MPRA

Munich Personal RePEc Archive

N-Person cake-cutting: there may be no
perfect division

Brams, Steven J. and Jones, Michael A. and Klamler,
Christian

New York University

22 October 2011

Online at https://mpra.ub.uni-muenchen.de/34264/
MPRA Paper No. 34264, posted 22 Oct 2011 15:50 UTC



N-Person Cake-Cutting: There May Be No Perfect
Division
Steven J. Brams* Michael A. Jones' Christian Klamler?

October 13, 2011

Abstract

A cake is a metaphor for a heterogeneous, divisible good, such as land. A perfect
division of cake is efficient (also called Pareto-optimal), envy-free, and equitable. We
give an example of a cake in which it is impossible to divide it among three players
such that these three properties are satisfied, however many cuts are made. It turns
out that two of the three properties can be satisfied by a 3-cut and a 4-cut division,
which raises the question of whether the 3-cut division, which is not efficient, or the
4-cut division, which is not envy-free, is more desirable (a 2-cut division can at best
satisfy either envy-freeness or equitability but not both). We prove that no perfect
division exists for an extension of the example for three or more players.

1 Introduction

Over the past fifteen years, a substantial literature on cake-cutting has sprung up. Books
giving overviews of both existence results and algorithms for physically cutting a cake include
Brams and Taylor [11], Robertson and Webb [17], Barbanel [1], and Brams [7]. Review
articles of fair division that discuss cake-cutting include Brams [6] and Klamler [16].

Recent algorithms, involving both discrete and continuous (moving-knife) procedures, are
analyzed in Barbanel and Brams [2, 4], Brams, Jones, and Klamler [8, 10], Caragiannis, Lai,
and Procaccia [12], and Cohler et al. [13]. There is also a growing literature on pie-cutting
(Brams, Jones, and Klamler [9]; Barbanel, Brams, and Stromquist [5]; Barbanel and Brams
[3]), in which radial cuts are made from the center of a pie rather than parallel cuts being
made along the edge of a cake.

A key question that is not addressed in any of this literature is whether there always
exists a perfect division of a cake (or pie)—one that satisfies the following three properties,
which capture important features of fair division:
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1. Efficiency (Pareto-optimality): There is no other division that gives players portions
that they value at least as much and gives at least one player strictly more.

2. Envy-freeness: Fach player values its portion at least as much as that of every other
player and, consequently, does not envy any other player.

3. Equitability: Each player values its portion exactly the same as everybody else values
its portion—that is, each player thinks that its portion is the same fraction of its
perceived value of the entire cake.

It turns out, surprisingly, that there may be no perfect division, which we demonstrate with
an extended example after introducing some notation and definitions.

2 Terminology and an Overview

If there are only two players and a cake must be divided with one cut, then there is a perfect
division (Jones [15]), but it may be efficient only with respect to one cut, which we call
1-efficient. More than one cut may enable both players to receive more than what one cut
gives each player. More generally, a division is k-efficient if it is efficient with respect to
k cuts. A division that is efficient—independent of the number of cuts—is o-efficient (for
overall efficiency). Henceforth, o-efficiency is what we mean by “efficiency” in the definition
of a perfect division.

To illustrate o-efficiency, consider a rectangular cake, which is chocolate at its two ends—
that, together, constitute half the length of the cake—and vanilla around its middle (the
other half in length). Assume that player A likes chocolate twice as much as vanilla, and
player B has exactly the opposite preference. Then an o-efficient division would be to give
A the two chocolate parts, which require two cuts, and B the vanilla part. This allocation is
equitable—giving each player % of the cake as each values it—which is also envy-free because
neither player would prefer to receive the other player’s piece.

By contrast, using one cut to divide this cake at the center into two identical halves—
and giving one of the halves to each player—is envy-free and equitable. However, it is not
o-efficient, because each player receives more (% instead of %) when the aforementioned two
cuts are made. Barbanel and Brams [4] give a 2-player algorithm for finding an envy-free
and equitable allocation that is o-efficient, which specifies (i) how many cuts are required
and (ii) where they must be made to produce a perfect division of a cake.

Other algorithms, one approximate and the other exact, produce a perfect 2-player divi-
sion of a pie into two wedge-shaped pieces using two cuts (Barbanel and Brams [3]). However,
there may be a division using more than two cuts that Pareto-dominates—is at least as good
for one player and better for the other player—the 2-efficient division, but no algorithm is
known for producing such an o-efficient division of a pie. (We show later, however, that our
results for a cake also apply to a pie.)

We focus in this paper on n-person cake-cutting. In section 3, we state the measure-
theoretic assumptions we make about a cake as a mathematical object when valued along
a line segment. We also give a 3-player example from an earlier paper (Brams, Jones, and
Klamler [8]) that demonstrates, using two cuts, that there is no equitable division that is
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also envy-free, ruling out a perfect division of a cake that uses a minimal number of cuts
(n — 1 if there are n players).

In section 4 we show that increasing the number of cuts beyond two can produce an
equitable division in our example that is also o-efficient, but it is not envy-free. Likewise,
there is an equitable division that is envy-free, but it is not o-efficient. We summarize in
a table our results about this example, pointing out that an o-efficient, equitable division
(with 4 cuts) is not envy-free; an envy-free, equitable division (with 3 cuts) is not o-efficient;
and an equitable division (with 2 cuts) is neither o-efficient nor envy-free. Furthermore, 5
or more cuts do not satisfy all three properties.

In short, two of our three properties of a perfect division are satisfied, but all three
are unattainable in our example, even when there is no restriction on the number of cuts.
Surprisingly, the division that maximizes the sum of player valuations, which we call the
mazxsum division, uses a minimal number of cuts (two) and, while 2-efficient, is neither
envy-free nor equitable. We then prove our main result: There is a cake (the 3-player
example) in which there is no perfect division, however many cuts are made. We show this
is true not just for three players but for any number.

This impossibility result complements an earlier finding for pies, which demonstrated
that no envy-free division may be efficient (Barbanel, Brams, and Stromquist [5]), much less
equitable. However, this was proved only when a minimal number of cuts was allowed (n if
there are n players).

In section 5, we mention some examples in which it would be useful to find o-efficient,
equitable divisions, even if they are not perfect. We conclude by posing three open questions.

3 Assumptions about Cake-Cutting and Our Original
Example

A cake is a heterogeneous good, which the players may value different parts of differently.
While the cake may be a swirl of flavors and toppings, we assume that each player can
attach a value to it at every point along an edge. (Physically, the cake may be thought of as
a rectangle, valued along an edge, but it could be any shape and valued along any straight
line that passes through it.)

Formally, we make the following assumptions about a cake and the players’ valuations of
it:

1. The cake is defined by the [0, 1]-interval, and a division of the cake is a partition in
which players receive disjoint subsets and the union of these subsets is the whole cake.

2. Each player i has a probability density function (pdf), called a value function, v; :
0,1] — Rt U {0} with fol v;(t)dt = 1, for which player i’s value of the piece [a, b] is
given by fab v;(t)dt.

3. Let W be the collection of all subsets of [0, 1]. Player i’s preferences for pieces of cake
are represented by the probability measure p; : W — [0,1], where p1;(S) = [ v;(t)dt.
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Because the value functions are pdfs, their probability measures ; satisfy (a) and (b) below;
in addition, we assume (c) to ensure that all players ¢ attach positive value to all portions
of the cake:

(a) p; is countably additive, i.e., if T}, Ty, ... is a countable collection of pairwise disjoint
elements of W, then (72, Tj) = 272, wa(Ty);

(b) p; is nonatomic, i.e., for any S, € W, if u(Sk) > 0, then for some S; C Sy, it follows
that S; € W and p;(Sk) > 1:(S;) > 0; and

(c) 4 is mutually absolutely continuous, i.e., if for any S, € W and for some j, 11;(Sk) = 0,
then p;(Sk) = 0 for all 3.

Hence, p; assigns a value to player ¢’s share of the cake according to the total area under ¢’s
pdf v; for all the different pieces assigned to player i (a). In addition, nonatomicity (b) says
that any single point has no value, and mutual absolute continuity (assumption c¢) states
that if a portion of a cake is of zero value to one player, it is of zero value to all players.
The three properties that determine a perfect division can now formally be defined. Let
N ={1,2,...,n} be the set of players and S = (51, ..., S,,) be a partition of [0, 1]. Then S is

o envy-free if and only if for all 4, j € N, 1;(S;) > 1:(S;);
o cquitable if and only if for all i, j € N, 1;(S;) = p;(5;); and

e cfficient if and only if there is no partition S’ # S such that for all i € N, p;(S}) >
pi(S;) and g (S%) > p1;(S;) for some j € N.

We do not count as cuts those that subdivide a player’s portion into adjacent subpieces.
For example, if we use two cuts to divide a cake between two players, and give one player
two adjacent pieces, we consider this a 1-cut division, because it is equivalent to dividing the
cake with just one cut. On the other hand, if we give one player the two (disjoint) endpieces,
and the other player the middle piece, this is a 2-cut division.

To show that it is not always possible to divide a cake among three players into envy-free
and equitable portions using two cuts, assume that two players, A and B, have piecewise
linear value functions that are symmetric and V-shaped (Brams, Jones, and Klamler [8];
this example was later used for a different purpose in Brams, Jones, and Klamler [10]). The
value functions are:

oa(®) = {—4t+2 fort€(0,1/2) oalt) = {—2t+3/2 for t €[0.1/2]
4t — 2 for t € (1/2,1] 2t —1/2 for t € (1/2,1]

Whereas both value functions have maxima at t = 0 and ¢ = 1 and a minimum at ¢t = %,
A’s function is steeper (higher maximum, lower minimum) than B’s, as illustrated in Figure
1, giving it a greater amplitude. In addition, suppose that a third player, C, has a uniform
value function, ve(t) = 1, for ¢ € [0, 1].

In this example, every envy-free allocation of the cake will be one in which A gets the
portion to the left of x, B the portion to the right of 1 —z (A and B could be interchanged),
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Figure 1: A 2-cut envy-free solution (left) cannot be equitable. A 2-cut equitable solution
(right) cannot be envy-free.

T

and C the portion in the middle (we will later give the bounds on z that ensure envy-
freeness); see Figure 1 (left). If the horizontal lengths of A’s and B’s portions are not the
same (i.e., x), the player whose portion is shorter in length will envy the player whose portion
is longer.

Unfortunately, no such envy-free allocation is equitable, because if A and B receive equal-
length endpieces—ensuring that each values each piece equally, which precludes envy—A will
receive a larger portion in its eyes than B receives in its eyes, precluding equitability. Thus,
such a 2-cut envy-free allocation is not equitable in this example, nor is a 2-cut equitable
allocation envy-free, though both these allocations are 2-efficient.!

It is instructive in this example to calculate the equitable division in which A gets the left
piece defined by the interval [0, x], C' gets the middle piece defined by the interval (x,y|—
where y < 1 — x—and B gets the right piece defined by the interval (y, 1], as in Figure 1
(right). The players’ values will be equal-—and, therefore, the allocation to the three players
will be equitable—when the areas (i.e., cake portions) of A, B, and C' over their respective

intervals are equal:
T Y 1 1
/(—4t+2)dt:/ dt:/ 2t — Lyar.
0 T Y 2

After integration and evaluation of the integrals, we have two quadratic equations in two
unknowns,

222+ 32—y =0
20 +2y +y—1=0,

whose four solutions include one feasible solution: = ~ 0.269 and y ~ 0.662. Players A, B,
and C' each value their pieces at 0.393, so each thinks it receives nearly 40 percent of the
value of the cake. This equitable allocation is 2-efficient, but, as we will show later, it is not
o-efficient.

!Not all equitable divisions need be 2-efficient. If C' were given an endpiece, and A or B the middle piece
and the other endpiece in our example, cutpoints can be found such that all the players receive, in their
own eyes, the same value. However, this value will be less than the 2-efficient, equitable value we calculate
next in the text. By contrast, an envy-free allocation that uses n — 1 cuts if there are n players is always
(n — 1)-efficient (Gale [14]; Brams and Taylor [11], pp. 150-151).
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4 More Cuts Do Not Give Perfection

What if we allow more cuts? We next show that doing so does not lead to a perfect division.

Three Cuts
There are two ways of effecting an equitable division such that A receives the two end-
pieces that it values most:

1. Make muddle cutpoint at % With three cuts, we can give two narrow pieces near the
endpoints to A and split the middle portion of the cake at % between B and C' so that
the three players value each of the pieces they receive exactly the same:

A B C A

| A,
[5 1
y

e

|

vl —

To ensure equitability, B’s piece must be greater in length than C’s piece—and A’s
right piece greater in length than A’s left piece—which means that C' will envy B.

Assume the left cutpoint is x and the right cutpoint is y, with the middle cutpoint %
The players’ values will be equal—and, therefore, the allocation to the three players
will be equitable—when

T 1 1 y
/ (—4t+2)dt+/ (4t—2)dt:/2 (—2t—|—g)dt:/ dt.
0 Y x %

After integration and evaluation of the integrals, we have

62 —Te+4y> —4y+1=0
222 — 3z — 2y +2=0,

whose four solutions include one feasible solution: = ~ 0.088 and y ~ 0.876. Players
A, B, and C each value their allocations at 0.376, which is less than the 0.393 that the
earlier 2-efficient allocation gives each player.

2. Make middle cutpoint at x < % All three players can do better with a different
equitable 3-cut division than the equitable division given in (1) above. Moreover, this
alternative equitable division eliminates envy by placing the middle cutpoint to the
left of % and giving B a piece no greater in length than C’s piece. In fact, assume that
B’s and (s pieces are the same distance, d, from z—and so the same length; hence,

C will not envy B (nor will B envy C, because C’s piece overlaps %)
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|

Thus, the left cutpoint will be x — d, the middle cutpoint will be z, and the right
cutpoint will be x +d. The players’ values will be equal—and, therefore, the allocation
to the three players will be equitable—when

T—d 1 x 3 z+d
/ (—4t + 2)dt + / (4t — 2)dt = / (=2t + =)dt = / dt.
0 z+d z—d 2 z

After integration and evaluation of the integrals, we have

| B C | A

1

T —d

e

N|—= ——
[
— @

T +d

822 — 8r + 10d*> + 3d — 4xd = 0
2d? +d — 4xd = 0,

whose four solutions include one feasible solution: z ~ 0.444 and d ~ 0.387.

This makes the left cutpoint x —d ~ 0.056, the middle cupoint x ~ 0.444, and the right
cutpoint = + d =~ 0.831. Players A, B, and C each value their pieces at 0.387, which
is also how much A values B’s piece—so A does not envy B, rendering the equitable
allocation envy-free.? But 0.387 is less than the equitable (but not envy-free) allocation
of 0.393 we found for the 2-efficient allocation. Therefore, this 3-cut allocation is not
o-efficient.

In fact, this 3-cut allocation is not 3-efficient. Recall that the 2-efficient, equitable
allocation gives each player 0.393. By using a third cut to remove a small portion from
A’s piece and giving it to B, or a small portion from B’s piece and giving it to A, the
recipient of these pieces will obtain more than 0.393 while the donor will retain less.
As long as the donor retains at least 0.387, this 3-cut allocation will Pareto-dominate
the 3-player, equitable allocation (with middle cut at z < %), which is why the latter
allocation is not 3-efficient, though it is efficient among 3-cut, equitable allocations.

Four Cuts

With four cuts, we can give each of the three players pieces on both sides of %, which
for A and B will be disconnected, but for C' will be connected as one piece at % Assume
the two cutpoints to the left of % are x and y, and the two to the right are 7 = 1 — 2 and
7 =1—y, and that we give A and B two pieces each (C’s portion is shown as two adjacent
pieces around %, but it is a single connected piece because there is no cut at %)

2Intuitively, the reason that both A and B value the piece defined by [0.056,0.444] equally is that the
midpoint of this interval is 0.25, where the players’ pdfs intersect. A prefers the left half of this interval,
[0.056,0.25], by the same amount that B prefers the right half, [0.25,0.444]. The same is true for the less
preferred halves, so the full interval is of equal value to A and B.
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N

The players’ values will be equal-—and, therefore, the allocation to the three players will
be equitable—when z and y on the left half satisfy the following equations (Z and 7 on the
right half satisfy analogous equations):?

T y 3 %
/(—4t—|—2)dt:/ (—2t+—)dt:/ dt.
0 T 2 Y

After integration and evaluation of the integrals, we have

C C

N|—= ——
< F——
S e
— @

—622 +Tr+2y* -3y =0
22% — 3z — 2> + 5y — 1 =0,

whose four solutions include one feasible solution: = ~ 0.114 and y ~ 0.299, which gives A,
B, and C pieces they value at 0.201 to the left of % The cutpoints on the right, y ~ 0.701 and
T ~ (0.886, are symmetrical, enabling each player to obtain an equitable allocation of 0.403.
This allocation gives each player more than the 2-efficient, equitable allocation (0.393) and
the 3-cut equitable and envy-free allocation (0.387), making it the mazimin allocation—it
maximizes the minimum value a player receives.

However, this 4-efficient allocation is not envy-free. A, which obtains the two pieces
defined by the intervals [0, z] and [Z, 1], will envy B, which obtains the two pieces defined by
the intervals [z,y] and [7,T]. A values the sum of B’s two intervals as 0.435, which is more
than the 0.403 it receives from its portion of the equitable 4-cut allocation.

Maxsum

The solution that maximizes the sum of the values to the players is that which gives
pieces to those players who value them most. Note that the value functions of A, B, and C
in our example intersect at two points, x = }L and r = %. The part of the cake defined by the
interval [0, 1] and [2, 1] is most valued by A, and the part defined by [1, 3] is most valued by
C. The combined value to A of its two endpieces is %, whereas the value to C' of its middle
piece is %, so the total value that these two players attach to their pieces is % = 1.25, making
the allocation o-efficient.

But it is blatantly unfair to B, who receives nothing. If B, instead of A, were awarded
the right endpiece, the total value to the three players would be 1.1875, because A values
the interval defined by [0, 1] at 0.375, B values the interval defined by [3,1] at 0.3125, and
C values the interval defined by [}L, %] at 0.5. This division, which requires only two cuts, is
not envy-free (B envies C for what it thinks is a piece worth 0.375), equitable, or o-efficient,
so it fails to satisfy all three properties.

It is worth pointing out that there is no o-efficient division, even for two players, if their

value functions cross an infinite number of times (Barbanel and Brams [4]). The reason is

3If the allocations to the three players on the left and right halves were different, the division would not
be 4-efficient.
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that while adding another cut can always bring one closer to the maxsum allocation, it will
never be achieved—and so give o-efficiency—with a finite number of cuts.

Envy-Freeness

So far we have found that the 2-efficient and 4-efficient equitable allocations are not envy-
free, whereas one 3-cut equitable allocation is. However, the latter division is not o-efficient.
Thus, none of the equitable divisions, using 2, 3, or 4 cuts, is perfect, because they satisfy
at most two of the three properties of a perfect division (the 2-efficient equitable division is
neither envy-free nor o-efficient).

In general, there will be a plethora of envy-free divisions. For the example, every division
that gives player A a piece that begins at 0 and ends between x ~ 0.271 and = ~ 0.333, B
the same-length piece on the right, and C' the middle piece, is envy-free and o-efficient, but
it is not equitable and, hence, not perfect.

Before stating the theorem, we summarize in Table 1—for the cake defined in section 3
and illustrated in Figure 1—our previous findings for equitable divisions, which show the
impossibility of a perfect division of up to 4 cuts. Specifically, the 4-efficient, equitable
division is o-efficient, but it is not envy-free; one 3-cut, equitable division is envy-free, but
it is not o-efficient; the 2-efficient, equitable division is neither envy-free nor o-efficient.

2 cuts 3 cuts 4 cuts
Value to each player of equitable division | 0.393 | 0.376/0.387 | 0.403
Is equitable division envy-free? No Yes: 0.387 No
Is equitable division o-efficient? No No Yes

Table 1: Equitable allocations for the 3-player example illustrated in Figure 1.

The following theorem generalizes this impossibility result, proving that there is no perfect
division in our example for not just up to 4 cuts but for any number, and for any number of
players as well:

Theorem. There exists a cake for which there is no perfect division, however many players
(greater than two) there are and however many cuts are made.

Proof. We have already shown that there is no perfect division of our cake for three players,
making up to 4 cuts. Now, we introduce additional players to those considered in section 3
and illustrated in Figure 1. In particular, let players A and B have preferences defined as
before and players C; for i = 1 to n — 2 have value functions ve,(t) = 1 for ¢t € [0,1]. We
prove that there is no perfect division by showing that there exists an equitable, o-efficient
allocation that is not envy-free.

Like the 3-player, 4-cut allocation, the n-player example exploits symmetry, where player
A receives [0,z] U [1 — x, 1], player B receives [z,y] U [l —y,1 — ], and players C; through

(o divide the remaining cake [y, 1 — y| into n — 2 pieces of the same length =2 The

n—2
interval [y, 1 —y] is divided by cuts at y+ % for i = 1 to n—3. Denote such an allocation

by S = (Sa,58,5¢,,...,5¢, ,). In the figure, T =1—zandyg=1—1y.
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After integration and evaluation of the integrals, we have

1—2
Ay — 4g? = 7Y

n—2

1 -2y

2z =) +3(y —x) = .
(@7 =y) +3(y —2) = ——

Solving for y in terms of z and n in the first equation, and then eliminating y from the
second equation, yields a 4th degree polynomial in z. Of the four roots, one is x = 1, two
are complex, and the fourth determines the cutpoints z and y as decreasing functions of n
(naturally, as n increases both A and B receive less of the cake). Oddly, we don’t have to
explicitly calculate x and y to prove that the allocation is o-efficient and that A envies B.
To show that A envies B, we need to show that A values [z, y] more than [0, z]. However,
because A’s value of [0,z] is the same as B’s value of [z,y], A envies B if the difference
between A’s and B’s values of [x,y] is positive. On [0,1/2], va(t) — vp(t) = —2t + 1/2 and

— ) |3~ @)

— X

2

Y 1 x
/ —2t+§dt:—y2+y+x2——:(x—y)(x+y)+y

2 2 2

Because y > x, this expression is positive when 1/2 — (x +y) > 0. We see that this holds for
the 3-player, 4-cut example—in which the cutpoints are x ~ 0.114 and y ~ 0.299—so their
sum is less than 1/2. Because z and y are decreasing in n, the inequality 1/2 — (z +y) > 0
holds for all n > 3. Hence, for this equitable allocation, A envies B.

It remains to show that the allocation is o-efficient. S'is o-efficient if there does not exist
another division T' = (T4, T, T¢,,--.,Tc,_,) such that for all i € {A, B,Cy,...,Ch_2},
wi(Ti) > p;(S;); and for some j € {4, B,C4,...,Ch_a}, 1j(T;) > p;(S;). Denote the sum
of lengths of the intervals defining S; by L(S;). Assume that there exists a division T
that Pareto-dominates division S. Let S¢ = S¢, U S, U --- U S¢,, be the share of all
players C;. Define T similarly. A necessary condition for 7" to Pareto-dominate S is that
L(T¢) > L(Se).

In particular, suppose L(T¢) = L(S¢). If Te # Se (i-e., T is not a single piece centered
around t = %), then the value of the remaining cake to each of players A and B will be
less than its value if T is centered around ¢t = % Therefore, however the remaining cake is
allocated between A and B, they together benefit most when T¢ is a single piece centered

around t = %
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We next ask whether there is an allocation of the remaining cake to players A and B—
different from that given by S—such that one player (e.g., A) does at least as well, and the
other (B) does better, when T = Sc. We restrict attention to the case in which A and
B exchange portions of their S shares in the interval [0, %], holding C’s share fixed, which
comprises the shares of all the C}’s, constant in S and 7.

At all points ¢ € [0, 5], the value functions v4(t) and vp(t) are decreasing. Because the
ratio, Z—g, is also decreasing in t,

d VA —2
—(Z)=———=<0
dt (UB> (% — 2t)2 ’

va(t) is decreasing faster in ¢t than vg(t). Now S will differ from T4 by X = S NTp, and
Sp will differ from T by Y = SN Ta.

In effect, X is what A loses when the allocation changes from S to T' (because it goes to
B), and Y is what A gains (because it comes from B); the opposite is true for B. Because of
the decreasing value functions and the decreasing ratio of value functions, if 4 (Y) > pa(X),
then pp(X) < up(Y), so T does not Pareto-dominate S.

We need not assume that L(T¢) = L(S¢). If L(Te) > L(Se), players A and B will have
less cake to share. Hence, however they divide it, both cannot do at least as well as they
did under S, so again T" does not Pareto-dominate S. Although the foregoing result applies
only to the interval [0, 1], it can be extended to the interval [1,1] because of the symmetry
of the pdfs about t = % Also, by this symmetry, there are no Pareto-improving exchanges
of pieces between the left and right halves.

So far we have shown that swaps of pieces between players A and B cannot be Pareto-
improving over S if L(T¢) > L(S¢). But what if some player C; also swaps with players A
and B? By the reasoning given above for exchanges between players A and B, A and B will
value less per unit length the pieces they obtain from Cj, whereas C; will not value them
more because C;’s value function is constant. Thus, exchanges that involve any player C;
as well as players A and B will be Pareto-diminishing, rather than Pareto-improving, over
S. Hence, the allocation is o-efficient and equitable, but it fails to be envy-free. Therefore,
there is no perfect division in the n-player example, however many cuts are made. O

In the absence of a perfect division, one might ask what is the next-best solution. If envy-
freeness and equitability cannot both be satisfied, as in our 3-player example for 2 and 4
cuts, a possible criterion for deciding between them is the allocation that maximizes the total
value to the players—that is, the one that comes closest to being maxsum (algorithms given
in Cohler et al. [13] determine this for an envy-free allocation if the players have piecewise
constant or piecewise linear valuations of a cake).

In our 3-player example, we know from Table 1 that the 4-cut equitable allocation gives
the players a total value of 3(0.403) = 1.209. It is not hard to show that the envy-free allo-
cation that maximizes the players’ total value also uses 4 cuts. Like the equitable allocation,
it awards player A two disconnected endpieces, player B two disconnected pieces adjacent
to A’s, and player C' a middle piece.

To prevent A from being envious of B in the 4-cut equitable allocation, we must “adjust”
the cutpoints of the equitable allocation so as to maximize the total value to the players
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while precluding envy. This is a tedious but straightforward calculation, giving intervals
of [0,0.121) U (0.879,1] to A, [0.121,0.272) U [0.728,0.879] to B, and [0.272,0.728) to C.
Compared with the equitable allocation that gives 0.403 to each player, A receives slightly
more value (0.425), B substantially less (0.334), and C' the biggest boost (0.456).

These values sum to 1.216, which slightly edges out the equitable one (1.209) in total
value. It is not hard to show, however, that there are examples in which the equitable
allocation outperforms the envy-free one in maximizing total value, establishing that neither
envy-freeness nor equitability always wins in a contest for maximizing the total value if there
is no perfect division.

It is worth pointing out that our results are applicable to pie-cutting (Brams, Jones, and
Klamler [9]; Barbanel, Brams, and Stromquist [5]; Barbanel and Brams [3]), in which the
endpoints of a cake are connected to form a pie. If we do this in our 3-player example, then
a minimum of 3 radial cuts are needed to cut the pie into three pieces instead of the 2 cuts
that a cake requires (note that the endpoints of the cake constitute one cut).

For the 3-player example, the 4 cuts of our cake that yield an o-efficient, equitable
allocation, and the different 4 cuts that yield an o-efficient, envy-free allocation, do the
same for a pie. In the case of a pie, however, player A can receive a single connected piece,
because the endpoints 0 and 1 in the interval [0, 1] are identified—the two pieces that A
receives in the 4-cut division of a cake become one piece in the 4-cut division of a pie. Thus,
the impossibility of a perfect division of a cake applies as well to a pie.

5 Conclusions

In the fair division of indivisible goods, there are a number of impossibility results (Brams
[7]), so it is perhaps not surprising that there is not always a perfect division of a heteroge-
neous divisible good like cake. But the fact that more cuts do not necessarily increase the
equitable portions that players receive (in going from 2 to 3 cuts in our example), or may
preclude a property like envy-freeness (in going from 3 to 4 cuts), indicates that efficiency
and envy-freeness may not be enhanced, or even preserved, as the number of cuts increases.

It would be desirable to understand better (i) the conditions under which perfect divisions
are possible, and when they are not, and (ii) under what conditions different sets of properties
can be satisfied. In the fair division of a divisible good like land, players will often seek
connected pieces, for which algorithms that use a minimal number of cuts suffice (Barbanel
and Brams [2]). In other situations, however, in which one might seck different parts of
a divisible good (e.g., time slots in a day that fit into one’s schedule, different sections of
a beach that an investor wants to develop), disconnectedness is not a problem. In such
situations, algorithms that allow for additional cuts are appealing, especially if they produce
divisions closer to being perfect.*

But a perfect division may simply not be in the cards, however many cuts are made.

4Although our proof of the theorem established that the 4-efficient division is o-efficient for the 3-player
example, we know of no algorithm for determining when a k-efficient division is o-efficient if there are more
than two players (Barbanel and Brams [4] give an algorithm for two players). Furthermore, even determining
when an equitable division is k-efficient is not always straightforward, as we showed in calculating two 3-cut
equitable divisions for the 3-player example.
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In that case, one can select as the next-best solution the division—either envy-free or
equitable—that maximizes the total value of the players.
We conclude with three open questions:

1.
2.

What are necessary and sufficient conditions that make perfection possible?

More subjectively, when perfection is not possible, which of the three properties is
most dispensable?

. Whether perfection is possible or not, can an envy-causing division Pareto-dominate

all envy-free divisions, however many cuts are made?
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