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Abstract

In this paper we present a grouped factor model that is designed to explore
clustering structures in large factor models. We develop a procedure that will
endogenously assign variables to groups, determine the number of groups, and
estimate common factors for each group. The grouped factor model provides
not only an alternative way to factor rotations in discovering orthogonal and
non-orthogonal clusterings in a factor space. It offers also an effective method
to explore more general clustering structures in a factor space which are in-
visible by factor rotations: the factor space can consist of subspaces of various
dimensions that may be disjunct, orthogonal, or intersected with any angels.
Hence a grouped factor model may provide a more detailed insight into data
and thus also more understandable and interpretable factors.
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1 Introduction

Factor models are widely used to summarize common features in large data sets,
such that behaviors of a large number of observed variables can be explained by a
small number of unobserved variables called factors. This class of models has been
successfully applied, for example, in finance to model asset returns known as arbi-
trage pricing theory (see Ross (1976) for more details), in applied macroeconomics
to construct coincident indices to describe business cycles and to forecast macroeco-
nomic activities (see Stock and Watson (2002) for more details), and in marketing
to identify the salient attributes with which consumers evaluate products. Often the
large number of variables consist of variables from different groups. For example as-
set returns consist of asset returns of different industries; macroeconomic variables
include usually price variables, real activity measures, interest rates, labour statistics
ect; consumers can be classified into different profession groups, income classes, and
age groups ect. Group-specific information is useful in understanding data, in par-
ticular, in explaining group-specific features in the data. So, for example, industrial
indices which are considered as industry-specific factors are used to measure indus-
try specific risks that can in turn explain the asset returns in respective industries
(See Fama and French (1993) for more details.). Regarding forecasting Boivin and
Ng (2006) find factors extracted from grouped data can produce better forecasts.
Ludvigson and Ng (2009) analyze the relationship between bond excess returns and
macro economic variables. They use 8 group-pervasive factors extracted from 131
variables to explain the bond risk premia. Goyal, Perignon, and Villa (2008) apply
a factor model with two groups to NYSE and NASDAQ data and find that these
two markets share one common factor and each market has one group-specific fac-
tor respectively. Heaton and Solo (2009) study a grouped factor model in which
the groups are characterized by non-vanishing cross-sectional correlation among the
residuals within a group.

In most studies using large factor models with groups, grouping of variables is
assumed to be known a priori. Often the a priori assumptions on groups are based
on structural information, such as geographical locations, organizational member-
ships or demographical characteristics. Although in many cases the non-statistical
structural information provides a natural criterion to classify the variables under
consideration, this kind of classifications, however, do not necessarily reflect the sta-
tistical properties of the variables. Consequently, the statistical inference based on
this kind of classifications might be biased or inefficient.

It raises questions: How can we know whether a classification according to certain
structural information is statistically adequate? How can we achieve a statistically
valid classification of the variables if there are indeed some grouped structures in the
variables?” How can we determine the number of groups?” How can we characterize
the grouped structures? and what are the conditions under which we can obtain a
valid estimation of the group-pervasive factors? Answering these questions consti-
tutes the contents of this paper. Our paper contributes to the literature on large
factor models in that it presents a theory on grouping the variables, determination
of the number of groups and estimation of the group-pervasive factors, such that
the grouped structures are statistically determined from observed data rather than
assumed to be known a priori. Our consistent classification rule, consistent model
selection criteria and consistent estimation of factors are developed under large cross



sections (V) and large time dimensions (") without any restriction on the relation
between T and N.

The paper is organized as follows. In section 2 we define a grouped factor model
and discuss its relation to a conventional factor model. Section 3 deals with esti-
mation of grouped factor models. We establish a consistent classification rule to
classify variable into groups based on a method called generalized principal com-
ponent analysis (GPCA). We present a class of consistent model selection criteria
to determine the number of groups as well as the number of factors in each group.
Section 4 documents some simulation studies on the performance of the estimation
procedure for grouped factor models in finite sample settings. After we demonstrate
an empirical application of the grouped factor model in section 5, the last section
concludes.

2 The Model

Let X be a (T'x N) matrix collecting the observations of a set of N variables observed
over T periods. We assume that this set of variables consists of n groups:

X =( X1, X5 0y X, ), with N =) N, (2.1)

(TxN) (T'xN1) (TxNo) (T'xNyp)

Further we assume that the variables in each group are generated from a factor
model. For the jth variable of the ith group at time ¢ we have

Xi,jt = )\;,j Fi,t —|— €i7jt7 fOI‘ j = 1,2, Nl,t = ]_,27 ...,T,’i = ]_,2, N, (22)
(Ix1)  (Ixkg)(kix1)  (1x1)

where Fj; is a k;-dimensional random factor of the ith group at time ¢ and J\;; is
a k;-dimensional factor loading for the jth variable in the ith group. e, is the
idiosyncratic component of X, j; and )\;’jF@t is the common component of X; ;. F;;
is called group-pervasive factor of the ¢th group.

Let X; ; collect the time series observations of X, j; over T" periods. We have

Xi,j = E )\i,j + 67;’3' s fOI‘ j = 1,2, Nz,l = 1,2, ., n, (23)
(Tx1)  (TXki)(k;x1)  (Tx1)

/ !
where Xz‘,j = (Xz',thz‘,jh e Xi,jT) = (Fz',h Fz‘,27 ey Fz‘,T) , and €ij = (€z',j1; €ijly ey ei,jT)

Let X; collect observations of all V; variables in the ith group. We have

Xi = Fz Az + El s for ¢ = 1, 2, ., n, (24)
(TxN;)  (Txks)(kixN;)  (TxN;)

where

o X, =(X;1,Xi2,...,Xin,): (T x N;) matrix of observations of NN; variables in
the ¢th group over 1" periods.

o [: (T X k;) matrix of unobservable k; group-pervasive factors of the ith group
over T' periods.

o Ni = (N1, Nig, s Ain): (ki x N;) matrix of unobservable factor loadings of
the ¢th group.

!/



o E;,=(ei1,€2,....e;n,): (T x N;) matrix of unobservable idiosyncratic compo-
nents of the ith group over T' periods.

o > i Ni=N.
We call the model in (2.4) a grouped factor model (GFM).

2.1 Assumptions

If the group-pervasive factors are all independent across groups, the union of the
group-pervasive factor spaces will be k-dimensional with & = " | k;. Collecting
all group-pervasive factors together, we have Fy = (Fy,, Fy,,..., F);)’. Thus each
group-pervasive factor F;; can be represented as a linear function of Fi. If some
components of a group-pervasive factor are linearly dependent on those of other
groups, the dimension of the union of the group-pervasive factor spaces will be
less than > "  k;. In fact, the dimension of the union will be the number of all
linearly independent components of the group-pervasive factors over all groups. Let
G collect all these linearly independent components of the group-pervasive factors
of all groups, then each group-pervasive factor F;; can be represented as a linear
function of GG;. Therefore we make the following assumption.

Assumption 2.1
(a) A group-pervasive factor Fi; is a linear function of a k dimensional random
vector Gy with k <"1 k; in the following way:

F,, = C/Gy, fori=1,2,....n, (2.5)
where C; is a (k X k;) constant matriz.
(b) rank(C;) = k;.
(¢) rank(Cy, Cy, ..., Cy) = k.

Assumption 2.1 (a) is made to allow for possible dependence among group-pervasive
factors across groups. If k < Y7 | k;, some components of group-pervasive factors
must be linearly dependent across groups. For instance, withn = 3, k; = 2 and ky =
2, k3 = 1 and k = 3 we are considering three groups with 2, 2 and 1 group-pervasive
factors respectively. These five components of the three group-pervasive factors are
not independent from each other. Only three components are independent and they
are represented by a three dimensional random vector GG;. Then each group-pervasive
factor can be represented as a linear function of Gy. If k = > " | k;, Gy is just the
collection of all group-pervasive factors possibly after some rotations. Assumption
2.1 (b) is made to ensure group-pervasive factors are not linearly dependent within
a group. (c) is to make sure that every component of G, is used in generating the
group-pervasive factors. Under Assumption 2.1, X adopts a factor structure with
G as the factor:

X = (X1 X2 ... X))
= (FA BAy 0 BN )+ (B By o0 E,)
= (GCIAy GCoAy ... GC AN, )+ (Er Ey ... E,)
= G(CiA Cohy .. CoAy )+ ( By By ... E,),



where G = (G1,G2,...,G7)" is a (T x k) matrix collecting the unobservable ran-
dom vector G; over T periods. Defining A = (C1Ay,CoAs,...,C,A,) and E =
(E1, By, ..., E,), we have:

X = G AN + E (2.6)
(TxN) (TxK)(KxN) (T'xN)

The equation above says that X can be accommodated in a pooled ungrouped factor
model with a k-dimensional factor GG;. Hence, G; is called overall factor and k is
referred to dimension of the overall factor space.

In order that each group is identified, the factor space of each group must be
different i.e. F;; # F}; for i # j and no factor space of one group is a subspace of
that of another group, in other words F;; must not be a linear function of F},, i.e.
Fiy # C'Fj; for any constant matrix C. Because Fj; = C{Gy and Fj; = CiGy, we
will require that C; # C;C for any constant matrix C. This leads to the following
assumption.

Assumption 2.2

a) C; and C; are not linearly dependent, i.e. C; C', for any constant matrix
(a) C; and C; th ly dependent, i.e. C; # C;C, f Y tant matriz C
withi #j,i=1,2,...,n and j =1,2,...,n.

(b) Any pair of factor loadings from two different groups X;,, and \;; for m =
1,2,.N;, 1 =1,2,..,N;,i=1,2,...n, j =1,2,....n and i # j satisfy the restric-
tion: Cz)\z,m 7é Cj)\j,l-

In the case with two factor planes and one factor line, assumption (a) excludes
the situation in which the line lies on any one of the two planes and the situation
where one plane lies on the other, such that the three group-pervasive factor spaces
are distinguished from each other. Assumption 2.2 (b) is a technical assumption
in order to simplify our presentation of a correct classification. (b) says that the
common components of two variables from differen groups must not be the same.
Cidigm # CjAj; implies F}\;,, # Fj\j. Fi\i, and Fj\;; represent two points
(without errors) from two groups, respectively. Assumption 2.2 (b) excludes the
situation, in which a data point lies in the intersection of the factor spaces of two
groups. Otherwise we would be involved in an unfruitful discussion why the data
point belongs to one group not the other!.

Since our objective is to investigate the grouped structure in a factor model not
to develop a new asymptotical result for a factor model, we are going to borrow
well-established assumptions on factors and loadings as well as on the idiosyncratic
components from the literature. The model setup in Bai and Ng (2002) serves well
for this purpose. It is general enough for most applications. Further techniques in
Bai and Ng (2002) fit well to investigation of a grouped factor model as we will see
later. Therefore, we adopt the following assumptions from Bai and Ng (2002) in
this paper.

Assumption 2.3

E||G||* < oo and %Zthl GG, L3S as T — oo for some positive definite matriz
2.

1See remarks of Proposition 3.5 for more details.



Assumption 2.3 is standard in a factor model. Under Assumption 2.1 and As-
sumption 2.3 it is easy to see that the group-pervasive factor F;, also satisfies the
requirements on factors given in Assumption 2.3, i.e.

(1) EllFil|* = El|CIG][* < o0

2) L FFL, = A0 CIGGIC 5 CI5C; as T — oo. Since rank(Cy) = ki,
C;XC! is a positive definite matrix.

Assumption 2.4
Nij < A< oo and ||NA/N; — D;|| — 0 as N; — oo for some (k; X k;) positive
definite matriz D;, fori=1,2,...,n.

Assumption 2.4 is to make sure that each component of a group-pervasive factor
makes a nontrivial contribution to the variance of the variables in the group.

Proposition 2.5

Under Assumption 2.4 and Assumption 2.1, the factor loading matriz A in the pooled
ungrouped model (2.6) satisfies the requirement in Assumption 2.4, i.e. Aj < A < 00
and ||[AN' /N — D|| = 0 as N — oo for some (k x k) positive definite matriz D.

Proof (See Appendix.)

Let X;; denote the observation of the ith variable at time ¢ in X and e; be the
idiosyncratic component of Xj;.

Assumption 2.6 (Time and Cross-Section Dependence and Heteroskedasticity)
There exists a positive constant M < oo, such that for all N and T,

1. E(ey) =0, Eley|® < M;

2. E(N el ei/N) = (NTPN eisen = (s, 1), [vn (s, s)| < M for all s, and

T30 Iiw(s, )] < M;

3. E(epejr) = Tiju with 7,54 < |75 for some 7,5, and for all t, in addition,

N~ Zf\il Z;Vﬂ 75| < M

4. Elenejs) = Tijus and (NT)ES2Y ST S ST [ mijasl < M,

5. for every (t,s), EIN"Y2 SN [ejen — E(esen)]|* < M.

Further we adopt also the assumption on weak dependence between factors and
errors given in Bai and Ng (2002).

Assumption 2.7 (Weak Dependence between Factors and Errors)
1

XN 2
El— < M.
(N Jj=1 ﬁ ) -
Note that the idiosyncratic components in the pooled ungrouped factor model (2.6)
are the same as the corresponding idiosyncratic components in the grouped factor
model (2.4). Therefore the idiosyncratic errors in the grouped factor model satisfy
the requirements in Assumptions 2.6. Since Fj; is a linear function of Gy, the

requirement on weak dependence holds also between group-pervasive factors and
idiosyncratic errors, i.e. it holds:

E(NLZ

i

Gtejt

1

VT

F, i,t€i 5t

2
) <M fori=1,2,...n.
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Grouped Factor Models v.s. Pooled Ungrouped Factor Models
Comparing the grouped factor model (2.4) with the pooled ungrouped factor model
(2.6), we can see that a successfully applied traditional method of orthogonal factor
rotation is a special case of the grouped factor model, in which the group-pervasive
factors are orthogonal to each other. Through classification of the variables into
different groups and estimation of the group-pervasive factors, what we will obtain
is a particular set of factors, i.e. F;, such that different groups of variables have
their non-zero factor loadings only at respectively different components of F;. In
this context, estimating a grouped factor model can be seen as a means to find a set
of properly rotated factors that can offer a better understanding and interpretation
of the data.

Grouped factor models allow, however, more general structures in the overall
factor space than orthogonal clustering. The group-pervasive factors can be inde-
pendent or dependent as well as correlated, i.e. the group-pervasive factor spaces
can be disjunct, orthogonal, or intersected with any angels. With a grouped factor
model we can investigate more general structures in the overall factor space.

One benefit of studying the grouped factor model (2.4) instead of the pooled
ungrouped factor model (2.6) is to obtain group-pervasive factors, which may be
useful for group-wise analysis. If we understand a pooled ungrouped factor model
as a means to condense information from a large number of N variables to a small
number of k overall factors and thus providing an explanation how each variable
depends on the overall factors, then the grouped factor model (2.4) explains in
detail which parts of variables are influenced by which kind of specific factors.

3 Estimation of GFM

Suppose that we know the number of groups n € N as well as the correct grouping
S, € S,, where N is the set of natural numbers and S,, is the set of all possible
groupings of variables given n. Then the estimation problem can be solved group
by group using principal component method that corresponds to the minimization
of squares residuals in each group. If the number of groups and the grouping of the
variables are unknown, we could try to solve this problem by minimizing over n and
s, as follows.

min min minz || X5 — FA| % (3.7)
=1

neN sp€Sn, A, F; -
K2

where X" is the data matrix collecting variables grouped into group ¢ according to
the grouping of s,. The objective function (3.7) expresses clearly main features of
the estimation problem of a grouped factor model: we estimate the unknown num-
ber of groups, the unknown grouping of variables, the unknown number of factors in
each group and the unknown factors in each group. This problem can be seen as a
problem of high dimensional clustering in which the cluster centers are subspaces of
different unknown dimensions instead of centriods. A pragmatic approach to solve
this kind of problems is to iterate between classification and estimation. Well known
procedures are k — means algorithms and expectation maximization algorithm. In
high dimensional clustering, it is well known that these procedures depends sensi-
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tively on starting values?. A thorough search over all groupings is NP-hard even in
the case of two groups®. In this paper we adopt the idea of generalized principal
component analysis* to estimate the grouped factor model.

3.1 An Alternative Representation of GFM

From a geometric point of view we can interpret factor models as follows. Each
variable can be seen as a point in a T-dimensional space. We have N such points.
While a pooled ungrouped factor model (2.6) says the N sample points are located
nearly within a k-dimensional overall factor space spanned by G, a grouped factor
model (2.4) says more precisely that the N points are actually located close to n
different subspaces within the overall factor space, each of which is spanned by F;
with ¢ = 1,2, ..., n, respectively.

Denote the normalized complementary vectors to factor F; by B;, i.e. B.F, =0
and B.B; = Ir_y,. Denoting F;A; by Xi, we can represent a GFM in the following
alternative way:

X=X+ E; with B/X; =0 for i =1,2,...,n. (3.8)

While in GFM (2.4) the common components X; in each groups are represented as
a linear function of the basis F}, in equation (3.8) the common components X; are
characterized through the orthogonality to the normal vectors B;. To estimate the
number of groups and the number of factors in each group is equivalent to estimation
of the number of the corresponding subspaces and their dimensions.

3.2 Method of Generalized Principal Component Analy-
sis(GPCA)

While principal component analysis can be seen as a problem of estimating a lin-
ear subspace of unknown dimension k from N sample points, our problem is to
estimate an unknown number of n linear subspaces with unknown dimensions k;
(1 =1,2,..n) from N sample points. This is why this method is called generalized
principal component analysis.

The subspaces in (3.8) can be represented as follows.

[[IBxlI=0, (3.9)
i=1

where x is a point lying in one of the n subspaces and || || is the Euclidian norm
in vector spaces. The left hand side of equation (3.9) is in fact a collection of

2See Zhang and Xia (2009) and Yedla, Pathakota, and Srinivasa (2010) for more details.

3The k — means procedure is NP-hard. See http://en.wikipedia.org/K-means_clustering for
more details.

“see Vidaly, Ma, and Sastry (2003) for more details.



m = [[;_,(T — k;) equations of homogeneous polynomials of degree n:
[TI@)I =] 1((bir, biz, .. biz—s,y))x)[| = 0
i=1 i=1
= pu(x) = (P1(X), Pr2(X), ..., Pam(x)) = 0. (3.10)

Equation (3.10) says the subspaces can be equivalently presented as the null space
of the m homogeneous polynomials of degree n. We demonstrate this fact in the
following example.

Example 3.1

For the case T = 3, n = 2, k1 = 1 and ky = 2 we are considering a line and a
plane as two subspaces in a 3-dimensional space (See Fig.1). We have here m =
[[-,(T — ki) = 2. In this case By is a 3 X 2 matriz and By is a 3 x 1 vector:
B1 = (bu,b12) and B2 = (bgl).

axis 3

axis 2

axis 1

Figure 1: GPCA forn=2,k =1, ky, =2, N =200,T =3

H |(BX)]] = 0 <= pa(x) = ((bl,x)(by;x), (by%) (b, x)) = 0. (3.11)

More concretely, for a line S; = {x|z1 = 0,25 = 0} and a plane Sy = {x|x3 = 0},
we have

10 0
B,=| 01 and By=| 0 |. (3.12)
0 0 1

The polynomials representing the two subspaces are:

pa(x) = ((b;x)(by;x), (b}yx) (b, x)) = (125, T223) = 0. (3.13)



A useful property of the polynomial representation of the subspaces is that the
normal vectors of the subspaces can be obtained by differentiating the polynomials
and evaluating the derivatives at one point in the respective subspaces.

For Example 3.1 the differential of ps(x) is given by:

Opa(x
p;)(( ) (b11(b5;x) + bai1(bi;x), bi2(b5x) + b1 (byx)) . (3.14)
Evaluating the differential at a point x € S; with (by1, b12)'x = 0, we obtain:
Opa(x
Do) | = (oua(b3) Drof}y0). (3.15)
Normalizing the derivative above we obtain:
Ip2(x) ‘xe
W (blh blg) Bl. (316)
x€S1

Similarly, we have

3172 |x€
8p2 2= = (ba1, byy) = Bo. (3.17)
12229 |xes, |

Differentiating p,(x) to obtain the normal vectors of the subspaces provides one
way to solve for the subspaces from the data. Our question is now: how can we
obtain the polynomial p,(x), while the subspaces are still unknown? Since we have
N sample points, each lying in one of the n subspaces, we can construct the subspaces
from the sample points. Recall that p,(x) consists of m homogeneous polynomials
of degree n in the elements of x and each such homogeneous polynomial of degree n
is a linear combination of the monomials of the form z7'z3*...x7" with 0 < n; <n
for y =1,...,7 and ny + no + ... + ny = n. Hence, we need only to find m linear
combinations of the monomials that assume the value of zero at xs that are points in
the n subspaces. To this end, we look again at Example 3.1, where the polynomial
representing the subspaces can be formulated as follows.

pa(x) = ((b};x)(b3;x), (b}5x)(b3;x))
= ((biniz1 + briazs + bi13s) (ba1121 + ba12%a + baizxs),
(bi2121 + b122a + b123x3) (ba1121 + bo1aTo + borszs))
= (Clll’% + C12X129 + C137X12X3 + 014.%% + C152X223 + 0161'%7
021$% + Co2x1T9 + Co321T3 + 02417% + CosToT3 + C26$§)
= (cie(x), chra(x)) = (€1, €2)'12(x)) = 0, (3.18)
where v5(x) = (2%, 2129, 173, T3, Tox3, ¥3)" is the Veronese map of degree 2, and
the coefficients c; is related to the normal vectors of the subspaces in the following
way: €1 = (011, C12, C13, C14, C15, 016),7 with ¢;1 = 0111211, 12 = bi11ba12 + b1120211,
c13 = bi11b213 + b113b211, c1a = bi12b212, c15 = b112b213 + D113bai2, ¢16 = b113b213; and ¢,
is defined accordingly.
Generally, the Veronese map of degree n is defined as v,(x) : RT — RM» with

T-1 |
M, = ( n—;_ : ) Vp (T, xr) — (...,X17 ...)', where <! — Pl T with

0<n;<nforj=1,..,T, and ny + no + ... + np = n.

10



In Example 3.1 we see that a collection of n subspaces can be described as the
set of points satisfying a set of homogeneous polynomials of the form (see equation
(3.18)):

p(x) = c'vu(x) = 0. (3.19)

Since each point in one of the n subspaces satisfies equation (3.19), for N points in
the subspaces we will have a linear equation system:

L,(X)c= : c =0, (3.20)

where L, (X) is an (N x M,,) matrix. L, (X)c = 0 suggests that ¢ can be calculated
from the eigenvectors of the null space of L,(X). Once we have c, we have a
representation of the subspaces as v,(x)'c = 0. This suggests further that we can
obtain the normal vectors to the subspaces by differentiating v, (x)'c with respect
to x and evaluating the derivative at points in the respective subspaces. This fact
is summarized in Theorem 5 in Vidaly (2003).

Proposition 3.2 (Polynomial differentiation Theorem 5 in Vidaly (2003))
For the GPCA problem, if the given sample set X is such that
dim(null(L,)) = dim(l,) and one generic point y; is given for each subspace S;,

then we have
Ic,vp(x)

S| = span{ I

|x=y:, VCn € null(Ln)} :

Here S;, represents normal vectors of the subspace S;, L, is the data matrix as
given in (3.20) and I, is the ideal of the algebra set p,(x) = 0 that represents the n
subspaces.

Following Proposition 3.2, the determination of the subspaces boils down to eval-
uating the derivatives of v,(x)’c at one point in each subspace. For data generated
without noises, we only need to find one point in each subspace in order to calculated
the normal vectors of the respective subspaces and the classification problem can be
solved perfectly. This method is called polynomial differentiation algorithm(PDA)
(see Vidal, Ma, and Piazzi (2004) for more details). In the following we demonstrate
how PDA works in Example 3.1.

Example 3.1 (continue) We consider a set of 8 sample points from the two sub-
spaces. The coordinates of the 8 points are collected in a data matrix X. FEach
column in X is one sample point.

10120000
X=1011220000O0 (3.21)
00001234

Obuviously, the first four points are located in the subspace of the plane S, and the
next four points are located in the subspace of the line Si. The Veronese mapping

matriz with ve(x) = (22, 2129, 1173, T3, Tox3, 23) is as follows.

11



10000 0
00010 0 0 0
11010 0 0 0
44040 0 1 0

LX) =1090000 1 1o o
00000 4 0 —1
00000 9 0 0
00000 16

From L,(X) we can solve for its null space by singular value decomposition. c is
the matriz containing the two eigenvectors of Null(L,(X)).

The two polynomaials that represent the the two subspaces can be obtained in the
form of v,(x)'c = 0. So we have

/

Vn(X) C= (1‘%@11'2,%%3, 3737902%3, m%)c = (951$37 —$2$3) =0.

Comparing with equation (3.13), we know v,(x)'c = 0 represents the two subspaces:
the line S; = {x|z1 = 0,22 = 0} and the plane Sy = {x|z3 = 0}.

According to Proposition 3.2, the normal vectors of the subspaces can be calcu-
lated by evaluating

Avp(x)'c

2r1 x9 T 0O 0 0 T 0
O, (x) du1_ 1 T2 T3 3
T X 8(X) - —a”gi’;) < | = 0 21 0 2z 23 0 |Jc=| 0 —x3
X %X)/C 0 0 23 0 29 23 r, —x2
z3

at one point in the respective subspace. Evaluating the partial derivative at x' to x®,
we have:

!/ 0 0 / 0 O
%\xl — oo |, a”"a<X>c\xz =lo o |, (3.22)
X 10 X 0 —1
0 0 0 0
Oy (x)' Oy (x)'
%&3 - ( 0o o0 |, Va(;() ‘=10 0o |, (3.23)
1 -1 2 9
/ 1 O / 2 0
%m - (o -1, a”’gj)c|x6 o -2, (3.24)
0 0 0 0
!/ 3 0 / 4 O
%u: 0 -3 | and whs: 0 -4 |. (3.25)
x 0 0 X 0 0

Note that the rank of 8”"8(;‘)/c|xk corresponds to the codimension of the respective
subspace and the normal vectors of the respective subspace can be calculated as the
principal component of %Lﬁ. For the points x',x2,x3,x*, the principal com-

ponents of the partial derivatives are identical (0 0 1)°. Therefore these four points
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belong to the subspace Sy defined by the normal vector By. The normalized deriva-

tives for points x°,x% x7,x% are identical. Hence these four points belong to the

subspace S1 characterized by the normal vectors By.

0 1 0
1 0 0

3.3 Method of Generalized Principal Component Analysis
with Noisy Data

Sofar we know how to solve the classification problem if there is no noise in the data,
i.e. E; =0 in equation (3.8). If E; # 0 several problems arise: (1) L, (X) will have
full rank and thus equation system (3.20) has only zero solution. (2) It may happen
that no point lies exactly in any one of the subspaces, such that we cannot obtain
an accurate inference on the normal vectors. Yang, Rao, Wagner, Ma, and Fossum
(2005) propose a PDA with a voting scheme to solve the problem with noisy data.

Algorithm 1 Generalized Principal Component Analysis
Given a set of samples {zx}2_, (z), € RY) fit an n linear subspaces model with
codimensions dy, ..., dy:

1:  Set angleTolerance, let C' be the number of distinct codimensions,
and obtain D by the Hilbert function constraint.
2:  Let V{1},...,V{C} be integer arrays as voting counters and U{1},...,U{C}
be matrix arrays for basis candidates.
Construct Ly = [vp(x1), ..., vn(xV)].
Form the set of polynomials p,(x) and compute Dp,,(x).
for all sample x* do
foralll1 <i<C do
Assume x* is from a subspace with the codimension d equal to that of the
class i. Find the first d principal components B € R¥*? in the matrix Dpj, (x)|yx.
8:  Compare B with all candidates in U{i}.
9: if 35, subspaceangle[B,U{i}(j)] < angleTolerance then
10: VH{i}(j) = V4{i} () + 1.
11:  Average the principal directions with the new basis B.

12: else

13:  Add a new entry in V{i} and U{i}.
14: end if

15: end for

16: end for

17: for all 1 <i<(C do
18: m = the number of subspaces in class i.
19:  Choose the first m highest votes in V{i} with their corresponding bases in U{i}.
20:  Assign corresponding samples into the subspaces, and cancel their votes
in the other classes.
21:  end for
22:  Segment the remaining samples based on these bases.
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The motivation of PDA with a voting scheme is the following: for a given number
of subspaces n and their codimensions {d;}! ,, the theoretical rank of the data
matrix L, (X) called the Hilbert function constraint can be calculated. Then a set
of polynomials p,(x) with coefficients equal to the eigenvectors in the null space
of L,(X) are formed. Through evaluating Dp,(x) at each data point, a set of
vectors normal to the subspace in which the point lies are obtained. The original
PDA method relies on one good sample per subspace to classify the data. In the
presence of noises, no single sample is reliable. However, through averaging the
normal vectors of all samples in one subspace, it will smooth out the random noises.
The table above is the algorithm given in Yang et al. (2005)°. We demonstrate how
the PDA with a voting scheme works for Example 3.1 in the Appendix.

3.4 Classification of Variables

After obtaining a solution {Bl, Bg, Bn} for the subspaces, a variable x/ is classified
to that subspace to which x/ has the smallest distance among all subspaces. Given
the set of estimated normal vectors {Bl, BQ, Bn}, we can calculate the distance
between the j-th variable x? and the ith subspace B, as follows:

&l = IBix|l.
The rule for classification is the following:
|&]]| = min{||&7]], [|&]], ... [&4]]} = x =5, (3.27)

where x/ = S; means that x/ is classified to the subspace S;.
We use x?* to denote that the j-th variable is generated by the factors of the i-th
group and e’’ is the corresponding noise. If

17| = min{{lef'l], [|&]], .., [1&}/]]} (3.28)

holds, then x/¢ = S; follows. This classification is correct. Assumption 2.2 implies
that if there is no noise, all data points from one group do not lie in the subspaces
of other groups, so that their distances to the subspaces of other groups are always
strictly positive. This ensures that the classification according to distance will lead
to a unique correct classification. The existence of noises will inevitably result in
some errors in the classification despite use of the voting scheme. We show how to
achieve a consistent classification in the next subsection.

3.5 Projected Models

In principle, we could obtain an estimate for each subspace by PDA as described

in subsection 3.3. However, the usual case of a large factor model is that the num-

ber of observations 7' is large and the number of overall factors k is very small.

B, is of dimension T' x (T' — k;) and the Veronese mapping matrix is of dimension
T-1 . . . . .

N x ( " —jt 1 , such that the dimension of data involved in the PDA algorithm

is very large. Consequently, the algorithm may not be practically executable due

5Yang et al. (2005) document good performance of this procedure in data segmentation.
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to extremely heavy computational burdens. But, as far as classification of variables
is concerned, a large T-dimensional problem (7" >> k) can be casted into a K-
dimensional problem with T" >> K > k to reduced the dimension of the problem.
The reason is that projecting the 7" dimensional points onto a K dimensional sub-
space that is not orthogonal to the factor space, the classification is preserved® (See
Fig.2). Hence, we can first transform the T-dimensional classification problem into
a K-dimensional classification problem with K > k. After solving the classification
problem, we can estimate the factors for each group using the original data.

L2

L1

p1

/

Figure 2: GPCA forn=2k =1,k +1, T =3 and K = 2.

Let @ be the (T' x K) matrix containing the K eigenvectors corresponding to K
largest eigenvalues of X X’. v/T'Q' is a principal component estimate of factor space
spanned by G. A rescaled estimate can be calculated as follows:

1

GK:rNTLXXUVTQ. (3.29)

We project the original models (2.6) and (2.4) by premultiply % to both sides of
the models and obtain:

L Ak L g L A

—_GK'x = = A+ =GN E :

TG TG G +TG (3.30)
and

Lowx, = Lanpa, + LeKE for i = 1,2 (3.31)

T T el ! OEE= B Sl

Denoting %éK'X,i%CA?K'G, %GK'E, %CA?K'Xi, %G’K'FZ and %GK/Ei by X7, GT and
ET, XTI FI and E! respectively, we have

X" =G A + ET (3.32)

(KXN)  (Kxk)(kxN)  (KxN)

6See Proposition 3.3 for more details.
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and

X' = F' A + EF fori=1,2,..,n (3.33)
(KxN;)  (Kxks)(kixNi)  (KxN;)

or equivalently
XTI = XT 4+ ET with B'XT =0  fori=1,2,...n (3.34)
The projected models (3.32) and (3.33) has the following property.

Proposition 3.3
Under Assumption 2.1 to Assumption 2.7, for K = k it holds:

o (a)XiTLXi and XT 25 X as N = 00, T — 00

(b)FiTLFi and GT L5 G as N — 00, T — o0 and F; = GC;.

(c)EiTLO and ET 50 as N — 00, T — oo
(d) F, # Fy, fori#j.

(e) F; is not a linear function of Fj.

(f) EXin # FjA\j1 for any pair of factor loadings Nim and Nj; for m =
1,2, .N;, l=1,2,..,N;,i=1,2,..,n,j=1,2,...,n and i # j.

Proof (see Appendix).

Comparing the projected model (3.33) with the original model (2.4), we see that
the projected model is also a grouped factor model with the same number of groups.
Proposition 3.3 (a) through (c) state that the projected model will converge to a
grouped factor model without noises, i.e. all data points will eventually lie directly
in the respective factor spaces. (d) through (e) state that the membership relation
between variables and their groups remain preserved after projection.

Benefits of a projection from a T dimensional problem onto a K dimensional
problem are twofold: (1) it reduces the dimension of the numerical calculation in
PDA and thus makes the problem practically solvable. The dimension of B; reduces
from {T x (T — k;)} to {K x (K — k;)}. For a case of T'= 200, k; = 4, K = 6, and
n = 5, the number of variables in B, reduces from 195000 to 60. (2) The projection
reduces the distance between data points and their subspaces, and thus enables a
more precise classification. Eventually it will become a correct classification, as the
idiosyncratic errors converge to zero as T' — oo, N — oc.

Since the classification rule defined in (3.27) depends on the estimated residuals,
the results of the classification is stochastic. Therefore, we need to characterize the
stochastic property of a classification rule.

Definition 3.4
A classification rule is called consistent if

P(||&]'|| = min{[[&]]], ||&3]], ., [|&}[[}) — 1 as T — 00, N — 00. (3.35)
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Proposition 3.5

Given a set of correct model parameters (n,{k;}!,), the classification rule (3.27)
based on PDA with a voting scheme applied to the projected model (3.33) with K = k
15 consistent.

Proof: According to Proposition 3.3 we have ET L 0, as T" — oo, N — o0.
It follows X7 25 X;, as T — oo, N — oco. For a variable j in X! we have

%17t Ly %3t as T — 00, N — 0. Let {]%1, ]§2, Qn} be the estimate of the normal
vectors of the subspaces using PDA based on the data {X7}" | and {B;,Bs,..B,}
be the normal vectors of the subspaces calculated with PDA based on the data

{X;}" . Because {Bl, Bg, ...B,.} is a continuous function of { X7}, at {X;},, it
follows according to Slusky theorem:

{ﬁl, ég, én} i} {]_31, ]_32, Bn}7 as T — o0, N — oo
Therefore, we have
8777 = IBET|| = [[BIx| =0 as T — 00, N — o0,

where &, is the distance between the data point X7/ and the estimated ith sub-
space B; in the projected model (3.33) and %7 is the limit of X% as T — oo, N —
00. The probability limit in the equation above follows from Slusky theorem and
the last equality is due to the definition of %X/*. Next we show that the probability
that X7 has a strictly positive distance to other factor spaces converges to one.

L= P(lle;”"[| = 0) = P({|le,”"[| > 0yu{ll&; ”'[| = 0}) = P(/[&; ”'[| > 0)+P(||¢; ”'[| = 0)
From Proposition 3.3 (c) and (f) we have
P(|EF"]| = 0) = P(|&’]] = 0) = P(Fph; = Fihiy) =0, as T — oo, N — o0.

It follows then
P(|E57]] > 0) = 1 as T — oo, N — oo.

Because ||&7"]| L5 0 and P(||&]7"|| > 0) Ly 1 for k#4,as T — 00, N — o0, we
have

P& = 5) = P(I&!7| = ming[6f 7], 57|, ... [IE7]}) = 1, as T — 00, N — oo,
(3.36)

O

Remarks: Assumption 2.2 (b) leads to the results that P(||&]'|] = 0) — 0 for
[ # i and hence the proof of the consistent classification above. This assumption
is, however, not essential for conducting a correct inference of the group-pervasive
factors. If P(||&]'|| = 0) > 0, a significant proportion of data would lie in the
intersection of two factor spaces ¢ and [. Because these data lie in the intersection of
the two factor spaces, no matter to which one of the two groups they are classified, it
will lead to a correct inference of group-pervasive factors. Allowing P(||&]| = 0) > 0
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will nevertheless complicate the definition of a correct classification. In order to avoid
this complication and simplify the presentation, we make Assumption 2.2 (c).

Since the membership relations between variables and their groups remain pre-
served after the projection from a 7' dimensional space onto a K dimensional space.
The classification of variables obtained in the projected model (3.33) is a consistent
classification of the variables in the original model.

P(x'"=S)=PEx" = 5) =1, as T — 0o, N — oo. (3.37)

3.6 Determination of the number of groups and the number
of factors in each group

Given a set of key parameters of a grouped factor model (n, {k;}_;), we can classify
N variables into n groups by GPCA method. For group ¢ we denote the T" observa-
tions of N variables that are classified into this group by X;", where s, denotes
this particular grouping of the variables. If the given parameters (n, {k;}! ) are cor-
rect, the classification will be asymptotically correct and we can estimate, group by
group, the group-pervasive factors using the standard principal component method,
which is equivalent to solving of the following minimization problem:

NS"
7 Sn Sn 2
V;(ka‘mNz ) Rnl}l;l NsnTzlt - Xzyt lt) ) (338)
J

where A; = (A1, Aigs s )\@Nisﬂ) and F; = (Fi1, Fia,.... Fir)'.

A question is now how can we know whether this set of parameters (n, {k;};)
are correct or not? One insight of Bai and Ng (2002) is that the number of factors
in a group can be determined through minimizing an information criterion that
consists of mean squared errors of the model and a properly scaled penalty term:

~

ki = argming_. <, (Vi(ki, Fy,Ni™) + 5-ikig(Nz§n7T)> :

where g(N;*,T) is a scaling function’.

Since we have more than one group, we need to extend the mean squared errors
as well as the penalty terms over all groups. In this way we can construct a model
selection criterion to determine the number of groups and the number of factors in
each group. A model selection criterion, C'(n, {k;}'_1, {X;"}), is a scalar function of
data, model parameters and the classification of the variables, which measures the
goodness of fit of the model to the data.

Definition 3.6
A model selection criterion C(n, {k;}1_1, {X;"}) is called consistent if it satisfies the
following condition:

P{C(n° {k},{X?}) < C(n' {k" T AXED =1 as T,N — oo. (3.39)

Here (n° {k{}_,) are parameters of the true model, and {X?} is the corresponding
classification based on GPCA; (n',{ki},) are parameters of an alternative model
and {X}'} is the corresponding classification using GPCA.

"See Bai and Ng (2002) for more details.
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Proposition 3.7
Under Assumption 2.1 to Assumption 2.7,

P, {hiY, X0 D) = 0 RVl B, N-+6? (Z - (hr h(NZ-/N») o(N. T)

(3.40)
is a consistent model selection criterion if the following conditions are satisfied:

1. impy_yeo % — «; > «, where % is the share of variables in the ith group. It
15 to note that o 1s the lower bound for all candidate models.

2. g(N,T) = 40, CRr9(N,T) = oo as N, T — oo,
where Cyp = min{v/N,vT}.

3. (a) 0 < h(a) <1 forany0<a<1
(b) h(ei) > h(a;) for any 0 < a; < a; < 1.
(¢c) 2o auhlon) > 325 azh(ay) for and {ay} 3 {au}.
We use the notation {o;} 3 {au} to present that {a;} is a finer partition of
the variables than {a}, with 3 00 =3 a5 = 1.

The model selection criterion can be reformulated in the following more compact
form:
PC(n, {k:}, {X;"}) = V({ki}, {&}) + *(k + h)g(N,T)

where 62 is a consistent estimate of (NT)~!>" | Z;V:ll ST E(eiq)? k is the
weighted average number of factors over all groups and h is the weighted aver-
age of the penalty function h(&;) over all groups.
Remarks
In this formulation it is clear that k is the penalty due to the average number of
factors and A is the penalty due to dispersion of groups. Compared to the PC' cri-
terion in Bai and Ng (2002), obviously this model selection criterion is a variant of
weighted average of PC' criteria over all groups with an additional penalty on the
dispersion of groups in a model. Condition 1 is to make sure that the proportion of
a group will not vanish asymptotically. Because we are considering the asymptotical
property of the model selection criterion, the proportion of a group in a candidate
model should not be vanishing. Hence we assume that for all candidate models,
there exists a constant lower bound for the ratio of the number of variables in a
group to the total number of variables in a model. Condition 2 is to get the right
rate of convergence for the penalty term, and Condition 3 is to make sure that the
average number of factors is the dominating parameter of the model and the disper-
sion of groups is a dominated parameter. While comparing two models, we compare
first the dominating parameters, only when the dominating parameters are equal we
compare the dispersion of the groups in the two models.

A concrete choice of g(N,T) can be:

e g(N,T) = 5F log (+5),

and a concrete choice of h(N;/N) is:

&iN+T ( &NT )

A\ _ &NT aN+T ) _ g(6;N,T)
° h(Oéi) = —aNTT ( aNT ) - g(alN T) >
oNT 98\ aNFT =0

where &; = 7. This h function is used in our simulation study.
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3.7 Estimation Procedure for a Grouped Factor Model

e Step 1: Estimate k& by the PC criterion of Bai and Ng (2002) using pooled
data.

e Step 2: Project the (T x N) pooled data matrix X onto a (k x N) matrix:
X7 = Lovx
T Y

where G* is defined in (3.29).

e Step 3: According to a chosen model (n, {k;}!,), solve for the corresponding

subspaces (By, By, ..., B,,) of the projected model (3.34) by PDA with voting
scheme and classify the variables according to rule (3.27).

e Step 4: Use the model selection criterion to evaluate alternative models to
obtain an optimal model and the corresponding classification of variables
{X7 i

)

e Step 5: Estimate a factor model for each group of data in { X"} ; by the stan-
dard principal component method to obtain estimates for the respective group-
pervasive factors F; = ﬁ(Xf”Xf”’)\/T Q;, where @); contains the k; eigen-
vectors corresponding to the k; largest eigenvalues of the matrix (X" X ').

The procedure above will give a consistent classification of the variables as well as
consistent estimates of the group-pervasive factor spaces.

Proposition 3.8

Under Assumption 2.1 to Assumption 2.7 and the three conditions given in Propo-
sition 3.7, the procedure described above will provide a consistent estimate of the
group-pervasive factor space for each group, i.e.

T

1 - ’

T E ||Fit — Hf"ﬂ’tHZ L 0, asT — oo, N = o0, fori=1,2,..n, (3.41)
t=1

where Fz‘,t 15 the estimate of the group-pervasive factor of the ith group and Hl-kg s a

(k; X k;) full rank matriz.

4 Simulation Studies and an Application Exam-
ple

4.1 Simulation Studies

In this section we document results of our simulation study. The simulation study is
conducted in order to assess the performance of the proposed estimation procedure
in finite sample cases. In particular we want to assess the ability of the model
selection criterion in identifying the true model, i.e. the number of groups and the
number of group-pervasive factors in each group. We use the number of factors
in each group k; i = 1,2,...,n and the dimension of the overall factors space k to
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represent a GFM. For example [321|5] represents a GFM with three groups, the
overall factor space is 5-dimensional and the number of factors in each group is 3, 2
and 1 respectively. To take into account that different group-pervasive factors may
be correlated and hence may have common factors, our data generating process is
designed in a way that there exists one common factor in all groups except the
groups with only one factor. According to this setting, in the model [321]5] there
exists one common factor in the first and the second groups and hence the overall
factor space is 5-dimensional.
The data in the simulation study are generated from the following model:

ki
Xi,jt = Z E,lt)\i,lj + \/éiei,jt j = 1, 2, NZ,Z = 1, 2, ...n,
=1

where the factor Fj; = (Fjat, Fiot, ..., Fige)' of the ith group is a (k; x 1) vector
of N(0,1) variables; the factor loadings for the group X;; = (Ai1j, Ai2j, ooy Aigis)
is a (k; x 1) vector of N(0,1) variables; and e; j; ~ N(0,1). In this setting the
common component of X; j; has variance k;. The base case under consideration is
that the common component has the same variance as the idiosyncratic component,
ie. 6; = k;. We consider cases in which the number of groups in a GFM varies
from 2 to 4; the number of variables in each group varies from 30 to 200; and the
number of observations varies from 80 to 500. These are plausible data sets for
monthly and quarterly macroeconomic variables and financial variables in practical
applications. In each simulation run we compare the value of the model selection
criterion of the true model with those of alterative candidate models. The candidate
models are chosen in a way that they include both more restrictive models and more
general models in order to assess the sharpness of the model selection criterion in
identifying the true model from competing model candidates. For a true model [2
2/3], [3 1] and [2 2 2] are more general models. The true model [2 2|3] consists of
two group-pervasive factor planes within a 3-dimensional overall factor space. The
model [3 1] is more general because it contains a three-dimensional subspace and
a one-dimensional subspace, and [2 2 2| is also more general because it contains
three two-dimensional subspaces. But, [2 1] is a more restrictive model because it
contains only one two-dimensional subspace and one one-dimensional subspace in a
three dimensional overall factor space.

The outcomes of the simulation study are summarized in Table 1 to Table 5.
The first three columns in these tables give numbers of variables in each group,
total numbers of variables and numbers of observations in the respective simulation
settings. The fourth column gives the true data-generating grouped factor models
and the candidate models under consideration. The integers in a pair of square
brackets give the numbers of factors in the respective groups of a grouped factor
model. For a data-generating model we give also the dimension of the overall factor
space which is the number behind the bar in the square bracket. For candidate
models we do not give the dimensions of the overall factor spaces, because they will
be determined in the estimation procedure. Since the estimation procedure consists
of two steps: (1) projection of the data onto a k dimensional overall factor space and
(2) select the correct model from the candidates, we report the performance with
respect to choosing the correct projection dimensions and with respect to choosing
the correct models from the competing candidates.

21



Determination of the projection dimension can be seen as a problem of compar-
ing pooled ungrouped models with grouped models. The column under the header
of UGRP reports the performance of the model selection criterion in this respect.
A number in the column of UGRP gives the proportion that the correct projection
dimension is chosen and at least one grouped factor model is preferred over the cor-
rectly chosen ungrouped factor model in the respective 1000 simulation runs. Since
our data generating models are all grouped factor models, for a good performance of
the selection criterion we expect the numbers in this column to be close to one. The
numbers in the column of UGRP show that the model selection criterion works well
in determining the right dimension of the projection space. For all configurations
in the simulation T = 80 and NN; = 30 are enough to obtain the correct projection
dimensions, i.e. the proportions of finding the right projection dimension are very
high: almost all numbers in this column are one and a few numbers below one are

also close to one®.

The column under the header CCLM reports the proportion of correctly chosen
models among the candidates in 1000 simulation replications under the condition
that the projection dimension is chosen correctly. Most of the numbers in the
column of C'C'LM are close to one, indicating that for the considered configurations
the estimation procedure performs well in identifying the correct model from the
competing candidates, in many cases already for 7" > 80 and N; > 30. Since the
consistence of the model selection criterion holds under " — oo and N — oo, it is
not surprising that in some configurations for 7" = 80 and N; = 30 the proportions
of finding the correct models are relatively low: in 5 cases the numbers are below
90% but still over 80%. However, we observe that for a given configuration the
proportion of correctly identified models approaches to one with increasing 7" and
N;, for T'= 150 and N; = 60 the results are already satisfactory.

The column under the header M C'LV gives the average proportion of misclassi-
fied variables in respective 1000 simulation runs. If the classification works well, the
numbers in this column should be close to zero. Most of the numbers in the column
of MC'LV are under 10 percent, indicating a good performance of the classification
procedure. We observe that if the group-pervasive factor spaces are intersected, the
share of misclassification tends to be higher. This is because as long as the group-
pervasive factor spaces are intersected, data points lying close to the intersection of
the group-pervasive factor spaces will lead to higher proportion of misclassification.
However, because these data points are close to both group-pervasive factor spaces,
this misclassification has little negative impact on estimation of group-pervasive
factors.

SFF0° reports the average goodness of fit of the estimated factors to the true
factors in 1000 simulation runs. SF F0 is normalized to be between zero and one. A
number close to one implies a good fitting of the estimated factors to the true factors.
Because variable classification works well, we expect also a good performance in
factor estimation. Indeed in most cases the numbers in the column of SFF0 are
over 90% and with increasing N and T', the numbers are approaching one.

8This result is consistent with the simulation result given in Bai and Ng (2002).

O/ frr i1 iy —1 o7 70
OSFF0 = T St
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Table 1: Estimation of grouped factor models

N, N T Model and Candidates CCLM SFF0 MCLV UGRP
[11]2]
30 60 80 [111][1 1] 0.92 097 007  1.00
30 60 150 [111] [1 1] 0.97 097 005  1.00
30 60 300 [111][L 1] .00 097 003 100
30 60 500 [111] [1 1] .00 096  0.03  1.00
60 120 80  [111] [1 1] 0.94 0.98 0.07 1.00
60 120 150 [111] [1 1] 0.97 098 005  1.00
60 120 300 [111] [1 1] 1.00 0.98 0.04 1.00
60 120 500 [111] [1 1] .00 098  0.03  1.00
200 400 80  [111] [1 1] 0.94 0.99 0.07 1.00
200 400 150 [111] [1 1] 099 099 005  1.00
200 400 300 [111] [1 1] 1.00 0.99 0.04 1.00
200 400 500 [111] [L 1] 100 099 003 100
213
30 60 80 [22][21[11[111][221] 098 094 006  1.00
30 60 150 [22][21][11[111][221] 099 095 004  1.00
30 60 300 [22][21)[11][111][221] 100 096 003  1.00
30 60 500 [22][21)[11][111][221] 1.00 095 003  1.00
60 120 80 [22][21)[11[111][221] 099 098 004  1.00
60 120 150 [22][21][11[111][221] 1.00 098 003  1.00
60 120 300 [22][21)[11][111][221] 100 097 003  1.00
60 120 500 [22][21][11[111][221] 1.00 098 002  1.00
200 400 80 [22][21][11)[111][221] 100 097 008  1.00
200 400 150 [22][21[11[111][221 1.00 097 009  1.00
200 400 300 [22][21][11)[111][221] 1.00 098 006  1.00
200 400 500 [22][21)[11][111][221] 100 099 004  1.00
22/3]
30 60 80 [221][21[11[111][22 096 091  0.09  1.00
30 60 150 [221][21)[11][111][22 100 091 008  1.00
30 60 300 [221)[21][11[111][22  1.00 092 005  1.00
30 60 500 [221][21)[11][111][22 100 091 004  1.00
60 120 80 [221][21][11[111][22 094 095 009  1.00
60 120 150 [221][21[11][111][22] 099 095 007  1.00
60 120 300 [221][21[11][111][22 1.00 095 006  1.00
60 120 500 [221][21][11][111][22] 100 096 005  1.00
200 400 80 [221][21)[11][111][22 100 097 011  1.00
200 400 150 [221][21][11)[111][22] 100 097 009  1.00
200 400 300 [221][21][11)[111][22 100 098 006  1.00
200 400 500 [221][21][11[111][22  1.00 099 004  1.00

Notes: Table 1 reports the results of 1000 Monte Carlo runs of estimation of GFMs.
The first three columns give numbers of observations and numbers of variables in the
respective simulation runs. The fourth columns gives the true model and the candidate
models. CCLM gives the proportion of the correctly identified true models. SFFO is
the average goodness of fit of the estimated group-pervasive factors to the true group-
pervasive factors over all groups. MCLV gives the average proportion of misclassified
variables. UGRP gives the proportion of co2rrectly identified projection spaces.



Table 2: Estimation of grouped factor models

N N, T Model and Candidates CCLM SFF0O MCLV UGRP
[32/4]
30 60 80 [32][31][21][33][321] 0.98 0.91 0.09 1.00
30 60 150 [32][31][21][33][321] 0.99 0.92 0.07 1.00
30 60 300 [32][31][21][33][321] 1.00 0.92 0.06 1.00
30 60 500 [32][31][21][33][321] 1.00 0.94 0.05 1.00
60 120 80 [32][31][21][33][321] 0.98 0.95 0.08 1.00
60 120 150 [32][31][21][33][321] 1.00 0.97 0.08 1.00
60 120 300 [32][31][21][33][321] 1.00 0.97 0.06 1.00
60 120 500 [32][31][21][33][321] 1.00 0.98 0.04 1.00
200 400 80 [32][31][21][33][321] 0.99 0.99 0.09 1.00
200 400 150 [32][31][21][33][321] 1.00 0.99 0.09 1.00
200 400 300 [32][31][21][33][321] 1.00 0.98 0.06 1.00
200 400 500 [32][31][21][33][321] 1.00 0.99 0.04 1.00
[335]
30 60 80 [111][22][321][331][332][33 0.99 0.90 0.05 0.97
30 60 150 [111][22][321][331][332][33] 0.99 0.90 0.02 0.98
30 60 300 [111][22][321][331][332]][33] 1.00 0.90 0.01 1.00
30 60 500 [111][22][321][331][332]][33] 1.00 0.90 0.01 1.00
60 120 80 [111][22][321][331][332]][33] 1.00 0.95 0.04 1.00
60 120 150 [111][22][321][331][332]]33] 1.00 0.95 0.02 1.00
60 120 300 [111][22][321][331][332]][33] 1.00 0.95 0.01 1.00
60 120 500 [111][22][321][331][332]]33] 1.00 0.98 0.04 1.00
200 400 80 [111][22][321][331][332]][33] 1.00 0.98 0.04 1.00
200 400 150 [111][22][321][331][332]]33] 1.00 0.98 0.03 1.00
200 400 300 [111)[22][321][331][332]][33] 1.00 0.98 0.02 1.00
200 400 500 [111][22][321][331][332]]33] 1.00 0.98 0.01 1.00
[31]4]
30 60 80 [21][22][321][311][31] 0.85 0.93 0.07 0.99
30 60 150 [21][22][321])[311][31] 0.88 0.93 0.05 1.00
30 60 300 [21][22][321][311]][31] 0.99 0.93 0.04 1.00
30 60 500 [21][22][321)[311][31] 1.00 0.93 0.03 1.00
60 120 80 [21][22][321][311]][31] 0.99 0.97 0.07 1.00
60 120 150 [21][22][321])[311][31] 0.99 0.95 0.05 1.00
60 120 300 [21][22][321][311]][31] 1.00 0.96 0.04 1.00
60 120 500 [21][22][321][311][31] 1.00 0.95 0.03 1.00
200 400 80 [21][22][321][311]][31] 1.00 0.98 0.07 1.00
200 400 150 [21][22][321])[311][31] 1.00 0.98 0.05 1.00
200 400 300 [21][22][321][311]][31] 1.00 0.98 0.03 1.00
200 400 500 [21][22][321])[311][31] 1.00 0.99 0.03 1.00
Notes: Table 2 reports the results of 1000 Monte Carlo runs of estimation of GFMs.

The first three columns give numbers of observations and numbers of variables in the

respective simulation runs. The fourth columns gives the true model and the candidate

models.

CCLM gives the proportion of the correctly identified true models.

SFFO is

the average goodness of fit of the estimated group-pervasive factors to the true group-

pervasive factors over all groups.

variables. UGRP gives the proportion of correctly identified projection spaces.
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Table 3: Estimation of grouped factor models

N N, T Model and Candidates CCLM SFFO MCLV UGRP
[311]5]
30 90 80 [211][31][32][3111][311] 0.89 0.93 0.11 1.00
30 90 150 [211][31][32][3111][311] 0.98 0.94 0.08 1.00
30 90 300 [211][31][32][3111][311] 0.99 0.95 0.05 1.00
30 90 500 [211][31][32][3111][311] 1.00 0.94 0.04 1.00
60 180 80 [211][31][32][3111][311] 0.90 0.97 0.10 1.00
60 180 150 [211][31][32][3111][311] 0.98 0.97 0.07 1.00
60 180 300 [211][31][32][3111][311] 0.99 0.98 0.05 1.00
60 180 500 [211][31][32][3111][311] 1.00 0.96 0.04 1.00
200 400 80 [211][31][32][3111][311] 0.96 0.97 0.07 1.00
200 400 150 [211][31][32][3111][311] 1.00 0.97 0.05 1.00
200 400 300 [211][31][32][3111][311] 1.00 0.98 0.05 1.00
200 400 500 [211][31][32][3111][311] 1.00 0.99 0.03 1.00
[1113]
30 90 80 [111][21][11][22][221] 1.00 096 0.0  1.00
30 90 150 [111][21][11][22][221] 1.00 0.97 0.07 1.00
30 90 300 [111][21][11][22][221] 1.00 097 005  1.00
30 90 500 [111)[21][11][22][221] 1.00 0.97 0.04 1.00
60 180 80 [111][21][11][22][221] 1.00 098 010  1.00
60 180 150 [111][21][11][22][221] 1.00 0.98 0.07 1.00
60 180 300 [111][21][11][22][221] 1.00 098 005  1.00
60 180 500 [111][21][11][22][221] 1.00 0.98 0.02 1.00
200 400 80 [111][21][11][22][221] 1.00 099 010  1.00
200 400 150 [111][21])[11][22][221] 1.00 0.99 0.07 1.00
200 400 300 [111][21][11][22][221] 1.00 099 005  1.00
200 400 500 [111][21][11][22][221] 1.00 099 004  1.00
[211]4]
30 90 80 [211][21][22][31][221][222][311] 0.99 0.96 0.06 1.00
30 90 150 [211)[21][22][31][221][222][311] 099 096 003  1.00
30 90 300 [211)[21][22][31][221][222][311] 1.00 0.95 0.04 1.00
30 90 500 [211][21][22][31][221][222] 311 1.00 095 002  1.00
60 180 80 [211][21][22][31][221][222][311] 1.00 0.98 0.06 1.00
60 180 150 [211][21][22][31][221][222][311] 1.00 098 005  1.00
60 180 300 [211][21][22][31][221][222][311] 1.00 0.98 0.02 1.00
60 180 500 [211][21][22][31][221][222][311] 1.00 098 0.03  1.00
200 400 80 [211][21][22][31][221][222][311] 1.00 098 013  1.00
200 400 150 [211][21][22][31][221][222][311 100 098 010  1.00
200 400 300 [211][21][22][31][221][222][311] 1.00 099 007  1.00
200 400 500 [211][21][22][31][221][222][311] 1.00 0.99 0.04 1.00

Notes: Table 3 reports the results of 1000 Monte Carlo runs of estimation of GFMs. The
first three columns give numbers of observations and numbers of variables in the respective

simulation runs.

The fourth columns gives the true model and the candidate models.

CCLM gives the proportion of the correctly identified true models. SFF0 is the average

goodness of fit of the estimated group-pervasive factors to the true group-pervasive

factors over all groups.

MCLV gives the average proportion of misclassified variables.

UGRP gives the proportion of correctly identified projection spaces.
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Table 4: Estimation of grouped factor models

N N, T Model and Candidates CCLM SFFO MCLV UGRP
222|4]
30 90 80 2221321 [321][322][311][211] 0.99 0.92 0.17 1.00
30 90 150 [222][32][321][322][311][211] 1.00 0.93 0.13 1.00
30 90 300 [222][32][321][322][311][211] 1.00 0.93 0.08 1.00
30 90 500 [222][32][321][322][311][211] 1.00 0.93 0.06 1.00
60 180 80 222132 [321][322][311][211] 1.00 0.96 0.16 1.00
60 180 150 [222][32][321][322][311][211] 1.00 097 011  1.00
60 180 300 [222][32][321][322][311][211] 1.00 0.97 0.08 1.00
60 180 500 [222][32][321][322][311][211] 1.00 0.97 0.06 1.00
200 400 80 222][32][321][322][311][211] 1.00 0.99 0.14 1.00
200 400 150 [222][32][321][322][311][211] .00 099 011  1.00
200 400 300 [222][32][321][322][311][211] 1.00 0.99 0.08 1.00
200 400 500 [222][32][321][322][311][211] 1.00 0.99 0.06 1.00
322|5]
30 90 80 322/ [43][42][332][331][311][422] 0.92 0.91 0.16 0.97
30 90 150 [322][43][42][332][331][311][422] 0.96 0.92 0.11 1.00
30 90 300 [322][43][42][332][331][311][422] 1.00 0.92 0.07 1.00
30 90 500 [322][43][42][332][331][311][422] 1.00 0.93 0.06 1.00
60 180 80 322][43][42][332][331][311][422] 0.99 0.98 0.13 1.00
60 180 150 [322][43][42][332][331][311][422] 1.00 0.96 0.11 1.00
60 180 300 [322][43][42][332][331][311][422] 1.00 0.96 0.07 1.00
60 180 500 [322][43][42][332][331][311][422] 1.00 0.96 0.05 1.00
200 400 80 [322][43][42][332][331][311][422] 1.00 099 0.12  1.00
200 400 150 [322][43][42][332][331][311][422] 1.00 0.99 0.09 1.00
200 400 300 [322][43][42][332][331][311][422] 1.00 0.99 0.08 1.00
200 400 500 [322][43][42][332][331][311][422] 1.00 0.99 0.05 1.00
2222|5]
30 120 80 2222][33][42][3222][2221][22221] 0.88 0.92 0.20 0.97
30 120 150 [2222][33][42][3222][2221][22221] 097 092 013  0.99
30 120 300 [2222][33][42][3222][2221][22221] 1.00 0.93 0.11 1.00
30 120 500 [2222][33][42][3222][2221][22221] 100 093 007  1.00
60 240 80 2222 [33][42][3222][2221][22221] 0.98 0.95 0.18 1.00
60 240 150 [2222][33][42][3222[2221][22221] 100 097 015  1.00
60 240 300 [2222][33][42][3222][2221][22221] 1.00 0.96 0.10 1.00
60 240 500 [2222][33][42][3222[2221][22221] 100 096 008  1.00
200 800 80 [2222][33][42][3222/[2221][22221] 100 098 017  1.00
200 800 150 [2222][33][42][3222[2221][22221] 100 099 012  1.00
200 800 300 [2222][33][42][3222][2221][22221] 1.00 0.99 0.09 1.00
200 800 500 [2222][33][42][3222][2221][22221] 1.00 0.99 0.07 1.00
Notes: Table 4 reports the results of 1000 Monte Carlo runs of estimation of GFMs.

The first three columns give numbers of observations and numbers of variables in the
respective simulation runs. The fourth columns gives the true model and the candidate

models.

CCLM gives the proportion of the correctly identified true models.

SFFQ is

the average goodness of fit of the estimated group-pervasive factors to the true group-

pervasive factors over all groups.

MCLV gives the average proportion of misclassified

variables. UGRP gives the proportion of correctly identified projection spaces.
2



Table 5: Estimation of grouped factor models

N, N T Model and Candidates CCLM SFFO MCLV UGRP
[2211|5]
30 120 80 [2211][311][32[221][2111] 090 094 014  1.00
30 120 150 [2211][311][32][221][2111] 0.93 0.95 0.09 1.00
30 120 300 [2211][311][32][221][2111] 099 095 005  1.00
30 120 500 [2211][311][32][221][211 1] 1.00 098 002  1.00
60 240 80 [2211][311][32][221][2111] 0.98 0.97 0.13 1.00
60 240 150 [2211][311][32][221][211 1] 1.00 097 009  1.00
60 240 300 [2211][311][32][221][2111] 1.00 0.98 0.03 1.00
60 240 500 [2211][311][32][221][211 1] 1.00 097 002  1.00
200 800 80 [2211][311][32][221][2111] 0.99 0.93 0.13 1.00
200 800 150 [2211][311][32][221][211 1] 1.00 098 010  1.00
200 800 300 [2211][311][32][221][2111] 1.00 0.99 0.03 1.00
200 800 500 [2211][311][32][221][2111] 1.00 0.99 0.03 1.00
32116]
30 120 80 [3211][422[411][4311][2211] 085 093 014 098
30 120 150 [3211][422][411][4311][2211] 0.95 0.94 0.10 1.00
30 120 300 [3211][422/[411][4311][2211] 1.00 094 007  1.00
30 120 500 [3211][422][411][4311][2211] 1.00 0.94 0.05 1.00
60 240 80 [3211][422[411][4311][2211] 094 097 013  1.00
60 240 150 [3211][422][411)[4311][2211] 0.99 0.97 0.09 1.00
60 240 300 [3211][422[411][4311][2211] 1.00 097 007  1.00
60 240 500 [3211][422][411[4311][2211] 1.00 0.97 0.04 1.00
200 800 80 [3211][422/[411][4311][2211] .00 099 012  1.00
200 800 150 [3211][422][411[4311][2211] 1.00 0.99 0.09 1.00
200 800 300 [3211][422[411)[4311][2211] 1.00 099 007  1.00
200 800 500 [3211][422/[411)[4311][2211] 100 099 005  1.00
3221]6]
30 120 80 [3221][43][421][411][3222][331] 0.80 0.92 0.15 1.00
30 120 150 [3221][43][421][411][3222][331] 08 093 011  1.00
30 120 300 [3221][43][421][411][3222][331] 0.99 0.93 0.07 1.00
30 120 500 [3221][43][421][411][3222][331] 100 093 006  1.00
60 240 80 [3221][43][421][411][3222][331] 0.95 0.96 0.15 1.00
60 240 150 [3221][43][421][411][3222][331] 099 096 011  1.00
60 240 300 [3221][43][421][411][3222][331] 1.00 0.97 0.07 1.00
60 240 500 [3221][43][421][411][3222][331] 100 097 005  1.00
200 800 80 [3221][43][421][411][3222][331] 100 099 014  1.00
200 800 150 [3221][43][421][411][3222][331] 100 099 010  1.00
200 800 300 [3221][43][421][411][3222][331] 1.00 0.99 0.07 1.00
200 800 500 [3221][43][421][411][3222][331] 1.00 0.99 0.05 1.00
Notes: Table 5 reports the results of 1000 Monte Carlo runs of estimation of GFMs.

The first three columns give numbers of observations and numbers of variables in the
respective simulation runs. The fourth columns gives the true model and the candidate

models.

CCLM gives the proportion of the correctly identified true models.

SFFQ is

the average goodness of fit of the estimated group-pervasive factors to the true group-

pervasive factors over all groups.

MCLV gives the average proportion of misclassified

variables. UGRP gives the proportion of correctly identified projection spaces.
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4.2 An Empirical Application

In this subsection we apply the GFM to stock returns in the Australian Stock
Exchange. Our purpose of this exercise is to demonstrate that grouped structures
do exist in empirical data and our estimation procedure is capable of uncovering
them. The data used in this exercise are stock returns of companies included in
ASX200. ASX200 is one of the most important share index in the Australian Stock
Exchange. It accounts for roughly 85% of the market capitalization of all stocks
listed in the Australian Stock Exchange. The data set consists of monthly returns
of shares included in ASX200 from 2004 to 2009. All together there are 168 variables
and each of them contains 77 observations'®. A full name list of the shares is given
in the appendix. We transform the data so that each series has mean zero. Using
the PC criterion of Bai and Ng (2002) we identify that there are three factors in the
data set (see Table 6). After choosing k = 3 we investigate 18 potential candidate
models. These 18 candidate models include all possible subspace configurations up
to 4 groups within a three dimensional overall factor space. We exclude models
with more that 4 groups because in these cases it is highly probable that some
group will contain less than 30 variables such that the model selection criterion
would become unreliable!!. The estimation results for the considered configurations
are summarized in Table 6.

Table 6: Estimation of Grouped Dynamic Factor Models for ASX200

No. Model PC (N;) | No.  Model PC (N;)

1 1] 0.005727 (168) 10 [111]  0.005151 (101 46 21)

2 2] 0.005298  (168) 11 [211]  0.005312 (126 38 4)

3 [3] 0.005270  (168) 12 [221]  0.005078 (115 43 10)

4 4] 0.005288  (168) 13 [222]  0.005052 (95 47 26)

5 5] 0.005339  (168) 14 [1111] 0.005173 (97 50 18 3)
6  [6] 0.005399  (168) 15 [2111] 0.005161 ((93 32 32 11)
7 [11]  0.005282 (10068) | 16 [2211] 0.004946 (61 50 42 10)
8 [21]  0.005108 (9375) |17 [2221] 0.005054 (91 38 38 2)
9 [22]  0.005086 (109 59) | 18 [2222] 0.004855 (8550 17 16)

Notes: We use numbers in a pair of squared brackets to represent a model. [2 2] represents
a model with two groups and each with two factors. The column PC reports the values
the model selection criterion for the corresponding models. The column under the header
(N;) gives the numbers of variables classified into the respective groups.

In Table 6 there are 9 models with four or three groups. Common to these 9
models, each model has at least one group that contains less than 30 variables. Since
numbers of variables in each group are crucial for the reliability of the estimation
procedure and a number smaller than 30 is too low to achieve a reliable estimation,
we regard the estimation of these 9 models to be unreliable. Therefore, we will focus
only on models with two groups and ungrouped models. According to the values
of the model selection criterion, we conclude that [2 2] 1s the most suitable model

Due to missing data in the investigation periods we include only 168 shares in the study.
1\We have estimated all model configurations with four groups within a three dimensional overall
factor space. Indeed in all these models there are at least one group with less than 20 variables.
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for the data set. This implies that we understand that the 168 shares consist of 2
groups each of which are driven by two factors respectively (See Fig. 3).
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Figure 3: ASX200 shares in two groups in the projected model

The grouping of the 168 variables are given in Table 9. Interestingly, almost all
companies in resource sectors including mining, energy, and exploration are classified
into the second groups, while other company are classified into the first group.
Among the 59 companies in the second group there are only seven companies (See
(*) in Table 10.) that are not in the ming and energy sectors. The first group
contains 109 companies among which only seven companies (See (*) in Table 9, 10.)
are in the mining and energy sectors. This grouped structure allows us to identify
the factor that lies in the intersection of the two group-factor-spaces as the common
factor. Further we can identify two orthogonal factors that are both orthogonal
to the common factors but lie in the two subspaces respectively as group-pervasive
factors. Through this identification we can say, the returns in the resource group
are driven by a resource-specific factor and the common factor, while the returns in
the non-resource group are driven by the common factor and a nonresource-specific
factor.

5 Concluding Remarks

The grouped factor model presented in this paper provides a means to explore poten-
tially existing grouped structures in a large factor model. The proposed estimation
procedure will consistently determine the number of groups, endogenously classify
variables into groups and provide consistent estimates of the group-pervasive factor
space for each group. Thus we offer a method to verify whether uses of non-statistical
structural information in classification of variables to conduct grouped factor analy-
sis are statistically adequate or not. The grouped factor model is suitable for analysis
of a general configuration of grouped structures: the group-pervasive factors can be
disjunctive, orthogonal or intersected with any angles. In particular, it is applicable
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for cases in which group-pervasive factors are orthogonal. In these cases, our esti-
mation procedure can be seen as an efficient method to find a set properly rotated
factors that allow a better understanding and interpretation of the data. Grouped
factor models allow correlations and dependence between group-pervasive factors
across groups, our estimation procedure is also applicable for a non-orthogonal fac-
tor rotation. More importantly, grouped factor models can be used to assess grouped
structures that are otherwise invisible by a factor rotation procedure.

We set up the grouped factor models as approximate factor models which allow
certain serial and cross-sectional correlation in the idiosyncratic errors. Therefore
they are suitable for applications to economic data and time series data. Simulation
study shows that our procedure has good finite sample properties. In an application
example we have demonstrated that grouped structures exist indeed in empirical
data: the stock returns from 2004 to 2009 in the Australian stock exchange consists
of two groups: one resource-group and one nonresource group. Based on the
grouped structure we can identify one of the three factors as the common factor,
one as the resource-specific factor and one as the nonresource-specific factor.

In studying factor models with grouped structures, one often asked question
is what are the common factors over all groups and what are the group-specific
factors (See Goyal et al. (2008), Flury (1984), Flury (1987) and Schott (1999) for
more details.) The latter ones defines in fact the groups. Although our grouped
factor models do allow the existence common factors and group-specific factors, the
proposed estimation procedure, however, does not provide a direct inference on the
common factors and the group-specific factors. To integrate this issue into this paper
would be a natural choice. Our study sofar (See Chen (2011a)) shows that estimation
of common factors and group-specific factors is not a trivial issue. Integrating this
issue into the current paper would overstretch this already lengthy paper to an even
unacceptable length. Interested readers are referred to Chen (2011a) in which a
grouped factor model with common factors and group-specific factors are defined
and a procedure is proposed to estimate the common factors as well as group-specific
factors. One genuine innovation of this paper is to project the pooled T" dimensional
data set onto a lower k dimensional data set to achieve the consistent classification.
Therefore choice of k is crucial for the proposed procedure. Currently we use the
PC criterion of Bai and Ng (2002) to determined k - the dimension of the union of
the group-pervasive factor spaces. However, the presence of grouped structures, in
particular, the presence of uneven groups tends to deteriorate the performance of
the PC criterion (See Boivin and Ng (2006) for more discussions.'?). Therefore, an
improved procedure for the determination of k is an issue which deserves a further
investigation. Interested readers are referred to Chen (2011b) for more detained
discussions.

12The presence of uneven groups can be seen as problems of oversampling and correlation between
idiosyncratic components.
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6 Appendix

6.1 Example of PDA with a Voting Schema for noisy data

Example 3.1 (continue) We consider here a set of 8 sample points with noises.
The coordinates of the 8 points are collected in a data matriz X. FEach row in X' is
one sample point.

1.0725 0.0607 0.0943
0.0603 1.0801 0.0460
1.0245 1.0977 0.0694
2.0909 2.0205 0.0854
0.0493 0.0667 1.0687
0.0653 0.0385 2.0011
0.0575 0.0383 3.0351
0.0857 0.0213 4.0375

(6.42)

Obuiously, the first four points are located closely to the subspace of the plane Ss,
the next four points are located closely to the subspace of line Si. The data matrix
of the Veronese mapping vo(x) = (x3, T1T9, T1T3, T3, T3, T2) 18:

1.1588 0.0042 0.0399 0.0000 0.0001 0.0014
0.0025 0.0522 0.0035 1.0816 0.0716 0.0047
1.0142 1.1073 0.0196 1.2090 0.0214 0.0004
4.0604 4.1306 0.1878 4.2020 0.1911 0.0087
Ln(X) = 0.0056 0.0017 0.0790 0.0005 0.0235 1.1091 (6.43)
0.0012 0.0022 0.0702 0.0043 0.1346 4.2418
0.0097 0.0083 0.3004 0.0072 0.2581 9.3041

0.0092 0.0076 0.3866 0.0063 0.3210 16.2398

Since we have noisy data, L,(X) is of full rank. However, we know that if we
had noiseless data the rank of Null(L,(X)) would be two, which is given by the
Hilbert function constraint'®. We choose the two eigenvectors corresponding to the
two smallest singular values as the basis of the nullspace of L,(X).

0.0412  0.0782
—0.0286 —0.0477
—0.4290 —0.8970
°=| oo0446 —0.0123 | (6.44)
—0.9007  0.4320
0.0161  0.0157
Ovn(x)'c
ox

After obtaining c, we can calculate at each sample point. For the three

components of the partial derivative, we have:
Ovp (x)'c

! oz T3 0
ayn(x> c _ 8un(>i)’c _ 0 —=x
8X Oza ’ 2
dvm(x)'e T, —x2
Oxs3

13See Yang et al. (2005) for more details.
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So, the partial derivative evaluated at x* is:

0.0461  0.0802
o= | —0.1102 —0.0096 | . (6.45)
—0.5117 —0.9328

v, (x)'c

ox

The partial derivatives evaluated at all sample points are then normalized to be or-
thogonal and have a unit length. This is done by calculating the principal components
of the derivatives using singular value decomposition. For the deriwative evaluated
at x' given in (6.45) we have the following principal components:

ounve | —0.02 —0.09
Ox X _

= | 099 006 |, (6.46)
[ =5 |t ] —0.06  0.99

We give votes to candidates of normal vectors of the subspaces in the following way
(see also Algorithm 1). If a normalized derivative at a point x* is similar to a
candidate of the normal vectors, this candidate will have one more vote, otherwise
the normalized derivative becomes itself a new candidate. The voting procedure is
demonstrated in Table 7 and Table 8 in a simplified form.

We consider first the choice of normal vectors for the subspace of dimension
one. Table 7 reports the voting results for different candidates of the normal vec-
tors. The second column collects the normalized partial deriwatives evaluated at the
corresponding sample points which are given in the first column of Table 7. We start
with the row of x*. In the third column, * represents that the normalized derivative
at the same row is chosen as a candidate. The header U{2}{1} says this is the first
candidate for the subspaces with codimension 2. The numbers in this column mea-
sure the angels between the candidate and the corresponding partial derivatives at
respective rows. A number close to zero means the corresponding angle is small, and
a number close to /2 means the angle is large. In the third column no number is
close to zero. Therefore the vote for U{2}{1} is only one. This is given in the fourth
column under the header V. Now we look at the second row, i.e. the second sample
point x2. Since the normalized derivative at x> has a direction that is not close to
the direction of the first candidate U{2}{1}, it becomes itself the second candidate
under the header U{2}{2}. This is symbolized by * in the fifth column and the row
of x2. The numbers in the fifth column are not close to zero. This implies that the
derivative of Dp,(x) evaluated at other sample points do not have the similar direc-
tion as U{2}{2}. Hence the vote for the second candidate is also only one, which
is giwen in the sizth column under the header V. Similarly, DP,(x)|x, becomes a
new candidate that is given in the seventh column under the header U{2}{3}. From
the numbers in the seventh column we can see that only DP,(x)|xs has a similar
direction as U{2}{3}. Therefore, U{2}{3} has two votes and DP,(x)|x1 does not
become a new candidate. DP,(x)|xs does not have similar directions as the exiting
candidates, it becomes the fourth candidate for the normal vectors, which is given
in the ninth column under the header U{2}{4}. The numbers in the ninth column
show that the derivative DP,(x) at x5, x” and x8 have directions very close to that
of U{2}{4}. Therefore it has four votes, which are given in the tenth column. Now
the fourth candidate has the most votes. The average of DP,(x) at x°, x°, x" and
x8 is the estimate of the normal vectors for the subspace of dimension one and these
four sample points are classified to this subspace.

32



Table 7: Voting and Choice of Candidates for the Normal Vectors for the Subspace

Sample N U{21{1} V| U{2{2} V| U{2{3} Vv ]|Uu{2{4} Vv
x! PY Y * 1| 0.9789 0.37 0.99
| —0.06 0.99 |
X2 O s | 0.97 * 1 0.48 0.99
| —0.02 0.99 |
x3 S o] 0.37 0.48 * 21 0.99
| 002 099 |
x4 T e ] 0.46 0.39 0.01 0.99
| 003 099 |
x5 I 0.99 0.99 0.99 * 4
| 0.00 —0.05 |
x6 e 0% 0.99 0.99 0.99 0.002
| 0.01 —0.00 |
X7 o e ] 0.98 0.99 0.99 0.003
| —0.02 —0.00 |
x8 RS 0.98 0.99 0.99 0.004
—0.02 —0.01

Notes: The first column gives the sample points from x' to x®. The second column

collects the normalized derivatives Dp,(x) evaluated at corresponding sample points.
Third and the fourth column collect the results of evaluation of the first candidate of the
normal vectors for the subspace. The number under headers U{i}{j} are the measures
of the angles between the candidate and the respective derivatives at the corresponding
rows. The integers under the headers V are the numbers of votes for the corresponding
candidate at the same row.

After determining the subspace with k; = 1, we turn to determination of the
subspace with k; = 2. The presence of noises makes Dp,(x) usually a full rank
matriz. However, for noiseless cases the rank of Dp,(x) evaluated at points located
i the subspace with k; = 2 is one. Hence, we evaluate only the first principal
component of Dp,(x). The results are collected in the second column of Table 8.

Table 8 reports the voting results for the candidates of the normal vector for the
subspace of dimension two. The second column collects the first principal component
of normalized derivatives evaluated at the corresponding sample points. In the third
column, * represents that the normalized derivative at the same row is chosen as a
candidate. The header U{1}{1} says that this is the first candidate for the subspace
with codimension one. The numbers in this column measure the angels between the
candidate and the derivatives at the respective rows. A number close to zero means
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the corresponding angle is small, and a number close to w/2 means the angle is large.
In the third column three numbers are close to zero. Therefore, U{1}{1} has 4 votes.
This is given in the fourth column under the header V. Since the points X5, X,
X7 and Xg are already classified to the other subspace. U{1}{1} is the candidate
with most votes. Averaging the first principal components for the derivatives at x!,
x2, x3 and x* gives an estimate for the normal vector of the subspace. These four

points are assigned to this subspace accordingly.

Table 8: Voting and Choices of Candidates of the Normal Vectors for the Subspace

Dp(x
Sample I\Digwgll U{1}{1} V
x! 006 * 4
| 099 |
x2 [ %% ] | 0.0209
| 0.99 |
x5 [ 200 ] | 0.0069
| 0.99 |
x4 [0 ] | 0.0055
| 0.99 |
x> [ e | | 0.9897
| —0.05 |
x¢ [ 0% | | 0.9961
| —0.00 |
x7 [ %] | 0.9965
| —0.00 |
x* [0 ]| 09976
—0.01

Notes: The second column collect the first principal component of derivative Dpy(x)
evaluated at corresponding sample points. The numbers under the header U{1}{1} are
measures of the angles between the candidate and the corresponding derivatives at the
respective rows. The integer 4 under the header V is the number of votes for the candidate
normal vector at the same row.

From the voting procedure in Table 7 and Table 8, the estimates of the two sub-
spaces are:

R 0.9993 —0.0131 R —0.0361
B, =| —0.0132 —-0.9992 and By = 0.0039 . (6.47)
—0.0135 —0.0095 0.998

Compared with equations (3.26), these two estimates of the normal vectors are very
close to the true normal vectors.
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6.2 Proofs

Proof of Proposition 2.5
Because A; and C; are bounded and A = (C1Ay, CyA,, ..., C,A,,), A is bounded.

AA’ a AN
Z : Loy (6.48)
N k><k Ni (k;xk)
(k’X’f =1 (k xk;)
Let b be a k x 1 nonzero vector. To show that 24 converges to a positive definite

matrix we need to show b’ %b > (0 when N is large enough.

AN A; A\

_ —b'C’ 2 O 6.49

(1><k;) N kxl) lz: N(lxk N; (s ><1) ( )
(kxk) (kix<ks)

Because ANA/ converges to a positive definite matrix, the summands on the right
hand side of the equation above are all nonnegative. In order to show the sum is
strictly positive we need to show at least one summand is strictly positive.

If Clb =0 for all ¢ = 1,2,...,n, it would imply that all column vectors in

(C1,Cy, ..., Cy) are orthogonal to b. This contradicts to the assumption that

rank(Ch, Cs, ...,C,) = k. Therefore, for some i € {1,2,...,n} we have C/b # 0.
Because AN? converges to a positive definite matrix, we have b’ CiAj\,—?iC{b > 0 for
C!b # 0 and N large enough. Further we have % — a; > 0. Therefore, the sum-

mand 2 A b'Ci A A ——(C!b is strictly positive. It follows the sum in equation (6.49) is

trlctly posmve
O

Proof of Proposition 3.3

Since both the ungrouped factor model (2.6) and each group in the grouped factor
model (2.4) satisfy the assumptions on a factor model in Bai and Ng (2002). We will
extensively applied the results in Bai and Ng (2002) in our proofs. In the following

4 denotes the probability limit as T, N — oo.

To prove (c) we need only to show ~GX'E 5 0. Since GX corresponds to the
factor estimator in Theorem 1 in Bai and Ng (2002), we can directly apply the result
of Theorem 1 (in Bai and Ng (2002) p.213) in our proof.

T T

GEE 1 - 1 X Ko ot K o
= :TZ(GtEt)—TZ(G HY'Go + HY'G9)
t=1 t=1
1 T T
= 7 Y (GF —HNG)E + =) HNGIE,

G¢ and HX are the true factor and the rotation matrix as defined in Theorem 1
in Bai and Ng (2002). We need to show the two terms in the last equation above
converge to zero in probability. For the (I,m) element of the first term, we have by
Cauchy-Schwarz inequality:

T 2 T
1 - o 1 - -
(33006 - i) < 136 - gy

t=1



According to Theorem 1 in Bai and Ng (2002), we have S ||GE— R G2 N

0. It follows then
1 - .
LS — e

T
t=1

From Assumption 2.6, we have:

1 T
T Zeft < Ml,
t=1

where M, is a positive constant.
Using Slutsky theorem, it follows then

T 2
1 o
(? Z(Gzlt( - HKiGt)ejt> < (

t=1

Nl

t=1

In the matrix form we have:

1 T

0.

T A
> (G = HNGY)

plim — > (G — HX'Gy)E, = 0.

T,N—o0 =1

1 T
2:726%) 50

To show plim L >0 HX'GYE, = 0, we need only to show plim X > G¢E, = 0.
T,N—o0

T,N—oo
According to Assumption 2.7, we have

T
1
—— E G?eit
T t=1

N 2 N

1
ENZ

=1

It follows then

T
1 & b
E||:7 ;Gteit||2 — 0,

T

2

otherwise the inequality above will not hold. This implies plim %Zthl Goey = 0.
T ,N—o00

In matrix form we have
T

1
plim — Z G{E; = 0.

T ,N—o0 —1

This proves (c) in Proposition 3.3.

To prove (b) we have

1

FiT — %GK,E - (féK/Go) Cl —

e
N =

T
1 5 / ,
— (TE (G — HF Gg)G;) C; + (

t=1 t=1

N[ =

T
1 ~ / / /
= <f§ (Gf—HKGi)G?>Ci+HK

t=1

0+ HX'SC; 0.
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T
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)oi

)oi



The limit in the last row above is because of

T

2 T
1 A 1 R 21
(T NGk - HK;Gg)G;;) <= || - e
t=1

t=1

T

0112
> IG5
t=1

and

T

1 :

- PINEHEAE S
t=1

Hence we have F = HK'ZCQ # 0. In the proof above if we use C; = I, we have
_ 1~ _
GT:?GKGLG:OJrHK'E;éO.

So we have G = HX'S # 0. It follows F; = GC;. This proves (b). From the
existence of the limit of (b) and (c) follows the existence of the limit of (a).

(d) follows (b) and C; # Cj.

According to Assumption 2.2 we have C;A;,, # C;\;; for any loadings of group
¢ and group j. B B B
FXim — Fi\jg = G(Cihim — CiN;1) # 0.
This proves f.
(I

Now we turn to proof of Proposition 3.7. We have the model selection criterion
as follows:

Cln {hid, 1X07 1) = 3 TVilhs, B, ) Z (ki + h(as)) g(N,T)

In order to prove this Proposition we compare first the value of the model se-
lection criterion of a true model under a priori true classification with that of an
alternative model with a classification determined by PDA procedure. Then we show
that the model selection criterion of the true model under the true classification is
asymptotically equivalent to the model selection criterion of the true model under
the classification determined by PDA procedure.

Since we are considering the asymptotical property of the selection criterion, we
assume that in both the a priori correctly classified model and the alternative model
each group contains infinitely many variables. The a priori correctly classified model
and the alternative model make two different partitions of the variables in n and
n' groups respectively. The intersection of these two partitions constitutes a new
finer partition of the variables called intersected partition. In each group of the
intersected partition, all variables belong to only one group in the true model and
they belong to also only to one group in the alternative model. We index the groups
in the intersection partition by 7. Let kY be the number of the factors of the true
model for the variables in group ¢ of the intersection partition and k; the estimated
number of factors based on the alternative model for the same variables. We can
differ three cases:
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e Case 1: The alternative model underestimates the number of factors in some
of its groups. This leads to k; < k¢ for some groups in the intersection parti-
tion.

e Case 2: The alternative model does not underestimate the number of factors
in its groups, and k! = & holds for all groups in the intersection partition.

e Case 3: The alternative model does not underestimate the number of fac-
tors in its groups and :k; > kY for all ¢ and k] > k? for some groups in the
intersection partition.

Let NI be the number of variables in the ith group of the intersection partition. We
define several mean squared residuals for the ith group of the intersection partition
calculated according to different choices of factors as follows. (Note that the mean

squared residuals here are defined in the same way as in Bai and Ng (2002) on page
214.)

o V(K/,F¥ NI): the mean squared residuals calculated from the estimated al-
ternative model.

o V(K?, F , NI): the mean squared residuals calculated from the estimated true
model with the a priori true classification .

o V(k¢,F* N!): the mean squared residuals calculated using k¢ population
factors.

o V(ko, F¥' N): the mean squared residuals calculated using population factors

in the [th group of the alternative model.
A kO
o V(K¢ F NI
factors using only data in the intersection group N/, where the used number
of factors is k.

NI): the mean squared residuals calculated with the estimated

o V(K a ]I:[;_,, N!): the mean squared residuals calculated with the estimated fac-

tors using only data in the intersection group N}, where the used number of
factors is k..

Lemma 6.1 Let {N;}7_,, {NY and {NI}™ | denote the indices of the a priori
true classification of the true model, the classification using GPCA based on an
alternative model and the intersected partition, respectively. It holds

I
- N o 1k° C Nzl o 1k?
E ]\;V(kj’Fk]’Nj)ZE :Nv(kkalvNiI)

j=1 i=0

I

N' o = NI o
LV (K, FY NG =Y =LV (kY F¥ O N])

N I N
=1 i=0
n, le Ak:/ nI NI Ak;/ I
LV (ky, FNP) = =LV (K, FRON;
— N ( 0 ) l) — N ( 7 ) 7,)
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Proof: The above equalities say that the total mean equals the weighted group
means. Let {z;}2_; be a series with N elements. Suppose that the series is divided
into n groups and each group has N; elements respectively. According to this group-

ing the element can have two indices: {z;;} with ¢ = 1,2,...N; and j = 1,2,.

Now we want to calculate the mean of the series.

"L N T "N,
j=1 i=1 j=1 J =1 j=1

suppose that we have now a different grouping of the series with n! groups.

have similarly:

It follows

ey T

Replacing 2; and 2 in the equation above by V/(k?, R N;) and V/(k?, R NI, we
prove the first equality of Lemma 6.1. The other three equalities can be proved in

the same way.

Lemma 6.2

V(kfa kaa Nzl) - V(kf7 kaa Nz[) = OP(C]:TQT)

)

Proof

The variables in the ith group of the intersected partition belong to only one
group of the true model, say group j. Let kj denote the number of true factors
in this group. We have k7 = k7. Since group j with N; genuine variables of the
group satisfy the assumptions on a factor model in Bai and Ng (2002), according to

equation (10) in Lemma 4 of Bai and Ng (2002) we have

V (kS F5 N;) = V(kS, FN;) = 0,(Ci%). (6.50)
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The difference on the left hand side of the equation above can be written as follows:
V(k;)a Fk$> N]) - V(kf7kaa NJ)

(Nt XL o N, T o
= 57 | vr 22 2K = N ) + Z Z mby)?
J i om=1t=1 1 =NI41t=
NI 1 N; T
1 [N & k N; — N/ : k
7 | v 2o 2K = Mg+ o Dl D (K = Mg )
J i m=1t=1 J i m=N!41t=1
I NI T
1 1 d L 1 . k: N; — NI
i / i \2 i \2 J 7
= 3 | v 22 2 Em = N B = 1 D0 D (Ko = N By | +
N; ( ZTm=1t=1 NiTm—l t=1 N;
1 Nj T . 1 Nj T
(N _NI)T Z Z(th ;c"mFtl)Q_ (N _NI)T Z(th ko F
J i m:NiI—&-l t=1 J i m:NiI—&-l t=1
N/ ke Al ke a7l
- ﬁ(v(kio7FivNi)_V(kgﬂFivNi>>
J
A
N; — N/ 0 0
+ S (VR BN = NJ) = VR RN - ND)
J
B
< 0.

The last inequality is because the the estimated factors minimize the mean squared
errors in group j. If we use only data of the N/ variables in group i of the intersected
partition to estimate factors we have:

NI

. (v(ko FNlﬂ? NZI) - V(k}f, Fkgv Nzl)) < A
J

(.

> <

and similarly if we use the data of the rest N; — N/ variables in group j of the true
model to estimate the factors, we have

N; — N} o o ko

Tj(v(k F]\f _yinn N = N]) = V(k?, F*,N; — N])) < B.

N S
g

B

These two inequalities are because the estimated factors minimize of the mean
squared residuals in the respective cases. Applying relation (6.50) to the data of N}
Variables and to the data of N; — N/ variables respectively, under the conditions

’—>7]>Oand 1—>1—n>0 we have
AzOp(C;,T) and B =0,(Cy3%).

Because A+ B < A+ B <0 and A+ B = 0,(Cy%) we have A+ B = O,(Cy%).
Since A and B are of same order, we have A = O,(Cy> ). This proves

V(kS, F¥ Ny = V(K2 F¥ N) = O,(Cy%).
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Lemma 6.3 For k; > k7,

V(ki, F%,NT) = V (kg FNNT) = O(CR7). (6.51)

)

Proof

Since the variables in the ith group of the intersected partition belong to only
one group of the true model, say group 7, and they belong to also only one group of
the alternative model, say group [. Let k7 be the number of true factors in group j of
the true model and let k7 be the number of true factors in group [ of the alternative
model. So it follows under the condition of Lemma 6.3: k] = k; > kf > k.

We reformulate the difference in the left hand side of equation (6.51) into four
differences:

V(K F* NI — V(K2 F* NI (6.52)
= V(kj, F" NJ) - (kz,F’“ {)
+V(kl ) Fkl NI) V(kl ) NI’ NI)

+V (kS F N,, NH =V (K2, F* N
+V (Ko, F¥ NIy — v (ke, F¥ NT)

Now we look at the four differences above in turn. For the first difference we have:

V (KL, F*, Ny) — V(kp, F*, Np)
= V(K,FM, Ny — V(kp, F* V)
1

I Nl 1 A L
- ﬁ (g"[ Z Z(th - )‘k{,mFtkl)Q Z Z mt — Ak’ ) )

i m=1t=1 Z m=N!+1t=1

NZI T
N< DIy ) e ))
1 =1 t=1

’meltl

1 & N, — NI
) (NITZZ Xt = Ay ) Nf ZZ Kot = Mg )) w

i=1 t=1 ? m=1 t=1

( Y A e S Sy

m NI+1t 1 m NI+1t 1

N‘ A o

- 2 (V(kf,F’fz,N{ ) - VK7, ', N} >)
l

N, — N/

+ % (V(klkal Nl NZI) - V(klaFkl Nl NZI))
l

< 0.

Applying the same argument as in the proof of Lemma 6.2, we have:
V(k?;, szv Nzl) - V(kloa Fk?: NZI) = V(kl,7 sz’ Nzl) - V<klo7 Fklo? NZI) = OP(OJ:%J
For the second difference, using equation (10) in Bai (2003) on page 217, we have

V(kf, ¥ NT) = V (k7 B\ NY) = O,(CR3).

NI7
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For the third difference we have k7 > k{ where k¢ is the number of true factors in
the ith group of the intersected partition. Using equation (10) in Bai (2003) on page
217, we have

V(ke, Y

Iy
Ni

NZ‘I) - V(k;)7 kaa NiI> = OP(CJTI%)

The fourth difference is not slower than Op(C’;,?T) by Lemma 6.2. Hence We have
proved: R X
V (ki F5ONT) = V(R Y NT) = O,(CRy).

O

Lemma 6.4 For k] <k,
V(ki, FM N = V(kE, FMONT)

has a positive limit.

Proof
V (K, F¥ NI — Vv (ko, F¥ NT)
> V(K Fy NI = V(R FN)
= VKL Iy N]) = VL RN

NI
+V (KL, F* H" N]) — V(k¢, F¥, N}
+V (Ko, F¥ NI — V(e F™ N))

The first inequality is due to the fact that F]];', minimizes the mean squared errors

of the estimated factor model for the ith gr(;up of the intersected partition with
N/ variables. Following Lemma 2 and Lemma 3 in Bai and Ng (2002), the first
term in the right hand side of the equation is Op(C;,}T), the second term has a
positive limit, and the third term is not slower than OP(C;,?T) by Lemma 6.2. Hence,
V (Kl F¥ NIy — V(ko, F¥ NI has a positive limit.
O

Proof of Proposition 3.7.
Now we prove Proposition 3.7 in the three possible cases listed before.

Case 1 The alternative model underestimates the number of factors in some of
its groups. This leads to k} < k¢ for some groups in the intersected partition.

According to Lemma 6.1 the difference of mean squared residuals between the
alternative model and the true model with correct classification can be calculated
as follows:

En —NI/V(k:’ FFNT) — En o] V (kS F* N;)
A N VT
=1

j=1

NI ~ gt ~ 1.0 NI ~ g ~ 1.0
= Z ]\; (V(k, Fkl7NzI) - V(k;zO7sz7NzI)) + Z ]\; (V(k;FklaNz[) - V(kaank“NzI))
K/ >k k;<kf
-2 Nzl 1 ikl I o ke 1
OP(CN,T) + Z N [V (kj, B N;) = V(K7 ™ NG

42



The first limit in the last row above is by Lemma 6.3. Each summand in the second
term has a positive limit by Lemma 6.4. Hence, the left hand side of the equation
above also has a positive limit. The difference of the penalties can be calculated as
follows:

(K" = k*+ h({ai}) — h({a:}))g(N, T).
Since k' — k° + h({&}}) — h({&;}) is bounded by condition 3(a), we have

(K — k° +h({&}}) — h({&:})g(N,T) — 0 as N, T — oo.
Therefore,

P{PC(', {ki}, {X7}) > PC°(n, {7}, {X;})

d N/ k) / nN o 1k° o 7./ 7.0 T (Al /(A
= P{Z WZV(k{,F’ﬁ,Nl)—Z#V(@,F’%‘,Nj) > (K — k° 4 h( ai})—h({ai}))g(N,T)}
=1

=1
P
— 1,

where we use PC°(n, {k7},{Xi}) to denote that this model selection value is calcu-
lated based on the a priori true classification in the true model and PC'(n’, {k;}, {X}})
denotes that the calculation of the model selection criterion value is based on clas-
sification using the PDA procedure. The limit in probability in the equation above
follows from the fact that the left hand side of the inequality above has a positive
limit and the right hand side converges to zero.

Now we turn to the cases when an alternative model overestimates the number
of factors.

Case 2 The alternative model does not underestimate the number of factors in
its groups, and k; = k¢ for all groups in the intersected partition.

This can only happen when the alternative model separates a group in the true
model into more than one groups. Without loss of generality, we consider the case
in which the true model is an un-grouped model and the alternative model contains
more than one groups. Let the number of the true factors be k°. We have k] = k°.
The difference in the penalty factors can be calculated as follows:

> aik] — K+ ah(q, N,T) = h(1,N,T) = Y " ah(é, N,T) — h(1,N,T) > 0
=1 =1 =1

The last inequality is due to condition 3(c).

P(PC°(1,k°, X) > PC(n', {k},{X}})

) n N/ . n
= P{V(kanOaN) - Zﬁlv(kllkalle) > (Zdlh(dl)NaT) - h(laNaT)> g(NvT)}

l =1

=1

% %

n! I ’
- NZI o fro o Nz[ LA - N N
=P {Z NV EO N =Y s VR FYON]) > (th(oq,N,T) - h(l,N,T>> g(MT)}

I /
n; NI o L n R R
- p{z ~ V. F N — V(k, FY N > (Z &h(éy, N, T) — h(l,N,T)> g(N,T)}

% =1
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Now the term on the right hand side of the mequahty is positive and converges at a
NV (ke Fo,ND) =V (K, F¥ NJ)| =

slower rate than Oy ~.r to zero, and we have S
0,(Cy%) by Lemma 6.3. Hence,

P(PC°(1,k°, X) > PO, {K},{X:1)) = 0

This implies
P(PC°(1, k%, X) < PC(n' {k}.{X}'})) — L.

Case 3 The alternative model never underestimates the number of factors in its
groups and :k, > k¢ for all ¢ and k] > k? for some groups in the intersected partition.
We calculate again the difference in the penalty factors.

6= Z ok + Z ) = 32 K D0 )

n Z / Z NI NZI ~ 0
= 21: k] +Z h(a le ¥ —; (@)
- ZN ) ~ h(a)
— o M- Z Ni(h(d@—h(d»ﬂz L (h(a) — h(ap))

IV
™
=
+
™
==
=
T
/[™]
==
b
™
=
=
=
T
>
2

ki >k¢ ki >k¢ ki >k¢ k] =k¢
Nf o N{ R N{ ) o
= Y SEA-h@)+ ) N (67) + Y =L (h(a)) — h(a?))
ki >k¢ K >k¢ ki =k¢
> 0

The first two terms are positive because of condition 3(a) for h function. For the
case of k] = k? we must have &, < &¢, because &; > &7 would imply that group [ of
the alternative model contains more variables than group j of the true model, and
hence the number of true factors in group [ would be larger than £¢. This contradicts
the assumption of k] = k?. Therefore the third term is nonnegative according to
condition 3(b). Hence, we always have ¢ > 0.

P(PC(n, {kf},{X;}) > PC(n', {k1},{X[}))

n’

- N o o -
= P{ZA? (k9. EY, N; Z kl,F/,Nl>>¢g<N,T>}
]:
I
. NI o 0 1 o / / I
= Pq) ~ V0, E° NI Z V (K, F!,NI) > ¢g(N,T)

- p{ ]X;][V(ko E?, N — V(ki,F{,Nf)]>¢g(N,T)}
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Now the term on the right hand side of the inequality is positive and converges at a
I I A~ A

slower rate than C’;,?T to zero, and we have ), ]J\Q—Z[V(kf, Fe,NH -V (K, F!/,ND)] =

0,(Cy%) by Lemma 6.3. Hence,

P(PC™(n, {2}, {X;}) > PC(n', (K}, {X7 ) = 0.
This implies
P(PC?(n Ak} {X;}) < PO’ {ki}, {X7})) — 1.

So far we have shown for all three possible cases the following probability convergence
holds.

P(PC°(n,{k}, {X;}) < PC(n' {k},{X/})) — 1. (6.53)

Since the true classification is usually unknown in practical applications, we need
to replace the true classification by the classification using the PDA procedure and
we need to prove that the model selection criterion of the true model using the PDA
procedure has the same property as given in (6.53), i.e. we need to prove

P(PC(n, {k},{X}}) < PC(n', {k}}, {X{}) =51 as T,N = .

PC(n, {k7},{X7}) — PO, {l}, {X7})

= PC(n, {k}.{X}}) = PC°(n, (K}, {X;})

v~

+ PC°(n, K7}, {X;}) — PO, (R}, {X7})

C

Because the PDA with the voting scheme is consistent we have

P [PC(n, {k},{X3}) — PC(n (K2}, {X;}) = 0] = P ({X;} = {X;}) > 1 (6.54)

Because plim B =0, plim C' <0 and A= B+ C, we have
T,N—oo T,N—oo

plim A = plim B+ plim C <0.
T,N—o0 T,N—oo T,N—o

This means
P(PC(n, {k:;’ ;‘:1, {XJS}) < PC(n/, {k;g};il, {X;}H)) —1 as T, N — oo.

This proves Proposition 3.7.
O

Proof of Proposition 3.8
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Let E,t = Fi,t(Xf ) denotes the factor estimate calculated with the data classified
into the ith group and F;;(X;) denote a factor estimate calculated with the genuine

data of the ¢th group. Let Hik " be the H¥ matrix defined in Theorem 1 in Bai and
Ng (2002).

T
1 A K
fz || Fip — H; " ol 2
t=1

T
1 S (X _ B K,
= D IE(X5) = B2+ ZHFM ~ HFP

=1

t LI >

A s k:
z(fzum,xx»— u?) ( > i) - rl
t=1

IN

Following Proposition 3.5, we have

T
1 A R
P (f Z 1E54(X7) — Fro(X0)])? = 0) =P({X;}={X;}) =1, as T — 00, N — oo.

t=1
(6.55)
This implies
1 T
A s A P
7 D) = Fu(X)|F 0. (6.56)

Since the data of the ith group satisfy the assumptions of the factor model in Bai
and Ng (2002), we can apply Theorem 1 in Bai and Ng (2002) and have

’ﬂ |

T
Z — H' Pyl = 0,(CR%), (6.57)
which implies
1 T
A k! P
- S I Fw(Xi) = Hi FylP = 0. (6.58)

Hence we have

T

1 - /

7 2 = HYFyl? = 0. (6.59)
t=1
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6.3 Variable List for the Empirical Example

List of Variables and Classification

Table 9:
Group No.
2
3
4
5
7
8
9
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132

Name

ADELAIDE BRIGHTON -
ABACUS PROPERTY GROUP -

AGL ENERGY -

AUSTRALIAN INFR.FUND -
ARISTOCRAT LEISURE -

ALESCO -

AUSTRALAND PR.GP. -

AMCOR -

AMP - TOT RETURNIND

ANSELL -

AUS.AND NZ.BANKING GP. -

APA GROUP -

APN NEWS & MEDIA-

ASX - TOT RETURNIND
AUSTAR UNITED COMMS. -
AWB - TOT RETURNIND

AXA ASIA PACIFICHDG. -
BILLABONG INTERNATIONAL -
BENDIGO & ADELAIDE BANK -

BORAL -

BANK OF QLND. -
BLUESCOPE STEEL -
BUNNINGS WHSE.PR.TST. -

BRAMBLES -

CABCHARGE AUSTRALIA -
COMMONWEALTH BK.OF AUS. -
COCA-COLA AMATIL-

CFS RETAIL PR.TST. -
CHALLENGER FINL.SVS.GP. -
CONSOLIDATED MEDIA HDG. -

COCHLEAR -

COMMONWEALTH PR.OFFE.FD. -
COMPUTERSHARE -

CRANE GROUP -

CSL - TOT RETURNIND

CSR - TOT RETURNIND

CALTEX AUSTRALIA-
CORPORATE EXPRESS AUS. -

DAVID JONES -
DOWNER EDI -

DEXUS PROPERTY GROUP -

ELDERS -
ENVESTRA -

FOSTER’S GROUP -
FKP PROPERTY GROUP -
FLIGHT CENTRE -

FLEETWOOD -

FAIRFAX MEDIA -
GOODMAN GROUP -

GUNNS -
GPT GROUP -

GUD HOLDINGS -

GWA INTERNATIONAL -
HENDERSON GROUP CDI. -
HILLS INDUSTRIES-
HEALTHSCOPE -

HARVEY NORMAN HOLDINGS -
INSURANCE AUS.GROUP -
IOOF HOLDINGS -

ING INDL.FUND -

ILUKA RESOURCES -

ING OFFICE FUND -

IRESS MARKET TECH. -

ISOFT GROUP -
JB HI-FI -

JAMES HARDIE INDS.CDI. -
LEIGHTON HOLDINGS -
LEND LEASE GROUP-
MACMAHON HOLDINGS -

MAP GROUP -

MACQUARIE COUNTRY.TRUST -
MIRVAC GROUP -

MACQUARIE INFR.GROUP -
MONADELPHOUS GROUP -
MACQUARIE OFFICETRUST -
MACQUARIE GROUP -

METCASH -

NATIONAL AUS.BANK -

NUFARM -

NEWS CORP.CDI.’B’ (ASX) -

ONESTEEL -

PRIME INFRASTRUCTURE GP. -

PERPETUAL -
PAPERLINX -

PRIMARY HEALTH CARE -
QANTAS AIRWAYS -

code
A:ABCX(RI)
A:ABPX(RI)
A:AGKX(RI)(*)
A:AIXX(RI)
A:ALLX(RI)
A:ALSX(RI)
A:ALZX(RI)
A:AMCX(RI)
A:AMPX(RI)
A:ANNX(RI)
A:ANZX(RI)
A:APAX(RI)(*)
A:APNX(RI)
A:ASXX(RI)
A:AUNX(RI)
A:AWBX(RI)
A:AXAX(RI)
A:BBGX(RI)
A:BENX(RI)
A:BLDX(RI)
A:BOQX(RI)
A:BSLX(RI)
A:BWPX(RI)
A:BXBX(RI)
A:CABX(RI)
A:CBAX(RI)
A:CCLX(RI)
A:CFXX(RI)
A:CGFX(RI)
A:CMJIX(RI)
A:COHX(RI)
A:CPAX(RI)
A:CPUX(RI)
A:CRGX(RI)
A:CSLX(RI)
A:CSRX(RI)
A:CTXX(RI)(*)
A:CXPX(RI)
A:DJSX(RI)
A:DOWX(RI)
A:DXSX(RI)
A:ELDX(RI)
A:ENVX(RI)
A:FGLX(RI)
A:FKPX(RI)
A:FLTX(RI)
A:FWDX(RI)
A:FXJIX(RI)
A:GMGX(RI)
A:GNSX(RI)
A:GPTX(RI)
A:GUDX(RI)
A:GWTX(RI)
A:HGGX(RI)
A:HILX (RI)
A:HSPX(RI)
A:HVNX(RI)
A:TAGX(RI)
A:IFLX(RI)
AIIFX (RI)
AILUX(RI)(*)
A:TOFX(RI)
A:IREX(RI)
A:ISFX(RI)
A:JBHX(RI)
A:JHXX(RI)
A:LEIX(RI)
A:LLCX(RI)
A:MAHX(RI)
A:MAPX(RI)
A:MCWZX (RI)
A:MGRX(RI)
A:MIGX(RI)
A:MNDX(RI)
A:MOFX(RI)
A:MQGX(RI)(*)
A:MTSX(RI)
A:NABX(RI)
A:NUFX(RI)
A:NWSX(RI)
A:OSTX(RI)(*)
A:PTHX(RI)
A:PPTX(RI)
A:PPXX(RI)
A:PRYX(RI)
A:QANX(RI)




Table 10: List of Variables and Classification(Cont.)

Group
1
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No.
133
134
137
141
143
144
145
146
147
148
151
153
154
155
157
158
159
160
161
162
163
166
1

6
14
17
18
21
23
24
28
31
38
39
50
53
58
59
60
61
62
66
69
71
82
86
89
92
94
96
99
100
103
105
106
109
111
114
117
118
119
120
121
123
124
125
127
128
135
136
138
139
140
142
149
150
152
156
164
165
167
168

Name

QBE INSURANCE GROUP -
RAMSAY HEALTH CARE -
RESMED CDI -

SEVEN NETWORK -
STOCKLAND -

SINGAPORE TELECOM CDI. (ASX) -
SONIC HEALTHCARE-
SIGMA PHARMS. -

SMS MAN.& TECH. -
SPOTLESS GROUP -
SUNCORP-METWAY -
TRANSURBAN GROUP-
TELECOM CORP.NZ.(ASX) -
TEN NETWORK HOLDINGS -
TOLL HOLDINGS -
TRANSFIELD SERVICES -
UGL - TOT RETURNIND
VIRGIN BLUE HOLDINGS -
WEST AUST.NWSP.HDG. -
WESTPAC BANKING -
WESTFIELD GROUP -
WOOLWORTHS -
AUSTRALIAN AGRICULTURAL -
AJ LUCAS GROUP -
ARROW ENERGY -

AQUILA RESOURCES-
AQUARIUS PLATINUM (ASX) -
AVOCA RESOURCES -
ALUMINA -

AWE - TOT RETURNIND
BHP BILLITON -

BEACH ENERGY -

CUDECO -

CENTENNIAL COAL -
CARNARVON PETROLEUM -
DOMINION MINING -
EQUINOX MINERALSCDI. -
ENERGY RES.OF AUS. -
EASTERN STAR GAS-
ENERGY WORLD -
EXTRACT RESOURCES -
FORTESCUE METALSGP. -
GINDALBIE METALS-
GRAINCORP -
INDEPENDENCE GROUP -
INCITEC PIVOT -
INVOCARE -

KINGSGATE CONSOLIDATED -
LIHIR GOLD -

LYNAS -

MACARTHUR COAL -
MINCOR RESOURCES-
MOUNT GIBSON IRON -
MEDUSA MINING -
MURCHISON METALS-
MOLOPO ENERGY -
MINARA RESOURCES-
NEWCREST MINING -
NEXUS ENERGY -

OM HOLDINGS -

ORIGIN ENERGY (EX BORAL) -
ORICA -

OIL SEARCH -

OZ MINERALS -
PANORAMIC RESOURCES -
PALADIN ENERGY -
PLATINUM AUSTRALIA -
PANAUST -

RIO TINTO -

RIVERSDALE MINING -
ROC OIL COMPANY -

ST BARBARA -

SUNDANCE RESOURCES -
SIMS METAL MANAGEMENT -
STRAITS RESOURCES -
SANTOS -

TABCORP HOLDINGS-
TELSTRA -

WESFARMERS -
WORLEYPARSONS -
WOODSIDE PETROLEUM -
WESTERN AREAS -

code
A:QBEX(RI)
A:RHCX(RI)
A:RMDX(RI)
A:SEVX(RI)
A:SGPX(RI)
A:SGTX(RI)
A:SHLX(RI)
A:SIPX(RI)
A:SMXX(RI)(*)
A:SPTX(RI)
A:SUNX(RI)
A:TCLX(RI)
A:TELX(RI)
A:TENX(RI)
A:TOLX(RI)
A:TSEX(RI)
A:UGLX(RI)
A:VBAX(RI)
A:WANX(RI)
A:WBCX(RI)
A:WDCX(RI)
A:WOWX(RI)
A:AACX(RI)(*)
A:AJLX(RI)
A:AOEX(RI)
A:AQAX(RI)
A:AQPX(RI)
A:AVOX(RI)
A:AWCX(RI)
A:AWEX(RI)
A:BHPX(RI)
A:BPTX(RI)
A:CDUX(RI)
A:CEYX(RI)
A:CVNX(RI)
A:DOMX(RI)
A:EQNX(RI)
A:ERAX(RI)
A:ESGX(RI)
A:EWCX(RI)
A:EXTX(RI)
A:FMGX(RI)
A:GBGX(RI)
A:GNCX(RI)
A:IGOX(RI)
A:IPLX(RI)(*)
A:IVCX(RI)(*)
A:KCNX(RI)
A:LGLX(RI)
A:LYCX(RI)
A:MCCX(RI)
A:MCRX(RI)
A:MGXX(RI)
A:MMLX(RI)
A:MMXX(RI)
A:MPOX(RI)
A:MREX(RI)
A:NCMX(RI)
A:NXSX(RI)
A:OMHX (RI)
A:ORGX(RI)
A:ORIX(RI)(*)
A:OSHX(RI)
A:OZLX(RI)
A:PANX(RI)
A:PDNX(RI)
A:PLAX(RI)
A:PNAX(RI)
A:RIOX(RI)
A:RIVX(RI)
A:ROCX(RI)
A:SBMX(RI)
A:SDLX(RI)
A:SGMX (RI)
A:SRLX(RI)
A:STOX(RI)
A:TAHX(RI)(*)
A:TLSX(RI)(*)
A:WESX (RI)(*)
A:WORX(RI)
A:WPLX(RI)
A:WSAX(RI)
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