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Abstract: The aim of the paper is to develop a discrete time version of a one-sector optimal 

growth model with endogenous time preference. The intertemporal discount rate is 

determined by social factors (i.e., factors that are external to the individual agent), namely 

the economy wide levels of consumption and income. In continuous time, the combined 

effect of the previous factors is known to eventually produce local indeterminacy, instead of 

the well known saddle-path equilibrium of the standard Ramsey model. In discrete time, the 

possibility of local indeterminacy is explored under several types of Ramsey models with 

endogenous time preference: neo-classical and endogenous growth models, and models 

with production externalities and endogenous labor supply. Besides finding various 

possibilities regarding local dynamics, we also find that one of the models can give place to 

endogenous fluctuations, although this occurs only under rather exceptional circumstances. 
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1. Introduction 

 

The Ramsey growth model constitutes a fundamental tool regarding the analysis 

of material accumulation and of patterns of consumption over time. It is sufficiently 

flexible to explain different patterns of growth, arising from distinct technological 

conditions, different patterns of preferences or different assumptions regarding the 

shape of the production function, the economic properties attached to its inputs or the 

way one understands capital depreciation and obsolescence. One of the factors that 

exerts influence over the outcome of the growth model is the kind of rate of time 

preference one considers. Typically, economists have almost always adopted a constant 

rate of time preference. This is more the result of an analytical convenience than an 

assumption with strong empirical support.  

For instance, Boyarchenko and Levendorskii (2005) identify a set of anomalies 

attached to the notion of a constant discount rate; these problems are the following: first, 

there is evidence that, in reality, the discounting is hyperbolic, i.e., the instantaneous 

discount rate decreases with time or, in other words, individuals discount over short 

horizons at a higher rate than over long horizons [some models that explore dynamic 

choices under hyperbolic discounting include Laibson (1997), Barro (1999) and 

O’Donoghue and Rabin (1999), just to cite a few]. Second, a sign effect is plausible to 

occur, i.e., it is likely to have gains discounted more strongly than losses; arguments in 

favour of this evidence are found in work concerning the psychology of decisions as it 

is the case of Kahneman and Tversky (1979) and Kahneman (2003). Third, a delay-

speedup asymmetry, relating to the idea that if a change of the delivery time of an 

outcome is perceived as a acceleration from some reference point, then the discount rate 

is larger than if the change is perceived as a delay, relatively to that reference point. 

Fourth, it is possible to imagine a negative discounting for losses, since many times the 

agent prefers to expedite payments or other losses. Fifth, there is clearly, in practice, a 

magnitude effect, in the sense that small outcomes are more strongly discounted when 

compared with large outcomes. Finally, there is a stronger preference, or a higher 

impatience, regarding improving sequences. A detailed discussion concerning the 

previous effects over the representative agent discounting of future outcomes can be 

found in Frederick, Loewenstein and Donoghue (2002).  

The above paragraph elucidates about the great variety of forces involving the 

subjective choice of a discount rate or rate of time preference. It also allows to perceive 

that, certainly, many of the forces that influence such choice are endogenous both to the 
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representative individual relatively to which some economic problem is stated and 

solved, but also to the economic system as a whole. In the model to develop below, 

some of these influences are assumed; specifically, we will focus on the economy wide 

determinants of the individual rate of intertemporal preference. 

Basically, in the literature, two candidates for explaining the rate of time 

preference as endogenous are normally taken. In the tradition of Uzawa (1968) and 

Epstein (1987), these are the level of consumption and the level of income. The main 

assumptions tend to be synchronized with the empirical evidence, that is, rising 

consumption levels tend to imply rising impatience (a higher discount rate), while rising 

income tends to generate more patient individuals (a lower discount rate).  

In this paper, we will follow closely the work by Meng (2006), who develops a 

model of endogenous time preference where the factors affecting the individual 

discount rate are the economy wide aggregate levels of consumption and income. The 

influence of individual levels of consumption and income is overlooked, and only 

aggregate levels are considered. The influence of such factors has been also thoroughly 

documented in the literature [see the references in Meng (2006)] and it comes from 

logical arguments: a jealousy effect explains the presence of aggregate consumption as a 

determinant of the time preference (higher consumption levels in society imply 

increasing impatience), while the economy’s income positive impact over patience is 

meaningful under the idea that a wealthier society produces less impatient individuals 

(in what concerns the timing of consumption). 

As stated, we develop the same model as Meng (2006), including the two 

variations he considers (technological externalities and endogenous labor supply), in 

discrete time. This analysis is relevant if one wants to confirm if the local indeterminacy 

result of the continuous time setup continues to hold when one changes the assumed 

notion of time. We find that, under neo-classical growth, local indeterminacy is a 

possible stability outcome, but we cannot exclude the presence of saddle-path stability 

or instability, depending on the specific values of parameters. We also analyze simple 

one sector endogenous growth models with endogenous time preference, and conclude 

that, under the chosen specification, the system will rest always over a bifurcation line 

and, hence, local indeterminacy is ruled out.  

Relatively to the two extensions, an endogenous labor supply – endogenous 

growth specification does not allow for finding local indeterminacy for reasonable 

parameter values, while the model with production externalities, besides reintroducing 

the possibility of indeterminacy, is the only one capable of displaying endogenous 
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fluctuations. These fluctuations are triggered by a flip bifurcation that generates a period 

doubling process that culminates in the presence of chaotic motion. Such outcome is 

rare, occurring only for extreme values of parameters; nevertheless, we cannot exclude 

it, and thus we add a new candidate explanation for the possibility of endogenous 

business cycles, alongside with the ones already explored in the literature: increasing 

returns / production externalities with a constant discount rate [Christiano and Harrison 

(1999), Schmitt-Grohé (2000), Guo and Lansing (2002)], learning [Cellarier (2006)] or 

financial development [Caballé, Jarque and Michetti (2006)], just to cite some of the 

most meaningful.  

To be precise, the eventual presence of endogenous business cycles under an 

endogenously determined rate of time preference is not a completely new result; 

Drugeon (1998) assumes an endogenous time preference rate that depends both on the 

individual level of consumption and the aggregate level of consumption. His findings 

point to the presence of ‘sustained oscillation motion’, that is, endogenous fluctuations. 

Our model adds the result of endogenous cycles in a setup where time preference is 

exclusively determined by economy wide factors. 

The remainder of the paper is organized in the following sequence. Section 2 

describes the model. Section 3 explores its main local stability conditions under neo-

classical growth. Section 4 studies stability conditions under endogenous growth. In 

sections 5 and 6, two variations of the model are analyzed: a production externalities / 

increasing returns framework and an endogenous leisure - endogenous growth setup. 

Section 7 is destined to a brief remark about global dynamics and the presence of 

endogenous cycles in one of the models. Section 8 concludes.    

 

2. Meng’s Model in Discrete Time 

 

The benchmark model to consider is a discrete time version of the continuous time 

growth model with socially determined time preference developed in Meng (2006). 

Consider an economy where a representative agent intends to maximize a sequence of 

utility functions from the present time moment, t=0, to infinity, t→∞. This sequence of 

utility functions is presented as follows, 

 

∑ ∏
+∞

= = 














⋅=
0 0

0 ),()(
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t
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vvt YCcUU β  (1) 
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In equation (1), ct≥0 represents the agent’s real consumption at moment t, U(ct) is 

the consumption utility function, β(Cv,Yv) respects to the discount factor, and Cv and Yv 

are, respectively, the economy wide average levels of consumption and income at time 

v. These two variables are standard (or average) values determined by the whole society 

and that serve as a reference for the individual agent in setting up her degree of 

impatience regarding consumption (i.e., her intertemporal discount rate). We will use 

interchangeably the terms discount rate and rate of time preference; these are not 

necessarily the same when endogenous discounting is assumed, but according to Meng 

(2006) they coincide when the discount rate is determined solely by economy wide 

factors. 

A conventional CIES utility function is assumed, i.e., )1/()1()(
1 θθ −−= −

tt ccU , 

with }1/{),0( +∞∈θ  the inverse of the elasticity of intertemporal substitution. This 

function fulfils the main requirements concerning consumption utility stylized facts, i.e., 

marginal utility is positive (U’>0) but diminishing (U’’<0). 

The resource constraint is a trivial one. We just consider a capital accumulation 

equation, where kt≥0 represents the stock of capital and δ≥0 is the depreciation rate: 

 

tttt kcyk ⋅−+−=+ )1(1 δ , k0 given (2) 

 

Variable yt≥0 corresponds to the representative agent’s level of income. Income 

respects to output as given by a conventional neo-classical production function, yt=f(kt). 

Function f exhibits positive and decreasing marginal returns (f’>0, f’’<0), and, for the 

analytical treatment of the model, we just take a Cobb-Douglas functional form, 

α
tt kAy ⋅= , with A>0 the technological level and α∈ (0,1) the output-capital elasticity. 

The economy wide level of income at time t can be presented as Yt=f(Kt). 

To solve the problem of maximization of (1) subject to (2), we build up the 

Hamiltonian function, 

 

[ ]tttttttt kckfqYCcUqck ⋅−−⋅⋅+=ℵ + δβ )(),()(),,( 1  (3) 

 

In expression (3), qt respects to the current-value co-state variable (shadow-price) 

of kt. First-order conditions are:  
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θβ −

+ =⋅⇒=ℵ ttc cqYC 1),(0  (4) 
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+ ⋅⋅−⋅⋅+=⇒−ℵ=−⋅ tttktt qYCkAqqqYC βδαβ α  (5) 

 

0),(lim =⋅⋅
+∞→ t

t

t
t

qYCk β   (transversality condition) (6) 

 

In equilibrium, we have Ct=ct and Yt=yt; thus, ),(),( tt ycYC ββ =  in optimality 

conditions (4) to (6). Combining (4) and (5), the following equation of motion for the 

representative agent’s level of consumption holds,  

 

( )[ ] ttttt ckAycc ⋅−⋅⋅+⋅= −−
++

θα δαβ /1)1(

11 1),(  (7) 

 

The dynamic system relatively to which stability conditions will be discussed is 

composed by equations (2) and (7). Once again, we call the attention for the similarities 

between our model and the continuous time version of Meng (2006). As he says, “Note 

that compared with the standard Ramsey-Cass-Koopmans model with a constant 

discount rate, the only difference is that here in Eq. (9) the discount rate depends on 

consumption and capital, whereas the resource equation (10) remains unchanged.” 

page 2676. Equation (9) in Meng’s presentation corresponds to a continuous-time 

version of (7), while his equation (10) has correspondence on our equation (2). The time 

preference is exogenous to the agent and, hence, it does not disturb the way optimality 

conditions are derived. Nevertheless, optimality implies a coincidence between 

aggregates’ values from the economy wide point of view and from the point of view of 

the individual agent. 

The signs of the derivatives of the discount factor function in equation (7) are the 

following: βc<0 and βy>0. These conditions intend to make the model close to the 

empirical evidence. They state that the individual rate of time preference increases with 

the economy’s level of consumption, that is, individual impatience rises when the agent 

observes higher levels of consumption in society. This is a jealousy effect; average 

consumption matters to the isolated individual in the sense that the willingness to defer 

consumption in time falls as one sees the overall consumption level rising. This jealousy 

effect arises in contrast to a wealth effect. When the income of the whole society 

increases, the isolated agent will be more willing to defer consumption, that is, patience 
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rises. Thus, the rate of time preference falls with an increase in the economy’s living 

standard. This offsetting effect of two countervailing forces leads, in the continuous 

time version of the model, to local indeterminacy. In the following sections, we ask if 

this result continues to hold in discrete time.     

 

3. Endogenous Impatience and Neo-Classical Growth 

 

3.1 Linearity in the Discount Rate  

 

In a first version of the model, we consider that the discount rate is linear in its 

arguments (as does Meng). This implies writing the discount factor as 

)),(1/(1),( tttt ycyc ρβ += , with tttt ycyc ⋅−⋅+= 210),( ρρρρ ; parameters 210 ,, ρρρ  

are all positive values, given the reasoning developed in the last paragraph of the 

previous section. 

The following assumption is central on the development of the model, and it 

allows for obtaining tractable local stability results, 

 

Assumption 1. The steady state discount rate is 0

* ρρ = . 

 

The above assumption states that the jealousy effect and the wealth effect are such 

that they offset each other in the steady state. Under assumption 1, the steady state may 

be characterized as in proposition 1. 

 

Proposition 1. Defining a balanced growth path / steady state as the set of 

constant values ( ** ,ck ) that is obtained for tt kkk =≡ +1

*
 and tt ccc =≡ +1

*
, such 

balanced growth path exists and it is unique. 

 

Proof: If, in the steady state, assumption 1 holds, then the following relation also 

holds: α

ρ
ρ

)( *

1

2*
kAc ⋅⋅= . From constraint (2), we find a second relation between the 

steady state levels of consumption and capital, which is *

21

2*
kc ⋅

−
⋅

=
ρρ
δρ

. By solving a 
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system with these two relations, a unique pair ( ** ,ck ) is found; this is 

)1/(1

1

21* )(
α

δρ
ρρ

−










⋅
−⋅

=
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21

)1/(1

1
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δ
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ρ
ρ
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 −
⋅








⋅= A

c � 

 

The steady state result derived in the proof of proposition 1 deserves a few 

comments. First, as one should expect, the higher is the technology level and the lower 

is the depreciation rate, the higher are the steady state levels of capital and consumption. 

Second, the steady state as presented implies some constraints over parameters, 

i) 21 ρρ ≥ . This condition guarantees non-negative *
k  and *

c ; 

ii) δ
ρρ

ραρρ ⋅
−

⋅−−
=

21

12

0

)1(
. This constraint comes from the steady state 

evaluation of (7). Observe that the steady state rate of time preference is proportional to 

the rate of capital depreciation. If capital does not depreciate, the representative agent 

will not discount future consumption. This is the result of considering that the jealousy 

effect and the economy’s output effect offset each other over the balanced growth path; 

iii) 12 )1( ραρ ⋅−≥ . This boundary constraint avoids the existence of a negative 

discount rate. 

One of our main purposes consists on understanding if the indeterminacy result 

found in continuous time for 0,, 210 >ρρρ  continues to hold under the discrete time 

version of the model. To undertake such an evaluation, we linearize (2) and (7) in the 

steady state vicinity to obtain the following matricial system, 
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Stability conditions are presented in proposition 2. 

 

Proposition 2. Local indeterminacy [i.e., fixed-point stability or the presence of 

two eigenvalues of the Jacobian matrix in (8) inside the unit circle] requires the validity 

of the following conditions, 
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ρθ
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Proof: The trace and the determinant of the Jacobian matrix in system (8) are 

)1()1()(

)1(
2)(

0

*

1

021

2

21

0 ρθ
ρ

ρρρθ
δρραρ

+⋅
⋅

−
+⋅−⋅
⋅⋅⋅−

++=
c

JTr  

[ ]
)1(

)1(1
1)(

0

*

1

0 ρθ
ρδαρ

+⋅
⋅⋅⋅−−

−+=
c

JDet  

The stability conditions in the proposition are just the trivial conditions that 

guarantee that the two eigenvalues of J lie inside the unit circle, 0)()(1 >++ JDetJTr , 

0)()(1 >+− JDetJTr  and 0)(1 >− JDet � 

 

Stability conditions in proposition 2 are not very informative. One understands 

that local indeterminacy is guaranteed for some combinations of parameter values but 

that this is not surely a universal result. The following corollary narrows the possibility 

of local indeterminacy to values of the technology parameter above a given combination 

of parameters. 

 

Corollary 1. 
21

1

ρρ
δρ

−
⋅

>A  is a necessary condition for local indeterminacy. 

 

The above condition is obtained from the second inequality of proposition 2; the 

condition presented in the corollary is equivalent to 
21

2*

ρρ
δρ

−
⋅

>c . 

A numerical example allows for a better understanding of the model’s dynamics. 

We will attribute concrete values to every parameter except θ; this is our bifurcation 

parameter. We adopt α=0.3 [as in Meng (2006)]; the depreciation rate is the one 

assumed in the calibration of a growth model by Guo and Lansing (2002), δ=0.067 

[Meng’s model ignores capital depreciation; in our model we have stated before the 

importance of this parameter, since if no depreciation exists, then there is not, as well, 
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steady state discounting]; we take ρ1=0.2, and given the constraint on ρ2 (in this case, 

0.14≤ρ2≤0.2), we choose to work with ρ2=0.16. Under these parameter values, the 

steady state discount rate is ρ0=0.0335. 

To highlight the result in corollary 1, we take, separately, two values for the 

technology index; first, we consider A=0.2 and, subsequently, we take A=0.4. Under the 

selected parameter values, local indeterminacy imposes A>0.335; therefore, the first 

case implies that indeterminacy is not an admissible stability result, while the second 

case, with A above the computed threshold value, means that we may find 

indeterminacy if the first and third conditions of proposition 2 are satisfied as well. 

Let us begin by addressing the case A=0.2. Our numerical example involves the 

following steady state values for consumption and capital: 1823.0* =c  and 

4786.0* =k . The Jacobian matrix is presentable as 








−
−

=
θθ /0328.01/0003.0

10335.1
J . 

Stability conditions are 0163.00)()(1 >⇒>++ θJDetJTr , 

0/0008.00)()(1 >−⇒>+− θJDetJTr  and 003.10)(1 <⇒>− θJDet . We confirm 

that for a positive value of the utility function parameter, local indeterminacy never 

holds (second condition is false). First and third conditions imply that for a given 

interval of values of θ, saddle-path stability is observable (to be precise, saddle-path 

stability holds for 003.10163.0 << θ ); outside such interval, instability will prevail. 

This stability result may be depicted graphically, on a trace-determinant diagram. 

Regard that θ/0328.00335.2)( −=JTr  and θ/0336.00335.1)( −=JDet ; thus, a 

relation between trace and determinant is easily computed: 

0488.1)(0244.1)( −⋅= JTrJDet . Figure 1 draws this line in a trace-determinant 

diagram, where one observes that the local indeterminacy area (inside the inverted 

triangle formed by the bifurcation lines) is never crossed. The represented line is limited 

from above, since as the trace of matrix J reaches 2.0355, parameter θ becomes an 

infinite value.  

 

*** Figure 1 *** 

 

Consider now the second example, A=0.4. The steady state values of the 

endogenous variables are 4907.0* =c  and 2883.1* =k . The Jacobian matrix will be 










−
−

=
θθ /0925.01/0051.0

10335.1
J . As before, one computes stability conditions: 
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0442.00)()(1 >⇒>++ θJDetJTr , 0/0051.00)()(1 >⇒>+− θJDetJTr  and 

6089.20)(1 <⇒>− θJDet . Thus, in this case local indeterminacy exists as long as 

6089.20442.0 << θ . Once again, the result becomes more clear if presented 

graphically; note that θ/0925.00335.2)( −=JTr  and θ/0874.00335.1)( −=JDet , 

and, therefore, the trace-determinant relation will be: 8876.0)(9449.0)( −⋅= JTrJDet . 

Comparing the expression of this line with the one in the previous example, we observe 

that both lines have to end in the point Tr(J)=2.0335, since this is the point where the 

utility function parameter becomes infinite (the elasticity of intertemporal substitution 

becomes zero); furthermore, this second line is less sloped, and it is precisely this 

characteristic that will make the line enter the stability / indeterminacy inverted triangle. 

Stability / indeterminacy will hold for 6089.20442.0 << θ , instability prevails if 

6089.2>θ  and saddle-path stability requires 0442.0<θ . See figure 2. 

 

*** Figure 2 *** 

 

3.2 Linearity in the Discount Factor 

 

The possibility of an indeterminacy result explored above has taken a specific 

functional form for the socially determined discount function. In this subsection, we 

investigate if such result is similar for an alternative specification of such function. 

Specifically, we now assume, instead of linearity in the discount rate, linearity in the 

discount factor, i.e., we take YC ⋅+⋅−= 210 ββββ . The signals in the expression have 

changed relatively to the linear discount rate function, but they intend to express the 

same as before: a high discount factor is synonymous of more patience (low discount 

rate), while a low discount factor means less patience (high discount rate). Therefore, 

[ ]1,0,, 210 ∈βββ . 

Assumption 2 is similar to assumption 1. 

 

Assumption 2. The steady state discount factor is 0

* ββ = .  

 

Given assumption 2, the balanced growth path result is close to the one in 

proposition 1. Once again, the steady state point ( ** ,ck ) exists and it is unique. Under 

assumption 2, condition α

β
β

)( *

1

2*
kAc ⋅⋅=  holds, and, therefore, given resource 
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constraint (2), the steady state values of capital and consumption are 

)1/(1

1
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α

δβ
ββ
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=
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k  and 

)1/(
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*
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δ
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⋅








⋅= A

c . In this case, the 

inequality 21 ββ ≥  must be satisfied. Replacing the steady state values in the difference 

equation concerning the motion of the consumption variable, the following value for β0 

is obtained: 
121

21

0
)()1( βδαββδ

βββ
⋅⋅+−⋅−

−
= . Because β0≤1 must be verified, a new 

constraint emerges: 12 )1( βαβ ⋅−≥ . 

Similarly to the discount rate linear function, we proceed with the local analysis of 

the dynamics of the model. The linearized system in the steady state vicinity is now 
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β   (9) 

 

Proposition 3 presents the stability conditions, 

 

Proposition 3. In the linear discount factor function case, local indeterminacy 

requires the following inequalities to be satisfied, 
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θ
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Proof: The trace and the determinant of the Jacobian matrix in system (9) are: 
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θβ
β

ββ
δβαβα

β
β *

0

1

21

1

*

0

0

0 )1(
1

)(
c

k
JTr ⋅








−

−
⋅⋅

⋅⋅−+
+
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[ ]
θβ

βδα
β ⋅

⋅
⋅⋅−−−=

0

*

1

0

)1(1
1

)(
c

JDet . Applying the same set of stability conditions as 

in proposition 2, we arrive to the obtained inequalities� 

 

Corollary 2. A necessary condition for stability is 

[ ] αα

α

ββδβαδββ
δβα

)()1()( 21

)1(2

121

1

1

−⋅⋅⋅+−⋅−
⋅⋅

> −⋅

−

A . This condition is obtained directly 

from the second stability expression in proposition 3. 

 

To further discuss local dynamics recover the numerical example used before. 

Namely, assume, once again, α=0.3 and δ=0.067. Take also β1=0.2 and β2=0.16 (these 

values have correspondence in ρ1 and ρ2 of the previous analysis only for analytical 

convenience; note that given the other parameter values we had to select a value of β2 

obeying 0.14≤β2≤0.2). In this case, β0=0.9676 (which corresponds to a discount rate of 

ρ0=0.0335, which is precisely the same found in our first case). The indeterminacy 

necessary condition in the above corollary is, under our example, A>1.3108. Thus, this 

second case requires a higher technology level for local indeterminacy to prevail. 

Consider two examples: first, A=0.2 and, second, A=2. For A=0.2, the Jacobian 

matrix of system (9) is 








−−
−

=
θθ /0117.01/0238.0

10335.1
J . The corresponding trace and 

determinant are θ/0117.00335.2)( −=JTr  and θ/0359.00335.1)( −=JDet . Stability 

conditions, as presented in proposition 3, indicate that indeterminacy is absent 

(according to the condition in corollary 2, the value of the technology index is lower 

than the one necessary to find such outcome); stability conditions applied to our 

example also say that saddle-path stability exists for 0.0117<θ<1.0716, while for any 

other value of the utility function parameter, instability will be evidenced.  

The absence of local indeterminacy can also be verified by looking at the line that 

relates trace and determinant; in this case, this is 2051.5)(0684.3)( −⋅= JTrJDet . We 

refrain from representing this line graphically, since it is located qualitatively in the 

same position as the line in figure 1, i.e., given that its slope is above unity, the line will 

be below (to the right) of bifurcation line 0)()(1 =+− JDetJTr ; thus, the region inside 

the unit circle is never crossed by the computed line. 
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The other example, with A=2, will be similar to the one characterized in figure 2. 

The slope of the trace-determinant line will be below one, and therefore this line will be 

located, partially, inside the unit circle. In this particular case, 441.3* =c  and 

8396.12* =k  are the steady state values of variables. The Jacobian matrix comes 










−
−

=
θθ /693.01/0383.0

10335.1
J . Trace and determinant are θ/693.00335.2)( −=JTr  

and θ/6779.00335.1)( −=JDet . Stability conditions are all satisfied under 

0.161<θ<20.236. Above the upper bound for θ, the system becomes unstable, and for 

θ<0.161, saddle-path stability prevails. This result is identical (in qualitative terms) to 

the one found for the discount rate linearity case (for the level of technology above a 

given threshold value). Once more, the trace-determinant relation is straightforwardly 

computed: 9557.0)(9782.0)( −⋅= JTrJDet . Because the slope of this line is below 

one, we guarantee that the indeterminacy area is crossed, on a way very similar to the 

one discussed with figure 2. 

Our main conclusion is that indeterminacy results will not defer significantly if 

one considers a linear discount rate function or a linear discount factor function. In both 

cases, relatively high technology levels guarantee local indeterminacy, as long as the 

utility function parameter stays within a given interval.  

 

4. Endogenous Impatience and Endogenous Growth 

 

The previous model is now adapted to a scenario of endogenous growth. 

Basically, two different assumptions are considered relatively to the benchmark setup. 

First, the neo-classical production function gives place to an AK production function; 

second, instead of assuming a discount factor function ),( tt ycβ  (linear in ρ or in β), we 

consider a function )ˆ,ˆ( tt ycβ , where tĉ  and tŷ  represent detrended consumption and 

income variables, i.e., considering that the original variables  grow, under a balanced 

growth path, at rate γ, we have 
t

t

t

c
c

)1(
ˆ

γ+
≡  and 

t

t

t

y
y

)1(
ˆ

γ+
≡ ; likewise, we define 

t

t

t

k
k

)1(
ˆ

γ+
≡ . The optimal control problem of utility maximization is solved as the 

original model, and, considering the detrended variables, the system we want to analyze 

is composed by the following two equations, 
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ttt ck
A

k ˆ
1

1ˆ
1

1ˆ
1 ⋅

+
−⋅

+
−+=+ γγ

δ
 (10) 

 

[ ] tttt cAkcc ˆ
1

1
)1()ˆ,ˆ(ˆ

/1

1 ⋅
+

⋅−+⋅=+ γ
δβ

θ
 (11) 

 

We will study the dynamics as before, first by assuming linearity in the discount 

rate and, on a second moment, by taking linearity in the discount factor. 

Consider first )ˆ1/(1)ˆ,ˆ( ttt yc ρβ += , with ttt YC ˆˆˆ
210 ⋅−⋅+= ρρρρ . Variables tĈ  

and tŶ  correspond to consumption and income average social levels (detrended), which, 

in equilibrium, enter in the decision process of the individual agent as endogenous 

variables. In this case, and reconsidering that 0

*ˆ ρρ = , we obtain a steady-state 

consumption-capital ratio: A
k

c ⋅=
1

2

*

*

ˆ

ˆ

ρ
ρ

; since consumption and capital grow at a same 

steady-state rate, this ratio is also equal to 
*

*

k

c
. Using the ratio to evaluate (10) in the 

steady-state, the growth rate of the considered aggregates is obtained; the result is 

δ
ρ

ρργ −⋅
−

= A
1

21 . As before, we assume 21 ρρ ≥ . Finally, the evaluation of (11) in 

the steady state requires 1
)1(

1
0 −

+
−+= θγ

δρ A
. To guarantee a positive ρ0, we must have 

)1ln(

)1ln(

γ
δθ

+
−+< A

. 

The study of local dynamics is undertaken through the linearization of system 

(10), (11) in the steady state vicinity. Note that the balanced growth path is 

characterized by a unique consumption-capital ratio and an equilibrium growth rate that 

can be positive, zero or negative. The linearized system is 

 













−

−
⋅



















⋅+
⋅

−
⋅+
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+

−
+

−+

=












−

−

+

+

*

*

0

*

1

0

*

2
*

1

*

1

ˆˆ

ˆˆ

)1(

ˆ
1

)1(

ˆ

1

1

1

1

ˆˆ

ˆˆ

cc

kk

ccA

A

cc

kk

t

t

t

t

θρ
ρ

θρ
ρ

γγ
δ

  (12) 

 

Proposition 4 refers to the indeterminacy / stability result. 
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Proposition 4. In the endogenous growth model with a linear discount rate 

function, local indeterminacy cannot hold. 

 

Proof: The result is easy to achieve once the trace and the determinant are 

computed: 

θρ
ρ

γ
δ

⋅+
⋅

−
+

−++=
)1(

ˆ

1

1
1)(

0

*

1 cA
JTr  

θρ
ρ

γ
δ

⋅+
⋅

−
+

−+=
)1(

ˆ

1

1
)(

0

*

1 cA
JDet  

One observes that 1)()( −= JTrJDet  and, thus, the system will rest over the 

bifurcation line 0)()(1 =+− JDetJTr , the same is to say that one of the eigenvalues of 

the Jacobian matrix is equal to 1 independently of the values of parameters� 

 

Let us re-examine the model with a linear discount factor function: 

ttt YC ˆˆˆ
210 ⋅+⋅−= ββββ . Steady state results are: A

k

c ⋅=
1

2

*

*

ˆ

ˆ

β
β

, δ
β

ββγ −⋅
−

= A
1

21  and 

δ
γβ

θ

−+
+=
A1

)1(
0 . We must guarantee 21 ββ ≥  and, as before, 

)1ln(

)1ln(

γ
δθ

+
−+< A

. 

Linearization yields, 
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⋅
⋅⋅

+
−

+
−+

=












−

−

+

+
*

*

0

*

1

0

*

2
*

1

*

1

ˆˆ
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ˆ
1

ˆ

1

1
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ˆˆ
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kk

ccA

A

cc

kk

t

t

t

t

θβ
β

θβ
β

γγ
δ

  (13) 

 

Trace and determinant of the Jacobian matrix are: 

θβ
β

γ
δ

⋅
⋅

−
+

−++=
0

*

1
ˆ

1

1
1)(

cA
JTr  

θβ
β

γ
δ

⋅
⋅

−
+

−+=
0

*

1
ˆ

1

1
)(

cA
JDet  

A same type of result as the one in the previous specification is obtained, i.e., 

0)()(1 =+− JDetJTr  holds, and therefore local indeterminacy is never found since 

one of the eigenvalues of J stays over the unit circle. 
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5. Production Externalities 

 

We consider in this section a variation of the benchmark neo-classical model that 

is also able to generate indeterminacy. This variation modifies two of the fundamental 

hypothesis of the model. First, we introduce an externality in production, and thus 

production may be subject to increasing returns to scale; second, we let the discounting 

function depend only on the aggregate level of consumption [as in the externalities 

version of Meng’s model]. Analytically, these two assumptions are translated as 

follows, 

i) ),( ttt Kkfy = . We take a Cobb-Douglas production function 
ηα

ttt KkAy ⋅⋅= , 

with η∈ (0,1); 

ii) ))(1/(1)( tt CC ρβ += , with tt CC ⋅+= 10)( ρρρ . We consider only the linear 

discount rate function case, since, as in the benchmark neo-classical model, the linear 

discount factor case produces very similar results. 

Solving the model for the representative agent, one will have 

 

tttt kckAk ⋅−+−⋅= +
+ )1(1 δηα

 (14) 

 

[ ]( )[ ] tttt ckAcc ⋅−⋅⋅++⋅= +−−
++

θηα δηαβ /1)(1

11 )(1)(  (15) 

 

A new assumption regarding the steady state level of the discount rate is needed, 

 

Assumption 3. The steady state discount rate is some constant 0

* ρρ > . 

 

Under assumption 3, the following result is straightforward, 

 

Proposition 5. In the socially determined time preference model with externalities 

in the production of final goods and as long as assumption 3 holds, the steady state 

exists and it is unique. 

 

Proof: Under assumption 3, the discount function implies the following balanced 

growth path value for consumption: 
1

0

*

*

ρ
ρρ −

=c . From (15), a unique steady state 
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stock of capital is determined: 

[ ])(1/1

*

* )(
ηα

δρ
ηα

+−










+
⋅+= A

k . Finally, the steady state is 

also characterized by the existence of some *ρ  equilibrium value; from equation (14), 

one understands that this value is the solution of the equation 

[ ] [ ])(1/1

*

)(1/)(

*

1

0

*
)()(

ηαηαηα

δρ
ηαδ

δρ
ηα

ρ
ρρ +−+−+










+
⋅+⋅−









+
⋅+⋅=

− AA
A � 

 

Corollary 3. Increasing marginal returns to capital must hold, once the externality 

effect is considered. Analytically, α+η>1. 

 

The above condition guarantees a positive steady state discount rate. To 

understand why this is so, take the last equation in the proof of proposition 5. Note that 

such equality requires 0

1

*
>−









+
+

−

δ
δρ
ηα

 if one wants *ρ  to be positive; the presented 

inequality is equivalent to [ ] δηαρ ⋅−+> 1)(* , which, in turn, requires α+η>1. 

The linearization of the model around the steady state point leads to: 
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cc
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cc

kk

t

t

t

t

ρδρηα
ρρθ

ρρδρηα
ρθ
ρρ

ρ
  

(16) 

 

Stability conditions are given by proposition 6.  

 

Proposition 6. The model with socially determined time preference and 

technological externalities is locally indeterminate if the following conditions hold: 

0)1()1)((
)1(

)2(2 *

11*

*

*

1

0

*

* >







+⋅+++⋅−+⋅

+⋅⋅
−

−+⋅ ρρρδρηα
ρρθ

ρρρ
k

; 

0)1)(( *

1*

*

0

*

>







⋅−+⋅−+⋅

− ρρδρηα
θ

ρρ
k

; 

0)1( 0

* <+⋅− ρρθ . 
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Proof: Trace and determinant of the Jacobian matrix in (16) are, respectively, 









++⋅−+⋅

+⋅⋅
−

−+= 1*

*

*

1

0

*

* )1)((
)1(

2)( ρδρηα
ρρθ

ρρρ
k

JTr  and 
θ
ρρ

θ
θ 0*1

1)( +⋅−+=JDet . 

The conditions in the proposition are the direct result of considering stability relations 

0)()(1 >++ JDetJTr , 0)()(1 >+− JDetJTr  and 0)(1 >− JDet , into the discussed 

setup� 

 

Corollary 4. Two of the necessary conditions for indeterminacy are: 

i) ( )
**

0

*

*

)(
)(

)()(
)1)(( ρδρ

ρρηα
δηαδρηα >+⋅

−⋅+
⋅+−+⋅−+ ; 

ii) 
θ

ρρ
−

>
1

0*
. 

The first inequality is equivalent to the second condition in proposition 6, while 

the second is obtained directly from the third condition in proposition 6, i.e.,  

0)(1 >− JDet . Observe that this last inequality requires θ<1. 

 

Let us consider a numerical example to confirm the possibility of local 

indeterminacy. We assume α=0.3, η=0.8, 04.0* =ρ , 05.01 =ρ  and δ=0.067. To obey 

to the first condition of corollary 4, one should have 0319.00 >ρ ; we consider 

035.00 =ρ . Relatively to the value of A, the last relation in the proof of proposition 5 is 

equivalent to: [ ] [ ]

)(1

)(1/1

*

)(1/)(

*

1

0

*
ηα

ηαηαηα

δρ
ηαδ

δρ
ηα

ρ
ρρ

+−

+−+−+






























+
+⋅−









+
+

−

=A  , which, for the 

selected parameter values will be A=0.0863. 

Under this numerical example, steady state values of variables are 1.0* =c  and 

3098.3* =k  and the Jacobian matrix is 








−
−

=
θθ /0051.01/0003.0

104.1
J . The respective 

trace and determinant come: θ/0051.004.2)( −=JTr  and θ/005.004.1)( −=JDet . 

The computation of stability conditions lead to the result of local indeterminacy for 

0.0025<θ<0.125. The system is saddle-path stable for θ<0.0025 and unstable if 

θ>0.125. This result is represented graphically in figure 3; the line in this graphic is 

9608.0)(9804.0)( −⋅= JTrJDet . 
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*** Figure 3 *** 

 

Local indeterminacy is found for extremely low values of θ (extremely high 

values of the elasticity of intertemporal substitution) and for values of 0ρ  near *ρ . 

 

6. Endogenous Labor Supply and Endogenous Growth 

 

A last exercise consists in assuming leisure as an argument of the utility function, 

that is, we assume a leisure-labor trade-off and an optimal selection of the allocation of 

time by the representative agent. This variation from our benchmark model follows 

Meng’s specification in the sense that it takes the economy wide level of income as the 

only argument of the discount function, but it departs from such specification by 

considering endogenous growth, i.e., an AK production function. Therefore, the 

stability result can be explored in a hybrid framework: we have seen that endogenous 

discounting and endogenous growth did not produce indeterminacy under the 

conventional Ramsey optimal growth model; here, we may investigate if this result 

continues to hold if workload optimization is considered along with consumption 

optimization. 

Assume that the representative agent solves the following maximization problem: 

 

∑ ∏
+∞

= = 














⋅=
0 0

0 )(),(
t

t

v

vtt YcUMaxU β�  (17) 

 

In problem (17), variable �t∈ (0,1) is the share of the representative agent’s time 

associated to labor, and thus 1-�t will be the share of time allocated to leisure (we 

assume that the representative agent is endowed with one unit of time, and thus the 

referred shares coincide with the amount of time that the agent spends working and 

resting). We consider a utility function that is concave regarding consumption but linear 

in terms of leisure. Taking m>0, the adopted functional form is:  

( ) )1()1/(1),(
1

tttt mccU �� −⋅+−−= − θθ
.  

The resource constraint is, again, (2), but now the production function is 

ttttt kAkfy �� ⋅⋅== ),( . This production function reveals that there are constant 

marginal returns of capital (it is an AK function) and that only a part of the available 
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working hours are effectively used to generate wealth, i.e., if all the agent’s available 

time was allocated to work, then tt kAy ⋅= ; in reality, only a fraction of the available 

time is allocated to the production of final goods and therefore only a fraction of the 

potential output is effectively produced. 

The discount factor is, in this case, )1/(1)( tY ρβ += , with tt Y⋅−= 20 ρρρ . 

The Hamiltonian function of this problem is (qt is a co-state variable), 

 

[ ]ttttttttttt kckfqYcUqck ⋅−−⋅⋅+=ℵ + δβ ),()(),(),,,( 1 ���  (18) 

 

First-order conditions come,  

 

θβ −
+ =⋅⇒=ℵ ttc cqY 1)(0  (19) 

 

t

t
kA

m
qY

⋅
=⋅⇒=ℵ +1)(0 β

�
 (20) 

 

[ ] 11 )(1)( ++ ⋅⋅−⋅+=⇒−ℵ=−⋅ tttktt qYAqqqY βδβ �  (21) 

 

0)(lim =⋅⋅
+∞→ t

t

t
t

qYk β   (transversality condition) (22) 

 

As in previous cases, Yt=yt in equilibrium, i.e., )()( tyY ββ = . From the optimality 

conditions, one  withdraws the following system of difference equations, 

 

t

t

ttt k
m

kA
kAk ⋅−+
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−⋅⋅=+ )1(

/1

1 δ
θ

�  (23) 
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⋅
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1 1

1 δ
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t
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�  (24) 

 

with 

θ/1








 ⋅
=

m

kA
c t

t . System (23)-(24) has some relevant differences relatively to the 

models one has analyzed before. There is a contemporaneous relation between 
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consumption and stock of capital and therefore we need to analyze the dynamic 

behavior of only one of these variables, but another endogenous variable with attached 

dynamic motion arises: the share of labor time.  

To study the dynamics of the model, we begin by stating assumption 4.  

 

Assumption 4. The steady state discount rate is some constant 0

* ρρ < . 

 

With assumption 4, proposition 7 comes 

 

Proposition 7. In the socially determined time preference endogenous growth 

model with endogenous labor supply, under assumption 4 the steady state exists and it 

is unique. 

 

Proof: Defining the steady state as the long run locus for which tt kkk =≡ +1

* , 

tt ccc =≡ +1

*  and tt ��� =≡ +1

* , we make use of the discount function, of equations 

(23) and (24) and of the relation between capital and consumption withdrawn from 

optimality conditions, to compute the following unique values: )(
1 ** δρ +⋅=
A

� , 

)( *

2

*

0*

δρρ
ρρ
+⋅

−
=k  and 

θ

δρρ
ρρ
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−

⋅=
)( *

2

*

0*

m

A
c � 

 

The steady state result imposes a specific value for the balanced growth path of 

the equilibrium discount rate. This is such that the technology level has to be given by 

1

*

2

*

0*
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⋅⋅=
θ

θ

δρρ
ρρρmA . 

Linearizing in the steady state vicinity, 
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θ

  (25) 

 

Proposition 8. The indeterminacy conditions of the endogenous growth / 

endogenous time preference / endogenous labor supply model are the following: 
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i) 
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2
; 
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Proof: Trace and determinant of the matrix in system (25) are 

δρ
ρρρ

θ
θ

+
−

−⋅−⋅+=
*

*

0*12
2)(JTr  and 







 ⋅−+⋅
+
−

−+= *

*

*

0
0

1
11)( ρ

θ
θ

δρ
ρρρJDet . The 

first stability condition in the proposition is directly computed from 

0)()(1 >++ JDetJTr , the second from 0)()(1 >+− JDetJTr  and the third from 

0)(1 >− JDet ; the fourth condition in the proposition is a necessary condition for 

0)(1 >− JDet  to hold� 

 

Corollary 5. Parameters A, m and ρ2 are irrelevant for the analysis of stability. 

This is a straightforward conclusion that one reaches by looking at the expressions of 

the trace and determinant of the Jacobian matrix in (25). 

 

Under reasonable parameter values, local indeterminacy is absent. To confirm this, 

take, as usual, δ=0.067, and consider 03.0* =ρ  (other numerical examples for other 

reasonable values of these two parameters produce a similar result of no indeterminacy; 

given the practical impossibility of presenting meaningful general results, we just 

explore this example). For the chosen parameter values, condition iv) in proposition 8 

implies that 0331.00 >ρ ; for conditions ii) and iii) to be simultaneously satisfied, we 

must have 0327.00 <ρ . The two constraints on the value of ρ0 are incompatible, and 

thus the requirements for local indeterminacy are not fulfilled.  

Take, for instance, 032.00 =ρ . This value satisfies one of the boundary 

conditions on the parameter but not the other. In this example, θ/03.00394.2)( −=JTr  

and θ/0006.00108.1)( +=JDet ; the trace-determinant line is 
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)(02.005.1)( JTrJDet ⋅−= . Now, assume 034.00 =ρ ; in this case, the first constraint 

on ρ0 is satisfied but the second is not. The trace is θ/03.00188.2)( −=JTr  and the 

determinant is θ/0012.09915.0)( +=JDet ; now, one has the following relation: 

)(04.0072.1)( JTrJDet ⋅−= . By violating two different stability conditions, the 

computed trace-determinant relations are incompatible with the existence of local 

indeterminacy. Figure 4 presents these two lines, revealing that the inverted triangle of 

stability is not crossed by any of them. 

 

*** Figure 4 *** 

 

Figure 4 represents solely the quadrant of the trace-determinant relation where 

these are both positive. The relevant point is that the two presented lines are bounded 

for small intervals of values of trace and determinant, in order to allow for a positive 

and finite value for θ. We observe that for admissible values of this parameter the 

system is, in the first case ( 032.00 =ρ ) unstable, and in the second case ( 034.00 =ρ ) 

saddle-path stable. Thus, saddle-path stability is admissible for values of ρ0 relatively 

far (and above) *ρ .  

 

7. Global Dynamics 

 

Two dimensional dynamic systems in discrete time are known to eventually 

produce nonlinear long term motion. Cycles of various periodicities, quasi-periodicity 

and chaos may arise after the transition from fixed-point stability to instability or 

saddle-path stability, through a bifurcation process. Global dynamics can only be 

addressed resorting to numerical examples (i.e., with concrete values attributed to the 

various parameters). Recovering the examples of previous sections, it is possible to 

investigate if the found bifurcation points mean the occurrence of cycles or if, as the 

local analysis shows, the transition from stability to instability is the only dynamic 

feature that is encountered. By exploring the different examples, one finds that cycles 

arise solely on the production externalities model.
1
 The endogenous cycles appear 

below the lower bound of the interval of values of θ that allow for stability. The flip 

                                                 
1
 This analysis was made resorting to IDMC software (interactive Dynamical Model Calculator). This is a 

free software program available at www.dss.uniud.it/nonlinear, and copyright of M. Lines and A. Medio. 

The figures in this section were drawn using this software. 
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bifurcation, occurring at θ=0.0025, triggers a process of period doubling bifurcations 

that leads to chaotic motion for extremely small values of the parameter of the utility 

function. 

Figure 5 displays the respective bifurcation diagram (confirm that the bifurcation 

point is, in fact, θ=0.0025). Figures 6, 7 and 8 complement the graphical presentation 

by representing an attracting set (the set of long term values to which the system 

converges) and the long term time series of consumption and capital. These last three 

figures are presented for a value of θ for which chaos exists – in this illustration, 

consumption and capital time series will never converge to the steady state and they will 

not, as well, diverge to infinity.  

As a result, we might say that endogenous time preference can generate long term 

endogenous business cycles but only under some extreme circumstances (externalities 

in the production of final goods and an extremely high elasticity of intertemporal 

substitution). 

 

8. Conclusions 

 

We have explored a standard discrete time optimal control growth model, where 

the rate of time preference is endogenous and socially determined. The representative 

agent intertemporal preference is influenced by the aggregate level of consumption 

(more economy wide consumption increases individual impatience) and by the 

aggregate level of income (an economy with a higher capacity to generate wealth exerts 

a positive effect over individual patience). Several versions of the model were 

addressed, namely Ramsey-like neo-classical and endogenous growth setups (where 

endogenous discounting was modelled through, both, a linear discount rate function and 

a linear discount factor function), a framework where externalities in the production of 

final goods were assumed and, finally, a scenario with leisure as an argument of the 

utility function. 

We have confirmed the continuous time result of local indeterminacy as a stability 

result frequently obtained. In terms of local dynamics, the conventional neo-classical 

model and the externalities model allow for a variety of stability results (indeterminacy / 

fixed-point stability, saddle-path stability and indeterminacy), depending on values of 

parameters. Endogenous growth models with endogenous time preference lead to a 

bifurcation result independently of parameter values, and thus local indeterminacy never 
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holds. The endogenous leisure model can present unstable or saddle-path stable 

dynamic outcomes, however indeterminacy was not encountered. 

The only model where bifurcations lead to cycles and chaotic motion is the one 

with increasing returns due to production externalities. In this model, we regard that an 

extremely high elasticity of intertemporal substitution implies a flip bifurcation that 

leads to a period doubling route to chaos. Therefore, the socially determined time 

preference framework is capable of generating long term endogenous fluctuations, but 

these are, in fact, a rare phenomenon under the discussed type of modelling 

specification. 
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Figures 

 

 

 

Figure 1 – Trace-determinant relation in the neo-classical growth model with a linear discount rate 

function (A=0.2). 

 

 

 

Figure 2 – Trace-determinant relation in the neo-classical growth model with a linear discount rate 

function (A=0.4). 

 

 

 

 

 

θ =0.0442 

1-Det(J)=0 

Tr(J) 

Det(J) 
1+Tr(J)+Det(J)=0 1-Tr(J)+Det(J)=0 

θ =2.6089 

θ →∞ 

θ =0.0163 

1-Det(J)=0 

Tr(J) 

Det(J) 
1+Tr(J)+Det(J)=0 1-Tr(J)+Det(J)=0 

θ =1.003 

θ →∞ 



Socially Determined Time Preference in Discrete Time 2 

 
 

 

 

 

 

Figure 3 – Trace-determinant relation in the model with productive externalities. 

 

 

 

 

Figure 4 – Trace-determinant relation in the model with endogenous labor supply. 
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Figure 5 – Bifurcation diagram (externalities model). 

 

 

 

 

 

Figure 6 – Attractor, θθθθ=0.0015 (externalities model). 
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Figure 7 – Consumption long term time series, θθθθ=0.0015 (externalities model). 

 

 

 

 

 

Figure 8 – Capital long term time series, θθθθ=0.0015 (externalities model). 

 

 

 

 

 

 


