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Abstract. Abandoning the oft-presumed common prior assumption, partitioned type spaces
with disparate priors are studied. It is shown that in the two-player case, a unique

fundamental pair of priors (p,, p,) can be identified in each type space, from whose
properties boundaries on the possible ranges of expected values under common ®nowledge

can be derived. In the limit as p, and p, approach each other, p = p,

A common
r§recapitulated.
ectal case of the n-
ssociated priors

prior, and standard results stemming from the common prior assumptj
It is further shown that this two-player fundamental pair of priors is :

player situation, where a representative n-tuple of fundamenta
(P> P,_1) can be selected, out of at most n—1 such n-tuple y an analogous role.

JEL Classification Numbers: C70, D82, D84.

1. Introduction A&
1.1 The Common Prior Assumption Q

The common prior assumption le, in a sense, one (mathematically rigorous)
answer to the age-old philosophi estion ‘how can reasonable and honest individuals
come to disagree?’ The CP éwidely adopted in much of economics, game theory and
decision theory literature onds to this question via what has come to be called ‘the
Harséanyi Doctrine’, ga he position that all women and men are ‘created equal’ with
respect to probapi@sessments in the absence of information — hence the term
common prior 1 differences in probabilities should therefore, in principle, be
traced to as 1¢s in information received over time.

It is difficult to over-state the pervasiveness of the common prior assumption. It suffices
in this regard to quote the words of Aumann (1987), which still hold true despite the
years that have passed since they were written:

‘Common priors are explicit or implicit in the vast majority of the differential
information literature in economics and game theory... The assumption is
pervasive in the enormous literature on rational expectations, trading in
securities, bargaining under incomplete information, auctions, repeated games,
signalling, discrimination, insurance, principal-agent, moral hazard, search,
entry and exit, bankruptcy, what have you. Citing the relevant papers would

"I would like to thank Oliver Board for helpful comments and advice.



make our references longer than our text. Occasionally the definitions do pay
lip-service to the possibility of distinct priors p’; but usually this is quickly
abandoned, and in the theorems and examples, one returns to common priors’.

The CPA is also a crucial assumption under-pinning the celebrated ‘agreeing to
disagree’” paper of Aumann (1976), which proves a surprising theorem showing that it is
impossible for private information to lead to divergent beliefs under conditions of
common knowledge. Numerous authors have since extended this result and applied it to
interactions between agents in various situations. The typical result is a ‘no-bet’ or ‘no-
trade’ theorem (cf. Milgrom and Stokey (1982), Sebenius and Geanakopolos (1983)) —
agents who start with common prior distributions will never agree to engage in
speculative trade based on differences in private information that they subsequently
receive. As soon as it becomes common knowledge that they wishfto trade, their

expectations for the value of assets in question become identical. O

As Nau (1995) points out ‘these results are perceived to be a for the theory of
speculative markets: asymmetric information alone canngt responsible for the
existence of large stock exchanges... It is a point which 1 al for the understanding

of the very complex speculative markets we see nowad¢’.
e

The disconnect between no bet/no trade theoreti \% Is and empirical reality may be
due to several factors, among them risk-aversi ssues, bounded rationality, lack of
common knowledge, the cost of informatign exchange, and errors in information
transmission and/or reception. In this pap ever, attention will be focussed solely on
the common prior assumption.

The CPA may, and has, been ch@ed (cf. Gul (1998) and Nau (1995) for only two of
many examples) for being an ption that is far too strong to be believed to apply in
reality as much as one Mgt Wispect given how often it is assumed in models in the
literature. The CPA is accompanied by a story that postulates that the current
probabilistic beliefgﬁ9 yers all stem from temporal Bayesian updating conducted

under conditiong® mmetric information — a story that may be fictional and/or
irrelevant to el being studied. Furthermore, it supposes that if one goes back
sufficiently Tag{n%his historical story, there was a point in time when all the players were
in possession of the same information and were in full agreement on a prior probability
distribution. Philosophically, one may object there never was a primeval moment in time
when all individuals were in exactly the same state of information — everyone receives
different sensory data and filters it through his or her own cognitive model of the physical
and social environment from the moment of birth.

Partly in response to this chorus of objections, efforts were conducted in the 1990s to
seek out a full characterisation of when the CPA may and may not hold in a model. These
efforts were crowned with success, resulting in at least two different characterisations.

2 It should be noted that although the result is nearly always called ‘agreeing-to-disagree’, in actual fact it
states precisely the opposite — under common knowledge and common priors the players can not agree to
disagree.



Independently, Morris (1995), Samet (1998b) and Feinberg (2000), proved one
characterisation, in which the presence or absence of a common prior depends on the
absence or presence of at least one bet which seems, from each player’s private
perspective, to guarantee him or her positive expected value. In addition to this, Samet
(1998a) defined and proved a characterisation based on the convergence of ‘infinite
iterated expectations’. Both of these characterisations will play major roles in this paper.

Since then, however, there has been very little written on the next obvious question:
given an apparent need for the systematic study of models that do not presume common
priors, and the existence to hand of full characterisations of the common prior situation,
what non-trivial results can be attained in models in which the common prior assumption
is removed as an axiom, and instead disparate priors® are taken into account? This paper
represents an attempt to begin answering this question.

We are especially inspired by Morris (1995) (and Bernheim @before him) in
seeking to illustrate that it is not the case, despite what is eftmes claimed, that
‘anything can happen’ if the common prior assumption is rel . To the contrary, we
strive here to show that even with disparate priors it is jBle to derive interesting
bounding theorems under conditions of common knm@lge, and indeed to place
common priors inside a broader context, so that line with a ‘correspondence
principle’ — the standard results stemming from th§{c on prior assumption re-emerge
in the limit as disparate priors approach commonfyi

An important debt is also acknowledg amet (1998a) and Nehring (2001), for
theorems appealed to, methods of proofs, ah@ideas and inspiration in general.

1.2 Summary of Results $

The formal treatment of t e& s of players is usually conducted by representing those
beliefs by use of a partiti type space. In this model, players are assumed not to know
everything about the ¢ and instead to consider a set of possible states, only one of
which is the truces#teN\The players are not perfectly informed, and are unsure which is
the true state. Ea IN yer’s knowledge is represented by an information partition, which
divides the to a number of mutually disjoint and exhaustive subsets. If two states
are in the san® partition, the player cannot tell them apart; instead, the player has a
probability distribution on each partition, giving the likelihood of which state in the
partition is the true state, under the assumption that the true state is located somewhere
within that partition.

It is convenient to summarise player i’s knowledge by way of a ‘type matrix’ M, from

which the player’s partitions and probability distribution can easily be read. These
matrices also have the desirable properties that player i’s expectation of a random

* The term ‘common prior’ is universally used to describe the case in which players share at least one prior
between them. There is no such uniformity of terminology in the literature to describe the converse
situation. That case is termed here ‘disparate priors’, but the same concept has been called ‘heterogeneous
priors’, ‘distinct priors’, ‘unequal priors’ ‘non-common priors’ or ‘uncommon priors’ in other papers.



variable f'is simply given by M, f, and a prior probability distribution for player i by
pM.=p,. Such a distribution is called a common prior if a single p satisfies

pM,; = p simultaneously for all players.

The Morris-Feinberg characterisation of common priors (Morris (1995), Feinberg
(2000)), establishes the existence of common priors via the absence of mutually
profitable bets. Samet’s characterisation (Samet (1998a)), in contrast, shows that the
existence of a common prior can be interpreted more directly in terms of the players’
beliefs as encoded in the type space and type matrices.

Samet himself provides an intuitive explanation of his result in this way: imagine that
Adam and Eve — who have both excelled in their studies at the same schogl of economics
— are asked what return they expect on IBM stock. Having been e ed to different
sources of information, we oughtn’t be surprised if the two provi 1 nt answers. But
we can then go on to ask Eve what she thinks Adam’s an d%as. Being a good
Bayesian, she can compute the expectation of various answers &ome up with Adam’s
expected answer. Likewise, Adam can provide us with wh Qpects was Eve’s answer
to that question. This process can continue, moving bac d forth between Eve and
Adam, theoretically forever. There are, in this examp{e? two possible infinite sequences
of alternating expectations, one that starts with Ev e that starts with Adam.

Samet calls this process ‘obtaining an iterated §xpectation’, and shows that there exists a
common prior if and only if both of t uences converge to the same limit. He
achieves this result by representing ada beliefs* by a type matrix M , and Eve’s

beliefs by type matrix M,. These t rm two ‘permutation matrices’, M, =M,M,,
which is intended to be used fi process of obtaining iterated expectations starting

with Adam, and M, =M, ich does the same for the iterated expectations starting
with Eve. It then turns (é be the case that both M and M are ergodic Markov
n

matrices, and hence dard results in Markov chain theory, each of them has a
unique invariant ility measure, which may be labelled respectively p, and p,. We
can call these t probability measures’. It is then shown in Samet (1998a) that if
P, % p,, Adam¥nd Eve cannot share a common prior. On the other hand, if p, = p,, then
not only is there a common prior, it has positively been identified — it is precisely

P=D =P,

This is a remarkable result, made all the more remarkable by the fact that it applies
results developed in Markov theory for the study of stochastic processes to answer a
question that seems not to be even remotely related. But it still leaves some remaining
questions. For one thing, as Nehring (2001) points out, the condition is ‘epistemically
somewhat opaque. In particular, by looking at the limit, it is no longer transparent who
does the expecting, and even what the direct object of expectation is; only some “ultimate

* For the sake of simplicity here, we will make the mild technical assumption that the entire relevant state
space is the meet of the type spaces of Adam and Eve.



object of expectation” is given’. Infinite objects of contemplation are certainly not
unknown in game theory, which pioneered the study of such infinitary statements as ‘she
knows that I know that she knows that I know that ...”. Never the less, a finitary
characterisation of the same concept can be expected to add insight. Secondly, one might
also ask if this characterisation can be expressed in a way that is intrinsic to the subject to
hand, without directly referring to Markov chain concepts. Finally, Samet (1998a) shows
that if the limits of the iterated expectations do not converge to one and the same limiting
vector, there is no common prior, but is silent about what those limits do tell us in the
absence of a common prior.

Proposition 1 of this paper answers this last question by showing that, in the 2-player
case, whether or not the iterated expectations limits converge to the same vector, the
Samet probability measures are, under all conditions, priors. In fact, gaintaining the
notation of p, and p,as above, p, is a prior for player 1, and p, is a &for player 2.

Furthermore, letting p’ be a prior for player 1 and p" be a g' r player 2 (so that

p'M,=p' and p"M, = p") we define the pair (p', p") as alanced if they satisfy
the equations p'M, = p" and p"M =p’' — in a sense, s prior from this pair is
‘fundamentally paired’ to Eve’s prior when Adam ply€g in Eve’s prior into his equation
defining a prior, and vice versa. This simply- efinition gives us the finitary
characterisation sought in the previous paragrap@ proof of Proposition 1 shows that
the Samet probability measures are always a%alahced pair of priors and Proposition 2
shows that in each single-meet two-pl e space, a balanced pair of probability
measures is also a pair of Samet measur&ie conclusion is that a unique balanced pair
is guaranteed always to exist. A& on prior can then be characterised as a self-

balancing pair, meaning a balance 1? (p,, p,) suchthat p, = p,.

The balanced pair (p,, p, ,ﬁQVer, contains more information than just the answer to
the question ‘does a co prior exist?’. When the priors are disparate, the vector

P, — P, Serves as re of ‘how far’ the type space is from having a common prior,
and under condi (X common knowledge it encodes implications regarding bounds on
\

the range of expected values. This is expressed formally in propositions 3, 4 and
5, along wit efinition that players 1 and 2 having & -separated priors with respect

to a random variable f'if their balanced pair (p,, p,) satisfies |( pi—P.)f | =¢.

In particular, writing player i’s expectation of f'as E, f , proposition 3 shows that under
the condition of ¢ -separated priors, if it is common knowledge at a particular state that
Ef=a and E,f =a,, then |0:1 —a2| =& — which is a generalisation of Aumann’s
agreeing-to-disagree theorem, as that theorem is recapitulated in the limit as |( D, — D, )|
approaches zero. Proposition 4 goes further, showing that if the players have & -separated
priors with respect to f and it is common knowledge at a particular state that E, f > E, f°,
then it cannot also be the case that it is common knowledge that E, f —E, f >¢. Thisis a



generalisation of the main ‘no-bet’ result of Sebenius and Geanakoplos (1983) as again
that theorem is recaptured in the limit as |( P =D )| approaches zero.

In fact, the conclusions of these celebrated theorems can hold true under certain
conditions even when |(pl— p2)|>0. What counts is the vector-space geometric

relationship of a random variable f with respect to the vector difference p, —p, — if fis

perpendicular to p, —p,, then (p, —p,)f =0, and the players cannot agree to disagree
under common knowledge. What happens when there is a common prior is that each and
every vector f'is perpendicular to p, — p, =0. Otherwise, the non-zero projection of / on

p, — P, 1s crucial. From this perspective, the literature on ‘agreeing-to-disagree’ type

results stemming from the CPA can be considered the study of the specjal limit case of
type spaces in which p, —p, =0. (

This leads naturally to the question: how ubiquitous is the case @\mon priors within
the general set of type spaces of two players? This is @ d in Proposition 6.
Somewhat surprisingly at first glance, the answer depe the cardinalities of the
information partitions the players. A type space is derﬁd to be complementarily-
partitioned if the sum of the cardinalities of the pa s of player 1 and of player 2
equals one plus the cardinality of the state space the space of type spaces that are
not complementarily-partitioned, the set of t es with common priors is nowhere
dense, indicating that common priors shoul e extremely rare. However, amongst the
complementarily-partitioned type space o longer holds, as examples show, and
common priors can be much more co

The geometric relationship bet\@random variables and the vector p, — p,also has
u

implications regarding how uﬂl s 'mutually profitable bets' are between players. As
shown in Proposition 7 aRd\th&iscussion following it, it turns out that under disparate
priors, there is a large ¢ lity of such bets, which might indicate that the various 'no
trade/no betting' theo at exist fail — spectacularly — to describe reality as we see it,
simply because me a common prior, when in fact common priors are rare.

So far in thi ary we have dealt solely with the two-player case. Many of the results
extend to the n-player case, as shown in section 4. The results on balanced priors extend
in a particularly elegant way: Samet (1998a) shows that for each permutation of the »
players, one can associate an invariant measure, and then derives a simple test: a common
prior exists if and only if all the »n! measures coincide, in which case the common prior
has been identified. In Propositions 8 and 9 in this paper, we show that the full set of n!
vectors is not necessary, as it breaks down naturally into n—1 n-tuples of priors, where
each such n-tuple satisfies the conditions that it is an orbit of a certain group of
permutations and each element of the n-tuple is a prior of a unique player. It then turns
out to be the case that a common prior exists if and only if the elements of any single
such n-tuple completely coincide, in which case the common prior has been identified.



This last point ties into a subject that has received little attention in the literature: the
efficient calculation of a common prior, given a type space. Samet’s results indicate that
by using numerical methods developed for calculating the invariant measures of Markov
matrices, it is possible to calculate explicitly a common prior when such exists, but in the
n-player case this might require as many as n! separate calculations, a significant
calculation burden. The results here show that this burden can be reduced appreciably, by
cutting the number of Markov-type invariant measure calculations to one, followed by at
most n—1 straightforward vector-matrix multiplications.

1.3 Outline of Paper

The broad outline of the paper includes preliminary definitions and results in section 2;
the two-player case is explored in section 3, and section 4 is devoted to the n-player case.
Proofs appear in the body of the paper, except for a couple of obse s and lemma,
whose proofs are relegated to the appendix, when it was felt th (gu details of the
proofs would do more to hinder than help the flow of ideas. %

N\
oV

Formally, a type space for a set of players [ ={ wis a tuple <I O, (I1.,1),. ,> , Where
Q is a finite set, whose elements are called stfges ™1, is a partition of Q for each ie /.
Subsets of Q are events. For each a)s% (w) is the element of the partition IT,
which contains @. For each i, ¢, is nction ¢, : QQ — A?, which associates with each
state @ the type of i at w, a pro@ﬁ distribution over Q. The type function ¢, for
each i must satisfy two con@ : for each weQ, ¢t (w)I1,(w))=1; and for each
o' ell (o), t(o)=1,()

2. Preliminary Definitions and Results

It will be assumeq @itbout further comment, that for each i and w, ¢,(®)({w})>0 —

mainly becauge e results of Samet (1998a) can be freely adduced. An enquiry
along similagl to that conducted here without this assumption is possible in principle,
but doing so Would require replacing the notion of common knowledge with that of
common 1-belief (as defined in Moderer and Samet (1989)) and the notion of the meet by
events £ which are minimal non-empty events for which £ is the common 1-belief in E.

Given a state space Q and a set of players /, T(Q, 1) will stand for the set of all possible
type spaces <I ,Q, (]_[A,ti)ie,>. When the cardinality of / is fixed and understood, 7(Q2)

l

can stand for 7(Q, 7).

In the sequel a fixed type-space <I ,Q,(Hi,ti)i61> eT(€,1) will often be assumed as

given. When varying considerations, such as whether / contains two players or n players,
are relevant, they will be explicitly stated .



The meet of (I1,),_, 1s the partition IT of Q2 which is the finest among all partitions that

are coarser than I1, for each i.

Given a state w € Q), an event 4 is common knowledge at wif and only if 4 contains the
member of the meet IT that contains @. Equivalently, 4 is common knowledge if 4 is
the union of all the elements of IT contained in 4.

The vector space R will play a prominent role in this research. Given a vector v € R®
and a real number «, H(v,a) will denote the hyperplane defined by vx=«, and

similarly H"(v,«) denotes the open half-space defined by vx >« and H ™ (v,«) the open
half-space defined by wx< «r .

Following standard conventions (see for example Gale (1960, p Qﬁ, depending on
the context, 0 will sometimes be understood to mean the origly 1N R®, i.e. the vector
(0,0,0,...,0) . Given a vector v=(¢;), v>0 means &, > Ofoi 6 v>0 means &; >0for

all j, and v=0 means &; >0 for all j but v=0.If v,w
respectively stand for v—w>0, v—w>0 and v«% .

, v>w, v>wand v2w

Probability measures on Q will be considered O&GCtOI‘S in R. Random variables (i.e.

real-valued functions on Q) and the co ctors in R® corresponding to them will
frequently be used interchangeably hereN#or a probability measure p and random
variable f, the expectation of f, respect to p is the vector dot product

pf = Zw p(o) f (o). The specia m variable 1, for an event A4 is the characteristic

function getting the value € A and 0, and given a probability measure p, the
probability of event 4 un he measure p is the expectation of 1, with respect to p, i.e.

pli=2 (@), (NN p(@) = p(4).

[ ]
For a given \pace define for each player i the fype matrix M, in RY, by
M (0,0")=t)({w'}), which is a Markov matrix representing ¢, as if were a
Markovian transition function.

For each random variable f on Q, the expectation of player i of that random variable,
when viewed as a function of the state, is again a random variable E,f given by

E f(w) :zw'sg f(@"t,(w)({@'}), which can more simply be written as a vector dot-
product for each weQ: E f(w)=t(w)- f. Given the definition of M,, M, f =E f,
and in this paper the notation M, f and E,f will therefore often be used interchangeably
to mean the same thing.



The conditional expectation of a random variable f, conditional on an event A4, is also
definable as just another random variable in this context, as follows:

E(f ] A)@) =1 1o)X A)éf (@) f (@)t (@)({0})  t(@)(A)#0

0 1,(w)(4)=0
If it is the case that for a given event Y , random variable f and real-number «,

E f(w)=a uniformly for all weY, then E,(f|Y)=a can be written unambiguously,

without the necessity of specifying the particular states. From the definitions, it follows
that for each Y €Il, E,(f|Y)is uniform over all states.

Observation. Given any k >1 and type matrix M,, M, =M. . O‘
The proof of the observation appears in the appendix. &v
Corollary. For any k£ >1, random variable f, and i e [, Ef.0

Given an event 4 and regarding 1, as a columgevgctor, M1 ,1is another column vector
which can be regarded as the random variable

M1,(w) %‘\Q {0}) =1,(0)(4)

Given a type space, one can ether the space might have come to exist, in its
current state, from a space no information at all, by the players acquiring new
information over time a ating their beliefs in a Bayesian manner. Each player’s
possible initial behe no-information primeval space is called a prior. In general,
given player i’s cy t pe there will not be a single prior from which the player could
have arrived at t ent state from the (hypothetical) primeval past — there will be a set
of possible main question is then whether or not the agents have a common
prior, meani possible initial identical belief that implies the differences in probability

assessments currently seen amongst the players can be attributed solely to asymmetric
information received over time.

More formally, a prior for i eI at state @ is a probability measure p € A such that for
each event 4 p(A4|I1,(w)) =t (w)(A4), whenever the conditional probability measure is

defined. A probability measure is a prior for i, without the local specification, if it is a
prior for i at each and every state @ .

Given a particular player 7, each type of that player, ¢,(®), is a prior at @. In fact, the set

of all priors for player i can be identified with the convex hull of all of i’s types (cf.
Samet (1998b)).



The vector dot-product equation p(M,l1 A):Za)eQ p(o),(w)(A) establishes that a

probability measure p on Q is a prior for 7 iff it is an invariant probability measure for
M,,ie. pM,= p. A common prior, therefore, is a single p such that simultaneously for

all players i, pM, =p.

For a fixed Q eI1 and for each 7, the restriction of the type-matrix M, to O, denoted by
M2, is defined by

M (0.0) = {txw)({w'}) weQ
: 0 @eQ

For any random variable random variable fon Q, E?f is defi &'a M? fregarded as a
random variable. 6

Given the n type matrices defined by a type space, for @permutation o of [ write

VNN
and for any random variable f, @

o‘(l) ’ o’(n)f

The iterated expectation /(@respect to o is the sequence ((E,)" f)r,.

The definition of obvious one

M

o(n)

0
MG(I)

Samet (1998a) includes the following result, which will be crucial for the sequel:

Theorem (Samet). For each Q€ll and iel, M g is ergodic and therefore has a unique
invariant probability measure pg . The ergodicity of this matrix then further implies that
the iterated expectation of any random variable f with respect to o;, given by
lim,_,, (M2)" f, converges at every state to p? f within each Q — in words, the iterated

expectations are common knowledge and uniform in each state. On each Q eI, the

10



players have a common prior if and only if for all i,j e/, ps = p? — hence there exists

at most one common prior on Q.

The following theorem, which appears as Lemma 3 in Nehring (2001), will also be
needed:

Theorem (Nehring). Define [ f], for any random variable f, to be the smallest linear
subspace L of R” containing f with the property that E,g € Lwhenever g € L, for any
player i and random variable g. Then given any finite sequence (i,,i,,...,i, ) of elements
in /, with K >2, and any random variable f, there exist random variables {g.},_,in [f]
such that

iel

EE, E(f~Ef)=YE, (g~ Egl)\\o‘

3. Two Players

3.1 Identifying the Priors “@

Throughout this section, the fixed type spac I1,, ,)lE . will be assumed to satisfy
the constraint that the cardinality of /is e 2 and the players will be labelled player
1 and player 2. Because this labelling 4 trary, some of the results will be worded as

understanding that the symmetr, ediately implies that they apply just as well to

applying to player 1 with respect tce ayer 2 in certain symmetrical situations, with the
player 2 with respect to player

When there are two playé ere are only two possible permutations of the set of players
— which will be labe e 0, =(2,]) and o, = identity — and hence two permutation

matrices M

ndM =M M,. For each QeIl, M2 and M2 each have a
unique invas obability measure, respectively p2 and p?2 . We will call p? and

pfz the Samet probability measures of the type space with respect to Q.

It will be assumed, temporarily, that IT={Q}, so that there is no need to specify Q eIl,
and we can write p_ in place of p2 , etc., easing the notational burden in formulae and

proofs. The more general case of multiple elements of the meet will be returned to later.

Note that in what follows there is no assumption that p, = p_ — in other words, we are

explicitly permitting the possibility of disparate priors.

Proposition 1. p, is a prior for player 1, and p, is a prior for player 2.

11



Proof. By definition of invariant probability measure, p, M, =p, M,M,=p, .
Multiplying on the right by M,, this leads to p, M,M M, = p, M,. Rewriting this as
(p,,M,)(M M,)=p, M, makes clear that p, M, is an invariant probability measure of
MM,=M, .Butas M is ergodic, it has a unique such invariant probability measure,

which we already labelled as p, , leading to the conclusion that p, M, =p, .

We can now run the following series of calculations. First multiply on the right by M, :

pa,MzMz =p0'2M2

But from an earlier observation, M,” = M, , so | O‘
pal M2 = pGZ M2
We started this chain of calculations with p_ Qconclude that

N AQ(\@

In other words, the unique Samet probaBQ asure of M, , p, . is also an invariant

measure of M, , hence a prior for pla y entirely symmetrlc considerations, we can
just as readily conclude that the $ Samet probability measure of M, , p,,1is an

invariant measure of M, , Le. M, hence a prior for player 1. [

Note: The previous resull also be understood within the context of the derivation of
p, f through the 1@process lim, , (M, ) f, for an arbitrary random variable f; as

follows. Set Consider the column vector which is uniformly p, g. This is

equal to lim} ) g . But the sequence
s=M, g M, M, g,.
can be re-written as
s=MM)M, f,(MM,MM,)M,f,..
and again as

s :Ml(MzMz)faM1M2M1(M2M2)fam

12



or
s=MM,f,MM,MM,f,..

so that lim,,, s=1lim, (M Y g=lim,_,_( M, V£ But this in turn means that
P08 =D, f 08 p, M,f=p, f.Asfwas selected arbitrarily, it may be concluded that
P,,M, =p, . Asymmetric argument yields p, M, =p,_ .

Notation. We will henceforth label the Samet probability measures of the permutation
matrices, p, and p, , more simply as p, and p,, for ease of notation. As just shown,
p, and p, are guaranteed to be priors, every type space has a unique paig of such priors,
and they satisfy the equations pM, = p,, p,M, =p,, pM, =p, andO{(1 =p.

3.2 Balanced Pairing &;

The previous proposition showed that the Samet probabili sures of the permutation
matrices satisfy certain equations involving the type rpatrie€s. These equations, it turns
out, characterise these measures, so that we can u or a definition more intrinsic to
the study of type-spaces that avoids the appeal%cepts from Markov chain theory
(even though we will still lean on results fron{hj ory for existence and uniqueness) .

Definition. Given a pair of type matricev ¥and M, a pair of probability measures
(p,, p,) are a balanced pair if they s@rt e equations p,M, =p, and p,M,=p,.

Proposition 2. For each sin et two-player type space, there exists a unique
balanced pair of probability. res (p,, p,), and this pair is a pair of priors, so that in

addition pM, = p, and = p,. The existence of a common prior is equivalent to the
existence of a self-lK prior, meaning a balanced pair (p,, p,) such that p, = p,.

o
Proof. Suppo } a balanced pair (p,, p,) exists. Then p,M M, = p M, = p,. Hence
P, 1s an invalgnt probability measure of the ergodic Markov matrix M , and therefore
unique and equal to one of the Samet probability measures.

The respective conclusion for p, is arrived at by entirely symmetric argumentation. Such
a balanced pairing must always exist, by a previous proposition, because the Markov
matrices M, and M are guaranteed to have invariant probability measures.

If there is a common prior p, then by definition simultaneously pM, = p and pM, =p,
and we have trivially identified the unique balanced pair, (p,p), hence p is self-

balanced. On the other hand, if the two elements of the balanced pair coincide, a common
prior has been identified, simply because the elements of the pair are priors. [I
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One perspective on balanced pairs is the following: start with the set of priors of player 1,
i.e. the set B = {q1 lq,M, ql} and the corresponding set of priors of player 2,

P, = {q2 lg,M, = %}' Define a mapping &: B — P, by &(q,)=q,M, — to see that this is
well-defined on the range, simply note that (¢M,)M,=q M, because M, is
idempotent. Similarly define 77: P, = F, by 7n(q,) =q,M

So every prior g, of player 1 has a *&-mate’ &(q,), and every prior g, of player 2 has an
‘n-mate’ 77(q,). The question is: when is a prior the 7-mate of its own &-mate? To
answer this, define n&: P — B and &n: P, — P,. The last proposition implies that the
mapping 7¢ has a unique fixed point p,, so that p, =&(p,) satisfies iM p, . This

also identifies p, as the unique fixed point of &7, and the balanced p then (p,, p,).

As M, and M, are varied, the corresponding balanced pair (p “arles as well. The
vector p, — p,, as a function of M, and M,, can serve as a ¢ measure of ‘how far’
the type space is from having a common prior, given tha’ mmon prior exists if and

only if p,—p, =0. Under conditions of common kngtyledge, the identity of the vector
D, — D, has implications regarding bounds on the&of possible expected values, as
discussed after considerations of a couple of exaifipl

3.3 Examples @

Example. In this example, Q= 0,0}, 1={12}, Il,={{w,0,,0,},{0,}},
Hz ={{a)1,a)2}{a)3,a)4}}, H:{{ 76037604}}'

The type matrices are &

Q SR




The permutation matrices are

Yov s
v, aa, |35 S5
T K K ks
s e Js
L o
v :MM:13 5 s Vs O
S AR
_oo% \)

O

¢

The balanced priors are the self-balanced p := p& = [0.25, 0.25, 0.25, 0.25], hence
this vector is also the unique common prior in this ®xample. A quick calculation indicates
that indeed pM,=p and pM, =p. Q

H2={{w1,w3}{wzaw4}}’nz{{ aa)3’a)4}}-

The type matrices are &
. &S ‘

W

Example. In this example, Q=:©r2,a)3,a)4}, 1={12}, Il ={{o,0,}{0;,0,}},

1

—_— \u—
ow&
—_— \u—
ON&

NN
X o o

(e)
[e)

R =R °
o X o X

Kokﬁ”o
L ]

I 1
—_ —_—
< w < k




The permutation matrices are

S NS 2SS
N TSP

I RN
AT o o X

M, =M,M, =
s 5K ]
S AN
M, =M,M, =
AR
_%%%é§
The balanced priors are
{1125 a@qu_s }
: 990

4950 49§
33}

Again, straight-forward V§% calculations show that the equations pM, =p,,

p.M,=p,, pM,=p, p, are satisfied, as expected.

3.4 Common Kna@and Disparate Priors

We can no e assumption that IT={Q}, and consider the general case in which
the meet contaMs several elements. There are now (at most) two balanced priors on each
element Q of the meet, p and p?. We can also trivially assign balanced priors to each
state, in the sense that given a state @ € Q the associated balanced priors can be defined

by p? = p?“, where Q(w) is the element of the meet containing @ .

Proposition 3. In a 2-player type space, given a random variable f and a state @, if

‘( pi‘”* - pj"’ ) f ‘ = ¢, then if it is common knowledge at " that player 1’s expectation of f

is a, and player 2’s expectation of fis &, , then |a1 - a2| =€
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Proof. As defined above, E, f(w)=t,(w)f . Under the assumption of mutual common
knowledge, the valuations E, f(w)=c«, and E,f(®w)=ca, hold uniformly for all
well(w).

Consider the expression pimt (E.f—E,f). As it was assumed that E f(w)=c«, and

E, f(w) =, uniformly, the vector ‘Ei f-Ef ‘ is uniformly |oz1 —a2|. By definition,
C(ES~E,f)

every prior is a probability measure, and hence Zw pi”* (w)=1, so that

o
= |0£1 _a2|zwpi (@) :|a1 —0(2|.

But pi“’* (E.f—E,[f) is equal to pi“’*Mif—pi"’*Mjf, which by abo Ogsults is given
byp? f-p? f=(p" -p?)f. [ \Q

This result can be understood from elementary considerat the balanced priors as
Samet invariant probability measures on the permutation@trlces as calculated in the
infinite limit of iterated expectations. If it is confglon knowledge that player 1’s

expectation of f is ¢, then the infinite s@ M f MM f MMM f,...
r

constantly uniformly ¢, hence trivially is unifo a, in the limit. A similar statement
holds if player 2’s expectation of a,, with respect to the sequence
M,f MM,f MMM,f,... It is there ot surprising that under full common

knowledge, ( pfj* - pg’*) f turns o$ crhe same as o, —a, .

Note that this implies that ossible spread of expected values under common
knowledge depends on t? geometry of the random variable f with respect to the

vector p” —p5 rpendicular to p;’ p;)*, then (pf; - p;; )f =0, and the
players cannot a isagree under common knowledge — which is exactly what

happens whengtht \1 a common prior, because then p” — p2 =0 and each and every
vector is pe cular to 0. In other cases, the non-zero projection of f on p1 -p)i

crucial. (Note that the vector pf”* — p?" itself has constraints on its possible values:
p’ (@)= py (0)=0,because Y p{’ (w)=1and D py (w)=1.)

weQ)

Proposition 3 thus naturally motivates the following definition:

Definition: In a 2-player type space with balanced priors p” and p? at a state w, for

each random variable /', players 1 and 2 will be termed to have ¢ -separated priors with

respect to fat w if ‘(pf"—p‘_")f‘:
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As a corollary of the proof of the last proposition we can get a yet stronger result, attained
by weakening the insistence that the common-knowledge expectations of the two players
be given by precise values ¢, and «,, and assuming only common knowledge of the fact
that one player has greater expectations than the other player.

Proposition 4. In a 2-player type space, if the players have & -separated priors with
respect to random variable f at state @, and if it is common knowledge at @" that
E f>E,f, then it cannot also be the case that it is common knowledge that

E f—E,f>¢. Similarly, it cannot be the case that it is common knowledge that
E f—E,f <¢. Thus, either E f(w)—E,f(w)=¢ for all well(w"), or there is at least
one o, ell(w") with E f(w)—E,f(®w)>¢ and at least one w, eI1(w") such that

Ef(@,)-E f(®,)<e. (

Proof. If at @ it is common knowledge that E,f >E,f @f—@fx?, then
Pl (ES-Ef)=Y. pl (@) f(0)-E,f(0)]>&, becausq }Mat

weighted average of elements, each of which is strictly ter than ¢. But as in the

ter expression is a

above proof, pf’* (E.f-E,f) — which must be gre@ than or equal to zero by the
assumption of common knowledge that E, f >3 is by previous results equal to

pfj*le—plw*sz, which is pfj*f—p”* = 1“’ —pf*)f:g, the last equality
following from the assumption of ¢ - d priors with respect to f. This is a
contradiction.

Similarly, if it is common know @ hat E,f 2 E f and E f—E,f <&, we derive a
-py )f &.

contradiction to the assumpt1

It can readily be se% 1s proposition implies the previous one — if it is common

knowledge that pla expectation of /'is uniformly ¢, and player 2’s expectation of f
is uniformly e a, > a, without loss of generality, then the assumption of ¢-
separation Wy pect to fimplies that o, —«, can be neither less than or greater than ¢

—hence it is pretisely ¢.

In the special case that f'is perpendicular to ( pf’* - pf* ), the proposition states that if it is
common knowledge that E f > E, f°, then it cannot also be the case that it is common

knowledge that E f—E,f >0, hence E,f=E,f and in this case there can be no
agreement on disagreement.

We can also consider a case intermediate between the two previous propositions, in
which the expectation of only one player is by common knowledge uniformly a precise
value, and ask what implications that has on the values of the expectation of the other
player.
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Proposition 5. In a 2-player type space, if the players have & -separated priors with
respect to random variable £ at state @', and if pl“’*Ei f =a for one of the indexes i and
some number « , then it must be the case that for j=i, £ f|, (02852 vector, is located

either in the hyperplane H(p,’ ", a+¢) or the hyperplane H( p’ ", a—¢). In particular, if
it is common knowledge at " that E, f = 8 for some number S, and E S ZE.f,then

E feH(p’, p B+e).

Proof. Again, we work with pl“’* (E,f—E.f). By assumption of & -separated priors, this
is equal to t¢. But it is also equal to p/° 'E, S =p 'E, 1. The sumptlon that

p’ Eif:a then implies that p,’ Ejf a &, which is the sam% ng E, f]n(m)

located either in H(p,’ La+¢e) or H( ) ,a—-¢). The case of common

knowledge that E,f =/ implies that pl‘”*Eif:pl“’*ﬂ, nce E f2E, [ implies
E feH(p B+e). @

3.5 Common Priors as the Limiting Case of Dis@Priors

With respect to the above propositions,%s rpest results are obtained in the special

case in which p” = p7 : Q

o If p” =pYandf =1,
common knowled@& ayers can never agree to disagree on the probability of

- p]“.’* )1, =0 for all 4, hence by Proposition 3 under

1

the occurrence of ent, and we recapitulate the theorem of Aumann (1976).

it is common knowledge at @ that E,f >« and E,f <, then
g pj."* )f =0, Proposition 4 implies that E, f—-E,f =0, hence

E f=FE,f=a, recapitulating the main ‘no-bet’ result of Sebenius and
Geanakoplos (1983).

But the condition pl‘"* = pza’* is equivalent to the existence of a common prior over

IT(w"), hence the propositions may be considered generalisations of these well-known
CPA agreeing-to-disagree results.

As stated in the introduction to this paper, the CPA has often been criticised in the past,
especially when the CPA leans on a supposed ‘dynamic story’ — the view that players
assessing differing expectations of events do so solely because of differences in the
private information they possess respectively, because in some hypothetical past they
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shared a common prior, with their current beliefs posterior to a, perhaps distant, past of
shared probabilities. Gul (1998) argues that ‘since there never was a prior stage, the prior
distribution is meaningless’.

Aumann (1998)°, in reply, essentially restates the position of Aumann (1987), which
includes the assertion that ‘people with different information may legitimately entertain
different probabilities, but there is no rational basis for people who have always been fed
precisely the same information to do so’. In the zeal to highlight ‘differences in
information’ as the sole bearer of distinction, Aumann (1998) postulates that ‘if ... the
beliefs at an “actual” prior stage are different and not commonly known, then there must
be differential information already at that stage’, and then argues that analysis must
proceed to a further earlier stage until all differences in information have been purged and
a common primeval prior can be identified. He is even willing to go soffar as to say ‘if
one sets forth all relevant information in sufficient detail, then in pr1 , there should
be no room for differing probabilities. When we say all relevan ation, we mean
all: the schools the players attended, their childhood experlence their genes (which
indirectly reflect the experience of previous generations).’ 0

The results of this paper shed further light on matters at heart of the Gul-Aumann
debate. The players — or any observers for that matte eed no more information than

sh), (Hz,fz)> — in the present, in

e I1} and the corresponding set of

knowledge of the type space itself — i.e. the tupl
order to identify all the elements of the m
type matrices {MP|iel,Qell}. Si %

permutation matrices M fl and M fz

atrix multiplication then yields the

Obtaining the balanced priors @z el,QelIl} is then a matter of calculating the

invariant probability meagu he permutation matrices. Numerical methods for doing
so, either in some case &g direct methods with exact results, or in others using
iterative methods ¢ ¢ up to a ‘reasonable’ tolerance, are the subject of active
research (see for.eﬁ,(1 Stewart (1994)). (The computational burden becomes even
lighter when o N ers the fact that it necessary at each Q to calculate only one of the
Samet pro measures — say, p° — and then the other can be obtained by the

computationally simpler method of direct matrix multiplication, given that p, = pM,.)

In principle, therefore, there is a computationally efficient and well-defined algorithmic
procedure for going from the type space to the full set of balanced priors. With these
latter to hand, the analysis locally at any state @ € Q can proceed in one of two ways.

> Aumann (1998) also includes a formalisation of an argument in favour of the CPA that runs essentially
along the following lines: Beliefs are based on information. If all information is removed, all that is left is
an empty shell. Since there is no reason to distinguish between empty shells, individuals must start with
common priors. Bernheim (1986) terms such an argument for common priors ‘assuming the conclusion’.
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1) If p”=p; there is a common prior. One may in this case embrace the

Harsanyi doctrine and assert that ‘differences in probabilities solely express
differences in information’. A (possibly fictional) historical account of prior
stages, in which differences in information led to disparate information
partition refinements and differential probability assessments based on
Bayesian updating against the common prior, may be adduced. Even if one
chooses not to resort to conjuring the past, the existence of a common prior
justifies quoting any of the large number of agreeing-to-disagree type results
under common knowledge that have been proved since the seminal work of
Aumann (1976).

i1) If p”+# py, there can be no common prior. One may again suppose a

(possibly fictional) historical account of prior stages but in tht&case, in a kind
of reversal of the Harsdnyi doctrine, in the primeval pa players begin
unequal, with a fundamental disagreement regardinNtBe™ true’ prior, one

player believing p,” and the other p; . As asymmetyc\yTormation is obtained

over time by the players, their information partiss iverge, along with their
respective probability assessments under B@ian updating from their
different priors, so that both differen@lé information and subjective
probability differences contribute to th ences. Even if one chooses not
to resort to conjuring the past, in th§ cdse the players are fully justified in

agreeing-to-disagree. ConsideratiQafof (p;” — p7)f , for any random variable,

indicates how far apart the p@s an be when agreeing-to-disagree under
common knowledge with rtﬂec o f, as proved in the above propositions.
0

ij | O ell} that contains the information for

the above-derived bound cted values under conditions of common knowledge.

In summary, it is the set of Ve:@ pe -

Since the values of {p? Q €11} can be derived from the type space, it follows that
owledge of the tuple <Q, (Hl,tl),(Hz,t2)> for these results.

one needs no mor&

[ ]
From this pers e entire corpus of literature on agreeing-to-disagree type results,
such as ‘no-pe o-trade’, etc., stemming from the CPA is the study of the special ‘limit

case’ of a pa lar subset of the set of all type spaces <Q, (I1,,2).d1,.¢, )> —namely, the
set of type spaces from which it can be deduced that the vectors {p? — ij |Q eIl} are

uniformly zero.

3.6 The Rareness and Ubiquity of Common Priors

The next obvious question is: how ‘special’ is a common prior situation within the space
of all type spaces? If one were to select a random sampling of type spaces, should one

expect common priors to be ubiquitous or rare?

Fixing the state space Q, let 7(Q) denote the set of all type spaces of two players over
Q sharing a single-element meet. (The loss of generality for the sake of simplicity is
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tolerable as extending the proofs in this section to the case of multiple-element meets is
straight-forward). Because / and Q are fixed here, an element 7 € 7(€2) is completely

determined by its associated partitions, which we can label II, , and IT, ,, along with the

associated type functions, ¢, and ¢,

Next, let «, :T(QQ) > M,(Q) be the mapping of T(Q) to M, (Q), the set of all type
matrices of player 1, with a, :T(QQ) > M,(Q) playing the same role for player 2. Let
a:T(Q) > M (Q)xM,(Q) stand for the bijective mapping taking each element
7eT(Q) to (¢,(7),a,(7)). The space M,(Q2)xM,(€2) can be considered a sub-space of

R < R , with the latter endowed with the standard topology of vector spaces over the
reals, hence the space M, (€2)x M,(€2) naturally inherits a sub-space to;logy. As aisa

bijection, we can give T(€2) the topology that makes « a topological rphism.

Let fB:M,(Q)xM,(Q)— A°xA? = R? xR® be the mapping kes each element of
the space M, (Q2)xM,(Q) to the unique corresponding pad alanced priors. Let the
mapping y be further defined by y:(p,p,)— p, - eg for each pair of balanced
priors (p,, p,). Q

Lemma. The mapping & =y o foais continu %

The proof of this lemma appears in the app

Definition. A type space 7 in w111 be said to be complementarily-partitioned if the
cardinalities of its associaE(Q tions, I1, . and IT, , satisfy ‘HIJ . =|Q|+1.

Notation. The sef &complementarily—partitioned type spaces within 7'(€2) will be
labelled T(€2). \Pdpdte

share a com Mrior between them by C(Q).

further the sub-space of T(Q) consisting of type spaces that

Proposition 6. C(Q) is nowhere dense in T (Q).
Proof. This is proved in two steps.

1. C(Q) has empty interior: Let 7 be an arbitrary element in C (Q), with common prior
p.-Let m= ‘HIJ‘ and n= ‘HZ,T‘ . Using the earlier defined mapping «, a(r)=(M,,M,),a

pair of type matrices. Associated with M, is pj, p;,..., p|' € A°, where each p/ is a
distinct row in M, corresponding to one of the partitions in IT, ,, and similarly associated

with M, is pl,p3,..., pi € A*. We can now form the convex hulls X(p,, p,..., p|') and
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X(py,Pi»ees DY), of dimensions m—1 and n—1, respectively, such that p is the unique
point of intersection of these two convex polytopes, which are constrained to be within
A, a polytope of dimension |Q| -

The assumption that 7eT(Q), and therefore not complementarily-partitioned, means
that m—1+n—-1< |Q| . This, plus the fact that the convex hulls intersect solely at a single

point, implies that an arbitrarily small deformation of one or the other can pull them apart
from the point of intersection — in the terminology of differential topology, all such
intersections are non-transversal (cf. Guillemin and Pollack (1974)).

In the specific context here this translates into the possibility of finding a type matrix
M| with associated p|', pi°,..., p{" such that M/ is within an arbitrarilyNsmall & -ball of

M,, and such that the convex hull X(p!',p?*..,p/") ha tersection with
X(py,p3rsps). Then ' =a ™ (M/,M,) is a type-space Within& ,and 7' ¢ C(Q).

2. C(Q) is closed: C(Q) can be defined as 51(0)@), where E=yofoa

continuous, by the above lemma. It is therefore a close@et.
This suffices to show that C(Q) is nowhere den&l T(Q).

The restriction to non—complementarily—p‘@o ed type spaces is necessary for the above
proof to work. The heart of the proofais e$Sentially the claim that given a pair of type

matrices M,,M, that share a co n® prior, one of them can be ‘perturbed’ by an

arbitrarily small & into anoth matrix such that the new pair does not have a
common prior. But it is a th u p of differential topology that transverse sub-manifolds
of complementary dimens n Crsect in 0-manifolds — i.e. isolated points. The following
examples illustrate t% ations this has for the question of the ubiquity of common
priors.

Example. Le \(l 2,3}, and let the type space 7be defined by II,, ={1,2},{3} ,
IT,, ={1},{2,98 with , (1)=1/2, 1, (2)=1/2, t,,(3)=1 and t, ()=1, ¢,,(2)=1/3,
t,.(3)=2/3. The corresponding type matrices are

) )
M=\ )
0 0
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10
M,=[0 I
° )3

which share the common prior (1/4,1/4,1/2).

W

SRR =

But there is no perturbation of the matrices which will lead to a situation of disparate
priors. In fact, given any arbitrary type functions ¢ and ¢,, such that

AORACIRNY

M, = tl(()l) tli)2) 01 O‘
N
1 0 O 0

M,=|0 t2(2) t3(3)
0 £,()

are type matrices, M,and M, will have a cﬁr& prior between them. Geometrically,

this is an example of transversally w

ting one-dimensional lines in a two-
dimensional space.

Example. Let Q ={1,2,3,4,5}, a@&type space 7 be defined by IT, , ={1,2},{3,4,5},
I, ={1},{4},{5},12,3}, wi AD)=1/2, 1, (2)=1/2, 1, 3)=1/2, . (4H=1/4,

t,(5)=1/4 and 1, )AN ,,(H=1, 1,,(5)=1, t,,(2)=1/4, ¢,.(3)=3/4. The
corresponding type 1

@0{& Vo 0 o

hh 0
o0 VNN
o 0NN
0 0NN N
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1 0 0 0 O

1/ 3
oV, ¥ o0 o0
My=[0 Vi 3 0 0
00 0 1 0
00 0 0 1

share the common prior (0.125, 0.125, 0.375, 0.1875, 0.1875).
There is no perturbation of these matrices that will lead to a situation of disparate priors.
Geometrically, this is an example of a 1-dimensional polytope transversa%r intersecting a

3-dimensional polytope inside a 4-dimensional space. O

It is easy to conjure up examples of such complementarily-parti '@type-spaces in any
dimension. A trivial but instructive example in n-dimensions 150

A0

S |

N\

Here, M, is associated with a single point, whilst M, is associated with the entire n—1

dimensional polytope A". An intersection — meaning a common prior — is inevitable in
such a situation.

M,=|

00 ... 1

3.7 Betting and Disparate Priors

As previously noted, the main characterisation of common priors in the literature is the
Morris-Feinberg theorem that states there is no common prior in a type space if and only
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if there is at least one random variable ¢ with respect to which the players can agree to
take opposite sides of a bet.

More formally, the players fail to bet on ¢ at some state @ if it is not common knowledge
at  that player 1’s expectation of ¢ is positive, Et >0, and player 2’s expectation of
—t1s also positive, E,(—t)> 0. If the players do not fail to bet on ¢, then ¢ is a mutually

acceptable bet. There is no betting amongst the players at wif they fail to bet on any
random variable 7. Sebenius and Geanakoplos (1983) established that if there is a
common prior, the players will never bet under common knowledge. Morris (1995) and
Feinberg (2000), independently, proved the converse — if there is no common prior, the
players can always identify a random variable # which is mutually acceptable.

Given the amount of information that the balanced priors p, and p, of &type space bear
it 1 n light of the

this matter, we lean on Nehring’s Theorem, mentione dBve, which in its two-
dimensional version reduces to the following: recalling th nition of the permutation
matrices M, =M,M,and M, =M M,, given M ()any integer j and any random

variable fon Q, there exist random variables g, , 1n the linear space [ /] such that
(Mgz)j(f—le)=M1(g1—M1g1)+M1(g2— ,8¥, and a similar statement, mutatis
mutandis, holds for M, . Q

Proposition 7. In a 2-player type Qy given a random variable f and a state @, if
( pf’* — p]”?* ) f # 0, there exists a lly acceptable bet A such that 4 €[ f].

Proof. Suppose without \yf generality that ( pza’* - pfj* )f >0 and ( pfj* - pf* ) f<0.
Consider the expr )] (f—M,f). Letting the integer j grow without bound,

m,, (M,) vf) 1s equal to a vector whose elements are uniformly equal to
Py ( f—M, ut py ( f-M.f)=p; f p’ f and it was already assumed that this

last expression is greater than 0 — in other words, llmAHw(Mgz)’( f—-M f)>0, as a

vector inequality.

This in turn implies, because the state space €2 is finite, that for some finite £,
(M Uz)k( f—M,f) is uniformly greater than 0. By Nehring’s Theorem, then, there exist

random variables g, and g, in [ f] such that

(Mo"z)k(f_le)le(gl -Mg)+M(g,-M,g,)>0
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But for either i, M,(g,—-M,g,)=M,g,—M.g,=0, hence M ,(g,-M,g,)>0. Therefore,
by setting A, =(g,-M,g,) , M4 >0 and M,4, =0.

Next, since (pl‘"* - pza’* )f <0, (pl‘"* - pza’* )(—f) >0, and by reasoning similar to the above
we can arrive at random variables /4, and A, in [ /] such that for some finite n,

(Mgl)"(f—sz) =M,(h,—M,h)+M,(h,—Mh,)>0
from which it follows that, setting A4, = (h, —M h,), M,A, >0 and M A, =0.

Finally, setting A =4,-4,, A by construction satisfies the conditioncat player 1’s
expectation of it is positive, E;A >0 while player 2’s expectation of 0

E,(-2)>0. 0 ’{Q

This last proposition has at least two interesting implication 0
b;

also positive,

they can conduct between
calculate their balanced priors.
on prior and by the Sebenius-
will not be able to find any random

Firstly, imagine two individuals who insist on findin

themselves. They can write down their type matrt ﬁ
If the balanced priors are equal, they have %‘n
Geanakoplos theorem they can stop right ther —&y

variable on which to bet. If the priors Wparate, at state @ , all they need do is

identify a function f such that ( pl.”* 0¥/ #0, and then follow the iterative steps

appearing in Nehring (2001) an procedure in the above proof to calculate
(admittedly not necessarily in a utationally efficient manner) a mutually acceptable
bet 4.

Secondly, from this_ we \hat in situations of lack of common priors, the Morris-
Feinberg result ho cr strongly — there are a very large cardinality of mutually
acceptable bets. ’f ore precise, start with the observation that the players needn’t
work terribl ﬁnd a function f'such that ( p?’* - p”?* ) f # (0. Denote by Z the set of

random variablCs g such that ( pl -py )g 0. As pl -py 2 0, Z is a hyper-plane in

R? — and so is a set of dimension less than |Q| and therefore of Lebesgue measure zero

in R”. In other words, chances are that by selecting a random fin R®, the players can
apply the above procedure to find a mutually acceptable bet. Even if not, suppose they
have selected an arbitrary geZ. For each 0<a <1, the vector given by

h=ag+(- a)(pl.”* — pf*) satisfies (pi“’* — p]”?* )h # 0 — and now again the procedure can
be followed to find a mutually acceptable bet.

Given this, it might not be surprising to discover a great deal of bets being concluded
under conditions of disparate priors.
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4. N Players

4.1 Balanced Priors

In this section, the cardinality of /, the set of players in the type space <1 O, (I1,,1),. ,> ,

will be any finite number n. The number of type matrices is obviously also n, labelled
M through M.

With #n players, there are n! different permutations. For each permutation o, there is an
associated permutation matrix M, =M_,M, , ..M, . Given Qell, each M is

ergodic and has a unique Samet invariant probability measure labelled pg . Permutations
will be assumed to operate on these invariant probability ;medsufes by way of
pp? = p?2 for any permutation . &

For notational simplicity, we will again assume temporaril@ ={Q}.

Notation: Certain subsets of X , the set of all Wtions on n objects, will be of
special interest. For each j € 7, the set of all perdubgtions o such that o(n) = will be
labelled X |, and a typical element in it will e written o, ; €X , . Similarly, the set
of all permutations o such that o(1) = j ‘% labelled X, and a typical element in
it will be written o, ,eX, . T et of invariant probability measures {p%m/}
associated with the permutatio@trices {M, } such that o, ;eZ, will be

J
denoted ¥

=)0

and ‘Pj,_, d§©t e obvious equivalent for elements of X Fo Note the

following cardinalities: ‘ Y= ‘2 j..._,‘ =(n—1)!, whilst for the probability measures we

have an upper boun& istinct cardinalities, ‘P_,_,,j‘ >(n—1)! and “I’j”,_)‘ >(n-1)!.

One particu utation will be important enough here to be singled out: define 7 to
be the permutatfon defined by:

123 .. 1 .. n
nl?2..i-1 .. n-1

Clearly, for any o, ,€ ., no,.., € z

N Jj et

Proposition 8. For each permutation o, p, M, =p, andp, M _,, =p, ¥

Seo(l) !
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Proof. Select an arbitrary j and an arbitrary p, €'V, . By definition, o, ()=

—

and p, M, =p,

Write out M, as M .M, where k=0, _ (n). Follow this by multiplying both sides
of p,, M, =p, on the right by M,. We are thus lead to the equation

pgj__HMj...Mij = par_qu. Rewriting this as (pgf__%Mj )(...Mij) = po,f_HM or

j b
equally well as ( P, M, M no, = Po, M, indicates that P., M, is the unique Samet
invariant probability measure of M no, - But the Samet probability measure of M —_—

already has a label, p,, ,so in particular

o

pcrj.HMj = pncr-.v

Now, no,;.., ex so that Py, eV

s ,..;» Which in (@(Nords (recalling that
o, ()= j) means O

Po, Mo ) ‘K%Q/

We can now run the following series of, cilﬁztions, based on p, M,=p, . First

multiply on the right by M ;: Q
0®M/M/ = pﬂo'j--.aM/‘

o
We started thi it of calculations with p, M ;=p, , sowe conclude that

In other words, the Samet invariant probability measure of M, ., p, s also an

invariant measure of M ;, hence a prior for player .

Since by definition no(n)=j, the set {5p, } as o, , ranges over all elements of

DIFR is just ‘Pﬁ,_,j , and hence paﬂ_Mj =P for all Po, € ‘Pﬁ,_,j. As j was selected

J

arbitrarily, it follows that for any permutation o, p M _, =p, , and the proof is

a(n)

complete. [
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Corollory. Each element of the set ¥, is a prior for player /. [

Given the corollary, we can call, for each j, the set of W, the set of balanced priors for
player j, and we might as well label it ¥, =¥, . There are n such sets, ‘¥ through ¥,
each of which is of cardinality at most (n—1)!, for a total of n! balanced priors. We can
label the totality of the balanced priors, Uid Y. ,by V.

As the proof shows, the type matrices {M,},_, play the following roles here: for each j,
M ; acts, by way of the action pM , as a mapping of allof ¥, , toallof ¥, , =¥, in
addition, for each i # j, it maps one element in each ¥, to an element ian ; and it maps

each element in ‘P/ to itself.

The n-player version of Proposition 5 of Samet (1998a) fqll readily: if there is a
common prior p, then for any two permutations o and o’ ¥ =pM_ = p,and all the

balanced priors are equal by definition. In the other dmecti®n, if all the balanced priors
coincide, a common prior has been identified, sf cause the balanced priors are

priors. &

4.2 Orbits of Priors A
{ ;

It would seem from the previous sectigi\that a priori one may need to calculate all the n!
Samet probability measures in ord nswer the question ‘is there a common prior’ for
a given n-player type space. T ite a calculational burden, given the n-fold matrix
multiplication needed for out each matrix M _, and then the effort required for
z&obablhtles of these Markov matrices. Fortunately, it is

at indicates an easier way.

working out the invari
possible to prove a t

Definition. F Qe W, the orbit of p_under the action of the permutation 7 —1i.e.,

the n-elemed\e® {p,, p,,..., p, |}, where for each ie{0,.,n—1}, p,=n'p — will be
termed an orbit of balanced priors, or just an orbit of priors for short.

Lemma. The set of balanced priors W can be partitioned into n—1 distinct orbits of

priors. Each such orbit contains exactly one representative from each element of {¥' } ;.

Proof. That the orbits of priors partition the space ¥ into n—1 distinct subsets follows
from standard results in the theory of group actions and orbits.

Next, select an arbitrary p_ and consider its orbit {p,, p,,..., p, ,}. From the previous
result that p M, = p,, for any permutation x, we can immediately conclude that for
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One the other hand, as 7'c is the permutation associated with p, ,
eV¥,

n’oMn’G(l) n'o(1)’
p, 1s located in a different set of balanced priors. But the set {\ ,

}70-(1) ,,,,, -
other than {¥;}

representative from each element of {¥,} ;. I

each i, p,, =pM, .

we can also write p,,, = p and therefore as i goes from 0 to n—1, each

jer» and we conclude that each orbit of priors contains exactly one

Proposition 9. A type space <[ ,Q,(Hi,ti)i61> has a common prior if and only if each
orbit of priors {p,, p,,....p, } satisfies p,=p,=...=p, ;.

Proof. If there is a common prior, then all the elements of ¥ coincide, hgnce trivially all
the elements of each orbit of priors coincide.

O
In the other direction, suppose that an arbitrary orbit of p '¥Q)={p0, Dises Doyt
satisfies p,=p, =...= p,,. By the lemma, each p, €O i ted within a distinct
element of the set {'¥}
therefore identified a common prior for the type space.@

jer - But each such ¥, is a set of puiors for player j. We have

This proposition considerably reduces the inf@)nal and calculational burden for
establishing the existence of a common prior ¢ a given type space. For one thing, the set
of all balanced priors ¥ contains n! ele ;®ach orbit of priors consists of # elements.
Secondly, the algorithm for identifying a mon prior is now reduced to selecting an
arbitrary permutation o, formin$ rmutation matrix M _, calculating its invariant

Samet probability measure p d then iteratively forming the orbit of priors

{Py> Dyse-» D,y DY settin yand p,., =pM_. . If for some i, p,, # p,, it can be

concluded that the type
Py=Pr == Py
precisely identify

study of type e

o(i)*
does not have a common prior. If on the other hand
have we established that there is a common prior p, we have

follows that the study of type spaces with common priors is the
| of whose orbits of priors are uniformly equal.

Since any orbitof priors contains all the information needed to ascertain whether or not
there is a common prior, we can select one arbitrarily to serve as the representative orbit
of priors {p,, p,,...,p,,} for a particular type space.

Note that though the orbits of balanced priors contain information regarding the existence
or non-existence of common priors shared between all n players in a type space, they do
not tell us anything about common priors amongst proper subsets of the set of all players.
There are well-know examples of type spaces that have no common priors but in which
every pair of players share a common prior between them.
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Finally, note that when the type space consists of only two players, there is only one
possible orbit of priors, which is the entire 2-element space of balanced priors {p, , p, },

and we recapitulate the results of the previous section in the case of two players.
4.3 Characterising Balanced Priors

Just as in the 2-player case it is possible to provide a definition of balanced priors that is
intrinsic to type spaces and does not make reference to Markov chain concepts.

Definition. Given an n-player type space, the elements of an n-tuple of probability
measures  {p,, p»--. P, 4 Wil be termed balanced if there exists a mapping

#:40,...,n—=1} > I'such that for j<n-1, p,,=p M, ,and p,= pnl%(nl).

It is clear that given an n-tuple of balanced probability measu L Dyseees D,y §» fOT
eachj, p M, M, .-M,, ;M ,--M,; = p,, hence they, &e' Il Samet probability
measures. This insight leads to a straight-forward proof, whi e omit here, that any n-
tuple of balanced probability measures is an orbit of balan %& priors, and hence there are

between one to n—1 distinct such tuples in any n-playgfitype space.
4.4 Mutually Acceptable Bets s&'
L

In the n-player case, a set of random varia is a feasible bet if Zie[ t.(w) =0 for
all we Q. The players fail to bet easible bet {¢,}
common knowledge at @ that ayer’s expectation E, of his own bet ¢ is positive,
Le. Et,>0. A mutually cgﬁle bet is a feasible bet {t,},_, which does satisfy the

condition that E¢, >0 fo

fail to bet on any fe& .}, -

iel

at some state @ if it is not

iel

layers. There is no betting amongst the players at o if they

The n-play is-Feinberg theorem then states there is no common prior in a type
space if and oNy if there is a mutually acceptable bet {z,}

iel *
Given Proposition 9, it is natural to enquire whether it is possible to derive the conclusion

of the Morris-Feinberg theorem directly from consideration of orbits of priors. With the
assistance of ideas from Nehring (2001), it turns out that this is true.

Proposition 10. If the elements of any orbit of priors at a state @ in a type space
<I ,Q,(I1,,1),. 1> fail to be uniformly equal, then there exists a mutually acceptable bet.

Proof. Let {pg’*, pl‘"*,..., p:’;} be an arbitrary orbit of priors such that for some /,

p” #pt. Let o' be the permutation associated with p? , with j=o'(1), so that
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p:, =p”, and label the permutation associated with p?, by o' =nc', so that

o _ o : o _ o _ o
P =p/,- By previous results, p;,=p’M,=p’M_ o Next, select a random

variable f'such that p;", f- pi’,il f >0 — that such can be found is guaranteed by the fact

that p” # p;’,.

Consider the expression (M U,)"( S =M, f). Letting the integer k£ grow without bound,
lim, , (M U,)k (f =M ,f) is equal to a vector whose elements are uniformly equal to
po(f=M,f).But p° (f =M, f)=p* f-p°.f,and it was already assumed that this
last expression is greater than 0 — in other words, limkﬁw(MG,)k( S-,;/)>0, as a
vector inequality. O

This in turn implies, because the state space  1is finite @or some finite £,
(MG,)"( S =M, f)>0 is uniformly greater than 0. Becaus @ -fold concatenation of
(c'(1),...,c' (n)) is a finite sequence of elements of /, whoénitial element is o' (1) =/,

by Nehring’s Theorem there exist random variabl 4, > 1n [ /] such that

(MU,)"(f—Mjf)=§/j [ —Mgh)>0

Setting, for each i# j, A, =—(gl.l—?il), and A, =3 (g —M,g)), it is clear that
Y. A4 =0,and that for i # j, ,but £,2,>0.

Now, since (M, Y(f - >0, it follows from the properties of type matrices that for
each t>1, M , (M

U,.(t f—M,f)>0. But then again we can apply Nehring’s
Theorem, each t & a finite sequent of elements of / whose initial element is o' (¢), to
obtain {g;}a, /] such that, following the same recipe as above, we can define for
each i#o'(t), 4 =—(g/~Mg)), and 2, => (g -Mg)). Cleatly, > %=0,

and for i # j, E,-/ﬁ =0, but Ea’(t)ﬂ/;](f) >0.

Finally, setting A, = Zt A, we have Z[EI A, =0,and E A >0foralli [

er " 1?

As with the analogous proposition presented in the previous section, this result indicates
there is no lack of mutually acceptable bets in situations of disparate priors. Individuals
who wish to engage in betting should have no problem identifying an endless number of
feasible bets of the form {z,}, , they would all accept — even though they are aware that

Ziel t.(w)=0 1in all states. As pointed out in Feinberg (2000), each such mutually

iel
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acceptable bet is analogous to the existence of n securities such that if the players are
risk-neutral and have the same utility functions then at every state of the world the sum of
what they are willing to pay for the securities is always greater than the total worth of the
securities.

Example. In this example, Q={w,0,, 0}, [={,23}, Il ={{o,0,}{o}},
IL, ={{w, 0} {o,} }, I, = {{a}.{0,, 0} ), 1={{o,0,,0,}}.

The type matrices are

SN
SN
=) e}

\\
| ’&\5\0
0//0°

% o

There are two orblt@ given (to eight decimal places) by:

[ 0.30769231 6923 0.46153846]
[0.3846153 23076923 , 0.38461538]
[ 0.30769231 ,0.30769231 ,0.38461538]

and

[ 0.28571429 , 0.28571429 , 0.42857143]
[ 0.35714286 , 0.28571429 , 0.35714286]
[ 0.35714286 , 0.21428571 , 0.42857143]

and it can be concluded from cursory inspection of either orbit that there is no common
prior in this type space.

34



5. Appendix — Remaining Proofs
Observation. Given any k >1 and type matrix M,, M," =M.

Proof. Recall that by assumption, for each weQ, f(w)(I1,(®w))=1, and for each
o' ell(w), t(o)=t(o).

Label the states of Q as @,..,o,, and select arbitrarily @,,,. Then
M (o,0,)=t (o) {o,}) and by the definition of matrix multiplication

M@0, = Tl @X o @)@

We can immediately note that for all j such that @, ¢ I1,(®,), ¢, )E ®,}) =0, so that for

the sake of working out the sum in the above equation we estrict attention only to
those j such that w; e I1,(®,) . We will accordingly wrlte

M (o, 0,) = Z[t (w;)({a’&\ﬁ(w )@, })]

with s’ indicating that the sum is only ovm J such that @, €I1,(®,).

Suppose first that o, €I1,(®,) R&n y assumption, as j varies, ¢,(@;) =1,(®,) so that
t(o,){®,}) 1s a fixed valu ,@m to ¢,(w,)({w,}) . This fixed value can be pulled out
of the sum, leading to the &tion

$§ (@,0,) =t(0)({o, })Zt(wz)({w 1)

But because by assumption 7 (w)(I1,(®))=1, we can write Zti(a),)({a)j}) =1, hence
j=1

Miz(a)lﬁa)m) =t(0){w,})=M (0, o,).

Next suppose that @, ¢ I1,(®,) sothat M (w,,®,)=0. Asj varies over those j such that
w; ell(®), t(o;){w,})=0. This fixed value can again be pulled out of the sum,

leading immediately to the conclusion that M (®,,®,)=0=M (w,,®,).

The general result, for M/, follows by straightforward k-fold iteration of this result. [
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Lemma (to Proposition 6). The mapping & =y o o« is continuous.

Proof. The mapping £ maps elements of a real vector space to elements of a real vector
space. Hence to establish its continuity we can rely on the Heine definition of continuity
and consider an arbitrary sequence (MII,M;),(Mlz,Mz2 Yseees (M, M}),...., of elements of

M, (Q)x M ,(Q) , and the associated sequence S(M|, M), B(M],M?),..., B(M/,M)),....
Suppose that lim (M, M) =(M,M}).

For each k>1, define the infinite sequence (M(lrl )",(M;l )",...,(M;‘l )*,... and the
sequence (M) )*,(M2)",...(M.)",..., where M =M]M{ and M g M/M]. Then
lim,, (M) =(M)) and lim _ (M) =M )", where { MM and
M 22 =M/M) . But for each j, lim,_ (M él )* approaches a pro ity matrix A4, each of
whose rows is a probability vector p;'] that is one of the bal %'priors associated with
the pair (M/,M}), and lim, (M (fz )" gives a matrix eal f whose rows is the other
balanced prior. Then lim, ,, lim, (M él )* approac a probability matrix each of
whose rows is one of the balanced priors associ:&h the matrices (M, M}), and the
same holds for lim,_, lim, (M )". Hen%mﬁw BM/! ,M])=pB(M], M), and we

have proved that £ is continuous.

The mapping y:(p,,p,)—= p,— P, Qarly continuous, as is « , being by definition a

topological isomorphism. Heng o Boais continuous. [
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