cooperation dilemmas

that are conducive to alternating versus cutoff cooperation. For the purpose of studying the

way in which players cooperate, we introduce a class of two-player games that permits these

two distinct modes of cooperation in the repeated game. To illustrate, consider the following

game parameterization: each player privately receives a randomly drawn integer between 1 and 5

inclusive, each with equal probability. Each player then decides between one of two actions: enter

or exit. By exiting a player receives zero. By entering, he receives his number if his opponent

exits and one-third of his number if his opponent also enters.

The first-best outcome of this game entails the high-value player entering and the other player

staying out. This can be achieved only when players know or learn each others’ values for the

action before making a decision. Two strangers who reach the airport check-in counter at the

same time with tickets in hand can achieve the highest social surplus by having the person whose

flight does not leave for another four hours allow the hurried passenger to go ahead. Pregnant

women with children in arms are invited to bypass lengthy lineups.

In our game in which values are private and cannot be communicated or signaled, the first-

best outcome is no longer feasible. Instead, when the same pair of players interacts repeatedly,

cutoff cooperation and alternation are two cooperative norms that avoid the inefficient stage-
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game dominant strategy of always entering. Cutoff cooperation entails entering when the value

to doing so exceeds some threshold and not entering otherwise. Cutoff strategies thus condition

on players’ private information. Firms might implicitly collude by staying out of relatively

high-cost or low-demand markets with the expectation that rival firms will reciprocate. Auction

participants might bid only when the object is sufficiently valuable so as not to inflate the winning

bid unnecessarily or receive the object when another bidder values it more.

Unlike cutoff cooperation, alternating ignores private values; rather, it makes use of publicly

available information, like the time of day, the round or object number. Cooperation dilemmas

in families are often resolved by alternating. Spouses take turns making important decisions;

parents avoid favoring one child over another by rotating favors between them; and siblings

settle scores by recalling who enjoyed the same privilege (like riding in the front seat) last time.

Firms that compete with one another in multiple markets or in the same markets repeatedly, or

bidders who compete for similar objects auctioned off sequentially can cooperate by taking turns

capturing the market, instead of pricing or bidding aggressively in each market. Zillante (2005)

presents evidence that the four baseball-card manufacturers alternate the timing with which they

introduce new product lines in order to reduce intra-period competition.1

To address the questions of whether cooperation will emerge and what form it will take, we

begin with the above game parameterization, which yields very similar joint expected payoffs for

the socially optimal cutoff strategy and the alternating strategy. We conduct this game for 80

rounds under two private-information treatments that differ according to the point in time at

which a player learns his opponent’s number (at the end of the round or not at all). We find that

the socially optimal symmetric cutoff strategy whereby a player enters on the numbers 3, 4 and 5,

and exits otherwise is subjects’ modal choice in both treatments. Revealing opponents’ numbers

at the end of the round is particularly conducive to cutoff strategies since entry on low values is

observable and punishable. But even when the opponents’ numbers are not revealed, cooperative

1 Zillante (2005) discusses other known examples, such as the motion-picture and electrical switchgear indus-
tries, in which new-product-release dates have been staggered to blunt head-on competition.
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cutoff strategies continue to be employed by over 70% of subjects even though play according to

these strategies cannot be observed. Few subjects adopt alternation in either treatment.

In an effort to understand why so few subjects alternate, despite the strategy’s prevalence

in real-world cooperation dilemmas, we designed an additional pair of treatments in which we

added a constant of 100 to all of the entry values. This change makes the entry values relatively

similar, thereby reducing the importance of players’ private information, while leaving unchanged

the inherent difficulty coordinating on alternation. The results from these follow-up experiments

are discussed in section 7.

In the next section, we develop the theoretical framework for this class of two-player games

and through numerical optimization arrive at the above parameterization for our experiments.

We contrast our game with familiar cooperation and coordination games in section 3. In section

4, we detail our experimental design and procedures. Section 5 presents theoretical results

on cooperation for the infinitely repeated game, which yield testable experimental hypotheses.

Section 6 presents the results and analysis. We attempt to understand differences in cooperative

behavior between treatments and especially the paucity of alternating in these experiments.

Section 7 reports the results of additional treatments designed to determine whether the inherent

coordination problem with alternating may be overcome. Section 8 concludes with insights into

when to expect alternation versus cutoff strategies in real-world cooperation dilemmas.

2 Theoretical Framework

In this section, we introduce a class of two-player games. We derive the theoretical properties of

these games, which may be of some independent interest since these games are new. Moreover, the

theoretical and comparative-statics results will help guide our choice of game parameterization

for the subsequent experiments. While our experimental test involves a repeated game, we begin

with an analysis of the one-shot game to highlight some of the differences between this and

familiar cooperation games. All proofs appear in Appendix A. These results serve as a basis for
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further analysis of the repeated game (in section 5).

2.1 Environment

We propose a two-player game with the following general structure. Each player receives a

randomly drawn number between v and v inclusive where the probability of receiving a number

x is πx (where πx > 0 and
∑

x∈{v,...,v} πx = 1) and faces a binary decision A = {enter , exit}. By

exiting a player receives zero. By entering he receives his number if the other player exits or some

function f(x, y) increasing in his number, x, and possibly also a function of the other player’s

number, y, if both enter. We assume that f(x, y) is strictly less than his number x; hence entry

imposes a negative externality on the other player. We also assume that if it is profitable for a

player to enter alone (x > 0), then it is also profitable for him to enter when his opponent enters

(f > 0 for x > 0). For the purposes of this paper, we consider games in which a player’s number

is his private information.

2.2 Solutions

There are noncooperative and cooperative solutions to this game. If each player is concerned

about maximizing only his own payoff, then we can solve for the Bayes-Nash equilibrium. This

yields the dominant strategy of entry for numbers greater than zero.

The cooperative solution is given by the pair of strategies that maximizes the sum of the

players’ expected payoffs. Suppose the other player enters with probability p(y) when his number

is y. The joint expected payoff to entering with number x is,

∑

y∈{v...v}

πy {x(1 − p(y)) + p(y)[f(x, y) + f(y, x)]} .

The joint expected payoff to staying out is
∑

y∈{v,...,v} πyyp(y).

Lemma 1: If f is increasing in both arguments, then the cooperative solution entails cutoff

strategies (that is, for v ≤ y < v if p(y) > 0, then for all y
′

> y, p(y
′

) = 1).
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Monotonicity explains Lemma 1: if it is profitable to enter with number x, then it is also

profitable to enter with any number greater than x. A pure-strategy cutoff is when there exists

a c∗ such that for all x ≤ c∗, p(x) = 0 and for all x > c∗, p(x) = 1. A mixed-strategy cutoff is

when there exists an x such that 0 < p(x) < 1. The lemma implies that it is never optimal to

mix on more than one number in the range.

These cutoff values may be non-interior and even asymmetric. If f(x, y)+f(y, x) > max{x, y},

then the social optimum is non-interior – both enter. An extreme form of asymmetric pure-

strategy cutoffs involves one player entering for all numbers greater than or equal to v (i.e.,

always enter) and the other entering for numbers greater than v (i.e., always exit). In a repeated

game, this cooperative solution can admit the form of players taking turns entering and exiting.

This solution may only reasonably be expected in games in which the same pair of players

interacts repeatedly. All of our experiments are such.

2.3 Choosing a Particular Game

From this general framework, we selected a game to test experimentally with the goal of determin-

ing the form of cooperation. To choose a particular game, we performed numerical optimization

on the space of games in which players’ numbers are drawn from a uniform distribution of in-

tegers between v and v inclusive. We restricted f(x, y) to be of the form x/k (where k is an

integer) to aid subjects’ understanding of the game.

Our objectives were twofold: 1) to design a game for which the joint expected payoffs from

alternation and the socially optimal pure-strategy symmetric cutoff strategy are very similar; 2)

to maximize the difference between the joint expected payoffs from playing the optimal symmetric

pure-strategy cutoff, c∗, and the second-best symmetric pure-strategy cutoff. Put another way, we

want to maximize the steepness of the joint expected payoff function around the socially optimal

pure-strategy cutoff. Achieving this second goal maximizes the incentive for those players wishing

to cooperate to enter for numbers greater than c∗ and exit for numbers less than c∗. Deviations
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from this strategy can thus be interpreted as an intention not to cooperate optimally.

Before computing the game that maximizes these objectives, we first derive several theoretical

propositions and comparative-statics results for this class of games. These results will help narrow

the range of parameters from which we determine the optimal game.

Proposition 2: The socially optimal pure-strategy symmetric cutoff for integers drawn inde-

pendently from the uniform distribution of integers from v to v and congestion parameter k is

given by,

c∗ =
−1 − 2 v + (2 v − 1) k +

√
12 v (1 + v) (k − 1)2 + (1 + 2 v + k − 2 v k)2

6 (k − 1)
.

Although the expression for c∗ seems unintuitive, it demonstrates the uniqueness of the so-

cially optimal cutoff and leads to some sensible comparative-statics results. First, as the conges-

tion parameter, k, increases, so does the optimal symmetric cutoff for a given v and v. Intuitively,

as k increases, it becomes increasingly costly for both players to enter; as a result, the socially

optimal threshold for entry increases. Taking the limit of c∗ as k tends to infinity yields,

limk→∞ c∗ =
−1+2 v+

√
(1−2 v)2+12 v (1+v)

6
.

Moreover, taking k and v as fixed, the expression for c∗ also reveals that as v increases, so does

the socially optimal cutoff.

Corollary 3: For integer numbers uniformly distributed on [v, v], v < v, and k ≥ 3, the

socially optimal cutoff always involves each player exiting on at least the integer v.

The surprising aspect of Corollary 3 is that no matter how small the percentage difference

between the highest and lowest integers in the range of numbers, the socially optimal cutoff

always involves some measure of cooperation by exiting on at least the lowest integer, v, in the

range.
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Proposition 4: For k ≤ 2, the socially optimal strategy is a cutoff strategy. In the uniform

case, as k → ∞, the socially optimal strategy is alternating.2

In our search for a parameterization that yields similar joint expected payoffs for the optimal

cutoff and alternating strategies, Proposition 4 suggests values of k greater than 2, but not too

large: we allowed k to vary from 2 to 5. Over the range of numbers, {v, . . . , v}, we allowed v

to be any integer greater than or equal to 3, and fixed v = 1.3 This latter decision was made

because if v is an integer less than 1, then the strategy “always enter” is no longer a unique

dominant strategy in the stage game.

For our experiments, we chose (v = 5, k = 3). Figure 1 displays the results of our search

for the range of numbers {1, . . . , 5} and k ∈ {2, 3, 4, 5}. The figure reveals that the optimal

pure-strategy cutoff value, c*, equals 1.5 for k = 2, equals 2.5 for k = 3, 4, and equals 3.5 for

k ≥ 5. We express all cutoffs as halves to denote unambiguously that the player enters on all

integers greater than the cutoff and exits otherwise. The figure also shows that the steepness

around c∗ is maximized for k = 3. For k = 3, the pair’s expected payoff if each player employs

the optimal cutoff, c∗ = 2.5, is 2.88. For c = 3.5, the pair’s expected payoff decreases to 2.64 and

to 2.61 for c = 1.5. Table 1 indicates the pair’s joint expected payoff for all pure-strategy cutoffs

and alternating.

[insert Figure 1 and Table 1 here]

2 When the distribution of values is not uniform, Proposition 4 does not generally hold. Take for example the
values of 100 with probability 1/3 and 1 with probability 2/3. For large k, alternating yields a joint expected
payoff of 34. Entering only when one has 100 yields 100 with probability 4/9 and ǫ otherwise. Hence, this optimal
cutoff strategy yields a higher joint expected payoff.

3 In selecting parameters, for a given f , we can often increase the steepness of the joint expected payoff function
around the socially optimal pure-strategy cutoff by shrinking the number of integers in the range {v, . . . , v} (i.e.,
by lowering v in our case). However, if the optimal cutoff is in mixed strategies, this need not be true. Instead, the
joint expected payoff function connecting the two pure-strategy cutoffs that straddle the optimal mixed-strategy
cutoff can be rather flat. Indeed the optimal symmetric cutoffs are in mixed strategies for (v = 3, k = 4),
(v = 4, k = 4), (v = 5, k = 2) and (v = 5, k = 4). An optimal solution in mixed strategies should be avoided due
to the salience of the nearby, almost optimal, pure strategies, the improbability that both subjects will solve for,
and play, the optimal mixed-strategy cutoff and the added difficulty in determining whether subjects are playing
mixed strategies.
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For our chosen parameterization, the alternating strategy earns the pair 3 units of profit in

expectation, a mere 0.12 units more than than the optimal symmetric cutoff, c∗ = 2.5. That

these two strategies perform almost equally well despite their qualitatively very different natures

raises the empirical question of which one, if any, will be adopted by players. Not only is the

pair’s expected payoff from playing the alternating strategy (3) higher compared to the optimal

cutoff strategy (2.88), the variance of the expected payoff is also lower: 2 compared to 2.42.

3 Related Games

The best known and most frequently tested cooperation game, the prisoners’ dilemma (PD),

has a unique dominant-strategy equilibrium in the one-shot game in which both players defect;

however, if both players could commit to cooperation, both would be better off. Likewise, in

the public-goods game (PG) (an n-player extension of the PD), the socially optimal outcome

involves all players contributing their endowments to a public good, which conflicts with the

unique dominant-strategy equilibrium in which each player to a private good. Noncooperation

(enter) is also the unique dominant-strategy equilibrium of our class of games. Unlike the PD and

PG games, the socially optimal outcome in our game involves one person playing his dominant

strategy and the other playing his dominated strategy. A second distinction of our game is

that if both players choose their dominant strategies they are better off than if both play their

dominated strategies.

Van de Kragt, Dawes and Orbell (1983) introduce a variation on the standard public goods

game in which a minimum aggregate contribution to the public good is required for its provision.

In these threshold or step-level public goods games, there is no dominant strategy since each

player would prefer to contribute if and only if his contribution is pivotal in ensuring the public

good’s provision.

Amnon Rapoport and his coauthors have conducted various versions of a market-entry game

first introduced by Kahneman (1988). In an early version, Rapoport (1995), n symmetric players
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independently decide whether to enter a market with capacity c ≤ n. Staying out yields a fixed

payoff, whereas entering yields a payoff that decreases in the number of entrants and yields less

than the fixed payoff from staying out in the case of excess entry.4 In subsequent versions of the

market-entry game, Rapoport and coauthors have explored the effect of deciding whether to enter

in one of two markets where each market’s capacity changes in each period (Rapoport, Seale and

Winter, 2000) and asymmetric entry costs that are held constant throughout the experiment

(Rapoport, Seale and Winter, 2002). These games have large numbers of pure-strategy and

mixed-strategy equilibria, all efficient and all characterized by some subset of players entering

with positive probability. By contrast, our games have a unique Nash equilibrium, which is

inefficient and at odds with the full-information, social optimum whereby one player enters and

the other exits. Moreover, exit is a strictly dominated strategy in our game for v > 0 and f > 0.

Put another way, if both players enter (“excess entry”), unlike the market entry game, each

entrant still earns more than if he had exited.

For a particular realization of players’ numbers, the 2 × 2 payoff matrix in Table 2 makes

precise the outcome differences between our game and others. The top row and left column are

the cooperate/exit/swerve action (depending on the game in question). The bottom row and

right column are the defect/enter/not swerve action. Normalizing the off-diagonal payoffs to

(1,0) and (0,1), we denote the payoffs from the cooperative outcome as (a, a) and from the defect

outcome as (b, b).

[insert Table 2 here]

The PD and PG games restrict a > b > 0 and a < 1, but 2a > 1 in order for the cooperative

outcome to be efficient. The market-entry game requires a = 0 and b < 0. The game of chicken

can be characterized by 1 > a > 0 > b. It has the same asymmetric equilibria as the market-

entry game and can be seen as a limiting case of it as a decreases to 0. For both games, the

4 The special case in which the payoff for entering changes only in going from within-capacity to over-capacity
is known as the El Farol Problem (see Arthur, 1994).
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Nash equilibria are also the socially optimal outcomes. For the battle-of-the-sexes game the Nash

equilibria also correspond to the social optima, although they are the diagonal outcomes. Finally,

our game requires b > a = 0, and 2b < 1 to ensure that the off-diagonal outcomes are efficient.

Our game is the only one for which coordination is needed to reach a social optimum that is

not an equilibrium. Private information further complicates this task by making it difficult to

coordinate on any social optimum at all.

4 Experimental Design and Procedures

All experiments were conducted in fixed pairs. Each player in the pair received an independently

and randomly drawn integer between 1 and 5 in each round. Subsequently, each player decided

independently whether to enter or exit. The decision to exit yields 0, whereas entry yields the

value of the number if the opponent exits and 1/3 of the value of the number if the opponent

also enters. All experiments were conducted for 80 rounds.

At the end of each round, a player observes his opponent’s decision to enter or exit. We

conducted two experimental treatments that differ by the point in time at which a player learns

his opponent’s value (after the round or never). In “After”, at the end of each round, each player

learns his opponent’s decision and value. In “Never”, a player does not observe his opponent’s

number at the end of the round, only his decision to enter or exit.

The After treatment provides relatively favorable conditions for cooperation since the pair

may coordinate on and enforce both alternation and cutoff strategies. If a player enters when it

is not his turn to enter or on a low number, say 1, he recognizes that his opponent will observe

this defection and can retaliate by entering out of turn or the next time he receives a 1.

In Never, deviations from alternating strategies are easily detected and punishable; whereas,

defection from cooperative cutoff strategies is more difficult to detect. A player does not know if

his opponent entered because he is playing uncooperatively or because he drew a high number.

Frequent entry may just reflect lucky draws of high numbers. A rule could be adopted whereby
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more than 7 entries in the past 10 rounds constitutes a deviation; yet, efficiency would be lost

if more than 7 of the last 10 draws exceeded the cutoff of 2.5. Furthermore, how does the pair

coordinate upon the rule of 7 out of 10, or any other? This lack of information in Never renders

cooperative cutoff strategies unlikely.

Upon arrival, each subject was seated in front of a computer terminal and handed the sheet

of instructions (see Appendix B). After all subjects in the session had read the instructions, the

experimenter read them aloud. To ensure full comprehension of the game, subjects were given

a series of knowledge-testing questions about the game (Appendix B contains the questions).

Participation in the experiment was contingent upon answering correctly all of the questions.5

Five practice rounds were then conducted with identical rules to the actual experiment. To

minimize the influence of the practice rounds, subjects were rematched with a different opponent

for the 80-round experiment.

An important feature of our experimental design that allows us to compare subjects’ behavior

across pairs and across treatments is our use of one pair of randomly drawn sequences of 80

numbers (85 numbers including the five practice rounds) from 1 to 5. Before beginning the

experiments, we drew two 80-round sequences, one for each pair member. We applied these

sequences to all subject pairs in all sessions and treatments.6

We recruited subjects from a broad range of faculties and departments at Ben-Gurion Univer-

sity. Sixty-two subjects participated in one of the three After sessions and a different 62 subjects

participated in one of the three Never sessions. In both treatments, one unit of experimental

currency was exchanged for 0.6 shekels at the end of the session. A session lasted about 100 min-

utes on average, including the instructions phase and post-experiment questionnaire. Including

a 10-shekel showup fee, the average subject profit was 76 shekels.7

5 No one was excluded from participating. All subjects who showed up answered correctly all of the questions
in the allotted time.

6 Thus, for instance, in round 56 regardless of pair, session or treatment, one pair member received a value of
2, while the other received a value of 4.

7 One U.S. dollar equals about four shekels.
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5 Cooperation in the Repeated Game

Our theoretical results thus far all refer to the one-shot game where entry is the dominant

strategy. However, the repetition of our experiments for 80 rounds with the same partner raises

the possibility of some measure of cooperation. Indeed, in finitely repeated prisoners’ dilemma

and public goods games, cooperation is frequently observed before breaking down in the terminal

rounds of play (see, e.g., Davis and Holt 1993).8

We can show that if subjects play the repeated game as if it is infinitely repeated, for a

sufficiently high discount factor they will not deviate from the alternating strategy in After or

Never nor from symmetric cooperative cutoff strategies in After.

Proposition 5: In an infinitely repeated game, for sufficiently patient players (high δ):

(i) Alternation is a sequential-equilibrium (SE) strategy for the paired players in both the After

and Never treatments;

(ii) The symmetric cooperative cutoffs c = 1.5, c∗ = 2.5 and c = 3.5 are additional SE strategies

in the infinitely repeated game in the After treatment only;

(iii) It is possible to support cutoff cooperation as a SE in Never, but only when strategies consist

of history-dependent actions.

From the proof of Proposition 5(iii), we observe that if cutoff cooperation is played, then the

cutoff value responds dynamically to the player’s history of values and entry decisions. Thus,

to the extent that subjects in our experiments adopt these dynamic strategies, any attempt to

categorize their play in Never as pure-strategy cutoffs will lead to higher error rates compared

to After in which pure-strategy cutoffs may be supported in equilibrium.

8 Normann and Wallace (2004) compare cooperation in a finitely repeated prisoners’ dilemma known to
terminate after 22 rounds with two simulated infinitely repeated games with continuation probabilities of 1/6 and
5/6 implemented after round 22. Except for a significant endgame effect in the known finite-horizon game, the
termination rule does not significantly affect cooperation rates. Dal Bo (2005) carefully calibrates the lengths of
the finitely repeated games (T = 2 and 4) to coincide with the expected lengths of the infinitely repeated ones
(δ = 1/2 and 3/4) and finds higher cooperation rates in the comparable infinitely repeated games. Perhaps the
finite horizons of two and four rounds are too short to encourage cooperation.
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The next proposition compares cooperation in After and Never.

Proposition 6: For any SE in Never, there is a SE in After with the same value-contingent

payoffs; the reverse, however, is not true.9

The implication of Proposition 6 for our experiments is that, compared to Never, the subjects

in After have a strictly larger set of SE upon which to coordinate. As a result, we anticipate

higher cooperation in After than in Never.

Unconditional cooperation in humans is rare, in large part because it is easily exploited.

Rather, individuals typically condition their cooperative behavior on their opponents’ cooperat-

ing to a similar degree. Both the reward of cooperative behavior (positive reciprocity) and the

punishment of uncooperative behavior (negative reciprocity) have been widely documented in

the experimental literature (see, e.g., Andreoni et al. 2003, Fehr and Gachter 2000). In After, if

a player’s opponent is visibly playing, say, a higher cutoff than him, he may switch to the same

cutoff and exit more frequently (positive reciprocity). Alternatively, he may respond to his oppo-

nent’s deviations from a cutoff strategy by entering more frequently (negative reciprocity). The

absence of information in Never inhibits subjects from directly rewarding or punishing number-

contingent actions. Instead, subjects may set a threshold of entry frequency for their opponent

(e.g., 7 of the past 10 rounds, as mentioned in section 4); if the opponent exceeds this threshold,

they respond by entering in one or more subsequent rounds regardless of their number.

With the promise of positive reciprocity or threat of negative reciprocity, a subject may will-

ingly adopt this sort of entry budgeting. Jackson and Sonnenschein (2007) demonstrate that

individuals may achieve higher social efficiency by budgeting (i.e., rationing) their representa-

tions in a voting game in accordance with their empirical distributions. However, Engelmann

9 Proposition 6 resembles Kandori (1992) who shows that when players’ actions are imperfectly observed by
opponents, as the precision of the signal about an opponent’s action increases, the set of sequential-equilibrium
payoffs expands. In our framework, players’ actions are perfectly observable; it is their payoffs from these actions
that is private information. We have considered the two extremes of private information (Never and After).
Instead, if players received a noisy signal about their opponents’ payoffs after each round, then Proposition 6
would generalize to having the set of SE increase with the precision of the signal, parallel to Kandori.
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and Grimm (2006) show experimentally that only an exogenously imposed budget significantly

improves the truthful representation of preferences and overall efficiency in this game.

Budgeting is not needed in After because play according to cutoffs is observable. Once

equilibrium is reached, we would not anticipate negative reciprocity in After since it is off the

equilibrium path. In Never, by contrast, optimal punishment may be set to deter deviation from

a subject’s budget when he receives low values. Notwithstanding, punishment may be insufficient

to deter exceeding budget when the subject faces a 5.10

6 Results

We begin this section by comparing cooperation across treatments. In 6.2, we estimate whether

a cutoff or the alternating strategy most closely characterizes each individual subject’s observed

decisions. Section 6.3 explores the dynamics in arriving at these strategies. We attempt to

understand our results in 6.4.

6.1 Cooperation across Treatments

Table 3 is a simple presentation of aggregate decisions: the entry percentage for a given number

and treatment. For instance, in the After treatment when subjects drew the number 1, they

entered only 16.3% of the time. These summary statistics reveal a number of findings. First, not

all subjects are playing the static Nash equilibrium: exit is the modal decision for the number

1 in both treatments and also for the number 2 in After. Second, the sharp spike in entry

percentages in going from the number 2 to 3 in both treatments suggests that many subjects

may be employing the socially optimal cutoff of 2.5. Third, that not all subjects are entering all of

the time on numbers 4 and 5, particularly in Never, suggests the use of alternating strategies for

which entry and exit decisions are independent of the numbers received. Finally, as anticipated

10 The proof of Proposition 5(iii) provides an example.
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by Proposition 6, cooperation increases with increasing information, as seen by the overall lower

entry frequency in After.

[insert Table 3 here]

To determine whether the difference in cooperation across treatments is significant we esti-

mate a random effects Probit model on the pooled data from both treatments to explain the

variation in subject i’s decision to enter in period t. The specification for our random effects

Probit model is as follows,

Ẽnterit = constant + β1 ∗ Never + β2 ∗ C1.5 + β3 ∗ C2.5 + β4 ∗ C3.5 + (1)

β5 ∗ C4.5 + β6 ∗ first10 + β7 ∗ last10 + ǫit,

where ǫit = αi + uit

and Enterit =





1 if Ẽnterit ≥ 0

0 otherwise.

The treatment dummy Never tests for differences in the level of cooperation across treatments.

The dummy variable C1.5 equals one if player i’s period t number is 2, 3, 4 or 5 and equals zero if

it is 1; similarly, C2.5 equals one for numbers 3, 4 and 5, and zero otherwise, and so forth for C3.5

and C4.5. The marginal effects of the estimated coefficients on these variables are interpreted as

the marginal propensity to enter for numbers 2, 3, 4 and 5, respectively. Also in the regression

equation are dummy variables for the first 10 and last 10 periods, which control for initial learning

and end-game effects, respectively. The error term, ǫit, is composed of a random error, uit, and

a subject-specific random effect, αi.

Table 4 displays the regression coefficients and marginal effects. The highly significant and

positive coefficient on Never and the marginal estimate in regressions (1) and (2) indicate that

a subject is about 5% more likely to enter in Never than in After, controlling for the subject’s

number and for initial learning and end-game effects in (2). The significance of “first10” and
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“last10” supports these latter effects in the anticipated directions: subjects are less likely to enter

early on and more likely to enter toward the end of the game.

[insert Table 4 here]

The estimates of ρ in Table 4 measure the fraction of the error term’s variance accounted for

by subject-specific variance. The highly significant estimates of 0.192 and 0.411 indicate that

about 19% and 40% of the variance in the error term is explained by subject heterogeneity in

the two specifications, respectively.

6.2 Individual Strategies

To understand better the heterogeneity in subject behavior, we infer the strategy that best fits

each subject’s observed decisions, that is, the strategy that minimizes the number of errors in

classifying the subject’s decisions. We search over each of the possible pure-strategy cutoffs,

c ∈ {0.5, 1.5, 2.5, 3.5, 4.5, 5.5}, and the alternating strategy, generously modeled as the choice of

an action opposite to the one made in the previous round.11

[insert Table 5 here]

Despite the slight payoff advantage and lower payoff variance of the alternating strategy,

our main finding is the overwhelming adoption of cooperative cutoff strategies and the paucity

of alternators. Table 5 reports the distribution of individuals’ best-fit strategies by treatment

for rounds 11–70.12 The optimal symmetric cutoff strategy of c∗ = 2.5 best characterizes the

decisions of 39/62 subjects in the After treatment.13 Nine subjects in After appear to be

11 Although there are other ways to model the alternating strategy, such as enter in odd or even rounds only,
our chosen specification based on comparing decisions in rounds t and t− 1 is robust to mistakes: for instance, it
detects subjects who began alternating, stopped for one or more rounds and resumed alternating by coordinating
differently on who enters on the odd and even rounds.

12 Excluding the first 10 and last 10 rounds reduces the error rates by minimizing the initial learning and
end-game effects documented in the regression analysis. The inferred best-fit strategies are highly robust to the
different time horizons tested, like all 80 rounds, the last 60 rounds, the last 40 rounds and rounds 16–65.

13 In the case where two strategies explain a subject’s decisions equally well, each of the tied strategies receives
half a point.
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employing the cutoff of 1.5; for one of these subjects, the static Nash strategy of always enter

fits his decisions equally well. Eight additional subjects also play according to the Nash strategy

of c = 0.5, while four other subjects (two of whom form a pair) use the hyper-cooperative cutoff

of 3.5. Only one pair of subjects alternates, beginning in period 33 and continuing without

deviation through period 80.

The Never treatment is a more likely candidate for alternating because the play of cutoff

strategies cannot be observed or enforced. Still, a meager two out of 31 pairs alternate.14 An

additional subject whose best-fit strategy is alternating eventually abandons it after his opponent

fails to reciprocate.

Table 5 also reveals a marked shift from higher to lower entry cutoff values in going from After

to Never. For example, the percentage of subjects playing the optimal symmetric pure-strategy

cutoff declines from 62.1% in After to 38.7% in Never, while those who always enter increases

from 13.7% to 20.2%. Like the overall entry percentages in Table 3 and the regression results

in Table 4, these individual inferred strategies also point to a decline in cooperation when less

information is provided.

Overall, this inference technique fits the data well as seen in the error rates of 6% and 8%

for the two treatments, respectively.15 Thus, of the 3720 decisions made by the 62 subjects

in After between rounds 11 and 70, 3479 of them correspond to the best-fit strategy inferred

for each subject. By comparison, if we assume that all subjects are playing the static Nash

strategy, then the third-to-last row of data in Table 5 indicates that the error rates jump to 15%

and 32% depending on the treatment. In addition, we generated random decisions for subjects

calibrating the probability of entry to match the observed overall rate of entry in each treatment

(.677 and .744 respectively for the treatments). We then calculated the error rate from these

random decisions for each subject’s best-fitting strategy and for each subject assuming static

Nash play. The results in the bottom two rows of Table 5 again demonstrate that our inferred

14 For these pairs, alternation begins in rounds 2 and 8, respectively, and continues flawlessly for the duration.
15 The higher error rate for Never agrees with the implication of Proposition 5.
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strategies on the actual data fit the data much better than the best-fitting and Nash strategies

on the randomly generated data. In sum, subjects are indeed playing in a non-random, methodic

fashion that can be captured mostly by cutoff strategies.16

Our strategy analysis also reveals that pair members typically coordinate on the same co-

operative strategy. In After, of the 30 pairs that employ cutoff strategies, members in 22 pairs

coordinate on the same cutoff values. If subjects independently chose their strategies according

to the observed distribution of best-fit strategies, the probability of at least 22 pairs coordinating

on the same cutoff is 1/60. Sixteen out of 28 pairs do so in Never. In addition, for all 12 pairs

in which partners do not coordinate on the same cutoffs, their inferred cutoffs differ by only one

integer value. Again, if subjects drew their strategies independently from the observed distribu-

tion, the likelihood of obtaining this degree of coordination or better is 1/600. The implication is

that it is extremely unlikely in both After and Never that paired subjects achieved the observed

degree of coordination on the same or similar cutoff values by mere chance. Paired subjects’

coordination is particularly surprising in Never, since opponents’ values are unobservable.

Successful coordination on the same strategy shows up in the form of higher profits for paired

subjects playing the optimal cooperative cutoff strategy than those who always enter. The right-

hand columns of each treatment in Table 5 reveal that the average subject profits for c∗=2.5 are

111.6 and 106.8 in After and Never, respectively, compared to 109.5 and 93.2 for always enter.

These profits reveal that non-cooperators earned substantially more in After than in Never. The

explanation is that 5/9 Nash players in After were paired against more cooperative subjects

compared to only 3/13 in Never. How did such a relatively high fraction of subjects in After

allow their partners to always enter, when entry on values of 1 and 2 is perfectly observable in

this treatment? A likely explanation is that these unconditional cooperators encourage defection.

A subject who enters on a 1 and observes that his opponent does not retaliate is emboldened to

16 A complementary method to determine subjects’ strategies is to ask them. We did this in a post-experiment
questionnaire. Many subjects claim to decide randomly when in fact their decisions display a clear tendency to
enter on higher numbers and exit on lower ones. For the minority of subjects whose responses are interpretable
as either alternating or cutoffs, they match our inferred strategies well.
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do so again, while in Never the defector as such is not observable.

6.3 Dynamics

The strategy analysis in the preceding section does not help us understand how pair members

succeed in coordinating on the same cutoff values. In this section, we explore two forms of

dynamic behavior that may have aided coordination, budgeting and reciprocity (both discussed

in section 5).

The idea underlying budgeting is that a player bases his current-period entry decision on his

entry frequency in previous periods. The player has a target frequency of entry from which he

attempts not to deviate. Having entered frequently in recent periods, he may choose to exit

in the current period (regardless of his value) to avoid exceeding this target. We refer to this

as “gentlemanly budgeting”. The maintenance of goodwill with one’s partner may motivate

gentlemanly budgeting. On the other hand, if the player has exited frequently in recent periods,

he may choose to enter in the current period (regardless of his value) to maintain his target entry

frequency. We refer to this as “opportunistic budgeting”.

Consider, for example, a subject with a target entry frequency of 60%. In an effort not to

deviate excessively from this target, the subject may decide to enter if he has exited in six or

more of the past 10 periods and to exit if he has entered in eight or more of the last 10 periods.

Alternatively, the subject may base his current-period entry decision on his entry frequency from

the past five or past three periods only. These examples begin to illustrate the large number of

possible time horizons and rules for entry and exit on which subjects may condition their entry

decisions.

We do not aspire to understand individual subjects’ time horizons or target entry frequencies.

Instead, to determine empirically whether the gentlemanly or opportunistic budgeting motives

may guide subjects’ entry decisions, we include two dummy variables in estimating subject i’s

entry decision in period t: “iprevious2enter” assumes a value of 1 if the subject entered in the
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previous two rounds and zero otherwise; similarly, “iprevious2exit” takes on a value of 1 if the

subject exited in the previous two rounds and zero otherwise. Looking at occurrences where

the subject makes the same decision in the previous two rounds both eliminates alternators and

captures budgeting over two or more rounds.17

We also explore empirically the reciprocity motive. A subject may reward his opponent’s re-

cent under-entry by exiting in the current period (positive reciprocity). Similarly, he may punish

his opponent’s recent over-entry by entering (negative reciprocity). Again to avoid confounding

alternating with reciprocity, we investigate whether the subject is responsive to his opponent’s

decisions made in the past two periods. The variable “uprevious2enter” takes on a value of 1

if the opponent entered in periods t − 1 and t − 2, and zero otherwise. The variable “uprevi-

ous2exit” is analogously defined. As with budgeting, these variables capture reciprocity based

on the opponent’s decisions from the past two or more rounds.

Table 6 reports the results of these random-effects regressions designed to test for the bud-

geting and reciprocity motives in the After and Never treatments. From regression (1), two

significant tendencies can be seen in After: subjects are less likely to enter in the current round

if either in the previous two rounds they entered or their opponent exited (iprevious2enter and

uprevious2exit are both negative and significant). The first of these trends points to gentlemanly

budgeting, while the latter suggests positive reciprocity. Interestingly, from regression (3) we

see that neither of these two variables is significant in Never, whereas precisely the other two

variables (iprevious2exit and uprevious2enter) are both highly significant and positive. That is,

subjects are more likely to enter in the current round if either in the previous two rounds they

exited or their opponent entered. The first of these trends is opportunistic budgeting, while the

latter reflects negative reciprocity.

[insert Table 6 here]

17 For example, if for rounds one to seven the subject has a budget of entering up to four times, then entry
in, say, rounds 1 and 2 increases the threshold value (and therefore decreases the likelihood) of entry in round 3,
whereas consecutive exiting in rounds 1 and 2 decreases the threshold entry value in round 3.
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Both of these budgeting and reciprocity trends in Never are less cooperative and imply more

entry than the corresponding findings in After.18 By taking advantage of the unobservability

of values in Never to enter when they have exited “too often”, subjects exhibit limited trustwor-

thiness. By entering when their opponent has entered “too often”, subjects exhibit limited trust

that their opponent is abiding by their implicitly agreed upon cutoff strategies.

To determine whether these budgeting and reciprocity tendencies take place simultaneously

or at different stages during the course of play, in regressions (2) and (4) we interact each of the

four variables from (1) and (3), respectively, with a dummy for the first 40 rounds (“half1”) and

the last 40 rounds (“half2”). In After, gentlemanly budgeting plays a significant role only in the

first half as subjects push for cooperation while they learn to play a cutoff strategy. The weakly

significant negative coefficient on “uprevious2exit*half2” is evidence of positive reciprocity in the

latter half of the game and reflects the subject’s willingness to be pulled to more cooperative

play.19 In Never, opportunistic budgeting is a significant motive throughout, whereas negative

reciprocity is significant in the latter half only as subjects attempt to maintain cooperation.

6.4 Why so few alternators?

Although the pair’s expected profit from alternating is slightly higher (by 0.12 units per period)

and the variance lower than those from the optimal cutoff strategy of c∗ = 2.5, the overwhelming

majority of subjects employ cutoffs. There are two possible explanations.

First, successful alternation requires coordination on the part of both pair members, as wit-

nessed by several subjects who began the game alternating, but eventually abandoned it after

their partner failed to reciprocate. By contrast, cutoff cooperation can be implemented unilat-

erally and its usefulness does not require coordination on the same cutoff.

18 If we replace these four variables based on the same previous two-round decisions with analogous variables
from the previous three rounds, all of our findings above as well as those reported below remain qualitatively
similar.

19 Once in equilibrium, neither reciprocity nor budgeting is necessary in After, according to our theory in
section 5. The significance of these coefficients indicates a transition.
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Second, cutoff cooperation is cheap, since it involves exiting on the lowest values, when it

is least costly to do so; whereas, alternation ignores the value to entry. Thus, for a player who

decides to cooperate regardless of whether his opponent reciprocates, his foregone profit from

exiting only on low values is less than if he exits just as often without regard for values (as with

alternating).

To determine which of these reasons accounts for subjects’ unwillingness to alternate, we

designed an additional pair of treatments that maintains the difficulty of coordinating jointly on

the alternating strategy, but makes cutoff cooperation less cheap.

7 In Search of Alternating

7.1 Experimental Game and Procedures

By shrinking the percentage difference between v and v, the values to entering become more

alike making cutoff cooperation less cheap. In the extreme case where v = v, one would expect

all players to alternate. If siblings derive identical utility from riding in the front seat, they will

take turns enjoying this privilege.

To determine if a game parameterization with more similar values can increase alternation,

we conducted two additional treatments. We added a constant of 100 to the randomly drawn

numbers 1-5. Thus, the After100 and Never100 treatments are identical to the similarly named

original treatments (i.e., five integers in the range, k=3), except that players’ iid integers come

from the uniform distribution 101 to 105. The dominant stage-game strategy remains entry.20

By corollary 3, we know that the socially optimal cutoff involves exiting on at least the lowest

integer in the range. Indeed, c∗ = 101.5 is the socially optimal pure-strategy cutoff and yields

the pair an expected payoff of 77.28 units per round. By comparison, alternating earns 103 in

expectation, a 33% premium over c∗ = 101.5. The research question can then be phrased as,

20 Note well that the payoff to exit remains zero. If we had also added 100 to the exit payoff, entry would no
longer be the dominant strategy.
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is the joint payoff premium to alternation sufficient to overcome its inherent dual coordination

problem?

Sixty and 70 subjects participated in After100 and Never100, respectively. Participation was

again restricted to one experiment per subject and no subject had participated in either After or

Never. In selecting the experimental-currency-to-shekel ratio, we held constant across both sets

of treatments the joint monetary payoff from the optimal cooperative strategy of alternating.

Also, keeping fixed his opponent’s decisions, a player always entering earns the same expected

monetary payoff in all treatments. This implies a new exchange rate of 1:0.0175. Table 7

compares the nominal and real payoffs in the original and follow-up treatments.

[insert Table 7 here]

7.2 Results from Follow-Up Treatments

The last two columns of Table 8 reveal little variation in the entry decisions as a function

of the number received in both After100 and Never100. Overall, about 61% of the decisions

are enter on 101, increasing to 67% on the number 105. This stability of entry percentages

attests to alternation. The strategy inference analysis in Table 9 confirms the preponderance of

alternators: alternating is the best-fit strategy for 64% of subjects in Never100 and a still higher

73% of subjects in After100, even though After100 affords the opportunity to observe and thus

coordinate on cooperative cutoff strategies. Alternating and Nash play account for about 95%

of subjects in both treatments. No subject plays according to the optimal cutoff c∗ = 101.5 in

After100 and only 1.5/70 adopt this cutoff in Never100. Put starkly, those who cooperate in

these experiments alternate; the remaining quarter of the subjects are best described by entering

in every round.

[insert Tables 8 and 9 here]

How can we explain the shift from almost all cutoff cooperators in the original treatments

to almost all alternators in these follow-up treatments? By adding a constant of 100, both the
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nominal and real payoffs to entry are made very similar for all values 101-105, as shown in Table 7.

It no longer matters substantively whether a player enters alone on the highest or lowest integer

in the range: the difference in both monetary and nominal terms between the two outcomes is a

paltry 4% compared to 400% in the original treatments. In addition, Table 7 shows that exiting

on the lowest integer is about three times costlier in these treatments than the original ones, no

matter if only one player exits (foregone profit of 0.588 vs. 0.2) or both do (foregone profit of

1.765 vs. 0.6). Alternation ensures that exactly one player enters each round, thereby at once

avoiding congestion and the now costlier outcome whereby both players receive low draws and

exit.

The prevalence of alternators in these treatments implies that the two-person coordination

problem inherent in alternating is not insurmountable. By increasing the joint-expected-payoff

advantage to alternating (i.e., by making cutoff cooperation less cheap), all cooperators switch

from cutoffs to taking turns.

Figures 2a and 2b also attest to the pervasiveness and stability over time of the alternat-

ing strategy in both After100 and Never100. If all subjects employed the alternating strategy

throughout the game, 50% of the decisions would be exit in every round; whereas exit percent-

ages varying from 0 to 100 depending on the numbers drawn would reflect cooperative cutoff

strategies. In round 3, for example, paired subjects drew numbers 101 and 102 followed by 104

and 105 in round 4. Accordingly, the exit percentage swung from 57% to 17% in Never100 and

from 48% to 23% in After100, suggesting that some subjects are using cooperative cutoffs in

these early rounds. In After100, from round 17 through round 78, the percentage of exit deci-

sions stabilizes at about 40%, despite the randomly drawn numbers each round. In Never100,

the percentage of exit decisions starts below 30% and it is not until round 40 that it reaches 40%

where it stabilizes, again until the second-to-last round.21

[insert Figures 2a and 2b here]

21 The relatively high error rate of the best-fit strategies of 0.13 in Never100 compared to only 0.06 in After100

also reflects the extra time required to converge on alternating in Never100.
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It is surprising that After100 reveals a higher percentage of alternating pairs and their faster

formation than Never100 where alternating is the only verifiable cooperative strategy.

How can we understand this opposite finding? It turns out that learning the opponent’s num-

ber at the end of the round facilitates the formation of alternating pairs even though alternating

in no way depends on the subject’s number. A subject in After100 who exits on a 104 or 105

while entering on a 101 or 102 in other rounds sends a strong signal that he is not playing a cutoff

strategy. Never100 offers no such conspicuous opportunity to communicate one’s intentions due

to the unobservability of the opponent’s number.

The other striking observation from these time series of exit decisions is the sudden drop off

in exiting in the final two rounds. In After100, from around 40% of all decisions in rounds 17-78,

exit decisions plummet to 23% and 5% in rounds 79 and 80, respectively. Similarly, in Never100,

exit decisions fall to 26% and 7% in the last two rounds after having stabilized at around 40%

during the last half of the game. Like the endgame effects observed in the original treatments,

these sharp declines in cooperative behavior in the final two rounds suggest that cooperation

throughout the game is at least in some measure strategic.

8 Lessons for Cooperation in the Real World

Cooperation assumes many forms in the real world. We design a class of games that permits two

distinct forms of cooperation in the repeated game. These games are characterized by a tension

between the unique static Nash equilibrium in which both players enter and the socially optimal

outcome in which one player enters and the other exits. We derive the theoretical properties of

these games and optimally select a parameterization to study experimentally. The asymmetric

social optimum permits alternating as one cooperative repeated-game strategy. Privately known,

randomly drawn values for entering admit cutoff strategies as another form of cooperation.

We find that when the range of values to cooperation is similar, players alternate; whereas,

diffuse payoff distributions enhance the value to private payoff information and lead to the
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adoption of cutoff strategies. In real-world cooperation dilemmas, participants’ values tend to

be alike and thus, according to our results, alternation adopted, when the cooperative task is

mundane or requires little skill. By contrast, individuals’ values are varied for tasks that require

a particular, unequally distributed skill or tasks that elicit a strong heterogeneity in preferences.

In these situations, our results reveal that cooperative participants will adopt cutoff strategies,

even if alternation yields similar expected payoffs. For participants to overcome the costly two-

person coordination required of alternation, it must provide a substantially higher payoff than

cutoff strategies.

Several examples illustrate these distinctions. Cabdrivers are assigned to passengers in two

distinct ways. Similar to alternating, cabdrivers at a taxistand serve passengers in a predeter-

mined order based on the observable time at which the drivers returned to the stand. This

solution distributes passengers evenly and prevents conflict between cabbies, all of whom are

available with identical locations. However, for passengers who call the cab company, such an as-

signment would be inefficient and likely to elicit complaints from passengers and from the cabbies

dispersed throughout the city. Instead, the dispatcher broadcasts the location of the passenger

and allows cabdrivers to take advantage of their private information (e.g., availability, distance

to the customer) to divide up customers according to their values, similar to cutoff strategies.

Likewise, an army sergeant, shift manager, head of a team of programmers or committee

of commune members may assign mundane tasks (e.g., cleaning the latrine, unpopular shifts,

routine programming) using a duty roster or other system that disregards input from group

members (alternating); or, in the case of diverse values (e.g., combat duty, revenue-generating

activities for the commune, choice shifts, challenging programming), the members may self-select

their tasks based on privately known ability and preferences (cutoffs).

Allowing group members to choose their tasks exploits their private information. By the same

token, conflict may ensue if more than one member opts for the same task, while other unwanted

tasks may remain unfilled. Alternation assigns exactly one member to each task, thus at once
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avoiding conflict and ensuring that no opportunity is missed, while at the same time conveying

an impression of an equitable distribution of assignments.

References

Andreoni, James, William Harbaugh and Lise Vesterlund (2003) “The Carrot or the Stick:
Rewards, Punishments, and Cooperation,” American Economic Review, 93:3, 893-902.

Arthur, W. Brian (1994) “Inductive Reasoning and Bounded Rationality,” American Economic
Review Papers and Proceedings, 84:2, 406-411.

Dal Bo, Pedro (2005) “Cooperation under the Shadow of the Future: Experimental Evidence
from infinitely Repeated Games,” American Economic Review, 95:5, 1591-1604.

Davis, Douglas and Charles Holt (1993) Experimental Economics, Princeton University Press,
Princeton, NJ.

Engelmann, Dirk and Veronika Grimm (2006) “Overcoming Incentive Constraints? The (In-)
Effectiveness of Social Interaction,” unpublished manuscript.

Fehr, Ernst and Simon Gachter (2000) “Cooperation and Punishment in Public Goods Exper-
iments,” American Economic Review, 90:4, 980-994.

Jackson, Matthew and Hugo Sonnenschein (2007) “Overcoming Incentive Constraints,” Econo-
metrica, 75:1, 241-57.

Kahneman, Daniel (1988) “Experimental Economics: A Psychological Perspective,” R. Tietz,
W. Albers and R. Selten (eds.), Bounded Rational Behavior in Experimental Games and
Markets, Berlin: Springer-Verlag, 11-18.

Kandori, Michihiro (1992) “The Use of Information in Repeated Games with Imperfect Moni-
toring,” Review of Economic Studies, 59:3, 581-593.

Normann, Hans-Theo and Brian Wallace (2004) “The Impact of the Termination Rule in Co-
operation Experiments,” unpublished manuscript.

Rapoport, Amnon (1995) “Individual strategies in a market entry game,” Group Decision and
Negotiation, 4, 117-133.

Rapoport, Amnon, Darryl A. Seale and Eyal Winter (2002) “Coordination and Learning Be-
havior in Large Groups with Asymmetric Players,” Games and Economic Behavior, 39,
111-136.

27



Rapoport, Amnon, Darryl A. Seale and Eyal Winter (2000) “An Experimental Study of Co-
ordination and Learning in Iterated Two-Market Entry Games,” Economic Theory, 16,
661-687.

Van de Kragt, A., R. Dawes and J. Orbell (1983) “The Minimal Contributing Set as a Solution
to Public Goods Problems,” American Political Science Review, 77, 112-122.

Zillante, Artie (2005) “Spaced-Out Monopolies: Theory and Empirics of Alternating Product
Release,” unpublished manuscript.

Appendix A - Proofs of Propositions

Proof of Proposition 2: Let us examine the costs and benefits of extending the symmetric

cutoff by one from c − 1/2 to c + 1/2. We can represent the problem on a grid that is v − v + 1

units by v − v + 1 units. Each point on the grid refers to the net gains if the numbers drawn are

from that point. The uniform independent distribution implies that each grid point has equal

weight. Let us refer to each point as (x, y). The points affected are (·, c) and (c, ·). Divide this

set of points into three groups. Group one is (c, z) and (z, c) where z > c. Group two is (c, z)

and (z, c) where z < c. Group three is (c, c).

For each grid point in group one, there is a net gain of z − (z + c)/k. For group two, there

is a net loss of c for each grid point. For group three, there is a net loss of 2c/k. For all of the

points together, there is a net gain of,

2
v∑

z=c+1

(z − z + c

k
)

︸ ︷︷ ︸
Group 1

−c · 2(c − v)︸ ︷︷ ︸
Group 2

− 2
c

k︸︷︷︸
Group 3

=
v (1 + v) (k − 1) − (1 + 2 v + k − 2 v k) c − 3 (k − 1) c2

k
.

This is simply a quadratic with both a positive and a negative root. The expression represents

the net benefit of increasing the pure-strategy cutoff c starting at v. It will eventually become

negative as c surpasses the positive root c∗. Thus, for pure strategies, the positive root provides

the optimal cutoff where exiting occurs if and only if one’s number is below c∗. From Lemma 1,

the optimal cutoff strategy may entail the use of mixed strategies. While we don’t do so here,

the optimal mixed strategy can be derived in the same manner. QED
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Proof of Corollary 3: The two comparative-statics results preceding the corollary indicate

that the most difficult test for the corollary is k = 3 and the range of integers [v, v + 1]. If we

can show that the socially optimal strategy is exit on v for this case, then the corollary holds for

all v > v and k ≥ 3. Each player earns in expectation (v

2
+ v+1

2
) · 1

3
= 2v+1

6
if he enters on both

v and v + 1. But by staying out on v, each player does better with expected earnings equal to

v+1
2

· (1
2

+ 1
2
· 1

3
) = 2v+2

6
. QED

Proof of Proposition 4: Independent of k, alternating yields a joint expected payoff equal

to the expected value of the range of numbers, while the joint expected payoff of any symmetric

cutoff strategy (strictly less than v) is strictly decreasing in k. Consider the case of k = 2. The

strategy of always enter (the lowest possible cutoff) yields half the expected value for each player.

Thus, for k = 2, the joint expected payoffs are the same for alternating and always entering.

Hence, for k < 2, the joint expected payoff from the not necessarily optimal cutoff strategy of

always enter will be strictly higher than that of alternating, implying that the optimal cutoff will

yield expected payoffs that are strictly higher as well.

For the uniform distribution and k → ∞, using the grid method of the previous proof,

alternating yields (v − v + 1)
∑v

z=v z = (1 + v − v)2(v + v)/2. As k → ∞, both players entering

yields a payoff of 0 (as does both exiting). This simplifies the joint-payoff calculation of the cutoff

strategy c∗ to 2(c∗− v)
∑v

z=c∗ z = (1+ v− c∗)(c∗− v)(v + c∗). The expression (1+ v− c∗)(c∗− v)

reaches its maximum at c∗ = (1 + v + v)/2, yielding (1 + v − v)2/4. Since (v + c∗) is maximized

for c∗ = v, we know the joint cutoff payoff must be strictly less than (1+v−v)2 · v/2. For v > 0,

this is less than the joint alternating payoff. QED

Proof of Proposition 5: (i) Assume that a deviation from the intended strategy prompts

the opponent to enter forever after (grim trigger strategy). Such a deviation from alternation is

done by entering out of turn and always detected in either the After or Never treatments. The

payoff to deviating from alternation is highest on a 5 and yields an expected payoff of, 5
3
+1 · δ

1−δ
,
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whereas continued alternation yields an expected payoff of 3δ + 3δ3 + . . . = 3δ
1−δ2 . Thus, a player

will never deviate from alternation if and only if 3δ
1−δ2 ≥ 5

3
+ δ

1−δ
, or δ ≥ 0.679.

(ii) Again assuming a trigger-strategy punishment, we now verify that each of the cooperative

cutoffs c = 1.5, c∗ = 2.5 and c = 3.5 constitutes a symmetric SE for a sufficiently high δ. For

each of these cutoff strategies, the most profitable deviation involves entering on the highest value

below the cutoff, namely, entering on c − 0.5. The expected present discounted deviation payoff

is thus, (c − 0.5)(1 − p) + c−0.5
3

p + δ
1−δ

, where p is the probability that the opponent also enters

in the deviation round, equal to 0.8, 0.6 and 0.4 when c = 1.5, c∗ = 2.5 and c = 3.5, respectively.

The expected present discounted payoff from c = 1.5, c∗ = 2.5 and c = 3.5 for the infinitely

repeated game are 1.305·δ
1−δ

, 1.44·δ
1−δ

and 1.32·δ
1−δ

, respectively. Comparing each of these expressions with

the corresponding deviation payoff implies that a player never deviates as long as δ ≥ 0.605 for

c = 1.5, δ ≥ 0.732 for c∗ = 2.5, and δ ≥ 0.873 for c = 3.5. In addition, the cooperative cutoffs 4.5

and 5.5 cannot be supported as symmetric SE since they yield lower stage-game joint expected

payoffs than always enter (see Table 1).

In Never, these symmetric cooperative cutoffs cannot form an equilibrium strategy. Consider

the following two sets of realizations of infinite sequences of random values, {x, y} and {x′

, y
′}.

For both sequences, player 1 has the exact same realizations, x = x
′

. Player 2’s realizations differ

in round t only: in one sequence he draws a 5, yt = 5, while in the other he draws a 1, y
′

t = 1.

In all other rounds s 6= t, we have ys = y
′

s. When y
′

t = 1, we have shown that the equilibrium

strategy in After involves exiting, since entry triggers player 1’s punishment strategy. In Never,

the two sequences {x, y} and {x′

, y
′} are indistinguishable to player 1 so that play by a cutoff

strategy dictates the same actions for player 1. Hence, if player 2 plays as if he drew sequence

y when in fact he faces sequence y
′

, player 2 profits from this deviation simply because player 1

behaves exactly as if player 1 drew sequence y.

(iii) In part (ii) we already established that non-history dependent cutoff cooperation is not

sustainable. Here we establish that a form of cutoff cooperation is indeed possible. Consider
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the cooperative strategy of exiting one out of every two rounds. Let us assume that as opposed

to alternating, this is done solely by cutoffs. For example, on a 1 or 2 in the first round, a

player stays out in the first round and enters in the second. On a 3, 4 or 5, a player enters

in the first round and stays out in the second. This gives a two-round expected payoff of

0.6 · (4 · 0.4 + 4/3 · 0.6) + 0.4δ · (3 · 0.6 + 1 · 0.4) = 1.44 + 0.88δ. Let us again assume trigger-

strategy punishment. The highest incentive to deviate occurs when one player draws a 5 in the

second round, but knows that both players are supposed to stay out in that round. The payoff

to deviating is 5 + δ
1−δ

. The payoff for staying the course is δ(1.44+0.88δ)
1−δ2 . Cooperation can be

established if δ > 0.968. QED

Proof of Proposition 6: Any SE in Never for which the equilibrium strategies are contingent

on observables can be exactly duplicated in After. What if the equilibrium strategies in Never

condition on player i’s own value, which is unobservable to the opponent? We will show that

for these equilibria, there are comparable, isomorphic equilibria in After in which the player’s

value-contingent strategy can be replaced with a value-independent strategy that attains the

same expected action profile and the other player chooses the same strategy as in Never; as a

result, both players earn the same expected payoffs as in Never.

Consider player i’s strategy in period t denoted by sit(v
t−1, vit, a

t−1), where vt and at are the

histories of all values and actions, respectively, up to period t. In Never, since the opponent’s

values are never revealed, a player’s strategy can condition on his own values only, sit(v
t
i , a

t−1).

In Never, player i’s present and future payoffs depend on his previous values only insofar as they

affect his individual strategy. This is because his period payoff is ui(vit, ait, ajt), j 6= i, and only

his actions can depend upon previous values. In After, the opponent’s j’s action can also depend

on player i’s values, i 6= j.

For any Never equilibrium in which player i’s strategy depends upon his previous values, there

exists another equilibrium that yields the same expected payoffs for both players where player

i’s strategy does not depend upon his previous values and the other player employs the same
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strategies as in the initial equilibrium. This holds because player i must be indifferent between

his value-dependent strategy and one that isn’t dependent on previous values that mixes with

the same action probabilities, that is, P (ait = A | at−1, vit) is the same for both strategies. This

value-independent strategy must be an equilibrium since it does not affect the other player’s

expected payoffs. These same value-independent strategies form an equilibrium in After. QED

We illustrate this equivalence with an example. Suppose the history at−1 in which ait−1 =

enter forms part of an equilibrium in Never. Suppose also that player i enters in round t for vit

equal to 4 or 5, and enters on value 3 if and only if vit−1 = 4. An equivalent equilibrium strategy

for this period would be to enter on a 3 with probability P (ait = enter | at−1, vit−1 = 4) ≡ 1/3.

Applying this to both players in all periods generates an equilibrium based on observables in

both Never and After.

The fact that the symmetric cutoff of c∗ = 2.5 can be a SE in After (Proposition 5ii) but not

Never serves as a counterexample to establish the second part of the proposition, namely, that

not all SE in After are also in Never.

Appendix B - Participants’ Instructions

Pre-Experiment Questions (not intended for publication)
1. How many numbers are there in the range of 1 to 5?
2. What is the probability of obtaining the number “4” in any given round?
3. What is the anticipated average of the numbers you will receive over the entire 80 rounds of play?
4. Suppose that you have received the number “1” during three consecutive rounds. What is the
probability of receiving another“1” in the next round?
5. Suppose that you receive the number “1” and your opponent receives a “2” in a particular round.
a. If you both enter, what will be your payoff from this round? What will be your opponent’s payoff?
b. If you enter and your opponent exits, what will be your payoff from this round? What will be your
opponent’s payoff?
c. If you both exit, what will be your payoff from this round? What will be your opponent’s payoff?
d. If you exit and your opponent enters, what will be your payoff from this round? What will be your
opponent’s payoff?
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Other Person
Enter Exit

Enter x/3, y/3 x, 0
You

Exit 0, y 0, 0

Instructions to Participant (After treatment)

The experiment in which you will participate involves the study of decision-making. The instructions
are simple. If you follow them carefully and make wise decisions, you may earn a considerable amount
of money. Your earnings depend on your decisions. All of your decisions will remain anonymous and
will be collected through a computer network. Your choices are to be made at the computer at which
you are seated. Your earnings will be revealed to you as they accumulate during the course of the
experiment. Your total earnings will be paid to you, in cash, at the end of the experiment.

There are several experiments of the same type taking place at the same time in this room.
This experiment consists of 80 rounds. You will be paired with another person. This person will

remain the same for all 80 rounds. Each round consists of the following sequence of events. At the
beginning of the round, you and the person with whom you are paired each receives a randomly and
independently drawn integer number from 1 to 5 inclusive. This number is your private information,
that is, the other person will not see your number and you will not see the other person’s number. After
seeing your numbers, each of you must decide separately between one of two actions: enter or exit. At
the end of each round, your number, your action, and the other person’s action determine your round
profit in the following way. If you both chose to exit, then you both receive zero points. If you chose
to exit and the other person chose to enter, then you receive zero points and the other person receives
points equal to his number. On the other hand, if you chose to enter and the other person chose to exit,
you receive points equal to your number and the other person receives zero points. If you both chose to
enter, then you receive points equal to one-third of your number and the other person receives points
equal to one-third of his number. The table below summarizes the payoff structure.

Suppose you receive a number, x, and the other person receives a number, y. The round profits for
each of the given pair of decisions are indicated in the table below. The number preceding the comma
refers to your round profit; the number after the comma is the other person’s round profit.

After you have both made your decisions for the round, you will see the amount of points you have
earned for the round, the other person’s decision and his number. When you are ready to begin the
next round, press Next.

At the end of the experiment, you will be paid your accumulated earnings from the experiment
in cash. While the earnings are being counted, you will be asked to complete a questionnaire. Prior
to the beginning of the experiment, you will partake in a number of practice rounds. The rules of
the practice rounds are identical to those of the experiment in which you will participate. Note well
that for the purpose of the practice rounds, you will be paired with a different person from the actual
experiment. The purpose of the practice rounds is to familiarize you with the rules of the experiment
and the computer interface. The profits earned in these practice rounds will not be included in your
payment. If you have any questions, raise your hand and a monitor will assist you. It is important that
you understand the instructions. Misunderstandings can result in losses in profit.
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The pair's joint expected payoff as a function of symmetric pure-strategy cutoffs 0.5 to 5.5

for the range of numbers 1 to 5 and the indicated values of the congestion parameter, k.

 Strategy Joint Expected Payoff

 c=0.5 (always Enter) 2

 c=1.5 2.61

 c*=2.5 2.88

 c=3.5 2.64

 c=4.5 1.73

 c=5.5 (always Exit) 0

 Alternating 3

The pair's joint expected payoff for each symmetric pure-strategy cutoff and alternating.

Figure 1
Plot of joint expected payoff as a function of symmetric cutoff and k

Joint expected payoff for each cutoff strategy and alternating

Table 1
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a 1

a 0

0 b

defect/enter 1 b

our game : 1/2 > b > a = 0

prisoners' dilemma/public goods   : a > b > 0,  1 > a > 1/2

threshold public goods : 1/2 > a > 0 > b 

market-entry game : a = 0 > b

chicken : 1 > a > 0 > b

battle of the sexes : a, b > 1

Number After Never
1 16.3% 30.8%

2 29.4% 53.8%

3 86.2% 88.8%

4 98.0% 95.6%

5 98.5% 95.4%

Overall 67.7% 74.4%

For each number, each cell indicates the percentage of entry across all subjects in the treatment.

     cooperate/exit

Table 2
2x2 Payoff Matrix for Cooperation and Coordination Games

cooperate/exit defect/enter

Entry by Number and by Treatment
Table 3



coefficient marginal coefficient marginal 

(std. error) effect (std. error) effect

0.174*** 0.226***

(0.064) (0.071)

0.617***

(0.051)

1.717***

(0.054)

0.790***

(0.070)

0.037

(0.085)

-0.144***

(0.055)

0.494***

(0.060)

0.534 -1.032

(0.034) (0.068)

Number of Obs. 9920 9920

0.192 0.411

(0.024) (0.024)
Log L -5670 -2984

The dependent variable is subject i 's entry decision in period t .

*** p-value less than .01 **  p-value less than .05        *  p-value less than .10

Random effects Probit regression results from pooled data from both treatments. 
The entry decision of subject i  in period t  is regressed on a dummy variable for 

the Never  treatment (regression (1)), interacted with controls for the subject's

number and the first and last 10 rounds of play (regression (2)). 

-0.035

0.093

0.171

0.465

0.172

0.00

constant

ρ

(2)

C3.5

C4.5

 ---

 ---

 ---

 ---

0.052

first10  ---  ---

last10  ---  ---

C1.5  ---  ---

C2.5  ---  ---

Table 4 - Random Effects Probit Regressions for Entry Decisions from both treatments 

Variable

(1)

Never 0.057



number (fraction) ave. profit number (fraction) ave. profit

 c=0.5 (always Enter) 8.5 (.137) 109.5 12.5 (.202) 93.2

 c*=1.5 9 (.145) 98.7 19.5 (.315) 110.4

 c=2.5 38.5 (.621) 111.6 24 (.387) 106.8

 c=3.5 4 (.065) 110.0 1 (.016) 110.0

 c=4.5 0 --- 0 --- ---

 c=5.5 (always Exit) 0 --- 0 --- ---

Opposite Previous Round 2 (.032) 117.3 5 (.081) 112.1

 Total 62 (1) 109.5 62 (1) 105.7

 experimental data

 best-fitting strategies 0.06 0.08

probability  Nash equilibrium strategy 0.32 0.26

of error  randomly generated data

 best-fitting strategies 0.31 0.24

 Nash equilibrium strategy 0.32 0.24

Number (fraction) of subjects whose best-fit strategy based on their decisions from rounds 11-70 corresponds 

to the one indicated and the average nominal profit earned by subjects playing each strategy type. The average

error rates from classifying subjects according to these inferred strategies and from the assumption that all 

subjects play the Nash equilibrium are shown along with the average error rates for randomly generated data.

Strategy Inference Results by Treatment
Table 5

{

Strategy After Never
Treatment

{



Variable coefficient marginal coefficient marginal coefficient marginal coefficient marginal 

(std. error) effect (std. error) effect (std. error) effect (std. error) effect

0.483*** 0.478*** 0.755*** 0.780***

(0.081) (0.081) (0.070) (0.071)

2.125*** 2.107*** 1.375*** 1.348***

(0.080) (0.081) (0.078) (0.079)

1.018*** 1.039*** 0.567*** 0.579***

(0.109) (0.110) (0.095) (0.096)

0.225 0.215 0.0018 -0.002

(0.151) (0.152) (0.107) (0.107)

-0.219** -0.204** -0.005 0.056

(0.092) (0.095) (0.085) (0.088)

0.543*** 0.541*** 0.471*** 0.395***

(0.091) (0.095) (0.084) (0.088)

-0.117* -0.004

(0.066) (0.058)

-0.252*** -0.087

(0.086) (0.075)

0.009 0.028

(0.086) (0.078)

0.142 0.670***

(0.103) (0.123)

0.287** 0.879***

(0.145) (0.188)

0.010 0.471***

(0.141) (0.165)

0.103 0.203***

(0.070) (0.058)

0.129 0.095

(0.087) (0.074)

0.049 0.301***

(0.089) (0.078)

-0.175* -0.164

(0.098) (0.106)

-0.078 -0.256*

(0.135) (0.144)

-0.264** -0.081

(0.136) (0.151)

-1.213 -1.191 -1.054 -1.05

-0.105 (0.106) (0.069) (0.070)

Number of Obs. 4836 4836 4836 4836

0.411 0.419 0.536 0.541

(0.042) (0.044) (0.028) (0.028)

Log L -1245.8 -1241.0 -1560.3 -1553.2

The dependent variable is subject i 's entry decision in period t .

*** p-value less than .01  * p-value less than .10

Random-effects Probit regression results by treatment. The entry decision of subject i  in period t  is regressed 

on dummy variables for the numbers received, whether the game is in the first 10 or last 10 rounds of play and

whether the subject or his opponent made same decision in the previous 2 periods (regressions (1) and (3)), 

interacted with the first 40 and last 40 rounds of play in regressions (2) and (4).

last10

iexitedprevious2*half1

Table 6 - Random Effects Probit Regressions by Treatment

uexitedprevious2*half2

uexitedprevious2*half1

uexitedprevious2

uenteredprevious2*half2

uenteredprevious2

uenteredprevious2*half1

iexitedprevious2*half2

ienteredprevious2

ienteredprevious2*half1

ienteredprevious2*half2

iexitedprevious2

first10

(1) (2)

C1.5

C3.5

C4.5

C2.5

After

constant

ρ

0.000

0.251

0.403

0.151

0.077

-0.076

0.108

0.136

---

0.000

0.000

0.000

0.000

0.093

0.155

0.102

---

0.000

0.000 ---0.055

---

------

---

0.000

-0.052

---

-0.044

Never
(3) (4)

0.000

0.000

0.000

---

---

---

---

---

---

0.000

0.000

-0.069

0.000

-0.057

0.104

-0.028

---

---

---

---

0.000

---

---

---

---

---

---

0.102

---

-0.064

0.000

---

0.059

0.000

---

---

---

---

---

---

---

0.000

0.000

---

---

---

---

---

---

---

---

---

---

---

---

---

---

---

Treatment

0.130

0.578

0.225

0.133

0.587

0.223

0.243

0.412

0.149



Nominal Monetary Nominal Monetary

--- Exit 0 0 --- Exit 0 0

1 Enter Alone 1 0.6 101 Enter Alone 101 1.765

2 Enter Alone 2 1.2 102 Enter Alone 102 1.783

3 Enter Alone 3 1.8 103 Enter Alone 103 1.8
4 Enter Alone 4 2.4 104 Enter Alone 104 1.817

5 Enter Alone 5 3 105 Enter Alone 105 1.835

1 Both Enter 0.333 0.2 101 Both Enter 33.667 0.588

2 Both Enter 0.667 0.4 102 Both Enter 34 0.594

3 Both Enter 1 0.6 103 Both Enter 34.333 0.6
4 Both Enter 1.333 0.8 104 Both Enter 34.667 0.606
5 Both Enter 1.667 1 105 Both Enter 35 0.612

Entry by Number and by Treatment

Number After100 Never100
101 62.6% 60.0%

102 58.9% 61.1%

103 63.1% 67.1%

104 65.6% 67.2%
105 65.7% 67.8%

Overall 63.3% 64.8%

Table 8

For each number, each cell indicates the percentage of entry across all subjects in the treatment.

Comparison of Nominal and Monetary Payoffs in Initial and Follow-Up Treatments

Table 7

Payoff Payoff
Number Outcome Number Outcome



number (fraction) ave. profit number (fraction) ave. profit

 c=100.5 (always Enter) 14 (.233) 2885 21.5 (.307) 3166

 c*=101.5 0 --- --- 1.5 (.021) 3596

 c=102.5 2 (.033) 3397 2.5 (.036) 3375

 c=103.5 0 --- --- 0 --- ---

 c=104.5 0 --- --- 0 --- ---

 c=105.5 (always Exit) 0 --- --- 0 --- ---
Opposite Previous Round 44 (.733) 3945 44.5 (.636) 3853

 Total 60 (1) 3679 70 (1) 3619

 experimental data

 best-fitting strategies 0.06 0.13

probability  Nash equilibrium strategy 0.37 0.36

of error  randomly generated data

 best-fitting strategies 0.37 0.36
 Nash equilibrium strategy 0.38 0.37

Number (fraction) of subjects whose best-fit strategy based on their decisions from rounds 11-70 corresponds to 

the one indicated and the average nominal profit earned by subjects playing each strategy type. The average error

rates from classifying subjects according to these inferred strategies and from the assumption that all subjects

play the Nash equilibrium are shown along with the average error rates for randomly generated data.

Table 9

Strategy Inference Results (Treatments with Constant of 100 Added to Entry Values)

Never100
Treatment

{

{

Strategy After100



The percentage of exit decisions by round pooled across all subjects for the After100 (left panel) and Never100 (right panel) treatments.

Figure 2a and 2b
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