Cournot and Bertrand competition with asymmetric costs in a mixed duopoly

Choi Kangsik

Graduate School of International Studies, Pusan National University

14. October 2011

Online at https://mpra.ub.uni-muenchen.de/34100/
MPRA Paper No. 34100, posted 14. October 2011 03:01 UTC
Cournot and Bertrand Competition with Asymmetric Costs in a Mixed Duopoly

Kangsik Choi†
October 14, 2011

Abstract
We investigate a differentiated mixed duopoly in which private and public firms can choose to strategically set prices or quantities when the public firm is less efficient than the private firm. Thus, regardless of whether the goods are substitutes or complements, if the degree of public firm’s inefficiency is sufficiently small, there exists a dominant strategy for both public and private firms that choose Bertrand competition, while there exists a dominant strategy only for the private firm that chooses Bertrand competition if the degree of inefficiency is sufficiently large. Consequently, we show that regardless of the nature of goods, (i) social welfare under Bertrand competition is determined in equilibrium, if the degree of public firm’s inefficiency is sufficiently small; and (ii) if the degree of its inefficiency is sufficiently large, social welfare under which the private firm sets its price and the public firm sets its quantity is determined in equilibrium. Moreover, the ranking of a private firm’s profit is not reversed.

Keywords: Inefficiency, Cournot-Bertrand Competition, Mixed Duopoly.

1 Introduction
There are several studies of mixed oligopolies, in which public firms maximize their social welfare, whereas the private firms compete with public firms in order to maximize their own profits (see De Fraja and Delbono (1990), De Fraja (2009) and Bös (1991) for general reviews of mixed oligopolies). Studies of mixed oligopolies have become richer and more diverse over the past decade (e.g., Matsumura, 1998; Matsumura and Matsushima, 2004; Heywood and Ye, 2008; Barcena-Ruiz and Casado-Izaga, 2011), and the occurrence of mixed oligopolies in industry has also become a common feature across different economic systems. However, relatively few theoretical analyses of the choice of strategic variables for prices or quantities have emerged in recent publications on mixed oligopolies.

In the real world, the public and private firms frequently interact many levels. In the present research, we study these interactions between public and private firms by allowing them to choose strategically set their own levels of price or quantity competition. Thus, the present study is modeled on a non-cooperative game in which the choice of strategic variables is set in a mixed duopoly. Several authors have analyzed the strategic variables in non-cooperative games. For a purely private duopoly, Singh and Vives (1984) were the first to show that Bertrand competition is more efficient than Cournot competition when goods are differentiated (see also Cheng, 1985; Okuguchi, 1987). They found that Cournot equilibrium profits are greater than Bertrand equilibrium profits when goods are substitutes and vice versa when goods are complements. Moreover, they established that when private firms play the downstream duopoly game, their dominant strategy in a purely private duopoly is to choose quantity contracts if goods are substitutes, but to select prices if they are complements1. These studies of the choice of

†Graduate School of International Studies, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Pusan 609-735, Republic of Korea, Tel:+82-51-510-2532, Fax:+82-51-581-7144, E-mail: choipnu@pusan.ac.kr
strategic variables for prices or quantities, have thus suggested important implications for the
determination of market outcomes.

However, one issue that remains to be analyzed is whether the above results are robust to
changes in the type of industry competition. To the best of the author’s knowledge, no previous
studies have considered the case of both private and public firms choosing to set quantities
or prices in a mixed duopoly when the public firm is less efficient than the private firm. The
present study aims to fill this gap in the literature. In this study, we investigate whether the
standard results of the ranking of Cournot competition and Bertrand competition outcomes
under a differentiated mixed duopoly hold. More specifically, we illustrate how the choice of
strategic variables for setting quantities or prices affects social welfare in a mixed duopoly.

To the author’s knowledge, only two previous studies have compared Bertrand and Cournot
outcomes in a mixed oligopoly: Ghosh and Mitra (2010) and Choi (2009). Given that the goods
are substitutes, Ghosh and Mitra (2010) compared Cournot with Bertrand competition in a
mixed oligopoly where the rankings of profit and social welfare are determined without public
and private firms choosing strategic variables. Moreover, in a companion paper, considering the
nature of goods, Choi (2009) introduced a case in which both private and public firms choose
to set prices or quantities when trade unions are included in the mixed duopoly. These studies
assumed that the public firm is equally efficient as a private firm. However, the present study
crucially differs from Choi (2009) and Ghosh and Mitra (2010) as our focus is primarily on
industry competition when private firms are more efficient than the public firm in the absence
of trade unions².

Using a canonical two-stage game model, we demonstrate that regardless of whether the
goods are substitutes or complements, if the degree of public firm’s inefficiency is sufficiently
small, for both the public and private firms, choosing Cournot competition is strictly dominated
by choosing Bertrand competition. However, for the private firm, choosing Cournot competi-
tion is strictly dominated by choosing Bertrand competition if the degree of the public firm’s
inefficiency is sufficiently large. Given this, choosing Bertrand (respectively, quantity-price (i.e.,
when the public firm sets the quantity and the private firm sets the price, which herein is termed
quantity-price)) competition is the best public firm can do if the degree of inefficiency of the
public firm is sufficiently small (respectively, large). This is because total output under Bertrand
competition is higher than it is under quantity-price competition if the inefficiency level of the
public firm is sufficiently small, and vice versa. In other words, the private firm will always
opt for Bertrand competition, regardless of whether the goods are substitutes or complements
in the first stage (i.e., a unique subgame perfect Nash equilibrium (SPNE)). By contrast, Choi
(2009) found that a public firm always chooses Bertrand competition and a private firm chooses
either a Bertrand or a Cournot type of contract regardless of whether the goods are substitutes
or complements (i.e., multiple SPNEs). However, we show that if the degree of public firm’s
inefficiency is sufficiently small, there exists a dominant strategy for both the public and private
firms that chooses Bertrand competition, while there exists a dominant strategy only for the
private firm that chooses Bertrand competition if the degree of inefficiency is sufficiently large
when the public firm is less efficient than the private firm. This finding contradicts that of Choi
(2009), who claimed that public and private firms are equally efficient in the presence of trade
unions. This is because once the public firm’s decision variable is set with the dominant strategy
of Bertrand competition, the choice of the private firm no longer matters.

Consequently, the main finding in the present study differs from Singh and Vives’s (1984)
conclusion in which the dominant strategy for private firms in a purely private duopoly is to

²From the empirical studies, it is found that the public firm tends to be less efficient than the private firm.
See e.g., Megginson and Netter (2001), La Porta and Lopez-de-Silane (1999), Warzynski (2003), and Nishiyama
and Smetter (2007).
choose the quantity contract if goods are substitutes and vice versa. Because we endogenously investigate the type of contract in a mixed duopoly, this study differs from the current body of knowledge on this topic in two important aspects. First, previous studies of mixed oligopolies have considered an exogenous type of contract rather than an endogenous one when the public firm is less efficient than the private firm. Second, while previous studies have focused on the opposite results with regard to the Cournot-Bertrand profit differential in a purely private duopoly market, this study not only investigates the case when both private and public firms choose to set prices or quantities, but also determines how social welfare is affected by the type of contract structure.

The organization of the remainder of this paper is as follows. In Section 2, we describe the model. Section 3 presents fixed motives on the type of contract. Section 4 determines firms’ endogenous choices of strategic variables. Concluding remarks appear in Section 5.

2 The Model

The basic structure is a differentiated duopoly model, which is a simplified version of Singh and Vives’s (1984) model. Consider two single-product firms that produce differentiated products that are supplied by a public firm (firm 0) and a private firm (firm 1). We assume that the representative consumer’s utility is a quadratic function given by

$$U = x_i + x_j - \frac{1}{2} (x_i^2 + 2cx_ix_j + x_j^2), \quad i \neq j; i, j = 0, 1,$$

where x_i denotes the output of firm i ($i = 0, 1$). The parameter $c \in (0, 1)$ is a measure of the degree of substitutability among goods, while a negative $c \in (-1, 0)$ implies that goods are complements. In the main body of analysis, we focus on the imperfect substitutability case of $c \in (0, 1)$. However, we will mention later the imperfect complementarity case of $c \in (-1, 0)$ since it is easy to calculate when goods are complements. Thus, the inverse demand is characterized by

$$p_i = 1 - cx_j - x_i,$$

where p_i is firm i’s market price and x_i denotes the output of firm i ($i = 0, 1$). Hence, we can obtain the direct demands as

$$x_i = \frac{1 - c + cp_j - p_i}{1 - c^2}$$

provided the quantities are positive.

The private firm has constant marginal cost of production, which is normalized to zero. The public firm also has constant marginal cost of production, however, it is assumed to be less efficient than the private firm. Let $\theta > 0$ be the inefficiency of the public firm. For simplicity, following Pal (1998), we assume that the profit of private firm 1 and the profit of the public firm 0 as follows:

$$\pi_1 = p_1x_1 \quad \text{and} \quad \pi_0 = (p_0 - \theta)x_0,$$

3López (2007) and López and Naylor (2004) introduced the union utilities of private firms into a model of the choice of strategic variables for setting prices or quantities. They showed that Singh and Vives’s (1984) result holds unless unions are powerful and place considerable weight on the wage argument in their utility functions.

4We exclude independent case since the choice of strategic variables for setting prices or quantities does not change social welfare in a mixed duopoly.
respectively. As is customarily assumed in a mixed oligopoly, the public firm’s objective, \(SW \), is to maximize welfare, which is defined as the sum of the consumer surplus and the profits of individual firms. Thus, the public firm aims to maximize social welfare, which is defined as

\[
SW = U - \sum_{i=0}^{1} p_i x_i + \sum_{i=0}^{1} \pi_i,
\]

where \(U - \sum_{i=0}^{1} p_i x_i \) is the consumer surplus, and \(\pi_i \) is the profit of both the private and public firms.

This study considers that each firm can make two types of binding contracts with consumers, as described by Singh and Vives (1984) and López (2007). Thus, a two-stage game is conducted. The timing of the game is as follows. In the first stage, the private and public firms simultaneously commit to choosing strategic variable, i.e., either price or quantity (which determines the type of contract), to set in the mixed duopoly. In the second stage, each firm chooses its quantity or price simultaneously, in order to maximize its objective knowledge of the strategic variable of the public and private firms. As in Singh and Vives (1984), we adopt the same assumption, i.e., that there are prohibitively high costs associated with changing the type of contract in the first stage.

3 Market Equilibrium under a Mixed Duopoly

3.1 Results: Fixed Contract Motives with Solutions for Substitutes

Before the type of contract is applied to the model to identify the point of equilibrium, we explain four different cases of contract games. In Bertrand competition, firms set prices, whereas in Cournot competition, firms set quantities. In mixed cases, either firm 0 sets the price and firm 1 sets the quantity or, vice versa. Such a game is solved by backward induction (i.e., the solution concept used is the subgame perfect Nash equilibrium (SPNE)).

3.1.1. [Cournot Competition Game]: Assume that firm \(i (i = 0, 1) \) faces the demand functions given by \(p_i = 1 - cx_j - x_i \). In the second stage, the public firm’s objective is to maximize the social welfare, which is defined as the sum of consumer surplus, and all firm’s profit

\[
SW = x_0 + x_1 - \frac{(x_0^2 + x_1^2)}{2} - cx_1 x_0 - \theta x_0.
\]

(3)

The best reply functions of the public and private firms are given by

\[
\frac{\partial SW}{\partial x_0} = 1 - cx_1 - \theta - x_0 = 0, \quad \frac{\partial \pi_1}{\partial x_1} = 1 - cx_0 - 2x_1 = 0,
\]

(4)

respectively. Solving the first-order conditions in Eq. (4), we obtain following Lemma 1.

\footnote{One drawback of the present model is that it does not explain the difference in efficiency between the private and the public firms, however, it assumes the public firm’s inefficiency exogenously. See De Fraja (2009, pp. 5-6) for discussion of the public firm’s inefficiency.}
Lemma 1: Suppose that the goods are substitutes. Then, the equilibrium values under Cournot competition, denoted as x_{cc}^0, x_{cc}^1, p_{cc}^0, and p_{cc}^1 and SW$_{cc}$ are given by

$$
\begin{align*}
x_{cc}^0 &= \frac{2 - c - 2\theta}{2 - c^2}, \quad x_{cc}^1 = \frac{1 - c + c\theta}{2 - c^2}, \quad p_{cc}^0 = \theta, \quad p_{cc}^1 = \frac{1 - c + c\theta}{2 - c^2}, \\
\pi_{cc}^0 &= \frac{(1 - c + c\theta)^2}{(2 - c^2)^2}, \quad \text{SW}_{cc} = \frac{7 - 6c - 2c^2 + 2c^3 - \theta(8 - 6c - 2c^2 + 2c^3) + \theta^2(4 - c^2)}{2(2 - c^2)^2}.
\end{align*}
$$

3.1.2. [Bertrand Competition Game]: Consider that firm i faces the direct demand as in Eq. (2). In the second stage, by maximizing social welfare (respectively, profit) each firm sets its price as a best response to any price chosen by its private firm (respectively, the public firm). The public firm’s and private firm’s objectives are given by

$$
\begin{align*}
\max_{p_0} \text{SW} &= \frac{2(1-c^2)[1-c+cp_1-p_0 + 1-c+cp_0-p_1 - \theta(1-c+cp_1-p_0)]}{2(1-c^2)^2} \\
&\quad - \frac{(1-c+cp_1-p_0)^2 + (1-c+cp_0-p_1)^2 + 2c(1-c+cp_0-p_1)(1-c+cp_1-p_0)}{2(1-c^2)^2}, \\
\max_{p_1} \pi_1 &= \frac{p_1(1-c+cp_0-p_1)}{1-c^2}.
\end{align*}
$$

Similarly, repeating the same process as in the previous case yields the first-order conditions of the public and private firms with respect to p_0 and p_1

$$
\frac{\partial \text{SW}}{\partial p_0} = \theta + cp_1 - p_0 = 0, \quad \frac{\partial \pi_1}{\partial p_1} = 1 - c + cp_0 - 2p_1 = 0,
$$

respectively. Straightforward computation yields Lemma 2.

Lemma 2: Suppose that the goods are substitutes. Then, the equilibrium values under Bertrand competition, denoted as x_{bb}^0, x_{bb}^1, p_{bb}^0, and p_{bb}^1 and SW$_{bb}$ are given by

$$
\begin{align*}
x_{bb}^0 &= \frac{1 - c + c\theta}{(1-c^2)(2 - c^2)}, \quad x_{bb}^1 = \frac{1 - c - \theta}{1 - c^2}, \quad p_{bb}^0 = \frac{1 - c + c\theta}{2 - c^2}, \quad p_{bb}^1 = \frac{c(1-c) + 2\theta}{2 - c^2}, \\
\pi_{bb}^0 &= \frac{(1 - c + c\theta)^2}{(1-c^2)(2 - c^2)^2}, \quad \text{SW}_{bb} = \frac{7 - 6c - 15c^2 + 12c^3 + 11c^4 - 8c^5 - 3e^6 + 2c^7 - \theta\Omega + \theta^2\Psi}{2(1-c^2)^2(2 - c^2)^2},
\end{align*}
$$

where $\Omega = 8 - 6c - 18c^2 + 16c^3 + 14c^4 - 8c^5 - 4c^6 + 2c^7$ and $\Psi = 4 - 9c^2 + 4c^4 - 2c^6$.

3.1.3. [Firm 0 Sets Price, Firm 1 Sets Quantity (Price-Quantity)]: Let firm 0 optimally choose its price as a best response to any quantity chosen by private firm 1, and let private firm 1 optimally choose its quantity as a best response to any price chosen by public firm 0. Each demand function that each firm i faces is given by

$$
\begin{align*}
x_0 &= 1 - cx_1 - p_0 \quad \text{and} \quad p_1 = 1 - c + cp_0 - (1-c^2)x_1,
\end{align*}
$$

respectively. In the second stage, by maximizing social welfare (respectively, profit) each firm sets its price as a best response to any price chosen by its private firm (respectively, the public firm). The public firm’s objective, as in the previous case, is given as follows:

$$
\max_{p_0} \text{SW} = 1 - cx_1 - p_0 + x_1 - \frac{1}{2}[(1-cx_1-p_0)^2 + x_1^2] - cx_1(1-cx_1-p_0) - \theta(1-cx_1-p_0).
$$
respectively. Similarly, repeating the same process as in previous cases yields the first-order conditions of the public and private firms with respect to \(p_0 \) and \(x_1 \)

\[
\frac{\partial SW}{\partial p_0} = \theta - p_0 = 0, \quad \frac{\partial \pi_1}{\partial x_1} = 1 - c + cp_0 - 2(1 - c^2)x_1 = 0. \tag{6}
\]

Substituting the pair \((x_1, p_0)\) into the pair \((x_0, p_1)\) yields Lemma 3.

Lemma 3: Suppose that the goods are are substitutes. Then, the equilibrium values under the price-quantity, denoted as \(\pi_1^{bc}, p_1^{bc}, x_1^{bc} \), and \(SW^{bc} \) are given by

\[
x_1^{bc} = \frac{1 - c + c\theta}{2(1 - c^2)}, \quad x_0^{bc} = \frac{2 - c - c^2 - \theta(2 - c^2)}{2(1 - c^2)}, \quad p_1^{bc} = \frac{1 - c + c\theta}{2}, \quad p_0^{bc} = \theta, \quad \pi_1^{bc} = \frac{(1 - c + c\theta)^2}{4(1 - c^2)}, \quad SW^{bc} = \frac{7 - 6c - 8c^2 + 6c^3 + c^4 - \theta(8 - 6c - 10c^2 + 6c^3 + 2c^4) + \theta^2(4 - 5c^2 + c^4)}{8(1 - c^2)^2}.
\]

3.1.4. [Firm 0 Sets Quantity, Firm 1 Sets Price (Quantity-Price)]: Let firm 1 optimally choose its price as a best response to any quantity chosen by public firm 0, and let public firm 0 optimally choose its quantity as a best response to any price chosen by private firm 1. Each demand function that each firm \(i \) faces is given by

\[
x_1 = 1 - cx_0 - p_1 \quad \text{and} \quad p_0 = 1 - c + cp_1 - (1 - c^2)x_0,
\]

respectively. Thus, the public firm’s objective is given as in the previous case as follows:

\[
\max_{x_0} SW = 1 - cx_0 - p_1 + x_0 - \frac{(1 - cx_0 - p_1)^2 + x_0^2 + 2cx_0(1 - cx_0 - p_1)}{2} - \theta x_0.
\]

Repeating the same process as in previous cases yields the first-order conditions with respect to \(x_0 \) and \(p_1 \):

\[
\frac{\partial SW}{\partial x_0} = 1 - \theta - c - x_0 + c^2x_0 = 0, \quad \frac{\partial \pi_1}{\partial p_1} = 1 - cx_0 - 2p_1 = 0. \tag{7}
\]

Similarly, substituting the pair \((x_0, p_1)\) into the pair \((x_1, p_0)\) yields Lemma 4.

Lemma 4: Suppose that the goods are substitutes. Then, the equilibrium values under the quantity-price competition, denoted as \(\pi_1^{cb}, p_1^{cb}, x_1^{cb} \), and \(SW^{cb} \) are given by

\[
p_1^{cb} = \frac{1 - c + c\theta}{2(1 - c^2)}, \quad x_0^{cb} = \frac{1 - c - \theta}{1 - c^2}, \quad p_0^{cb} = \frac{c - c^2 + 2\theta}{2(1 - c^2)}, \quad x_1^{cb} = \frac{1 - c + c\theta}{2(1 - c^2)}, \quad \pi_1^{cb} = \frac{(1 - c + c\theta)^2}{4(1 - c^2)^2}, \quad SW^{cb} = \frac{7 - 6c - 9c^2 + 8c^3 - \theta(8 - 6c - 10c^2 + 6c^3 + 2c^4) + \theta^2(4 - 5c^2 + c^4)}{8(1 - c^2)^2}.
\]

4 The Choice of Contract under a Mixed Duopoly

Once the equilibria for the four fixed types of contract and social-welfare levels have been derived as discussed in the preceding section, the type of contract can be determined endogenously by calculating each social-welfare level and private firm’s profit. Therefore, we consider the cases of substitutes and complements at the same time.
To employ the two-stage game, let “C” and “B” represent, respectively, Cournot and Bertrand competition with regard to each firm’s choice. In this section, the SPNE will be found in the first stage for any given pair of competition types. Recall that we consider positive values of \(c \) are associated with substitutes and negative values with complements in the mixed market. Thus, the payoff matrix for the contract game can be represented as shown Table 1.

Table 1: Contract Game

<table>
<thead>
<tr>
<th>Firm 0</th>
<th>Firm 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(SW^{cc}, \pi_1^{cc})</td>
</tr>
<tr>
<td>B</td>
<td>(SW^{bc}, \pi_1^{bc})</td>
</tr>
</tbody>
</table>

Comparing \(\pi_1^{cc} \) with \(\pi_1^{cb} \), and \(\pi_1^{bc} \) with \(\pi_1^{bb} \), we find that, regardless of the nature of goods,

\[
\pi_1^{cc} - \pi_1^{cb} = 3c^2 < 4, \quad \pi_1^{bc} - \pi_1^{bb} = c^2 < 4, \quad (8)
\]

respectively. This is because regardless of what type the public firm chooses under either substitutes or complements, the output and price are higher when the private firm chooses to play Bertrand competition than when it chooses to play Cournot competition.

On the other hand, comparing \(SW^{bb} \) with \(SW^{cb} \), we find

\[
SW^{bb} - SW^{cb} = 4c^2 - 8c^3 + c^4 + 6c^5 - 3c^6 - \theta(8c^3 + 8c^4 + 6c^5 - 6c^6) - \theta^2(8c^4 + 3c^6), \quad (9)
\]

when the goods are substitutes with \(c \in (0,1) \), and when the goods are complements with \(c \in (-1,0) \). By directly applying Eq. (9) to a discriminant, we have the roots, \(\theta \) for \(c \in (-1,0) \) and \(c \in (1,0) \) because it is a second-order polynomial of \(\theta \) and the maximum value is attained from \((8c^4 + 3c^6) > 0 \) regardless of the nature of goods. Thus, Table 2 provides two roots, one positive and the other negative.

Table 2: Roots for \(\theta \) with \(c \)

<table>
<thead>
<tr>
<th>(c)</th>
<th>(SW^{bb} - SW^{cb}) if (c \in (0,1))</th>
<th>(\theta_1)</th>
<th>(\theta^c)</th>
<th>(SW^{bc} - SW^{cc}) if (c \in (-1,0))</th>
<th>(\theta_2)</th>
<th>(\theta^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>-13.90593506</td>
<td>2.879783131</td>
<td>-4.436244115</td>
<td>13.48481199</td>
<td>2.677207319</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>-4.850474896</td>
<td>0.506258854</td>
<td>-1.905216584</td>
<td>4.44532138</td>
<td>2.677207319</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>-0.336602853</td>
<td>0.122317138</td>
<td>-1.246363589</td>
<td>6.69887E-06</td>
<td>2.677207319</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>-2.206878309</td>
<td>0.092235074</td>
<td>-0.815701244</td>
<td>9.31706674</td>
<td>6.69887E-06</td>
<td></td>
</tr>
<tr>
<td>0.99</td>
<td>-1.47530519</td>
<td>0.6091111364</td>
<td>-0.44555297</td>
<td>1.512480406</td>
<td>1.372916249</td>
<td></td>
</tr>
</tbody>
</table>

As a result, regardless of the nature of goods, if there can exist a critical value of \(\theta^k > \theta, k = c, s \) such that for all \(\theta > 0 \), we find the difference as \(SW^{bb} > SW^{cb} \), and vice versa.

Moreover, comparing \(SW^{cc} \) with \(SW^{bc} \) yields

\[
SW^{cc} - SW^{bc} = -4c^2 + 8c^3 + c^4 - 10c^5 + 4c^6 + 2c^7 - c^8 - \theta(8c^3 - 8c^4 - 10c^5 + 10c^6 + 2c^7 - 2c^8) - \theta^2(4c^4 - 5c^6 + c^8), \quad (10)
\]

when the goods are substitutes with \(c \in (0,1) \), and when the goods are complements with \(c \in (-1,0) \). Similarly, by directly applying Eq. (10) to a discriminant, we have the two same roots, \(\theta \) for \(c \in (-1,0) \) and \(c \in (1,0) \) and the maximum value is attained from \((4c^4 - 5c^6 + c^8) > 0 \) regardless of the nature of goods. Thus, Table 3 provides two roots, two same positive roots when the goods are complement, and the two same negative roots when the goods are substitutes as follows:
Table 3: Roots for θ with c

<table>
<thead>
<tr>
<th>c</th>
<th>θ_3</th>
<th>θ_4</th>
<th>θ_5</th>
<th>θ_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>-0.9</td>
<td>-9</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>0.3</td>
<td>-2.333333333</td>
<td>-2.333333333</td>
<td>4.333333333</td>
<td>4.333333333</td>
</tr>
<tr>
<td>0.5</td>
<td>-1</td>
<td>-1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0.7</td>
<td>-0.428571429</td>
<td>-0.428571429</td>
<td>2.428571429</td>
<td>2.428571429</td>
</tr>
<tr>
<td>0.9</td>
<td>-0.111111111</td>
<td>-0.111111111</td>
<td>2.111111111</td>
<td>2.111111111</td>
</tr>
<tr>
<td>0.99</td>
<td>-0.01010101</td>
<td>-0.01010101</td>
<td>2.010100835</td>
<td>2.010100835</td>
</tr>
</tbody>
</table>

Hence, regardless of the nature of goods, we always obtain that $SW^{cc} < SW^{bc}$ since same one real root exists when comparing SW^{cc} with SW^{bc}. Having derived the comparison each social welfare for each critical value of θ, we can find the Nash equilibrium in the contract stage for any given set of private firm’s profit and the level of social welfare in the mixed duopoly.

Clearly, there can be sustained a unique SPNE in the contract stage depending on the degree of the inefficiency of the public firm: (B, B) or (C, B). Hence, choosing Bertrand (respectively, quantity-price) competition is the best for public and private firms if $\theta < \theta^k$ (respectively, $\theta > \theta^k$). As in Table 1, for the private firm, choosing Cournot competition is strictly dominated by choosing Bertrand competition, so the private firm never chooses Cournot competition. A unique SPNE of the two-stage game in a mixed duopoly is found and this can be stated in the following proposition:

Proposition 1: Regardless of the nature of goods, the private firm always chooses a Bertrand type of contract and the public firm chooses either a Bertrand or a Cournot type of contract depending on the value of θ in the first stage.

By restricting attention to the SPNE of the two-stage game, one significant result can be derived from Proposition 1: Both public and private firms choose a type of contract that does not depend on the value of c in the equilibrium. Sustaining of a unique SPNE from both the private firm’s dominant strategy and the degree of public firm’s inefficiency thus plays an important role in the derivation of the result, as explained below.

Given the private firm’s strategy (i.e., profit maximization), and once its decision variable has been set, the choice of the public firm only depends on its degree of inefficiency. In other words, although the public firm under quantity-price competition sets a higher price than it would under Bertrand competition (i.e., $p^b_0 > p^b_0$ and $x^b_0 = x^b_0$), total output is higher under quantity-price competition than it would be under Bertrand competition if the degree of inefficiency of the public firm is sufficiently large, and vice versa (i.e., $X^c = x^c_1 + x^c_0 > x^b_1 + x^b_0 \iff \theta > (12 + 5c^2)/(4 - c^2))$. This effect means that each level of social welfare is comparable.

In our framework of a mixed duopoly, if the degree of the public firm’s inefficiency is sufficiently small, there exists a dominant strategy for both public and private firms that choose Bertrand competition, regardless of the nature of goods. However, if the degree of the public
firm’s inefficiency is sufficiently large, there is no dominant strategy for the public firm. By contrast, in the study by Singh and Vives (1984) under a purely private duopoly, a dominant strategy exists for both firms that choose Cournot (or Bertrand) competition if the goods are substitutes (or complements). Contrary to finding of Singh and Vives (1984), we show that social welfare is higher under Bertrand than it is under quantity-price competition if the degree of inefficiency is sufficiently small, and vice versa.

Ghosh and Mitra (2010) compared Cournot and Bertrand competition in a mixed oligopoly without an endogenous type of contract when the public firm is equally efficient as a private firm. They demonstrated that despite the ambiguity in price ordering between Bertrand and Cournot competition for private firms, a comparison of quantities and profits yields unambiguous results. In other words, the public firm’s output is higher under Cournot competition, whereas the private firm’s output is lower in the same circumstances. In addition, the profits of both firms are lower under Cournot competition than they are under Bertrand competition. It should be noted that Ghosh and Mitra (2010) focused on the case of substitutes, however. The present study shows that the total output and social welfare under either Bertrand competition or quantity-price competition can be higher depending on the degree of inefficiency of the public firm; because choosing a Bertrand type of contract for private firm is preferable irrespective of the nature of goods. Moreover, when the public firm is less efficient than the private firms, the present study differs from previous studies of (unionized) mixed oligopolies, in which the private and public firms can choose to strategically set prices or quantities.

With the equilibrium levels, we are ready to assess the impacts on social welfare. By comparing the profits obtained under either Bertrand or quantity-price equilibrium in a mixed duopoly, the following proposition can be stated:

Proposition 2: In the equilibrium, regardless of the nature of goods, the private firm’s profit under quantity-price competition is always higher than that under Bertrand competition.

Proposition 2 states that the comparison of a private firm’s profit holds irrespective of the nature of goods. This is because regardless of the nature of goods, output and price are smaller under a Bertrand contract than under either a price or a quantity contract (i.e., $p_1^{cb} > p_1^{bb}$ and $x_1^{cb} > x_1^{bb}$). In this case, the ranking of a private firm’s profit is not reversed (i.e., $\pi_1^{cb} > \pi_1^{bb}$), which contrasts with the findings of Singh and Vives (1984).

Next, when the public firm is equally efficient as the private firm, we can easily obtain $SW^{bc} > SW^{cc}$ and $SW^{bb} > SW^{cb}$ regardless of the nature of goods. The following corollary can thus be stated:

Corollary 1: Suppose the public firm is equally efficient as the private firm. In equilibrium, regardless of the nature of goods, there can be sustained a SPNE in the contract stage of the game: (B,B).

Corollary 1 suggests that regardless of nature of goods, choosing the Bertrand contract is the best for each firm i, when the competitor’s choice of contract is either the price or the quantity contract. This is because there exists a dominant strategy for both public and private firms that choose Bertrand competition, and $X^{bb} > X^{cb}$ and $X^{bc} = x^{bc}_1 + x^{bc}_0 > X^{cc} = x^{cc}_1 + x^{cc}_0$ for the public firm when $\theta = 0$. Thus, in our framework of a mixed duopoly, there can be sustained a unique SPNE of Bertrand competition in the contract stage of the game when the public firm is equally efficient as the private firm. Corollary 1 differs from Choi (2009), which there can

\[SW^{cc} < SW^{bc} \iff -4c^2 + 8c^3 + c^4 - 10c^5 + 4c^6 + 2c^7 - c^8 < 0 \text{ and } SW^{bb} > SW^{cb} \iff 4c^2 - 8c^3 + c^4 + 6c^5 - 3c^6 > 0 \text{ when } \theta = 0.\]
be sustained multiple SPNEs (i.e., (C,B) and (B,B) as in the present paper) in contract stage under unionized mixed duopoly if the public firm is equally efficient as the private firm.

5 Concluding Remarks

In the present study, we investigated a differentiated mixed duopoly in which private and public firms can choose to strategically set prices or quantities when the public firm is less efficient than the private firm. A choice of strategic variables was proposed endogenously in the first stage. For the case of a mixed duopoly, regardless of whether goods are substitutes or complements, if the degree of public firm’s inefficiency is sufficiently small, there exists a dominant strategy for both public and private firms that choose Bertrand competition, while there exists a dominant strategy only for the private firm that chooses Bertrand competition if the degree of inefficiency is sufficiently large. This effect leads the private firm to use the strategic commitment of Bertrand competition if the degree of public firm’s inefficiency is sufficiently large. Moreover, there can be sustained a unique SPNE in the contract stage of the game depending on the degree of public firm’s inefficiency. This result contrasts with the findings of Singh and Vives (1984), who found that the dominant strategy for each private firm in a purely private duopoly is to choose either a quantity or a price contract. Hence, our main results hold irrespective of the nature of goods; furthermore, the ranking of the private firm’s profit is not reversed.

We conclude by discussing the limitations of the present study. For example, it may be important to extend Singh and Vives’s (1984) framework by assuming no ex-ante commitment over the type of contract that each firm offers to consumers. We have not extended the model to consider a situation in which there exists a wider range of cost and demand asymmetries, which have already been investigated by previous studies of a purely private duopoly. Moreover, we did not extend our results by considering nonlinear demand structures. An extension of our model in these directions would offer an avenue for future research.

References

