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Abstract

In this paper a three-dimensional environmental defensive expendi-
tures model with delay is considered. The model is based on the inter-
actions among visitors V , quality of ecosystem goods E, and capital K,
intended as accommodation and entertainment facilities, in Protected Ar-
eas (PAs). The tourism user fees (TUFs) are used partly as a defensive
expenditure and partly to increase the capital stock. The stability and
existence of Hopf bifurcation are investigated. It is that stability switches
and Hopf bifurcation occurs when the delay t passes through a sequence
of critical values, τ0. It has been that the introduction of a delay is a
destabilizing process, in the sense that increasing the delay could cause
the bio-economics to fluctuate. Formulas about the stability of bifurcat-
ing periodic solution and the direction of Hopf bifurcation are exhibited
by applying the normal form theory and the center manifold theorem.
Numerical simulations are given to illustrate the results.

1 Introduction

The number of people visiting protected natural areas has increased consider-

ably over the last three decades; this trend is expected to continue. Research

suggests that tourists visiting natural areas are, at least in part, motivated by

a desire to experience some degree of solitude away from the crowds associated

with typical mass tourism attractions (see e.g. Eagles (2002)). As the demand

for nature-based tourism is growing, resource managers are facing the problem

of accommodating an ever increasing number of tourists while preserving the

very qualities of the natural site appreciated by tourists (and others). A num-

ber of relatively simple, market-based mechanisms commonly known as tourism
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user fees (TUFs) can gather significant revenues from tourism-based activi-

ties, which can then be directed toward supporting Protected Areas (PAs) and

other conservation efforts. The fees partially reflect the cost of supplying recre-

ational services, the demand for natural resources, and the value the visitors

place on their experience at the site. TUFs can be structured around many

activities. For example: PAs entrance fees, restaurant and lodging concession

fees, fees/permits for hiking, scuba diving, fishing, etc. This revenue is used

for: operation and maintenance for PA, upgrading of facilities and conservation

programs. In this paper we consider that the TUF is dependent linearly on the

number of visitors and that a part of it (η) is used for conservation programs

(defensive expenditures) and the other part (1 − η) (defined as reinvestment

rate) for upgrading facilities and maintenance of PA growth of capital stock.

Therefore, the parameter h reflects the decision of the managers of PAs on the

distribution of the investments between the defense of the environmental (de-

fensive expenditures) and the increase of the capital stock (reinvestment rate).

In this work, we formulate a simple model, with an unique equilibrium (when

it exists) between the variable of state considered; moreover this equilibrium

is always stable. Therefore variations of the parameter η does not alter the

stability of the system. The aim of this work is to analyze how the stability

of the equilibrium changes when a delay τ is introduced. In fact we think that

dynamics of the environmental resource and capital stock at time t depend on

the number of visitors in the past. In this model, we can see how the stability

changes giving rise to a Hopf bifurcation when the delay t passes through a se-

quence of critical values, to. Hopf bifurcation allowed us to find the existence of

a region of instability in the neighborhood of a fixed point where the managers

of PAs can stabilize the system if the delay is sufficiently short, but the system

becomes unstable when the delay is too long. The equilibrium can be brought

back to the stability (in the sense that it is without periodic oscillations) in var-

ious ways, for example reducing the delay, increasing the defensive expenditures

or improving the adopted technology in order to defend the environmental re-

source. This paper is organized as follows: in Section 2 the model is presented;

in Section 3 and Section 4 fixed point, stability analysis and the existence of

Hopf bifurcation, respectively, with τ = 0 and τ > 0 are studied; in Section 5,

the direction of Hopf bifurcation and the stability and the period of bifurcating

periodic solutions on the center manifold are determined; in Section 6 numerical

simulations are presented.
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2 The Model

The model, refer a generic Protected Area (PA) and have three variables: the

visitors V (t) in PA at time t, the environmental resource stock E(t) and the

capital stock K(t) intended as structures, into the PA, for visitors activities.

Dynamic of the visitors V

Visitors are attracted by the infrastructures and services included in the vari-

able K and by the natural resource E. Both stocks are combined by means

of an additive 1 function, which assumes a degree of substitution between the

environmental resource and the capital, in the sense that destinations with low

capital stock can receive the same number of visitors as those with better in-

frastructures if they have a large natural resource stock.

Dynamics of the number of visitors is

˙V (t) = m1E + m2K − aV 2(t) (1)

where the parameter a > 0 represents the crowding effect. This means that the

PA becomes less attractive when the number of tourists visiting the protected

area increases, and this gives rise to a decrease in the number of visitors.

Dynamic of the environmental resource E

Following Becker (1982) and Cazzavillan and Musu (2001), the environmen-

tal resource stock is defined as the difference between the maximum tolerable

pollution stock P and the current pollution stock 0 ≤ P (t) ≤ P

E(t) = P − P (t)

Differentiating with respect to time we obtain the law of evolution of the envi-

ronmental stock

Ė(t) = Ṗ (t) (2)

We then assume that a constant proportion 0 < r < 1 of the pollution stock is

assimilated at each time t. Moreover, we assume that the asset E decreases pro-

portionally with the level of tourist entries. When no resources can be devoted

1The results do not change if we use a moltiplicative function such as mEK

3



to abatement expenditures, residents can influence the pollution stock only by

controlling tourist entries V(t)

Ṗ (t) = bV (t) − r(P − E(t)) (3)

where b > 0. Combining (2) and (3) we finally get

Ė(t) = r(P − E(t)) − bV (t) (4)

Visitors impact negatively on the environmental resource, but environment and

infrastructures are attractive for visitors . Therefore the manager of PA uses

a share η of total revenues generated by TUfs to defend the environmental

resource in the PA (environmental defensive expenditures). This expenditures

are proportional to the number of visitors. Therefore the dynamics of the envi-

ronmental resource is

˙E(t) = r(P − E) − bV (t) + cηV (t) (5)

The parameter c > 0 is a constant parameter determining how much an addi-

tional unit of defensive expenditure rises the environmental resource. In other

words, it indicates the technology that it comes adopted in order to defend the

environmental quality.

Dynamic of the capital stock K

The other share (1 − η) of the total revenue is used to increase the capital

stock
˙K(t) = (1 − η)V (t) − δK(t) (6)

Capital stock is assumed to depreciate at the rate δ > 0. As stated in the

introduction, considering the delay τ > 0 we formulate the model as follows:

˙V (t) =m1E(t) + m2K(t) − aV 2(t)

˙E(t) =r(P − E(t)) − bV (t − τ) + cηV (t − τ) (7)

˙K(t) =(1 − η)V (t − τ) − δK(t)

where m1, m2, a b,c, η, δ, P , τ strictly positive constants, while 0 ≤ η < 1 and

0 < r < 1.
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3 Fixed point and stability analysis with τ = 0

By a simple computation, it is straightforward to obtain the following results

Proposition 1 A fixed point S = (V∞, E∞,K∞) exist if only if one of the

following conditions holds:

a) b − cη < 0

b) b − cη > 0 and Paδr − m2(1 − η)(b − cη) > 0

where

V∞ =
ρ

2
+

1

2

√

ρ2 + 4
m1P

a
, E∞ = P − b − cη

r
V∞, K∞ =

1 − η

δ
V∞ (8)

with ρ =
1

a
(
m2(1 − η)

δ
− m1(b − cη)

r
)

Proof. Being K∞ =
(1 − η)

δ
V∞, V∞ and E∞ are determined by intersec-

tions of the functions F (V,E) = m1E + m2
1 − η

δ
V − aV 2 = 0 and G(E, V ) =

r(P − E) − (b − cη)V = 0, therefore V∞ is solution of the equation V 2 −
1

a
(
m2(1 − η)

δ
− m1(b − cη)

r
) − m1P

a
= 0

Proposition 2 The fixed point S = (V∞, E∞,K∞) is always attractive

Proof. Straightforward calculation enable the definition of the Jacobian matrix

J calculated in S = (V∞, E∞, K∞)

J(S) =







−2aV∞ m1 m2

−b + cη −r 0

1 − η 0 −δ






(9)

The characteristic polynomial of J(S) is

P (λ) = λ3 − (tr(J))λ2 + M2λ − det(J) (10)
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where

tr(J) = −r − δ − 2aV∞ (11)

M2 = 2aV∞r + 2aV∞δ − m2(1 − η) + m1(b − cη) + δr (12)

and it is easily computed that

det(J) = −aδr

√

q2 +
4m1P

a
(13)

From Routh-Hurwitz theorem the cubic polynomial (10) has all negative real

parts roots, if and only if

tr(J) < 0 (14)

M2 > 0 (15)

det(J) < 0 (16)

H = |tr(J)||M2| − |det(J)| > 0 (17)

The determinant and the trace of J are always negative. Applying the im-

plicit function theorem to the function F (V, E) = 0, we obtain fV = −FV

FE

=

2aV∞ − m2(1−η)
δ

m1
> 0, therefore the coefficient M2 is always positive. From easy

calculations one obtains that H is always positive.

4 Stability analysis and Hopf bifurcation with

τ > 0

By the linear transform



















x1(t) = V (t) − V∞

x2(t) = E(t) − E∞

x3(t) = K(t) − K∞

(18)
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system (7) becomes

ẋ1 =m1x2(t) + m2x3 − ax2
1(t) − 2aV∞x1(t)

ẋ2 = − rx2(t) − (b − cη)x1(t − τ) (19)

ẋ3 =(1 − η)x1(t − τ) − δx3(t)

The associated characteristic equation of system (7) is

λ3 + a2λ
2 + a1λ + a0 + (b1λ + b0)e

−λτ = 0 (20)

where

a2 = 2aV∞ + δ + r

a1 = (r + δ)2aV∞ + δr

a0 = 2aV∞δr

b1 = −m2(1 − η) + m1(b − cη)

b0 = m1δ(b − cη) − m2r(1 − η) (21)

Follow the result proved in Ruan and Wei (2003) by using Rouche’s theorem,

we can say that as τ vary, the sum of the order of the zeros of exponential

polynomial (20) on the open right half plane can charge only if a zero appears

on or crosses the imaginary axis.

Therefore, if iω(ω > 0) is a root of (20) then ω satisfies

s(z) = z3 + pz2 + qz + n (22)

where z = ω2, p = a2
2 − 2a1, q = a2

1 − 2a0a2 − b2
1, n = a2

0 − b2
0

In order to find a signs of the roots of the third degree polynomial, we introduce

the following proposition

Proposition 3 For the third degree polynomial s(z), we have the following re-

sults

(i) if r ≤ 0, then equation (22)has at least one positive root;

(ii) if r ≥ 0 and ∆ = p2 − 3q ≤ 0, the equation (22) has no positive roots;

(iii) if r ≥ 0 and ∆ > 0, the equation (22) has positive roots iff z∗1 =
−p +

√
∆

3
>

0 and s(z∗1) ≤ 0.
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Therefore, if there is al least a positive ω0 =
√

z0 satisfy the equation (22), then

the characteristic equation (20) has a pair purely imaginary roots of the form

±iω with

τ0 =
1

ω0
{cos−1(

b1ω4
0 + (a2b0 − a1b1)ω

2
0 − a0b0

(−b0)2 + b2
1ω

2
0

) + 2jπ} (23)

where j = 0, 1...

Thus, we obtain the following proposition

Proposition 4 For the equation (20), we have

(i) if n ≥ 0 and ∆ = p2 − 3q ≤ 0, then, for all τ ≥ 0, all roots with positive

real part of (20) has the same sum to those of the polynomial (20) for

τ = 0;

(ii) if either n < 0 or n ≥ 0 and ∆ > 0, z∗1 > 0 and s(z∗1) ≤ 0, then for

τ ∈ [0, τ0], all roots with positive real parts of (20) has the same to those

of the polynomial of (20) for τ = 0.

Suppose that z0 = ω2
0 and s

′

(z0) 6= 0, we obtain that
d(Reλ(τ j

0 ))

dτ
and s

′

(z0)

have the same sign.

Remembering that the conditions (14)-(17) are always verified we have the fol-

lowing theorem about the stability of the fixed point S of system (7) and Hopf

bifurcations.

Theorem 1 Let τ0 and ω0.

(i) if n ≥ 0 and ∆ = p2 − 3q ≤ 0, the positive equilibrium S of system (7) is

asymptotically stable for all τ ≥ 0;

(ii) if either n < 0 or n ≥ 0, ∆ > 0, z∗1 > 0 and s(z∗1) ≤ 0, then the positive

equilibrium S of system (7) is asymptotically stable for τ ∈ [0, τ0);

(iii) if the condition of (ii) are satisfied and s
′

(z0) 6= 0, then system (7) under-

goes a Hopf bifurcation at the equilibrium S when τ = τ0.

Moreover, we have the following theorem

Theorem 2 Necessary condition for existence of a Hopf bifurcation is that

b − cη > 0.
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Proof. See Appendix

Proposition 2 says that, the system (7) undergoes to Hopf bifurcation at the

equilibrium S when τ = τ0, when the technology or the defensive expenditures

sufficiently is not elevated, regarding the impact negative of the visitors on the

environmental. In other words if we not to sufficiently defend the environmental

resource them can carry to one destabilization of the fixed point when τ > τ0.

5 Direction and stability of the Hopf bifurcation

The following algorithm for computing the period and the stability of the Hopf

periodic orbit follows Hassard et. al (1981), Sun et al. (2007) and Liao et al.

(2007). Consider the autonomous equation

ẋ(t) = Lµ(xt) + f(µ, xt) (24)

where x(t) = (x1(t), x2(t), x3(t))
T ∈ R

3, and Lµ : C −→ R, f : R×C are given,

respectively, by

Lµ(φ) = (τ0 + µ)







−2aV∞ m1 m2

0 −r 0

0 0 −δ













φ1(0)

φ2(0)

φ3(0)







+(τ0 + µ)







0 0 0

cη − 2bV∞ 0 0

1 − η 0 0













φ1(−1)

φ2(−1)

φ3(−1)






(25)

and

f(τ, φ) = (τ0 + µ)







−aφ2
1(0)

0

0






(26)

An orbit corresponding to a solution x(t) of (24) is a curve of C traced out by

the family of functions x(¦), (xt(t) = xt(t+θ)) as t rangers over (0,∞); the orbit

of a periodic solution is a closed curve in C. The individual periodic orbits will

belong to slices Cµ, (µ constant) of C.

By the Riesz representation theorem, there exists a function ρ(θ, µ) of bounded
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variation for θ ∈ [−1, 0], such that

Lµφ =

∫ 0

−1

dρ(θ, 0)φ(0) for φ ∈ C (27)

in fact, we can choose

ρ(θ, µ) = (τ0 + µ)







−2aV∞ m1 m2

0 −r 0

0 0 −δ






δ(θ)

−(τ0 + µ)







0 0 0

cη − 2bV∞ 0 0

1 − η 0 0






δ(θ + 1) (28)

where δ is defined by δ(θ) =







0 θ 6= 0

1 θ = 0

For φ ∈ C1([−1, 0], R3) define

A(µ)φ =







dφ(θ)

dθ
θ ∈ [−1, 0),

∫ 0

−1
dρ(µ, s)φ(s) θ = 0

and

R(µ)φ =







0 θ ∈ [−1, 0),

f(µ, φ) θ = 0

Then the system (24) can be written as

ẋt = A(µ)xt + R(µ)xt (29)

where xt(θ) = x(t + θ) for θ ∈ [−1, 0].

For ψ ∈ C1([0, 1], (R3)∗), the adjoint operator A∗ is defined by

A∗ψ(s) =







−dψ(s)

ds
s ∈ [0, 1),

∫ 0

−1
dρT (t, 0)ψ(−t) s = 0
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To construct coordinates to describe the center manifold C0 near 0 ∈ R
3, we

need of a bilinear inner product

〈ψ(s), φ(θ)〉 = ψ(0)φ(0) −
∫ 0

−1

∫ θ

ξ=0

ψ(ξ − θ)dρ(θ)φ(ξ)dξ, (30)

where ρ(θ) = ρ(θ, 0). By the discussion in Section 4, we know that ±ωτ0 are

eigenvalues of A(0). Thus, they are also eigenvalues of A∗. We first need to

compute the eigenvector of A(0) and A∗ corresponding to iωτ0 and −iωτ0,

respectively.

Suppose that q(θ) = (1, β, γ)T eiθωτ0 is the eigenvector of A(0) corresponding to

iωτ0. Then A(0)q(θ) = iωτ0q(θ). If follows from the definition of A(0) and (27)

and (28) that

τ0







iω + 2aV∞ −m1 −m2

−(cη − 2V∞b)e−iωτ0 iω + r 0

−(1 − η)e−iωτ0 0 iω + δ






q(0) =







0

0

0






(31)

Thus, we can easily obtain

q(0) = (1, β, γ)T = (1,
(−b + cη)e−iωτ

iω + r
,
(1 − η)e−iωτ

iω + δ
)T (32)

On the other hand, suppose that q∗(s) = D(1, β∗, γ∗)eisωτ0 is the eigenvectors

of A∗ corresponding to −iωτ0. By the definition of A∗ and (27) and (28), we

have

τ0







−iω + 2aV∞ −(cη − 2bV∞)e−iωτ0 −(1 − η)e−iωτ0

−m1 −iω + r 0

−m2 0 −iω + δ






(q∗(0))T =







0

0

0






(33)

which means

q∗(0) = D(1, β∗, γ∗) = D(1,
m1

−iω + r)
,

m2

δ − iω
) (34)
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In order to assume < q∗(s), q(θ) >= 1, we need to determine the value of D.

From (30), we have

< q∗(s), q(0) > = D(1, β∗, γ∗)(1, β, γ)T

−
∫ 0

−1

∫ θ

ξ=0

D(1, β∗, γ∗)e−i(ξ−θ)ωτ0dρ(θ)(1, β, γ)T eiψωτ0dξ

= D{1 + ββ∗ + γγ∗ −
∫ 0

−1

(1, β∗, γ∗)θeiθωτ0dρ(θ)(1, β, γ)T }

= D{1 + γγ∗ + ββ∗ − τ0e
−iωτ0(β∗(cη − 2bV∞) + (1 − η)γ∗)

(35)

In the remainder of this section, we will follow the ideas and use the same

notations as Hassard et. al (1981).

Let xt be the solution of (29) when µ = 0. Define

z(t) =< q∗, xt >, W (t, θ) = xt − 2Re{ z(t)q(θ)} (36)

On the center manifold C0 we have W (t, θ) = W (z(t), z(t), θ),

where

W (z, z, θ) = W20(θ)
z2

2
+ W11(θ)zz + W02(θ)

z2

2
+ ...., (37)

z and z are local coordinates for center manifold C0 in the direction of q∗ and

q∗. Note that W is real if xt is real. We consider only real solutions. For the

solution xt ∈ C0 of (24), since µ = 0, we have

ż(t) = iτ0ωz+ < q∗(0), f(0,W (z, z, θ) + 2Re{ zq(θ)} >

= iτ0ωz + q∗(0)f(0,W (z, z, θ) + 2Re{ zq(θ)}
= iτ0ωz + q∗(0)f0(z, z)

(38)

which we rewrite in abbreviated form as ż(t) = iτ0ωz(t) + g(z, z)

with

g(z, z) = q∗(0)f0(z, z)

= g20
z2

2
+ g11zz + g20

z2

2
+ g21

z2z

2
+ ....

(39)

12



Noticing that xt(θ) = (x1t(θ), x2t(θ), x3t(θ)) = W (t, θ) + zq(θ) + zq(θ) and

q(θ) = (1, β, γ)T eiθωτ0 , we have

x1t(0) =z + z + W
(1)
20 (0)

z2

2
+ W

(1)
11 (0)zz + W

(1)
02 (0)

z2

2
+ O(|z, z|3),

x2t(0) =βz + βz + W
(2)
20 (0)

z2

2
+ W

(2)
11 (0)zz + W

(2)
02 (0)

z2

2
+ O(|z, z|3),

x3t(0) =γz + γz + W
(3)
20 (0)

z2

2
+ W

(3)
11 (0)zz + W

(3)
02 (0)

z2

2
+ O(|z, z|3),

x1t(−1) =ze−iωτ0 + zeiωτ0 + W
(1)
20 (−1)

z2

2
+ W

(1)
11 (−1)zz

+ W
(1)
02 (−1)

z2

2
+ O(|z, z|3). (40)

Thus, from (39), we have

g(z, z) =

= q∗(0)f0(z, z) = τ0D(1, β
∗

, γ∗)







−ax2
1t(0)

0

0







= −τ0Da[z + z + W
(1)
20 (0)

z2

2
+ W

(1)
11 (0)zz + W

(1)
02 (0)

z2

2
+ O(|z, z|3)]2

Comparing the coefficients with (39), we get

g20 = −2τ0aD

g11 = −2τ0aD

g02 = −2τ0aD

g21 = −1

2
τ0aD(4W

(1)
20 (0) + 8W

(1)
11 (0))

(41)
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Since there are W20(θ) and W11(θ) in g21, we still need to compute them.

From (29) and (36) we have

Ẇ = ẋt − zq − żq






AW − 2Re{ q∗(0)f0q(0)} , θ ∈ [−1, 0],

AW − 2Re{ q∗(0)f0q(0)} + f0 , θ = 0,

= AW + H(z, z, θ). (42)

where

H(z, z, θ) = H20(θ)
z2

2
+ H11(θ)zz + H02(θ)

z2

2
+ ... (43)

Expanding the above series and comparing the corresponding coefficients, we

obtain

(A − 2iωτ0)W20(θ) = −H20(θ), AW11(θ) = −H11(θ)... (44)

from (42), we know that for θ ∈ [−1, 0),

H(z, z, θ) = −q∗(0)f0q(θ) − q∗(0)f0q(θ)

= −gq(θ) − gq(θ).

Comparing the coefficients with (43) gives that

H20(θ) = −g20q(θ) − g02q(θ) (45)

and

H11(θ) = −g11q(θ) − g11θ. (46)

From (44), (45) and the definition of A, it follows that

Ẇ20(θ) = 2iτ0W20(θ) + g20q(θ) + g02q(θ).

Notice that q(θ) = (1, β, γ)T eiθωτ0 , hence

W20(θ) =
ig20

ωτ0
q(0)eiθωτ0 +

ig02

3ωτ0
q(0)e−iθωτ0 + E1e

2θωτ0 , (47)

14



where E1 = (E
(1)
1 , E

(2)
1 , E

(3)
1 ) ∈ R3 is costant vector.

Similary, from (44) and (46), we can obtain

W11(θ) = − ig11

ωτ0
q(0)eiθωτ0 +

ig11

ωτ0
q(0)e−iθωτ0 + E2 (48)

where E2 = (E
(1)
2 , E

(2)
2 , E

(3)
2 ) ∈ R3 is costant vector.

In what follows, we shall seek appropriate E1 and E2. From the definition of A

and (44), we obtain

∫ 0

−1

dρ(θ)W20(θ) = 2iτ0ωW20(θ) − H20(0) (49)

and
∫ 0

−1

dρ(θ)W11(θ) = −H11(0) (50)

where ρ(θ) = ρ(0, θ). From (42), we have

H20(0) = −g20q(0) − g02q(0) + 2τ0







−a

0

0






(51)

and

H11(0) = −g11q(0) − g11q(0) + 2τ0







−a

0

0






(52)

Substituing (47) and (51) into (49) and noticing that

(

iτ0ωI −
∫ 0

−1
eiθωτ0dη(θ)

)

q(0) = 0 (53)

and
(

−iτ0ωI −
∫ 0

−1
e−iθωτ0dη(θ)

)

q(0) = 0 (54)

we obtain

(

2iτ0ωI −
∫ 0

−1
e2iθωτ0dη(θ)

)

E1 = 2τ0







−a

0

0






(55)
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It follows that

E
(1)
1 = − 2a

(2iω + r)(2iω + δ)

N

E
(2)
1 = − 2a

(2iω + δ)(cη − b)e−2iωτ

N

E
(3)
1 = − 2a

(2iω + r)(1 − η)e−2iωτ

N

where

N = −m2((1 − η)ei ωτ0(iω + r)) + (iω + δ)((iω + 2aV )(iω + r) − m1(cη − b)eiωτ0)

Similarly, replacing (48) and (52) into (50), we can get

E
(1)
2 = − 2a

rδ

2raδV∞ − m2r(1 − η) + m1δ(b − cη)

E
(2)
2 = − 2a

δ(cη − b)

2raδV∞ − m2r(1 − η) + m1δ(b − cη)

E
(3)
2 = − 2a

r(1 − η)

2raδV∞ − m2r(1 − η) + m1δ(b − cη)

Thus, we can determine W20(0) and W11(0) from (47) and (48). Furthermore, we

can determine g21. Therefore, each gij in (39) is determinate by the parameters

and delay.

The coefficient c1(0) of the Poincaré normal form is given of these term gij by

formula

c1(0) =
i

2τ0ω
(g11g20 − 2|g11|2 −

|g20|2
3

) +
g21

2
(56)

The following formulas give us the value of µ2, β2, and T2

µ2 = − Re{ c1(0)}
Re{ λ

′(τ0}
(57)

β2 =2Re{ c1(0)} (58)

T2 = − ℑ(c1(0)) + µ2ℑ(λ
′

(τ0)

τ0ω
(59)

which determine the quantities of bifurcating periodic solutions in the center

manifold at the critical values τ0, i.e., µ2 determines the directions oh the Hopf

bifurcation: if µ2 > 0 (µ2 < 0), then the Hopf bifurcation is supercritical

(subcritical) and the bifurcating periodic solutions exist for τ > τ0 (τ < τ0);

16



β2 determines the stability of the bifurcating periodic solutions: the bifurcating

periodic solutions are stable (unstable) if β2 < 0 (β2 > 0), and T2 determines

the periodic of the bifurcating periodic solutions: the period increase (decrease)

if T2 > 0 (T2 < 0).

6 Numerical examples

In this section, we present some mumerical result at different values of τ .

6.1 Example 1

We consider system 7, with the following parameters a = .1, m1 = 5, m2 =

0.001 b = 0.85, P = 25, δ = .1,c = 1, r = 0.1, η = 0.75 the conditions

(ii) and (iii) of the Theorem 1 are hold. We choose η = 0.75, the positive

fixed point is S = (18.30, 6.70, 45.75), then we obtain ω0 = 0.092, τ0 = 25.4,

Re(c1(0)) = −0.000745, λ
′

(τ0) = 0.00048 − i0.00294,with µ2 > 0, β2 < 0 and

period T = 67. The Figure 1 show a simulation with τ = 20 < τ0. The Figure

2 shows a simulation of a stable periodic orbit with τ = 25.6 > τ0.

6.2 Example 2

We consider system 7, with the following parameters a = .1, m1 = 5, m2 = 1

b = 2, P = 250, δ = .1,c = 1, r = 0.1, η = 0.8 the conditions (ii) and (iii) of

the Theorem 1 are hold. We choose η = 0.75, the positive fixed point is S =

(21, 0.35, 41.6), then we obtain ω0 = 1.32, τ0 = 1.05, Re(c1(0)) = −0.51910−5,

λ
′

(τ0) = 0.467 − i0.732,with µ2 > 0, β2 < 0 and period T = 4.7. The Figure

3 show a simulation with τ = 0.5 < τ0. The Figure 4 shows a simulation of a

stable periodic orbit with τ = 1.1 > τ0.

7 Conclusion

In the present work, starting from a simple model exibiting an always stable

equilibrium, we showed that a delay may generate instability (and as a con-

sequence problems in the sustainability of the Protected Areas management)

if the condition b − cη > 0 occurs, that is to say if the difensive expenditures

are not sufficiently elevated. Further developments can be identified analyzing

a model with differentiated delays, where the negative impact of the visitors

17



on the environmental resource occurs with a delay different from that of the

defensive expenditures and the reinvestment on infrastructures.
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Appendix

We demonstrate that if b−cη < 0, n and q are always positive, consequently

z∗1 < 0, therefore the condition of ii of the Theorem 1 never is verified.

From straightforward calculation we obtain

p =4a2V 2 + δ2 + r2 > 0 (60)

n =4a2V 2r2δ2 − (−m2(1 − η)r + m1δ(b − cη))2 (61)

q =4a2V 2δ2 + 4a2V 2r2 + δ2 + r2 − (m2(1 − η) − m1(b − cη))2 (62)

From Proposition 1

V∞ =
ρ

2
+

1

2

√

ρ2 + 4
m1P

a
, where ρ =

1

aδr
(m2(1 − η)r − m1(b − cη)δ)

we can write the equation (61) as n = 4a2V 2r2δ2 − (−4arδρ)2.

Being b − cη < 0, then V∞ >
ρ

2
, and from the equation (60), we find n > 0.

Remembering that z∗1 =
−p +

√

p2 − 3q

3
, than it is strictly positive if and only

if q < 0.

Now we demonstrate that q is always positive.

From n > 0, we can write

4a2V 2r2 >
m2

1r
2(1 − η)2 + m1δ

2|b − cη|2 + 2m1m2rδ|b − cη|(1 − η)

δ2

and

4a2V 2δ2 >
m2

1r
2(1 − η)2 + m1δ

2|b − cη|2 + 2m1m2rδ|b − cη|(1 − η)

r2

replacing this two inequalities in (62) and by straightforward but rather tedious

calculations we find q > 0.

Note that if b − cη > 0, a sufficient condition for Hopf bifurcation is that

V∞ <
|ρ|
2

, that is n < 0.
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Figure 1: Example 1, with τ = 20 < τ0, the fixed point is attractive: a) plane
t − V , t − E, t − K, b) plane V − E.
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Figure 2: Example 1, with τ = 25.6 > τ0, and sufficiently near to τ0, the
bifurcation periodic solutions from positive equilibrium S occur and are stable:
a) plane t − V , t − E, t − K, b) plane V − E.
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Figure 3: Example 2, with τ = 0.5 < τ0, the fixed point is attractive: a) plane
t − V , t − E, t − K, b) plane V − E.
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Figure 4: Example 2, with τ = 1.1 > τ0, and sufficiently near to τ0, the
bifurcation periodic solutions from positive equilibrium S occur and are stable:
a) plane t − V , t − E, t − K, b) plane V − E.
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