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1 Introduction

Economists, particularly those concerned with firm behavior, have tried to identify features of

a market that attract investment, promote growth, and foster competition. The audience for

such information is vast: entrepreneurs want to know the best places to locate their plants while

policymakers are interested in attracting such investment. Of course firms are interested not just

in setting up shop, but in growing a successful enterprise. Likewise, policymakers want to retain

investments and encourage stable growth: having firms that constantly enter and exit their region

leads to economic uncertainty and fluctuations in market conditions. While researchers in industrial

organization and regional economics have documented such factors for some time, our focus is on

firms that comprise the “green industry.” Our objective in this paper is to analyze the factors that

explain entry, growth, and exit patterns in the green industry to determine whether these factors

affect the green industry in an inherently different way as compared to other industries. Identifying

whether these patterns hold for green firms is important given the increasing interest in sustainable

development. For example, passed in the State of Washington in 2008, the Engrossed Second

Substitute House Bill 2815, aims to make the State of Washington’s economy more sustainable in

hoping to stimulate job creation in the “green economy.”

One challenge that has precluded a thorough investigation of the green industry (and made diffi-

cult the development of such industries for policymakers) has been defining what exactly comprises

this part of the economy. We leverage a recent definition proposed by the Green Jobs Initiative at

the U.S. Bureau of Labor Statistics (BLS) based on six-digit level of the North American Industry

Classification System (NAICS).1 Broadly speaking, jobs are “green” if they are held at, or associ-

ated with, establishments that produce goods or provide services that benefit the environment or

conserve resources (output-related green jobs) or if the jobs at the establishments involve making

environmentally-friendly production processes or focus on using fewer natural resources (process-

related green jobs). We take this definition as given and sort all establishments in our data into

one of two categories which, for simplicity, we refer to as the green and brown (for short, but,

more appropriately perhaps, the non-green) industries.2 While our primary interest is to evalu-

ate whether the behavior of green firms is fundamentally different from that of non-green firms,

we also consider whether the “type” of green firm is important. Specifically, the BLS partitions

the green industries into five subcategories: renewable energy (CAT1), energy efficiency (CAT2),

pollution abatement and/or recycling (CAT3), natural resource conservation (CAT4), and, lastly,

environmental compliance, training, and awareness (CAT5).

1The website for the Green Jobs Initiative at the BLS, http://www.bls.gov/green/, describes information on the
funding, development, and status of the program.

2This language and abstraction is analogous to researchers concerned with environmental economics who might
distinguish brown, or polluting, firms from all other firms, which are then referred to as green. While this is common
practice, given our research interest and the definition we employ, the partition works in the other direction for our
research: we distinguish green firms from all other firms, which we refer to as brown firms.

1



We focus exclusively on the State of Texas during the period 2000–2006 and employ Quarterly

Census of Employment and Wages (QCEW) data which allow us to observe key establishment-level

variables at a reasonable level of industry disaggregation. Although we were forced to consider one

state due to data limitations, the restriction is, in some sense, attractive in that environmental

regulations are typically enacted at federal and state levels.3 As such, any changes (observed or

unobserved) in state policies that occur during our sample obtain throughout our region of interest.

Of course this mitigates endogeneity issues that might arise with policy changes but, of course, we

cannot say anything concerning the efficacy of such policies either. Note, too, that since the BLS

definition was proposed after the end of our period of analysis, we avoid endogeneity problems due

to counties and municipalities attempting to attract the recently-defined green industries. It should

also be noted that Texas is a large and diverse economy and limiting the analysis to Texas is not,

in fact, overly limiting. Indeed, as the second-largest state economy in the U.S. (after California),

Texas ranked as the 15th largest economy in the world in a comparison of countries and states by

gross domestic product, surpassing many notable national economies.4

Our research is, perhaps, complementary to that of researchers concerned with the effects trade

has on the environment and the relationship between environmental policies and foreign direct

investment (FDI). These researchers typically concentrate on identifying or testing whether brown

(dirty) industries are attracted to certain locations based on pollution-based policies, while our

focus is on identifying factors and patterns, if any, that appear important in attracting green

firms and developing a sustainable economy (or, perhaps, lead to the exit of green firms).5 Most

notably, perhaps, the pollution haven hypothesis is built on the endogenous response of a state (in

intranational models) or country (in international models) to attract such industries by reducing

pollution standards. Often empirical researchers leverage differences in pollution policies (such

as emissions tax rates) or regulation levels (such as attainment or non-attainment distinctions)

to evaluate the effects on firm costs, entry, and growth. For example, Levinson [1996] found

that interstate differences in environmental regulations did not affect the location choices of most

manufacturing plants. However, List and Co [2000] found that state environmental regulations

did alter multinational corporations’ new plant location patterns. List [2001] considered how the

3For example, Texas has a Renewable Portfolio Standard (RPS) concerning solar, wind, geothermal, hydroelectric,
tidal energy, and biomass, which mandates “the construction of certain amounts of renewable energy and prompted
the renewable energy industry to rapidly accelerate its production on Texas sites.” (State Energy Conservation
Office website: http://www.seco.cpa.state.tx.us/re rps-portfolio.htm.) The Texas Legislature increased the state’s
renewable-energy goal in 2005. The RPS, however, does not favor one county (location) relative to another which is
key for us given we use variation in county characteristics across Texas and over time to identify important features
that explain green entry, grown, and survival.

4Gross domestic products for countries were obtained from the The World Factbook produced by the Central
Intelligence Agency while gross domestic products for states came from the Bureau of Economic Analysis.

5Other researchers who restrict attention to brown industries focus on quantifying the impact of environmental
regulations on total factor productivity growth (for example, Barbera and McConnell [1990] considered five pollution-
intensive industries), investigating the determinants of environmental innovation (for example, Brunnermeier and
Cohen [2003] restricted attention to U.S. manufacturing industries), or other policy-driven effects.
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number of FDIs in California were related to previous counts of FDI, market size, and land area. List

found some evidence of agglomeration effects at the county level which suggests that environmental

regulatory policy may not be what is important, but rather benefits from agglomeration effects.

In fact, many researchers have treated the subject of agglomeration economies (including knowl-

edge spillovers) from various perspectives such as the location choices of industries (Henderson

[1986]), location choices of firms (Rosenthal and Strange [2003] as well as Woodward et al. [2006]),

firm exits (Staber [2001]), industry growth (Glaeser et al. [1992], Henderson et al. [1995], as well

as Combes [2000]), and labor productivity (Ciccone and Hall [1996]). Combes [2000] noted that

a greater number of similar firms within a locality should increase the likelihood of complemen-

tary knowledge spillovers since there is greater likelihood of closer matches between firms. The

consequence of this intra-industry knowledge spillover is, as Glaeser et al. [1992] pointed out, that

“regionally specialized industries should grow faster because neighboring firms can learn from each

other much better than geographically isolated firms.” Also note that Ciccone and Hall [1996]

concluded that locally increasing returns to density explain more than half of the variation of la-

bor productivity across U.S. states. We include agglomeration effects (within a county as well as

in contiguous counties) and knowledge spillover effects (either through firm agglomeration effects

or by university and junior college research funding) in our firm entry, employment growth, and

survival models.

The driving question of researchers concerned with the relationship between environmental pol-

icy and various economic measures is quite attractive: they try to link potential consequences

of a policy using observed outcomes and investigate whether the effects are significant (and sub-

stantial). Similarly, Devereux et al. [2007] considered whether government subsidies (discretionary

grants) affected where domestic and multinational firms located new plants. They found firms to

be quite insensitive to the government policies (consistent with much of the conclusion reached by

those studying the pollution haven hypothesis) and more attracted to areas offering, for example,

co-location benefits. This suggests that the intrinsic features, whether exogenously fixed (such

as resources) or endogenously determined (such as market structure and firm agglomeration), of

locations is most important. Thus, if the regulatory environment is not a factor, can it be that

green and brown industries are attracted to locations for similar reasons? Some evidence for po-

tential differences was provided by Eichholtz et al. [2010] who found buildings with green ratings,

characterized by Leadership in Energy and Environmental Design (LEED) or Energy Star certifi-

cation, garnered significantly higher commercial office rents, suggesting that such classification has

economic value.

We find that the green and brown industries appear to respond to similar non-policy factors

and, in general, entry and growth patterns are quite similar across industries. Agglomeration effects

are most important in explaining firm entry and employment growth, and although agglomeration

effects are not fundamentally different in attracting green industries, they help employment growth
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in green industries more than in brown industries. Having said that, being a green firm seems to have

significant negative employment growth effects for Texas counties, although employment growth

in green industries is positively correlated with income which is not true for brown employment.

Concerning survival, green firms are more likely to exit compared to brown firms, although this

effect is weakened if the green firm has previous experience. Moreover, agglomeration effects are

important in helping firms remain in business. In addition to investigating the entry, growth, and

survival patterns for the intra-green subcategories, we identify which counties within Texas have

comparative advantages in each of these subcategories.

Our paper is structured as follows: in section 2, we describe how we identified green industries

using the BLS definition while, in section 3, we discuss our data and present some general patterns

we observe. We investigate these patterns in further detail by estimating various empirical models of

firm entry, employment growth, and firm survival in section 4. In section 5, we identify comparative

advantages for each county within Texas based off the green subcategories and, in section 6, we

summarize and conclude.

2 Defining the Green Industry

On July 15, 2009, in order to measure green jobs accurately, the BLS created a discussion draft

for the Workforce Information Council. The main objective of this was “to produce objective and

reliable information on the number of green jobs, how that number changes over time, and the

characteristics of these jobs and the workers in them.” In addition to partitioning the number of

jobs by industry that are associated with green good and services (GGS) production, the BLS was

interested in estimating the occupational employment and wages for establishments identified as

producing these GGS. The BLS hoped that this information would provide policymakers and the

public with a better understanding of green jobs so that they could make informed decisions.

After surveying government, academic, and business studies, the BLS consulted with federal

agencies, state labor market offices, and industry groups to better understand activities related

to preserving or restoring the environment through efforts such as the production of renewable

energy, improving energy efficiency, preventing and/or cleaning up pollution, and conserving natural

resources.6 In particular, green jobs are either

(a) Jobs in businesses that produce goods or provide services that benefit the environment or

conserve natural resources.

(b) Jobs in which workers’ duties involve making their establishment’s production processes more

environmentally friendly or use fewer natural resources.

6Our discussion summarizes relevant material from the Green Jobs Initiative website provided in footnote 1 as
well as the Federal Register Notices published on this site.
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After realizing that there was no formal understanding for what constituted the green industry, the

BLS developed its own objective and measurable definition. Specifically, 333 six-digit industries

from the 2007 NAICS were identified as green.7 The BLS also partitioned this general definition of

the green industry into subcategories. Specifically, of the 333 six-digit NAICS industries, 58 were

categorized as relating to energy from renewable sources, 140 as relating to energy efficiency, 124

as relating to pollution reduction and removal, greenhouse gas reduction, and recycling and reuse,

75 as relating to natural resource conservation, and 45 as relating to environmental compliance,

education and training, and public awareness. Summing the number of members of each of these

subcategories suggests 442 industries, not 333. These values are reconciled because many industries

are classified into more than one of the subcategories. For example, NAICS code 221330 is speci-

fied as “steam and air-conditioning supply” and is classified in the green subcategories concerning

energy from renewable sources, energy efficiency, as well as pollution reduction and removal, green-

house gas reduction, and recycling and reuse. For each of the 333 industries, the BLS provided

examples suggesting why the industry was included. For example, the industry might be specified

as producing or certifying organic foods, as relating to LEED, as producing, repairing, or certifying

Energy Star products, as providing mass transit systems, etc. We take the BLS classification as

given and we employ the BLS NAICS-based definition in our analysis below to identify green and

brown establishments.

3 Data

We obtained data for this study from two primary sources. First, we use firm-level data for the

State of Texas from the Quarterly Census of Employment and Wages (QCEW) provided by the

Texas Workforce Commission. The data concern monthly employment and quarterly total wages

reported by every establishment in the state as required under the Texas unemployment insurance

program. Each record includes the specific location (address) of the establishment, the business

liability start-up date (the date from which unemployment insurance liability begins), and the

relevant six-digit NAICS code which is of particular importance for our work. Note, too, that

separate establishments (branches or franchises) of the same firm are distinguished and reported

in unique records. This panel data set is comprised of observations from the first quarter of 2000

(2000Q1) through the fourth quarter of 2006 (2006Q4), constituting 28 data periods.8 Each record

also includes each establishments’s unique Employer Identification Number (EIN). Therefore, the

appearance of a new EIN is used to define market entry and the disappearance of an EIN is treated

7We employ the final definition which was announced in volume 75, number 182 of the Federal Register Notice.
The official industry list can be accessed at http://www.bls.gov/green/final green def 8242010 pub.pdf

8The data were provided under an agreement of confidentiality and disclosure of the data is subject to certain
restrictions.
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Table 1: Distribution of Brown and Green Activity across Sectors

Brown Green Brown Green
Sector Firms Firms Employ. Employ.

Ag., Forestry, Fishing & Hunting 0.19 7.47 0.07 2.68
Mining 1.74 0.00 2.25 0.00
Utilities 0.18 1.70 0.31 3.51
Construction 0.48 33.82 0.96 24.99
Manufacturing 4.86 5.13 8.23 19.37
Wholesale Trade 9.33 0.44 5.77 0.39
Retail Trade 17.87 1.05 15.76 0.48
Transportation & Warehousing 3.95 0.36 5.51 1.55
Information 1.43 3.39 2.50 5.36
Finance and Insurance 7.97 0.19 5.75 0.07
Real Estate, Rental, & Leasing 5.90 0.00 2.23 0.00
Prof., Scien., & Technical Services 5.03 27.03 1.96 15.50
Management of Companies & Enterprises 0.13 0.73 0.06 1.65
Admin., Support, Waste & Remediation Serv. 4.87 4.35 8.09 3.25
Educational Services 1.12 1.05 6.71 14.18
Health Care & Social Assistance 12.41 0.00 13.51 0.00
Arts, Entertainment, & Recreation 1.28 0.40 1.01 1.04
Accommodation & Food Services 9.61 0.00 10.36 0.00
Other Services (except Public Admin.) 9.98 10.32 2.31 3.43
Public Administration 1.65 2.57 6.65 2.58

Total 100.00 100.00 100.00 100.00

as an exit.9 One difficulty we faced, given our data come from the pre-2007 era, concerned the

mapping between the 2002 NAICS codes which characterize the QCEW data and the 2007 NAICS

codes which were used by the BLS to define the green categories. To identify the green categories

in the 2002 NAICS classification we used the concordances provided by the U.S. Census Bureau.10

We discuss details of this mapping in the appendix, in which we also provide a table which describes

the variables we use in our analysis.

In table 1, we compare the firm (EIN establishment) and employment distribution across the

two-digit 2002 NAICS sectors conditional on being classified as a part of the brown or green indus-

tries. The numbers in the table correspond to the percent of green and brown firms, respectively, or

the share of green and brown employment, averaged over the sample periods, that is attributed to

each of the sectors listed. As such, the columns sum to 100 percent. Before interpreting the table,

9Following Dunne et al. [2005], some EINs appear in a given quarter but are associated with previous EINs. We
do not treat such observations as new entrants given we can identify the prior EIN. The change in EIN may have
occurred because the establishment changed hands, a partnership was broken up, or for any number of reasons.
Unfortunately, we are not provided with any justification for the new EIN, but our data do allow us to recover the
relationship to a previous EIN. In our firm survival analysis, we control for these “firms with past experience.”

10The Census Bureau maintains concordances at http://www.census.gov/eos/www/naics/concordances/concordances.html.
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note that, in total, 23.32 percent of Texas firms are part of the green industry representing 18.01

percent of total employment. There are some stark differences in how economic activity is dis-

tributed across the green and brown industries. Agricultural firms account for a much larger share

of the green industry as many are concerned with the production of or services related to organic

produce and meat although, as a share of green employment, the sector is far less substantial. A

third of green firms are considered part of the construction sector, while a quarter of green employ-

ees are construction-related. The high share of green employment in construction is primarily due

to LEED policies and Energy Star certification. For example, many six-digit 2002 NAICS sectors

produce or install LEED-eligible materials or concern installation of efficient environmental con-

trol systems. Likewise, the high share of firms and employment in the professional, scientific, and

technical services is due to land surveying, architectural services, and energy- or resource-efficient

design services, again often relating to LEED. Although the shares of green and brown firms in the

manufacturing and educational services sectors are comparable, the shares of green employment in

these sectors far outranks that of brown employment, suggesting these green firms are larger than

their brown counterparts within these two-digit sectors, at least on average. This is not surprising

for educational services as the six-digit codes defined as “junior colleges” as well as “colleges and

universities” are both considered part of the green industry since they provide training for green

jobs. Unfortunately while the BLS justified their classifications of which sectors belonged in the

green industry, no rationale was provided for why some sectors were not part of the green industry

and so we cannot offer any formal insight into why sectors concerned with real estate, health care,

and accommodation and food services have no green firms (and, hence, employment). We remain

agnostic concerning the classification of the green and brown industries and take the BLS definition

as given.

We observe all QCEW variables across the 28 quarters constituting our data sample, in each

of the 1,299 NAICS codes (that existed in Texas for at least one quarter and survived our data

“cleaning” described in the appendix) for each of Texas’ 254 counties providing us with 9,238,488

raw observations. We aggregate entry, exit, and employment variables given the green industry

definition (and our green-brown partition), yielding 14,224 (= 28× 254× 2) observations, two per

county in each quarter, for our interindustry analysis and 35,560 (= 28 × 254 × 5) observations,

five per county in each quarter, for our intra-green industry analysis. In table 2, we provide some

summary information concerning incumbency, entry, exit, industry size, and quarterly wages in

the green and brown industries as well as within the green industry.11 The mean values reported

weight all counties and quarters equally and so they should be interpreted as representing the

average county at a given time in our sample.

11We measure firm exit by the presence (absence) of a firm’s account number in consecutive quarters. For example,
if a firm is present in quarters 1 and 2, but absent in quarter 3, we infer that the firm exited the industry during
quarter 2. Because of this approach, we have to throw out the final quarter for our exit analysis as we cannot decipher
which firms remained in the industry after our sample period terminated.
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Table 2: Green vs. Brown Industry and Green Subcategory Summary Statistics

Number Number of Number of New Number of Old Number of Quarterly
Incumbents Entrants Firm Exits∗ Firm Exits∗ Employees Wages

Green 423.65 11.36 11.00 10.56 9446.40 7634.60
(1574.61) (46.59) (48.28) (40.04) (45786.85) (2897.18)

Brown 1394.11 36.59 35.62 32.49 43001.47 6821.17
(5591.37) (163.58) (170.04) (132.70) (208570.20) (1670.26)

CAT1 55.88 1.67 1.93 1.43 1360.24 9497.85
(233.25) (7.45) (8.24) (6.09) (7755.70) (4662.23)

CAT2 235.58 7.52 7.60 5.76 4906.88 7766.29
(977.46) (32.08) (33.36) (24.79) (27123.73) (3689.31)

CAT3 205.90 6.44 6.45 4.98 4094.40 7676.20
(825.98) (27.40) (28.55) (20.69) (21927.56) (3086.04)

CAT4 81.01 1.88 1.80 2.16 1226.81 6852.95
(200.99) (6.57) (6.45) (5.38) (5430.48) (3061.03)

CAT5 98.54 1.95 2.39 2.62 2885.99 6977.42
(405.21) (9.62) (11.60) (11.03) (13254.26) (3691.74)

Standard deviations are in parentheses below each mean value.
∗ New (old) firm exits are exits by firms that we observed enter (were already in) our data sample

which began in the first quarter of 2000.

Based on the number of incumbent firms, the brown industry is over three times larger than the

green industry, although using employment numbers suggests the brown industry is over four and

a half times larger, implying brown firms are typically larger than green firms. We condition exit

statistics based on two types of firms: those that enter sometime during our sample which we also

observe exit (new firm exits) and those that were already in the market when our sample began,

but which we observe exit during our sample (old firm exits).12 For establishments that we observe

enter our sample, the number of entrants and exits are quite close to each other, suggesting the

two rates are comparable which is consistent with the findings of Dunne et al. [1988]. Firms that

were already in the sample when our data period began are typically less likely to exit the market,

on average, although this is not true for the subcategories CAT4 and CAT5. Comparing wages

suggests why policymakers might want to attract green firms: the average quarterly wage in the

green industry is over $800 more than in the brown industry. The intra-green industry subcategories

show the average wage can be over $2676 higher (CAT1) compared with the brown industry mean

wage. CAT2 and CAT3 are the largest subcategories, on average, in terms of both the number of

firms, entry into these industries, and the number of employees. They also provide above-average

paying jobs, even compared with the green industry as a whole. The only subcategory that comes

12This partition is necessary to prevent aggregate exit rates from being nearly twice entry rates. To see this, the
average number of total exits can be obtained by summing the number of entrant and incumbent exits in a given row
of table 2. This is deceiving given the firms considered in the old firm exists do not affect the entry rates.
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Figure 1: Composition of Green Industry in TX over Data Period

close to matching the average firm size (computed by dividing the average number of employees in

a category by the average number of incumbent firms) of the brown firms is CAT5, perhaps because

it contains education centers which are typically large.

In figures 1(a) and 1(b), we depict how the composition of the green industry in TX has changed

over our data sample based on the number of firms and employees. The bar for a given quarter

represents the share of green firms (employees) considered to be part of each green subcategory,

with CAT1 being the bottom bar, then CAT2, CAT3, and CAT4, so that CAT5 is the top bar.

The figures show remarkable stability within the green industry and for all subcategories over the

data period. Both figures show that CAT2 and CAT3 are not only bigger on average (as was

shown in table 2), but that they are the largest green subcategories in Texas for every quarter

we observe. Because the figures only convey how the composition of the green industry evolved

over time, they mask the overall trend in the number of firms and employees. In figures 2(a) and

2(b), we depict the percentage change in the number of firms as well as the number of employees,

respectively, across the quarters we observe in our data. While the changes in the number of firms

and employees fluctuate between relative gains and losses, the two series seem to follow the same

trend. These trends for the green subcategories follow a similar pattern and we do not present

them formally as the figures became too cluttered. We found, at the aggregate state level, the

most volatile subcategory in terms of the variance of the percentage change in employment was

CAT5, followed by CAT4 and CAT1, respectively. However, CAT5 was the most stable in that the

variance in the percentage change in the number of firms was lowest across our data periods, while

CAT1 and CAT4 had the highest and second highest variances in their percentage change in the

number of firms.
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Figure 2: Percentage Changes in Green & Brown Industries in TX over Data Period

While tables 1 and 2 capture some summary statistics concerning the green and brown industries

and figures 1(a)–2(b) depict how the industries have changed over the sample, neither of these

provide any insight into the spatial distribution of the industries across Texas—something that

might be important and help inform our empirical models. To better capture how the green and

brown industries are distributed across the state we constructed maps of the mean number of green

and brown incumbant firms in each county over the 28 data periods and of the mean number of

green and brown entrants for a given county over the 28 periods. Perhaps not surprising, the

major metropolitan areas as such as Dallas, Houston, San Antonio, and Austin, have the highest

concentration of the green and brown industries both in terms of the number of incumbents and the

number of entering establishments, suggesting that firms look to locate in either high population

areas, or areas where other firms are already established. Note, too, that a spatial pattern developed

around these MSAs: the MSA counties have the highest concentration of firms, neighboring counties

appear to have slightly less activity, and rural counties have the lowest absolute number of firms.13

Rather than present these four maps, we present in figure 3 a map depicting for each county the

mean green intensity—a relative measure computed as the number of green firms in a county over

the number of brown firms in a county. For reference, we have labeled the 25 metropolitan statistical

areas (MSAs) defined by the U.S. Census Bureau which are based off population.14 Surprisingly,

some counties have more green firms than brown firms, as indicated by a green intensity greater

13To save space, we have not included these four maps (an incumbent and entry map each for the green and brown
industries), but they are available from the corresponding author upon request.

14We list only the largest city in our labels. For example, the largest MSA in Texas is Dallas–Fort Worth–Arlington
which we have labeled “Dallas” to avoid overlapping labels. This seems consistent with the way the Census Bureau
identifies the areas which is motivated by size considerations and not an alphabetical one; for example, “San Antonio”
corresponds to the MSA “San Antonio–New Braunfels.”
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Figure 3: Average Distribution of Green Firm Intensity

than one. Moreover, a map considering an employment-based measure of the green intensity has

the same qualitative features.

These various slices of our data, as summarized by the tables, figures, and maps above suggest

patterns we investigate in more detail in the next section. However, they also inform us of features

that might be important for our empirical models: first, accounting for both population density and

agglomeration effects will be important; second, there may be spillover effects between neighboring

counties; third, the stylized facts we hope to characterize may be inherently different for MSA

counties than for the State of Texas as a whole. To account for other factors that might be important

in explaining firm entry, employment growth, or firm survival, we complement the QCEW data

described above with data from other sources. Specifically, county-level data as such as population

density, were collected from the U.S. Census Bureau’s Annual Population Estimates. We also

calculated the average quarterly county income by taking the average wages paid in the county for

all establishments reported in our QCEW data. Income seems to be not only a natural attractor

of firm investment, but may be particularly important for green investment and/or employment: if

green goods are normal goods then higher incomes would induce increased demand for green goods

and services. In our empirical models, we investigate whether income has a different effect on the

green industry compared with the brown industry.

In addition to the agglomeration and income effects we’ve formalized, we investigated whether

the presence (and magnitude) of a research center affects the green industry. Having research

universities provides access to expert consultants and allows for, often specialized, funding sources
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which may play a significant role in attracting green industries. For example, Abramovsky et al.

[2007] found evidence that business-sector research and development activity is often located near

university research departments. In order to capture such effects we identified the local presence of

a four year university, junior college, or a research institution. Data on annual university research

and development (R&D) expenditures were obtained from the National Science Foundation.

To account for factor costs, as in Bresnahan and Reiss [1991], we used the yearly median rural

land price in each of 33 land market regions in Texas for the counties comprising the regions

as reported by the Texas A&M Real Estate Center. Given this variable does not change across

quarters and is common to groups of counties, we also included the county-specific property tax

rate. Lastly, as Woodward et al. [2006] suggested, cultural and natural amenities are important to

industrial attraction and skilled workforce retention. As in De Silva and McComb [forthcoming],

we focused on the share of county employment in local cultural and recreational amenities as being

potentially important. This measure was intended to capture the influence of the locality’s urban

amenities on its attractiveness. While natural amenities may be valued, urban amenities are both

more immediate and relevant to day-to-day life for full-time employed individuals. These activities

also reflect the scope of the locality’s amenities for business travelers as well as informal business

and social interaction.

4 Empirical Models & Estimation

While the summary information we’ve presented thus far suggested some similarities between the

green and brown industries, we would like to both identify factors that are important to under-

standing the green industry (and how it differs from the brown industry) and to control for things

that may have changed over our data period and across counties which may have muddled the ef-

fects we are trying to uncover. In this section, we describe formal econometric models we estimated

to better understand if there are inherent differences between the green and brown industries as

well as within the subcategories of the green industry. In the spirit of Dunne et al. [1988, 1989],

our interest is in firm entry, employment growth, and survival. We partition this section into three

subsections corresponding to each of these topics.

4.1 Entry

Firm entry helps promote competition and improve efficiency. An immediate impact of new firms

on a local economy is that they allow for job creation and attracting green investment is particularly

attractive to policymakers concerned with sustainable development. In this subsection, we describe

our investigation into the factors that attract firms in the green industry with particular emphasis

on whether these factors have different effects as compared with the brown industry. To the greatest

possible extent, we used a canonical set of explanatory variables that has appeared in the industrial
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organization and regional economics literatures. There has been interest in both fields in spatial

effects, expressed through agglomeration economies, that attract firms and exhibit a self-reinforcing

tendency to grow. We captured agglomeration effects by computing the number of firms already in

an industry, within a given county at a given time. Since the green industries may be in a relatively

early phase of the industry life-cycle, agglomeration can be particularly important in their location

decisions when proximity to market is not a dominant factor. Thus, where localization leads to

pooling of green labor, facilitation of communication among suppliers, access to intermediate inputs,

and technological spillovers, an existing industry concentration increases the attractiveness of a

locality for an establishment surveying areas in which to locate. Any clustering of green industries

may also be the result of a deeper regional environmental consciousness insofar as it reflects social

receptivity and interest in green activities. While we cannot account explicitly for local attitudes

toward “going green” given our data, we included county fixed effects in our model to help capture

unobserved, county-specific effects that were constant throughout our data period. Likewise, if

these attitudes (or other factors, such as the overall health of the U.S. and Texas economies) are

changing over time but are common to all counties, then we can capture these unobserved effects

by including quarter-specific fixed effects in our model.

To consider factors that affect entry (firm investment), we constructed counts of the number of

firms within each industry (or subcategory) that entered each county in a given quarter and consid-

ered a Poisson model with fixed effects to help control for unobserved heterogeneity. Researchers

who adopt a standard Poisson model assume the dependent variable y is independently distributed

and the distribution of y is a Poisson distribution. A consequence of adopting this assumption is

that it imposes equality between the mean and variance of the dependent variable, conditional on

explanatory variables; i.e., E(y|x) = V(y|x). However, a specification test for overdispersion in our

data rejects the standard Poisson assumption. One alternative would be to use a negative binomial

model where the assumed distribution for the dependent variable exhibits overdispersion. How-

ever, the negative binomial model is only consistent if the conditional distribution of the dependent

variable is in fact negative binomial. Moreover, Guimarães [2008] showed that that the conditional

maximum likelihood estimator of the negative binomial with fixed effects does not necessarily re-

move the individual fixed effects in count panel data. Specifically, this happens only if the number

of groups is at least 1000 with more than 20 periods per group.

In contrast, the Poisson model is very robust in this aspect: regardless of whether the Poisson

distribution holds, a consistent and asymptotically normal estimator can be obtained via quasi-

maximum likelihood (QML) estimation. This is, perhaps, not surprising when comparing this

with the ordinary least squares estimator which shares the consistency and asymptotic normality

properties, regardless of whether the error terms are normally distributed. For the Poisson case,

Gourieroux et al. [1984] showed that a consistent and asymptotically normal estimator can be ob-

tained without specifying the probability density function of disturbances representing specification
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error in the parameter of the Poisson distribution. Likewise, Wooldridge [1999] showed that the

fixed effects Poisson estimator is consistent and asymptotically normal as long as

E(yijt|αj ,xijt;β) = αj exp(x
′
ijtβ)

where, in our case, yijt represents the number of entering firms in industry i, in county j, at time t,

and αj is fixed effect for county j. Furthermore, Wooldridge derived a robust covariance matrix for

the Poisson QML estimator with conditional fixed effects. Thus, given our interest in the effects of

the explanatory variables on the mean response, we estimated a Poisson model by QML.15

While the estimated coefficients obtained from Poisson QML estimation are identical to Poisson

regressions with fixed effects, the standard errors must be adjusted for overdispersion.16 In table 3,

we report results from four models estimated via Poisson QML in which robust standard errors were

clustered by counties. We constructed these models to uncover any differences in the entry behavior

between green and brown firms as well as within the green industry by comparing subcategory entry

patterns. To investigate potential differences we considered two samples: a full sample involving all

counties in the State of Texas and a restricted sample involving only counties that are considered to

be part of a Texas MSA. This restriction is motivated by an observation that most entry occurred

around population centers. In all models, we included as conditioning variables measures of county

income, agglomeration within a county—computed as the number of like firms already present in

the county of a certain type (green, brown, or belonging to a specific category), agglomeration in

neighboring (contiguous) counties, university and junior college funding for each county, the county

unemployment rate, the population density of the county, the rural land price for the market region

to which the county belongs, as well as county and time fixed effects to account for county-level

and time-specific unobserved heterogeneity.17 In table A.1 in the appendix we describe formally

how these variables were constructed.

The four models in table 3 are distinguished by the comparison (green versus brown industries

or a intra-green industry comparison) or by the sample (full sample versus the counties comprising

the Texas MSAs). An initial comparison of the entry behavior between green to brown firms might

consider whether, conditional on all other covariates, the average number of entrants (captured by a

green dummy variable) suggests differences. Both samples indicate there is no significant difference

in the likelihood of green and brown firms entering a county, all else equal. Note too, that income

effects are not important in attracting new firms in any of our models. The most important factors

15Cameron and Trivedi [2005] described and compared methods for estimating cross-sectional count data models
in Chapter 20 of their book.

16Simcoe [2007] provided an implementation of the Poisson QML model with conditional fixed effects suggested by
Wooldridge [1999].

17In explaining entry, all right-hand side variables were lagged by a quarter to reflect the county environment at
the time each new firm entered. As such, we had to throw out the first period of data as lagged variables are not
available for the entry counts in the first data period.
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Table 3: Poisson QML Estimation Results Concerning the Number of Entrants

Variable All Counties MSA Counties
Gr. vs. Br. Gr. Subcats. Gr. vs. Br. Gr. Subcats.

(1) (2) (3) (4)
Green industry -.451 (.564) -.022 (.658)
CAT1 2.129 (1.581) 2.974* (1.720)
CAT2 1.937* (1.011) 2.076** (1.055)
CAT3 2.157** (.939) 2.275** (1.027)
CAT4 2.111 (1.708) 1.339 (1.785)
Log (income)j,t−1 -.252 (.155) -.080 (.219) -.200 (.219) -.009 (.2597)
Log (income)j,t−1×Green industry .042 (.071) .003 (.082)
Log (income)j,t−1×CAT1 -.174 (.192) -.290 (.208)
Log (income)j,t−1×CAT2 -.088 (.124) -.105 (.133)
Log (income)j,t−1×CAT3 -.137 (.115) -.149 (.129)
Log (income)j,t−1×CAT4 -.190 (.208) -.117 (.217)
Log (agglomeration)i,j,t−1 .753** (.044) .734** (.050) .730** (.053) .743** (.067)
Log (agglomeration)i,j,t−1×Green industry -.006 (.010) -.016 (.009)
Log (agglomeration)i,j,t−1×CAT1 -.102* (.044) -.106** (.047)
Log (agglomeration)i,j,t−1×CAT2 -.078* (.036) -.077* (.043)
Log (agglomeration)i,j,t−1×CAT3 -.058* (.035) -.062 (.044)
Log (agglomeration)i,j,t−1×CAT4 -.093 (.058) -.049 (.071)
Log (agglomeration in neighbors)i,j,t−1 .024 (.029) .075 (.052) .090 (.057) -.011 (.064)
Log (agglomeration in neighbors)i,j,t−1×Green industry -.013 (.012) -.007 (.013)
Log (agglomeration in neighbors)i,j,t−1×CAT1 .044 (.037) .067* (.039)
Log (agglomeration in neighbors)i,j,t−1×CAT2 .005 (.036) .014 (.043)
Log (agglomeration in neighbors)i,j,t−1×CAT3 .008 (.035) .016 (.042)
Log (agglomeration in neighbors)i,j,t−1×CAT4 .051 (.044) .022 (.051)
Log (college funds)j,t−1 .003 (.002) .004 (.003) .003 (.002) .004 (.003)
Log (junior college funds)j,t−1 .000 (.001) -.000 (.001) .000 (.001) .000 (.001)
Unemployment ratej,t−1 -.005 (.009) -.037** (.014) -.021** (.010) -.062** (.014)
Log (population density)j,t−1 .416** (.127) .311* (.172) .365** (.173) .333 (.210)
Property tax rate j,t−1 -.056 (.172) .100 (.221) .063 (.239) -.043 (.289)
Log (rural land price)j,t−1 .029 (.025) .014 (.050) .004 (.030) -.007 (.051)
Amenities employment ratioj,t−1 .663 (.633) .886 (.826) 1.134 (1.128) 1.237 (1.362)
County effects Yes Yes Yes Yes
Time effects Yes Yes Yes Yes

Number Obs. 13716 34290 4266 10665
Wald χ2 123347.99 66454.89 11196.90 60670.22

** Denotes statistical significance at the 5% level and * denotes statistical significance at the 10% level.

Robust standard errors are in parentheses.
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in explaining firm entry are agglomeration and population density. For example, the incidence rate

ratio calculated using the agglomeration variable in model (1) is 2.12, suggesting that a one percent

increase in agglomeration attracts about two new entrants per county per quarter, although the

effect is not significantly different for the green industry. This is consistent with List [2001] (as well

as others cited in our introduction) who found that agglomeration is the primary factor in driving

firm entry. Overall, the Poisson QML estimation results suggest no difference between green and

brown entry patterns.18

If the sample of observations is restricted to only green entrants, we can investigate whether

entry patterns differ across subcategories. Here our benchmark is CAT5, which we omitted. Entry

is more common in CAT1, CAT2, and CAT3, all else equal, as shown by the subcategory dummy

variables. These subcategories have slightly lower agglomeration effects, although the total effects

from agglomeration are still positive and significant; however, like the green-brown comparison, the

agglomeration effects do not seem to cross county borders as agglomeration in contiguous counties is

not important in explaining firm entry. We also do not find evidence of knowledge spillovers (beyond

that captured by the agglomeration variables) as measured by our research funding variables.

4.2 Employment Growth

To evaluate whether there are differences in the growth of the green and brown industries (or be-

tween subcategories within the green industry), we considered a simple regression model to try and

explain the percentage change in industry (subcategory) employment of the counties. Specifically,

in comparing the green and brown industries, we estimated the following model by ordinary least

squares:

log (Eijt + 1) = x′
jtβ + εijt

where the error term consists of independent shocks

εijt = αi + γj ++θt + uijt.

We account for industry-specific unobserved heterogeneity αi, county-specific unobserved hetero-

geneity γj , and time-specific unobserved heterogeneity θt, by including industry, county, and time

fixed effects. The uijt represents idiosyncratic error accounting for unobserved factors that change

over time and across industries as well as counties. In our notation, Eijt denotes total employment

in industry i, in county j, during period t. For our intra-green industry subcategory analysis we

use the same model but Eijt is employment in subcategory i for a county in a given quarter.

18We also considered estimation of the models based on only the green industries and only the brown industries
(which have the advantage of essentially interacting the green dummy variable with each of the covariates) which
would be analogous to the approach taken by List and Co [2000]. Results are very similar but harder to interpret
given the sample changes across model runs—this is particularly relevant for comparing the subcategory estimates
to those of the green industry as a whole. These results are available from the corresponding author upon request.
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Table 4: Linear Regression Results for the Log of Industry Employment

Variable All Counties MSA Counties
Gr. vs. Br. Gr. Subcats, Gr. vs. Br. Gr. Subcats.

(1) (2) (3) (4)
Green industry -5.275*** (.293) -3.398*** (.342)
CAT1 1.689** (.621) -4.459*** (.844)
CAT2 -2.216*** (.563) -6.089*** (.741)
CAT3 -1.121** (.532) -6.358*** (.747)
CAT4 -1.108** (.530) -2.895*** (.723)
Log (income)j,t−1 -.185** (.061) -.196** (.079) -.167 (.095) -.656*** (.156)
Log (income)j,t−1×Green industry .467*** (.036) .230*** (.041)
Log (income)j,t−1×CAT1 -.098 (.074) .595*** (.102)
Log (income)j,t−1×CAT2 .380*** (.067) .852*** (.090)
Log (income)j,t−1×CAT3 .231*** (.064) .884*** (.091)
Log (income)j,t−1×CAT4 .219*** (.064) .384*** (.088)
Log (agglomeration)i,j,t−1 .799*** (.016) 1.515*** (.017) .975*** (.039) 1.336*** (.035)
Log (agglomeration)i,j,t−1×Green industry .088*** (.006) .211*** (.010)
Log (agglomeration)i,j,t−1×CAT1 -.207*** (.013) -.181*** (.018)
Log (agglomeration)i,j,t−1×CAT2 -.341*** (.012) -.304*** (.016)
Log (agglomeration)i,j,t−1×CAT3 -.295*** (.011) -.292*** (.016)
Log (agglomeration)i,j,t−1×CAT4 -.327*** (.015) -.225*** (.019)
Log (agglomeration in neighbors)i,j,t−1 -.022* (.011) -.057*** (.013) -.200*** (.034) -.126*** (.033)
Log (agglomeration in neighbors)i,j,t−1×Green industry -.008 (.005) -.087*** (.008)
Log (agglomeration in neighbors)i,j,t−1×CAT1 .031** (.011) .006 (.016)
Log (agglomeration in neighbors)i,j,t−1×CAT2 .032** (.010) .004 (.013)
Log (agglomeration in neighbors)i,j,t−1×CAT3 .030** (.009) -.012 (.013)
Log (agglomeration in neighbors)i,j,t−1×CAT4 .060*** (.012) .038** (.017)
Log (college funds)j,t−1 .000 (.003) -.003 (.003) .001 (.002) -.000 (.000)
Log (junior college funds)j,t−1 -.001 (.001) -.002 (.002) -.001 (.001) -.002 (.001)
Log (population density)j,t -.151* (.082) -.126 (.089) -.215** (.107) -.012* (.131)
Property tax rate j,t .011 (.061) .035 (.072) .166 (.132) .214 (.168)
Log (rural land price)j,t -.039 (.025) -.035 (.030) .021 (.032) -.026 (.040)
Amenities employment ratioj,t−1 -.385** (.173) .074 (.210) -.438 (.412)) -.027 (.576)
County effects Yes Yes Yes Yes
Time effects Yes Yes Yes Yes

Number Obs. 14224 35560 4424 11060
Adj. R2 .975 .921 .989 .952

*** Denotes statistical significance at the 1% level, ** denotes statistical significance at the 5% level, and * denotes statistical significance at the 10% level.

Robust clustered standard errors are in parentheses.
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In table 4, we present results from estimation of these linear regression models. Because the

full and restricted sample results are at least qualitatively similar, we interpret the results in a way

that applies to both columns (1) and (3) of the table. The employment growth within a county is

higher for brown industries, all else equal—the BLS Green coefficient suggests that the percentage

change in employment in green industries will be 5.275% less than that of the brown counterpart.

Higher incomes lead to a negative effect (a decrease) in brown employment, while the trend is

reversed for green employment, perhaps offering some (indirect) justification for assumption that

green goods and services are normal goods—as is often maintained in the environmental economics

literature. Agglomeration effects help increase growth in industry employment and the effect on

green industries is slightly higher (and significant). These results are consistent with the findings of

Glaeser et al. [1992], Henderson et al. [1995], as well as Combes [2000]. A high population density

in a county leads to decrease in the growth of industry employment.19

The intra-green industry analysis suggests that employment growth is significantly lower in

most green categories, relative to CAT5 (the omitted subcategory), conditional on the exogenous

variables included in our model (the coefficient on the CAT1 dummy variable is positive in the full

sample model (2) and negative in the restricted sample model (4)). Agglomeration effects are also

important in explaining employment growth in the green subcategories and, although the effect is

most important for CAT5, all agglomeration effects are positive and statistically significant. The

agglomeration effects presented in table 3, which suggested that new firms are attracted to counties

with many incumbent firms, serves to compound these effects.

4.3 Firm Survival

Finally we examined the survival of green and brown establishments using a proportional hazard

model as proposed by Cox [1972]. Specifically, we observe the start date for each firm in our

sample and infer firm exit as a disappearance of an EIN across consecutive quarters. In doing this

we construct a sample of measured durations representing the time until a firm exits the market.

Consider modeling the conditional probability that firm ℓ, competing in industry i and located in

county j, exits the market at time t as

λ(t|xℓijt;β) = exp(x′
ℓijtβ)λ0(t)

19We considered alternative formulations, including models with the logarithm of industry (subcategory) employ-
ment as the dependent variable and the logarithm of total (green industry) employment as an explanatory variable
(the assumption being that green or brown employment differ from the trend in total employment), or models in
which we tried to explain variation in the share of industry employment in the green and brown industries (within
the green industry for the subcategory analysis) although the models had qualitatively similar estimation results;
however, the interpretation of the coefficients differs and is more complicated given our interest in employment growth
and not changes in the composition of employment which may “improve” even though employment is decreasing.
These results are available from the corresponding author upon request.
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where λ(t|xℓijt;β) is the conditional hazard rate and λ0(·) is an unspecified baseline hazard function.

In describing the Cox regression model, we have made a common parametric assumption that the

durations follow an exponential (or, more generally a Weibull) distribution.20

As in Audretsch and Mahmood [1995], we restrict attention to all non-censored episodes of

single birth-death transitions and allow the covariate matrix X to vary with time. The covariate

matrix and can be divided into three groups comprising firm-level, county-level, and market-level

characteristics. Firm-level covariates are the green or brown classification (or green subcategory in

the intra-green industry analysis), a set of dummy variables to identify new firms and firms with

past experience, the establishment’s age, current average wage and relative employment compared

to the county green or brown total employment. County-level variables are the agglomeration

variables (within a county and considering neighboring counties), the level of university and junior

college funding, population density, property tax rate, rural land price, and the amenities ratio. We

also included county fixed effects as well as time fixed effects to capture market-level fluctuations.

We present the results from estimating these survival models, in the same format as our earlier

estimation results, in table 5. The green-brown comparison results are, for the most part, robust to

the sample definition, as can be seen by comparing columns (1) and (3). In interpreting the results,

a positive (negative) coefficient indicates that the factor contributes to firms having a lower (higher)

survival rate, all else equal. Thus, compared to brown industries, survival rates are lower for green

industries—the failure rate of green firms is exp(0.117) = 1.124 which is 12.4% higher than than

of brown firms. Similar patterns can be observed for new firms (although being a new green firm

does not have any additional significant disadvantage), counties with high unemployment rates,

population densities, property tax rates, and rural land prices. Consistent with Dunne et al. [2005],

firms with past experience survive longer and it seems experienced green firms are even more likely

to remain in business. High wage rates are correlated with firm survival, and even more so for green

firms. Firm agglomeration within a county is again important in explaining firm survival. The older

a firm is, the more likely it is to survive and the employment ratio, which captures the size of the

establishment relative to like firms in the county, indicate that larger firms survive longer.

Within the green industry, the subcategory analysis suggest mixed results which are again

consistent across the different samples (which can be seen by comparing columns (2) and (4)).

Relative to CAT5 firms, CAT1 firms are more likely to survive while CAT2 and CAT4 firms are

less likely (conditional on all other variables). The subcategory-specific effects of being a new firm,

being an experienced firm, having higher wages, and having other like firms in the industry are

mixed (many of the interaction effects are small in magnitude relative to the respective total—

uninteracted effect of interest or are insignificant) although the effects of these variables overall

(without the interaction) are consistent with the green-brown comparison.

20The approach developed by Cox [1972] is semiparametric given that the baseline hazard is “conditioned out” in
estimation and need not be estimated (and thus does not require parameterization).
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Table 5: Proportional Hazard Model Estimates

Variable All Counties MSA Counties
Gr. vs. Br. Gr. Subcats. Gr. vs. Br. Gr. Subcats.

(1) (2) (3) (4)
Green industry .117** (.037) .153** (.041)
CAT1 -.354** (.116) -.383** (.132)
CAT2 .320** (.079) .312** (.085)
CAT3 -.032 (.076) -.019 (.083)
CAT4 .302** (.100) .230* (.123)
New firm .558** (.006) .466** (.015) .550** (.006) .471** (.016)
New firm× Green industry .003 (.007) .012 (.007)
New firm×CAT1 -.009 (.019) -.030 (.021)
New firm×CAT2 .060** (.013) .046** (.014)
New firm×CAT3 .071** (.013) .065** (.013)
New firm×CAT4 -.088** (.018) -.052** (.021)
Firms with past experience -.102** (.003) -.104** (.010) -.102** (.003) -.104** (.011)
Firms with past experience×Green industry -.049** (.007) -.048** (.007)
Firms with past experience×CAT1 -.012 (.019) -.009 (.021)
Firms with past experience×CAT2 -.063** (.013) -.059** (.014)
Firms with past experience×CAT3 -.025** (.013) -.021 (.013)
Firms with past experience×CAT4 .028** (.017) .026 (.020)
Log (wage)ℓ,t -.032** (.002) -.035** (.007) -.032** (.002) -.038** (.007)
Log (wage)ℓ,t× Green industry -.014** (.004) -.018** (.005)
Log (wage)ℓ,t×CAT1 .047** (.013) .049** (.015)
Log (wage)ℓ,t×CAT2 -.034** (.009) -.032** (.009)
Log (wage)ℓ,t×CAT3 .004 (.009) .001 (.009)
Log (wage)ℓ,t×CAT4 -.040** (.011) -.035** (.014)
Log (agglomeration)i,j,t−1 -.054** (.003) -.067** (.009) -.064** (..003) -.086** (.010)
Log (agglomeration)i,j,t−1×Green industry -.003 (.006) -.008 (.006)
Log (agglomeration)i,j,t−1×CAT1 -.056** (.017) -.056** (.020)
Log (agglomeration)i,j,t−1×CAT2 .005 (.011) .007 (.012)
Log (agglomeration)i,j,t−1×CAT3 .022** (.010) .022* (.011)
Log (agglomeration)i,j,t−1×CAT4 .016 (.015) .028 (.018)
Log (agglomeration in neighbors)i,j,t−1 .043** (.003) .049** (.009) -.140** (.030) .063** (.010)
Log (agglomeration in neighbors)i,j,t−1×Green industry .006 (.005) -.010** (.006)
Log (agglomeration in neighbors)i,j,t−1×CAT1 .028* (.016) .029 (.019)
Log (agglomeration in neighbors)i,j,t−1×CAT2 .002 (.010) .002 (.011)
Log (agglomeration in neighbors)i,j,t−1×CAT3 -.013 (.010) -.010 (.011)
Log (agglomeration in neighbors)i,j,t−1×CAT4 -.002 (.014) -.009 (.017)
Log (age)ℓ,t -.420** (.002) -.429** (.005) -.424** (.002) -.434** (.005)
Employment ratioℓ,t -.107** (.005) -.093** (.011) -.140** (.006) -.119** (.012)
Log (college funds)j,t−1 -.008** (.000) -.007** (.001) -.010** (.000) -.009** (.001)
Log (junior college funds)j,t−1 -.001* (.000) .001 (.001) -.000 (.000) .001 (.001)
Unemployment ratej,t−1 .005** (.001) .008** (.002) .006** (.000) .009** (.002)
Log (population density)j,t−1 .004** (.002) .006* (.004) .020** (.003) .019** (.005)
Property tax rate j,t−1 .060** (.014) .056** (.027) .009 (.017) -.087** (.034)
Log (rural land price)j,t−1 .190** (.003) .179** (.005) .229** (.003) .224** (.007)

Number Obs. 599818 143610 521173 122051
Wald χ2 188405.44 43416.69 171004.15 39213.27

** Denotes statistical significance at the 5% level and * denotes statistical significance at the 10% level.

Robust clustered standard errors are in parentheses.
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5 Characterizing Green Specialization

To provide further insight in the green economy within the State of Texas, we focused on the five

subcategories and considered which locations seem suited to specialize in each subcategory given

our data. To identify these comparative advantages, we calculated subcategory location quotients

for each county and for each period in our data. Specifically, define

LQijt =

(

Eijt

Ejt

)/(

Eit

Et

)

where we denote subcategory i employment in county j during period t as Eijt and somewhat abuse

subscripts in our use—dropping the i subscript represents all green employment in county j during

period t (Ejt), while dropping the j subscript represents total subcategory i employment throughout

Texas during period t (Eit), and dropping both the i and j subscript denotes all green employment

in the state during period t. Location quotients are often used to compare the economy of one

region to that of some benchmark economy (which typically encompasses the regional economy).

In our case, we compare the share of green employment in each subcategory to that share of the

state’s green employment working in that subcategory. To summarize these measures in a concise

way, we compute a simple average over the data periods as

LQij =
1

T

T
∑

t=1

LQijt

and interpret this as county j’s location quotient in subcategory i. A value of one suggests that the

employment share is exactly in line with that of the state employment mix (on average). Location

quotients are often used to characterize whether a region is an exporter (importer) of the product

produced in a given industry based on whether its value is sufficiently greater (less) than one. It

is in this sense that we appeal to location quotients to help identify which counties might have a

comparative advantage in certain green tasks.

In figure 4, we depict a map of the State of Texas in which we have shaded each county one of

five colors. The colors correspond to the five green subcategories and the color choice was made

by selecting the maximum of each county’s LQij values; i.e., max
{

LQ1j ,LQ2j ,LQ3j ,LQ4j ,LQ5j

}

.

Clear patterns arise that are consistent with what a state planner might suggest: counties with

large wind farms (such as Nolan and Upton counties—denoted in the map by the Abilene and

Odessa MSAs, respectively) specialize in CAT1; population-dense counties (such as those around

major metropolitan areas—in particular, the Dallas–Fort Worth area) often specialize in CAT2

which primarily concerns LEED-certified or LEED-eligible buildings or construction; the activities

in CAT3 seem more diverse and hence there is more variation in the driving factors leading to

specialization within this green subcategory; cattle production accounts for nearly half of the state’s
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Figure 4: Maximum of Subcategory Location Quotient Averaged over Periods

cash receipts for agricultural commodities and the state’s three largest cattle-producing counties

(Deaf Smith and Castro counties—denoted in the map by the areas around the Amarillo MSA) as

well as most rural counties (most of West Texas) all specialize in CAT4 which encompasses NAICS

codes concerning organic meat and produce; counties containing colleges and universities (such as

the University of Texas in Travis County—denoted by the Austin MSA, Texas A&M University

in Brazos County—denoted by the College Station MSA, and Texas Tech University in Lubbock

County—denoted by the Lubbock MSA) often specialize in CAT5.

6 Conclusion

We took as given the BLS definition of the green industries and compared features of these industries

to that of all other (brown) industries over a data period that took place before the definition was

developed and within the State of Texas. In general, we find little evidence that the the factors that

encourage entry, growth, or exit are inherently different for green and brown industries. Although

there are some specific effects that can be highlighted (for example, income effects are important for

employment growth in green, but not brown, industries), agglomeration within a county seems to

be the primary factor in attracting, growing, and retaining the green industries. Within the green

industry, our subcategory analysis highlights more distinctions across the types of green activities.

A caveat of taking the BLS definition as given is that the green versus brown industries may involve

too much aggregation, although there is little we can do to address this without challenging the
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stance taken on specific NAICS codes that comprises the BLS definition. The definition, however,

provides as much detail as can be hoped for under NAICS (six digits are the finest level of detail

that NAICS allows).

Our investigation of the non-policy factors that affect the green industry cannot speak to the

efficacy of various policies designed to attract such firms. For example, Palmer and Burtraw [2005]

compared policies aimed at increasing the contribution of renewables to the total U.S. electricity

supply. It would be interesting to investigate if these policies (such as production tax credits, renew-

able portfolio standards, cap-and-trade policies, etc.) are successful in attracting firm investment

and growing green industries relative to the non-policy factors we’ve investigated. In some sense,

our results offer two potential interpretations: first, attracting green investment is no different than

attracting non-green investment; alternatively, attracting just a little bit of green investment can

pay large dividends in that agglomeration effects can obtain in proliferating the green industry.

Our initial characterization of the green industry was restricted to an area in which policy differ-

entials were nonexistent which prevents us from distinguishing between these two interpretations.

However, one could leverage variation in policies across states (in either a subnational, or inter-

national evaluation, given most environmental policies are set at the federal level) to consider the

costs and benefits of policies aimed at encouraging sustainable development. Such policy-specific

research would provide a valuable contribution in complementing our general analysis. Evaluating

such policies could consider the effects on individual industries, one of the green subcateogries, or

the green industry as a whole and can consider analysis across regions, states, or countries. Given

our findings suggest that green and brown industries do not respond in drastically different ways to

non-policy factors, this may suggest a role for policymakers hoping to stimulate green investment

and growth.
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A Data Appendix

As we discussed in describing the data we used in our research, one difficulty we faced concerned

the mapping between the 2002 NAICS codes which characterize the QCEW data and the 2007

NAICS codes which were used by the BLS to define the green categories. To identify the green

categories in the 2002 NAICS classification we used the concordances provided by the U.S. Census

Bureau—see footnote 10. We were forced to drop seven 2002 NAICS industries which appear to

be extinct—none of the industries had any new firms enter over our sample period and are not

listed in the concordances.21 In situations where one 2002 NAICS code corresponded with multiple

2007 NAICS codes, we specified the industry as green if and only if all 2007 NAICS codes were

defined to be green. In this sense our definition of the green industry is slightly more conservative

than the definition intended by the BLS. Specifically, because of this reason we were forced to drop

eleven 2002 NAICS codes due to conflicts in the way the corresponding 2007 NAICS codes were

classified—at least one 2007 NAICS code was defined as green while at least one other code was

considered non-green.22 A related issue concerned defining which 2002 NAICS sectors comprised

the green category variables. For instances in which a 2002 NAICS code mapped to multiple 2007

NAICS codes, we assigned the set of all the 2007 NAICS subcategories to the 2002 NAICS code. For

example, 2002 NAICS code 235710 is associated with 2007 NAICS codes 238991, 238992, 238111,

and 238112, which are all considered green industries under the BLS definition. Industries 238111

and 238112 are considered part of CAT2 and all four industries are considered part of CAT3 and

CAT4 under the BLS definition. Thus, we defined the 2002 NAICS code 235710 which encompasses

these four 2007 NAICS sectors to be part of CAT2, CAT3, and CAT4.

In table A.1, we describe the covariates used in the models we considered.

21Specifically, we dropped the 2002 NAICS codes 239891, 502362, 505221, 505411, 505413, 508141, and 513330.
22For this reason, we had to drop 2002 NAICS codes 234120, 234910, 234930, 235210, 315211, 315212, 326291,

326299, 339111, 421930, and 514199.
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Table A.1: Conditioning Variables

Variable Description
BLS Green An indicator variable corresponding to whether the observation relates to the green

(= 1) or brown (= 0) industry.
CAT1 An indicator variable corresponding to whether the observation was identified as re-

lating to “renewable energy” (= 1) or not (= 0).
CAT2 An indicator variable corresponding to whether the observation was identified as re-

lating to “energy efficiency” (= 1) or not (= 0).
CAT3 An indicator variable corresponding to whether the observation was identified as re-

lating to “pollution abatement and/or recycling” (= 1) or not (= 0).
CAT4 An indicator variable corresponding to whether the observation was identified as re-

lating to “natural resource conservation” (= 1) or not (= 0).
CAT5 An indicator variable corresponding to whether the observation was identified as re-

lating to “environmental compliance, training, and awareness” (= 1) or not (= 0).
Income Average wages per quarter paid in the county for all establishments as reported in

QCEW data.
Agglomeration The number of like firms already present in the county of a certain type (i.e., green,

brown, or belonging to a specific category.)
Agglomeration in neigh-
bors

Analogous to agglomeration, but considers like firms in all contingent counties for a
given (base) county.

College funds University and research center R&D expenditures reported by the NSF. The annual
NSF data actually span two calendar years. To convert these annual R&D expenditures
into quarterly data, we used a fourth of a given year’s total for Q1–Q3 (each), and a
fourth of the given year’s total for Q4 of the previous calendar year (as the federal fiscal
year begins in October). Although the NSF provides research funding by institution
and is identified by granting agency (i.e., DoE, EPA, DoD, etc.) we aggregated total
federal awards by geographically distinct institutions (i.e., system campuses are scored
separately) to compute a measure of R&D at the county level.

Junior college funds The same as college funds, but R&D expenditures by junior colleges within a county
for a given quarter.

Unemployment rate The county-specific, seasonally unadjusted, end-of-quarter unemployment rate.
Population density County-estimated annual population density from U.S. Census.
Property tax rate Annual county property tax rate.
Rural land price The yearly, median rural land price in each of 33 land market regions in Texas for the

counties comprising the region, as reported by the Texas A&M Real Estate Center.
Amenities employment ra-
tio

The share of county employment in NAICS 71, (arts, entertainment, and recreation),
NAICS 721110 (hotels and motels), 722110 (full service restaurants), and 722410
(drinking places, alcoholic beverages) as reported in the QCEW data. The NAICS
72 activities also reflect the scope of the locality’s amenities for business travelers as
well as informal business and social interaction.

Age The number of months that have passed since the firm’s start date.
New firm Firms that are three years old or younger (have an age of no more than 36 months).
Firms with past experience Firms that have a prior existing EIN and were later reassigned; for example, if the

establishment changed hands or if a partnership was broken up. We do not observe
the reason for the change.

Wage Establishment-level quarterly average wage which was calculated by dividing the quar-
terly wage bill for the establishment by its average number of employees for that
quarter.

Employment ratio The firm’s current employment as a share of total industry (or subcategory) employ-
ment within a county for a given quarter.
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