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Abstract

Various empirical works have shown that dispersion of �rm-level pro�tability is signi�-

cantly countercyclical. I incorporate �rms� technology adoption decision into �rm dynamics

model with business cycle features to explain these empirical �ndings both qualitatively and

quantitatively. The option of endogenous exiting and credit constraint jointly play an im-

portant role in motivating �rms� risk taking behavior. The model predicts that relatively

small sized �rms are more likely to take risk, and that the dispersion measured as the vari-

ance/standard deviation of �rm-level pro�tability is larger in recessions, which are consistent

to the data.
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1 Introduction

Uncertainty rises in bad times. Recently, this phenomenon attracts growing attention of econo-

mists, with numerous new evidences from individual level data sets1. However, this signi�cantly

negative correlation between uncertainty and aggregate economic condition is often treated as a

calibration discipline, while not many works have been done to explain it.

In this paper, I provide a possible mechanism through which the worsened aggregate economic

condition leads to an increase in the measured dispersion in individual level productivity. The

model at work stands close to the standard industry dynamic model with �rm entry and exit

built in the seminal work Hopenhayn (1992), with aggregate �uctuations in terms of "technology

shocks" as the driving force of model dynamics, which is also a standard approach in real business

cycles literature. Meanwhile, it di¤ers from the standard in that in each period, after observing

the aggregate "technology realization", a staying �rm has the option to adopt a risky technology,

in addition to the standard safe technology whose productivity realization is determined by the

aggregate state. Given the same capital input, the output and productivity associated to the

risky technology is a mean-preserving spread of the safe one�s output and productivity. Although

�rms are risk neutral and the risky technology does not give higher �ow payo¤, there is a positive

fraction of �rms that strictly prefer to take the risk. This is because the option of exit provides

a lower bound to a �rm�s continuation value as a function of working capital and creates a local

convexity in it. Therefore, �rms in this region have the incentive to randomize over their future

values by choosing the risky technology, and when the uncertain productivity realizes, dispersion

arises. This setup resembles Vereshchagina and Hopenhayn (2009) on occupational choice. In

bad times, this region gets larger and the fraction of risky �rms then gets larger. Consequently,

the average or aggregate riskiness in �rms� production increases, so does the realized productivity

dispersion. Despite the model is only a standard one with a little twist, it is capable of generating

productivity dispersion negatively correlated to aggregate state, with the correlation coe¢cient in

line with data.

This model�s mechanism is also strongly motivated by empirical �ndings. It has features and

implications that mirror the following observations: (1) new �rms are relatively small and small

�rms have low survival rate; (2) small and/or young �rms tend to bear more risk and/or show larger

productivity dispersion; (3) business cycles indicators lead the change in productivity dispersion;

and (4) in recessions, more �rms become risky and this increases exit rate.

The �rst two points are closely related, as the exit hazard is a special form of �rm level

1Examples are Higson, Holly and Kattuman (2002), Higson, Holly, Kattuman and Platis (2004), Bloom (2009),

Bloom, Floetotto and Jaimovich (2010), Bachmann and Bayer (2011), Arellano, Bai and Kehoe (2009), Bachmann,

Elstner and Sims (2011), Chugh (2010), Kehrig (2011), to name a few.
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risk. The relation between �rm size and dynamics is well established and can be dated back

to, for example, Dunne, Roberts, and Samuelson (1988). This is further discussed in Section

2. The �ndings on �rm size and riskiness mainly come from two directions. Firstly, it is well

established in the entrepreneurship literature that entrepreneurs, especially poorer ones, bear

substantial amount of risk and tend to hold largely undiversi�ed assets by investing heavily in

their own �rms, despite no or little premium in doing so. The risk here is interpreted as either

the dispersion in small �rm owners� personal income, or dispersion in return to private equity.

At the same time, privately owned businesses are on average smaller in scale, measured in either

capital stock, number of employees, or output2. The second stream of empirical �ndings, more

relevant to my work, regards the productivity and �rm size di¤erential. Gertler and Gilchrist

(1991), using the Quarterly Financial Report for Manufacturing Corporations, �nd that smaller

�rms exhibit higher standard deviation in sales growth rates than larger ones do. Dhawan (2001)

looks at publicly traded �rms in COMPUSTAT and �nd that small �rms have higher failure

rate and larger standard deviation in pro�t rate, while conditional on surviving, small �rms show

higher average pro�t rate. The superior pro�tability in small �rms reduces if adjusted according

to the failure rates. Here, Dhawan de�nes the pro�t rate as operating income per unit of capital,

and he de�nes the �rm-level riskiness or volatility as the variance in the random realizations of

production. Using his de�nitions, my model generates the same pattern of pro�t rate and riskiness

di¤erential in size. There is also evidence from outside U.S.. For example, utilizing German data

set USTAN, Bachmann and Bayer (2011) �nd decreasing productivity risk in �rm size, where the

risk is measured as average cross-sectional standard deviation in log-di¤erences in �rm-level Solow

residuals.

The latter two points are on the cyclical change. Increase in measured cross-sectional dispersion

lags the worsened business cycles indicator, for example, GDP growth rate, as shown in Bachmann,

Elstner and Sims (2011) and Kehrig (2011) among others. Similar response is observed on the

stock market. The last point relates to the key feature of the model. Although unfortunately I do

not have direct observation from the data, there are indirect evidences that imply a larger fraction

of risky �rms in recessions consisting of mainly small �rms. Exit rate raises in bad times. The

�ndings on the relation between �rm size and exit rate show that small �rms and establishments

drive the negative correlation between exit rate and business cycles. This indicates that small

�rms are more sensitive to the cyclical change, as the model predicts. The increased exit rate in

bad times is shown in Section 2. A maybe more direct evidence is from Bachmann and Moscarini

(2011), who �nd higher frequency of price adjustments during recessions, which is interpreted as

2Examples for works dedicated in this direction are Barton H. Hamilton (2000), Moskowitz and Vissing-Jorgensen

(2002), and Herranz, Krasa and Villamil (2009). See Quadrini (2009) for a detailed review.
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more of risky pricing experiments of the �rms.

The goal of this paper is to complement existing theories. It is true that, if there is causality

between measured uncertainty and aggregate economic condition, the direction can be either. The

real option literature that aims at explaining such countercyclicality suggests the opposite direction

of causal relationship, from increased uncertainty to decline in aggregate economic activity. An

in�uential paper dedicated in this direction is Bloom (2009), which is later generalized by Bloom

et. al. (2009). Bloom shows that increased uncertainty, through the channel of adjustment

costs to capital and labor, leads to larger option value of waiting and a pause in investment

and employment. A sizable drop in aggregate economic activity occurs because of this "wait-

and-see" e¤ect. The time varying uncertainty is twofold in his model: (1) time series standard

deviation of productivity can be either high or low, evolving as a Markov process, and (2) the one-

step-ahead conditional variance of this Markov process depends on current realization. However,

Bachmann and Bayer (2011) and Bachmann, Elstner and Sims (2011) show that there is little

evidence of sizeable "wait-and-see" e¤ects in data. In addition, the process of entry and exit is

neglected. Arellano, Bai and Kehoe (2009) do consider the entry and exit dynamics that interact

with �nancial constraints, but, again, the causal direction is from time series uncertainty shock to

a sizeable response in aggregate variable.

The uncertainty shock is indeed important and the inverted causality may still work, but there

is an issue regarding measuring uncertainty, which relates to the lead-lag relationship between

uncertainty and cycles. Time series variances of major business condition indicators are often

interpreted as uncertainty. In addition, a parallel family of uncertainty measures regards the

realized cross-sectional dispersion in individual level performances, which include, among others,

cross-sectional variance in measured �rm-level total factor productivities, levels or growth rates,

and sales growth rates. However, realized cross-sectional dispersion not only lags the aggregate

cycles, but is also a controversial measure of uncertainty about future, which in turn casts more

doubts on the argument that it is the increased uncertainty that leads to worsened economic

activity3.

The other paper that entertains the same causal direction as mine is Bachmann and Moscarini

(2011). They build a model in which �rms need to run costly experimentation and hence learn

about their own market powers. As a result of lower experimentation costs, the dispersion of

productivity measured in sales is larger during recessions due to more experimentations conducted.

My model shares a similar feature with theirs, in that the option of exiting promotes the risky

performance of �rms. At the same time, my model di¤ers from theirs by predicting that smaller

�rms are the major driving force of countercyclical productivity and entry/exit dynamics. In this

3Bloom (2009) and Bloom et. al. (2010) are two representative examples.
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paper, I incorporate �rms� technology adoption decision into an otherwise standard �rm dynamics

model with business cycle features. The main feature of this model is that, conditional on staying,

an operating �rm can choose from two di¤erent types of technology: a safe one, and a risky one

with no risky premium. The option of exiting naturally forms a lower bound on the value of a

�rm, and therefore provides a certain degree of incentive on risk taking behavior on the margin

resulting from the convexity of the value function.

The rest of the paper is organized as follows. Section 2 describes the stylized facts on cyclical

dispersion of productivity, �rm size distribution and dynamics. Section 3 contains a simple three-

period model that illustrates the mechanism and shows preliminary results. Section 4 takes the

simple model into in�nite horizon. Section 6 concludes.

2 Empirical Facts

Cyclical Productivity Dispersion. Eisfeldt and Rampini (2006) use data from COMPUS-

TAT and �nd countercyclical movement of dispersion in Tobin�s q. At the same time, they show a

similar pattern for dispersion of total factor productivity growth rates at four digit SIC level, with

correlation being �0:465. Bloom (2009) shows that the US stock market volatility measured as

VXO index is positively correlated to the cross-sectional standard deviations of �rm pro�t growth,

�rm stock return, and industrial TFP growth at four digit SIC level, but its correlation with indus-

trial production is signi�cantly negative. Moreover, Bloom, Floetotto and Jaimovich (2010) take

an even closer look at this issue and examine the Census of Manufactures, and �nd that various

measures of uncertainty are signi�cantly countercyclical at all of establishment, �rm, industry,

and aggregate levels. Bachmann and Bayer (2009a, 2009b) take a long panel of German �rm-level

micro-data that covers all single digit industries, and show that the correlation between dispersion

in growth rates of �rm-level TFP, sale, and value added and economic performance is signi�cantly

negative. This pattern preserves in subsamples divided by sector and by size. Although a di¤erent

economy, their USTAN data set has the clear advantage in coverage. Moreover, by looking at dif-

ferent size quantiles, they document that time series averaged productivity dispersion in smaller

�rms tend to be larger than bigger �rms. Chugh (2010) explores the pro�tability series con-

structed by Cooper and Haltiwanger (2006) from Longitudinal Research Database and calculates

the cyclical correlation between average productivity and the dispersion to be �0:97. However,

the sample is of relatively short length as annual data and covers only 1977-1988, a period that

exhibits unusually large degree of opposite movement according to my own approximation. Kehrig

(2011) focuses more on the dispersion of productivity levels rather than pro�t rates. He looks at

the establishment-level data of the US manufacturing sector that consists of the Annual Survey
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Figure 1: Cyclical Indicators and Variances in TFP. Upper panel plots di¤erent cyclical indica-

tors, Real GDP (dotted line), Real total manufacturing output (solid line), Average TFP across

industries at SIC 4 Digit level (dashed line). Lower panel shows cyclical behavior of TFP disper-

sion measured as variance (solid line with dots), together with Average TFP (dashed line). All

series are HP-�ltered. The shaded bars illustrate o¢cial NBER recessions. Real GDP data is

from FRED; TFP series are from MIPD, and so is Manufacturing output measured as Real Total

Shipment.

of Manufactures, Census of Manufactures, Plant Capacity Utilization Survey, and Longitudinal

Business Database. Though the manufacturing sector as a whole shows countercyclical dispersion

in establishment-level TFP, the durable industries show stronger cyclicality and it is the �rms at

bottom quantile of productivity distribution that drive the dispersion dynamics. In the theoretical

part, he steps away from uncertainty shocks and uses only preference shock of the representative

household as the driving force.

The upper panel of Figure (1) shows the co-movement of di¤erent business cycle indicators. In

particular, I claim that the average TFP is a valid aggregate state indicator for the manufacturing

sector. The correlation coe¢cient between average TFP (HP �ltered) and sectoral output (HP

�ltered) is 0:86 with p-value of scale 10�9. The average TFP corresponds to the cyclical indicator

used through out the model, and the �uctuation in it represents technology or productivity shock,

which drives the dynamics of model economy. Following Eisfeldt and Rampini (2006) and Bloom

(2009), I use dispersion in cross-sectional TFP distribution at four digit SIC level to approximate
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that at the individual level, without arguing the validity of the approximation. The result is the

lower panel of Figure (1), illustrating countercyclical movement of variance in TFP.4 The precise

correlation coe¢cients for the US manufacturing sector are documented in detail in both Bloom,

Floetotto and Jaimovich (2010) and Kehrig (2011), and are summarized in Table 1 together with

my own calculation.

Table 1. Correlations between Dispersion and Cyclical Indicator5

For US Manufacturing Sector GDP Growth GDP HP Res. Avg. �TFP

Kehrig (2011)

(1) Estab. TFP, Std. Dev. -0.420 -0.528 �

(Durables, HP Residual)

(2) Estab. TFP, Std. Dev. -0.172 � �

(Non-durables, HP Residual)

Bloom et. al. (2010)

(3) Estab. Output Growth, IQR -0.364 � �

(4) Estab. TFP Growth, Std. Dev. -0.273 � �

(5) Firm Sales Growth, IQR -0.265 � �

(6) Firm Stock Returns, IQR -0.339 � �

Calculated from NBER-CES MIPD

(7) Ind. TFP Growth, IQR -0.502 (0.000) -0.298 (0.021) -0.184 (0.108)

(8) Ind. TFP Growth, Std. Dev. -0.262 (0.038) -0.241 (0.051) -0.129 (0.194)

(9) Ind. TFP Growth, Var. -0.249 (0.046) -0.245 (0.048) -0.123 (0.206)

4I obtain data from the same sources as the aforementioned two papers, yet with more recent data up until

2005. I get the same signa�cantly negative correlations as in these two papers if I only use the same range of data

as they do. However, if I include the newly update data as shown in the �gure, I can only a negative correlation

that is not signi�cant and is much smaller in absolue scale, which is less than 0.11.
5 The �rst column of results show correlation coe¢cients (p-value) with Real GDP growth rate, the second with

residuals of HP-�ltered Real GDP, and the last with weighted average TFP growth rate in manufacturing sector.

Row (1) and (2) are taken from Table 3 and 4 in Kehrig (2011), in which the microlevel data sources are mainly

ASM/CM/LBD continuously covering period of 1972-2005 at annual frequency. Row (3) to (6) are from Table

1 in Bloom, Floetotto and Jaimovich (2010). Establishment-level data are also from ASM/CM/LBD, 1972-2006,

while the �rm-level infomation is from Compustat at quarterly frequency, 1967:II-2008:III for sales growth and

1969:I-2010:III for stock returns. Row (7) to (9) are TFP dispersions cross industries at four digit SIC level and

NBER-CES Manufacturing Industry Productivity Database is the source, covering annually 1959-2005. Except

for IQR, all other moments of industrial TFP growth are weighted by real value of total shipment. Numbers in

parentheses are one-sided p-values under the null of non-negative correlation.
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Due to the limitation of data, I use dispersion measures at TFP growth rate instead of TFP

level. The corresponding cyclical indicators are then GDP growth rate, sectoral output growth

rate, and average TFP growth rate. To be comparable to other works, I only include GDP growth

rate and GDP HP residuals in Table 1.

Firm Dynamics. To illustrate �rm dynamics over time, I obtain annual data from 1977 to

2009 in Business Dynamics Statistics (BDS) at CES, a data set that recently became publicly

accessible. To be consistent with micro-level evidence on countercyclical dispersion, I only look at

the establishments in manufacturing sector. 6

Table 2 summarizes the property of establishment entry and exit rates by �rm size7. A �rm

is classi�ed to be small if it has less than 50 registered employees. A more detailed illustration of

entry and exit rates by year and by establishment size can be found in the Appendix.

6A noteworthy issue here is how to de�ne an entrant and an exiting establishment. According to the o¢cial

overview of BDS dataset, "An establishment opening or entrant is an establishment with positive employment in

the current year and zero employment in the prior year. An establishment closing or exit is an establishment with

zero employment in the current year and positive employment in the prior year. The vast majority of establishment

openings are true green�eld entrants. Similarly, the vast majority of establishment closings are true establishment

exits (i.e., operations ceased at this physical location). However, there are a small number of establishments that

temporarily shutdown (i.e., have a year with zero employment) and these are counted in the establishment openings

and closings." Therefore, an inevitable caveat is that, although of relatively small number, an "idling" establishment

can show up in the data as exit �rst, and then as entrant, for potentially many times. However, one clear advantage

especially over �rm-level data is that merging and acquisition are not reasons for disappearing units. Therefore, I

can safely assume that exiting establishments su¤er from low realizations of productivity.
7The entry and exit rates are indeed calculated utilizing the numbers of new born establishments, closed es-

tablishments, and existing establishments. However, the size is classi�ed using the number of employees in a �rm,

instead of an establishment. One can only argue that large �rms tend to own large establishments, and therefore

large establishments exhibit similar dynamics to the ones owned by large �rms. Otherwise, it is not clear whether

this is a valid approximation.
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Table 2. Entry and Exit Rates in Manufactures8

For US Manufacturing Sector 1977-2009

Total Large Small

(1) Avg. Entry Rate (%) 9.36 5.18 31.18

(2) Avg. Exit Rate (%) 9.28 6.00 30.06

(3) Std. Dev. (EntryHP ) (%) 0.52 0.64 1.85

(4) Std. Dev. (ExitHP ) (%) 0.67 0.90 1.56

(5) Corr(EntryHP , (Avg. TFP)HP ) 0.20 (0.29) 0.19 (0.33) 0.21 (0.29)

(6) Corr(ExitHP , (Avg. TFP)HP ) -0.26 (0.17) -0.17 (0.37) -0.23 (0.24)

(5�) Corr(�Entry, Avg. �TFP ) 0.22 (0.26) 0.13 (0.51) 0.31 (0.11)

(6�) Corr(�Exit, Avg. �TFP) -0.10 (0.62) 0.06 (0.76) -0.06 (0.73)

Comparing establishment dynamics in small �rms to that of large ones, they are of much larger

scales, more volatile, and more cyclical. Therefore, in the quantitative model, I only focus on the

dynamics in small �rms, and treat the entry and exit of large �rms mainly as exogenous, and they

happen only with small probability.

3 A Simple Model

To highlight the mechanism, I start from a simpli�ed and tractable three period version of the

full model. I remove some features of the working model that is not as crucial, and focus only

on the incumbents� problem. The main idea is that the option to exit promotes risk taking of

small �rms by creating a local non-concavity in a �rm�s continuation value function, which in turn

generates a non-degenerate dispersion in productivity. Moreover, as is shown in the comparative

statics analysis, such dispersion becomes larger in bad time, due to a larger fraction of risk taking

�rms. The same mechanism drives the in�nite horizon model as well.

3.1 Setup

There are 3 periods, t = 0; 1; 2. The length of each period is taken as one year, same as the

period length in the full model. There are a continuum of risk neutral �rm owners, each of whom

8 The data source is still BDS. The binary grouping rule in size can be found in caption of Figure (2). In Row

(1) and (2), the numbers are simple time series averages. Row (3) and (4) are standard deviations for HP residuals.

Row (5) to (6) are correlations for HP residuals, (7) and (8) are for changes. Numbers in parenthesis are p-values.

I choose to compute correlation coe¢cient this way instead of using original entry/exit rates because there is a

declining trend in both series. This is an interesting observation on its own sake, but this paper is silent on it.
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Figure 2: Cyclical behavior of entry and exit in manufacturing sector by size. A small �rm is

classi�ed as one with less than 50 registered employees, and a large one with at least 50. This

�gure shows original series of entry (solid lines) and exit (dashed lines) rates by size. The two

thinner lines at the bottom are for large �rms, and the two thicker ones are for small �rms. Data

on entry and exit rates are from BDS of CES.

owns a �rm with di¤erent level of initial resource w0 2 [0; �w]. Assume that each �rm has only one

establishment or plant that produces one kind of product. The c.d.f. of owners� initial resource

holding is given as G (w0). At period 0, initial wealth w0 can be divided into investment k0 for

future wealth and immediate consumption w0� k0. If an owner decides to invest k0, then she will

get w1 = F (Z; k) as period 1 wealth, where

F (Z; k) = Zk�; 0 < � < 1;

and Z represents the realized productivity of the technology the �rm owner chooses after invest-

ment decision. A production project is associated with a technology. An owner can choose one

and only one out of two available technologies: a safe one and a risky one, di¤ering in the riskiness

and realizations of productivity.9 For the safe technology, Z = A for sure, while for a risky one,

with probability p 2 (0; 1), Z = �z > A, and with probability 1� p, Z = 0. Both technologies give

the same expected value of Z, that is, p�z + (1� p) 0 = A. The risky technology has a variance in

productivity as a function of p and �z, �2 (p; �z) = p (1� p) �z2. As a result of linearity of F (Z; k)

in Z, the expected return of risky project is the same as the safe one, i.e., there is no ex ante risk

premium. Under this setup, A corresponds to the average establishment-level TFP in data, and

plays the role of economic condition indicator (or cyclical indicator in the full model); the riskiness

of the risky technology represents the risk at the establishment level, while its aggregated coun-

terpart measures the dispersion in productivity. I assume that production requires full attention

9For tractability, I assume only one type of risky technology and binary possible realization of it. In fact, it is

possible to allow a continuous range of randomization, and this generalization does not alter the qualitative result.
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Figure 3: Timing of the Simple Model

of the �rm owner, hence a �rm cannot undertake multiple production projects simultaneously.

3.2 Analysis

At period 1, after the uncertainty in Z realizes, the agent can decide whether to close her �rm,

exit the industry and get outside option value V 0, or stay. Conditional on staying, she makes the

investment choice k1 and technology adoption choice again based on period 1 wealth w1. In the

last period, she simply consumes her �nal wealth w2. The objective of an agent with initial wealth

w0 is to maximize her discounted consumption, with discount factor �:

V0 (w0) = max
0�k0�w0

f(w0 � k0) + �max fV1 (Ak
�
0 ) ; (1� p)V1 (0) + pV1 (�zk

�
0 )gg

where Vt (wt) is the time t value for an agent with wealth wt.

It is convenient to work backwards. At time t = 2;

V2 (w2) = w2:

At time t = 1, an agent with k1 > 0 will be indi¤erent between operating a safe project and a

risky one. Assume that all agents will perform safely in this case, which is consistent with their

choice if they were risk averse. For simplicity, I do not allow borrowing in the short model, and

the period 1 value for a staying �rm will be:

V 1
1 (w1) = max

0�k1�w1
f(w1 � k1) + �Ak�1 g :

Let k� be the optimal capital choice without borrowing constraint. The value of a �rm with wealth

level w1 at the beginning of period 1 will be given by

V1 (w1) = max
�
V 0; V 1

1 (w1)
	
:
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Figure 4: Continuation value as a functions of control variable, k0. The horizontal axis is k0,

and the vertical axis is the continuation value for each level of k0. The solid curve is the safe

continuation value V1 (Ak
�
0 ), and the dashed curve is the risky continuation value (1� p)V1 (0) +

pV1 (�zk
�
0 ). The horizontal line is V

0.

Let w�1 be such that V
0 = V 1

1 (w
�
1) : Note that there is a kink at w

�
1 and V1 (w1) is convex in a

neighborhood of w�1: This gives a �rm with relatively low wealth level an incentive to take a risky

project before it enters period 1. At t = 0, a �rm makes the investment decision and chooses a

technology:

V0 (w0) = max
0�k0�w0

f(w0 � k0) + �max fV1 (Ak
�
0 ) ; (1� p)V1 (0) + pV1 (�zk

�
0 )gg

= max
0�k0�w0

�
(w0 � k0) + �max

�
V 0; V 1

1 (Ak
�
0 ) ; pV

1
1 (�zk

�
0 ) + (1� p)V 0

		
:

To explicitly characterize a �rm�s technology choice, it is useful to introduce the following

condition on parameters.

Condition 1. 0 < V 0 < �
2�
2

1��2 �
1+�

2

1��2 �z
1

1��p
2�
2

1��2 (p1+� � p2) = (1� p) :

The risky and safe continuation values intersect at most once in the region where they are

both greater than V 0. This condition ensures the existence of intersection, and makes the analysis

tractable as shown in Proposition 1. The intuition is that given (�z; p), the option value V 0 of

exiting cannot be too high, otherwise exit becomes very appealing, so does the risky technology.

If it is violated, then all staying �rms strictly prefer the risky technology. In particular, if V 0 is

given, this happens when A is low enough.
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Proposition 1. At t = 0, if Condition 1 holds, then 9kI0 and k
III
0 such that 0 < kI0 < kIII0 < k�,

and the decision rule of a �rm owner with initial wealth w0 will be one of the following:

1. If 0 < w0 � kI0, she consumes all w0 and exits in period 1 for sure;

2. If kI0 < w0 < kIII0 , she invests all w0 in a risky project, then with probability p, w1 = �zk�0 ,

she in turn invests all w1 in period 1; with probability 1� p, w1 = 0, she exits in period 1;

3. If kIII0 � w0 � kA0 , she invests all w0 in a safe project, then invests all w1 = Ak�0 in period

1;

4. If kA0 < w0 � k�, she invests all w0 in a safe project, then invests k
� and consumes the rest

in period 1;

5. If w0 > k�, she invests k� and consumes the rest in both periods.

The interesting region, or the "risky region", is the interval
�
kI0; k

III
0

�
. The exiting option

forms a lower bound in value function that is higher than in the case without exiting. This new

lower bound alters the shape of continuation value function, in particular, the continuation value

function has a local convexity if safe technology is chosen. This non-concavity region is roughly

the same as the interval
�
kI0; k

III
0

�
, in which �rms have limited amount of capital stock. Firms

that fall into this region have incentive to smooth out such convexity by entering a lottery and

randomizing over possible outcomes, which is exactly the role that risky technology plays in this

model. The fraction of risk taking �rms will then be determined given the initial distribution

G (w0), and each of these �rms bear the same risk in terms of the randomness of productivity
10.

As can be seen below, a change in A drives the changes in the risky region and the the fraction of

risk taking �rms, and leads to a di¤erent productivity dispersion.

Assume a form of "Law of Large Numbers" holds11, meaning that there are many �rms at

each w0, and the fraction of risky project with �z realized is p. The ex ante aggregate variation in

TFP that �rms choose to take in period 0, denoted as � (p), is de�ned as the average variance in

10Once again, the same risk results from the assumption that only one way of randomization is permitted in

the model for simplicity. To relax this restriction, one can assume that each �rm can choose any distribution on

productivity so long as the expection remains A, which results in a risky region larger than
�
kI0 ; k

III
0

�
. However,

while making the model much more complicated, this will not alter the result qualitatively, neither will it provide

more insight into the model.
11See Judd (1985).
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pro�tability as a function of p, the probability of good realization of risky technology.

� (p; �z) =

Z

W

var (Z) dG (w0jk0 > 0)

=

Z kIII
0

kI
0

�2 (p; �z) dG (w0jk0 > 0)

= �2 (p; �z) � (p; �z) ;

where � (p; �z) :=
G(kIII0 )�G(kI0)

1�G(kI0)
in which kI0 and k

III
0 are functions of p and �z as well. �2 (p; �z)

is simply the variance of the Bernoulli distributed productivity of risky technology, while � (p; �z)

represents the measure of �rms in the risky region. At the same time, the aggregate or average

output in period 0, O (p; �z), is:

O (p; �z) =

Z

W

E (F (Z; k0)) dG (w0jk0 > 0)

= p�z

Z k�

kI
0

w�0 dG (w0jk0 > 0) + p�z (k
�)�

1�G (k�)

1�G (kI0)
:

3.3 Comparative Statics

The nature of the simple model does not permit cyclical features. Therefore, I will instead

analyze the comparative statics mimicking di¤erent times of business cycles. In particular, I use

A, the average productivity, as the economic condition indicator, which corresponds to the average

TFP in data. In the model, a change in A can result from either a change in p, or in �z, or in

both. Provided that the bad outcome of the risky technology is always zero, �z then determines

the range, the variance of the Bernoulli productivity �2 (p; �z), and the measure of risky region

� (p; �z). At the same time, �2 (p; �z) and � (p; �z) are also nontrivial functions of p. When A, p,

and/or �z changes, the resulting change in riskiness of a risky technology, that is, �2 (p; �z) or range,

is called the "riskiness e¤ect", and the change in the measure of �rms in the risky region, � (p; �z),

is the "mean e¤ect". The interesting one is the mean e¤ect, therefore, to show the mechanism, I

consider a particular change in A, such that �z is held unchanged and p is also controlled to fully

eliminate the riskiness e¤ect, and examine the resulting mean e¤ect.

Proposition 2. Let V 0 and �z remain unchanged and assume Condition 1 always holds. Let

A 2
�
AH ; AL

	
=
�
pH �z; pL�z

	
, pH and pL be such that pH > pL > 0. Suppose the distribution of

initial wealth G (�) is Pareto and the lower bound of its support is below kI0 when risky technology

is pH . Then:
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Figure 5: Comparative Statistics.

1. O
�
pH ; �z

�
> O

�
pL; �z

�
;

2. �
�
pH ; �z

�
< �

�
pL; �z

�
:

To control the riskiness e¤ect, assume pH + pL = 1, then:

3. �2
�
pH ; �z

�
= �2

�
pL; �z

�
= �z2pHpL;

4. �
�
pH ; �z

�
< �

�
pL; �z

�
:

According to this proposition, given �z �xed, A (or p) summarizes the aggregate state, higher

A then means good times. When the aggregate state is good, the total output is high, and this

is always the case whether the riskiness e¤ect is controlled or not. Meanwhile, the risky region is

smaller in good times, which in turn leads to smaller fraction of risk taking �rms, regardless of

the riskiness e¤ect. The assumption of Pareto distribution is to mimic the actually observed size

distribution of �rms, which is a su¢cient but not necessary condition for the desired change in

risky region. For example, a uniform distribution will give the same result. When the riskiness

e¤ect is controlled, the riskiness of a risky technology remains unchanged, therefore it is the

change in fraction of risk taking �rms that drives the change in resulting productivity dispersion,

or average riskiness that �rms choose to take, measured as variance in productivity. In fact, in

the calibrated quantitative model, it turns out that the riskiness e¤ect is too small to generate

signi�cant di¤erence in simulated results.
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Figure (5) illustrates what happens to the model if A decreases, as described in Proposition 2.

When A is low, the exiting threshold increases and more �rms exit. At the same time, low A also

leads to a larger risky region and a greater fraction of risk taking �rms, so now there are more �rms

that strictly prefer to the risky technology. As a result, if the change in A is controlled as speci�ed

before, the average risk that �rms choose to take is also larger, so is the realized productivity

dispersion. To summarize, the key step for the model to generate countercyclical productivity

dispersion is the change in the risky region as aggregate state changes. And it is mainly because of

an enlarged fraction of risk taking �rms that causes a larger productivity dispersion in bad times.

This mechanism remains in the quantitative model with in�nite horizon. In fact, if the aggregate

state follows a Markov process with only two possible outcomes of AH and AL controlled in a

similar way, then without introducing other features, the negative correlation between aggregate

state and productivity dispersion is still almost perfect.

4 Quantitative Model

4.1 Setup

Time is discrete, with in�nite horizon. The �rms that have survived at least one period are

called incumbents. There is a continuum of potential entrant �rms every period, each of whom

draws their initial capital k0 from a distribution G0 (k0). Once entering, an entrant acts as an

incumbent thereafter as long as this �rm stays. The production function is the same as in the

simple model, F (Z; k) = Zk�, with 0 < � < 1 and Z being the realized productivity depending on

technology choice.12 At the beginning of each period, all �rms observe average productivity A. An

incumbent �rm owner makes the choice between staying and exiting. If an incumbent exits, the

12In fact, F (Z; k) = Zk� can be interpreted as a �rm�s pro�t, that is, the revenue net of the cost for variable

factors, for example labor and materials. Speci�cally, assume a plant faces an inverse demand function P (y) =

By�b, and therefore its revenue becomes R (y) = By1�b. Suppose the actual production function is y = ~Ak~�l
~�,

and the price for other factors is !, then after optimization of l, the revenue function becomes

R =
�
B ~A1�b

�1=(~�(1�b)) h
~� (1� b) =!

i~�(1�b)=(~�(1�b)�1)
k~�(1�b)=(

~�(1�b)�1);

and pro�t function

� =
�
1� ~� (1� b)

�
R:

Rede�ning variables gives the form of Zk�. Therefore, Z in the model is more appropriately interpreted as measured

productivity that includes information from the demand side, instead of actual productivity. For the same reason,

parameter A shown later in the model shall also be interpreted as aggregate state of the model economy, rather

than production technology.
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owner takes away the remaining pro�t. A staying �rm then decides the amount of next period�s

working capital k0 and whether to adopt the safe technology or the risky one. Again, assume full

attention of a �rm owner as a prerequisite of production. After production, capital depreciates at

a random rate � 2 f�1; :::; �N�g with probability � (�i), i = 1; :::; N�, which is assumed to be i.i.d.

across �rms and over time. Technology choice, investment, and depreciation jointly determine the

incumbent�s next period disposable resource.

The aggregate state for the model economyA evolves as a Markov chain withA 2 A = fA1; :::; ANAg,

and transition probability �ij = Pr (A
jjAi). In particular, this Markov chain is a discretized AR(1)

process, such that At = �AAt�1 + �uut, where �A 2 (0; 1) is the serial correlation, and ut is white

noise. Following conventional real business cycles models, I assume time invariant volatility in

A, in terms of constant �u. This implies that the driving force of this modelled economy is the

traditional "technology shocks", that is, the change in "�rst moment". This is di¤erent from

Bloom (2009) and Bloom et. al. (2010), who use time varying higher moments as the pure source

of aggregate �uctuation. Meanwhile, this also distinct from, for example, Bechmann and Bayer

(2009a,b) and Chugh (2010), who allow time varying higher moments in addition to the usual �rst

moment movement to account for the countercyclical dispersion observed in data. I do not allow

�u to change over time is based on the following considerations that (1) �u is time series volatility,

which is not the same as observed cross-sectional dispersion, and (2) this model emphasizes a

mechanism through which time varying A generates realized productivity dispersion, and it is of

no need to introduce additional variation.

Production is costly. In each period, a staying and active �rm needs to pay a �xed operating

cost, and, if the �rm needs increase or decrease its capital stock, it pays a capital adjustment

cost as well. Mainly following Cooper and Haltiwanger (2006) and Bloom (2009), I assume the

capital adjustment cost consists of two parts: (1) a non-convex cost, and (2) a transaction cost.

The non-convex cost represents the opportunity cost when a �rm is under capital adjustment.

Speci�cally, this �rm foregoes a fraction ck of its production if there is capital adjustment in a

given period. The transaction cost represents the partial irreversibility. When a �rm needs to

increase capital, the price paid for every unit of new capital is normalized to be one, where the

price is interpreted as how many units of output needed to get one unit of capital. However, if a

�rm wants to reduce capital, the selling price for each unit of capital is � < 1.

Each time period has several stages, which resembles period 1 in the simple three period model.

� Stage 1: Observation of state variables. Aggregate state A realizes, so does the random

capital depreciation for each �rm �. An incumbent �rm observes (A; �), and enters this

period with remaining capital, (1� �) k, and together with period�s production F (Z�1; k),

where Z�1 is the realization of last period�s productivity of this �rm. A potential entrant
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draws k0 and observes A.

� Stage 2: Entry and exit. An entrant with (k0; A) enters if there is positive expected pro�t.

An incumbent exits either voluntarily based on continuation values, or exogenously with

probability �.

� Stage 3: Investment and technology decision. Both staying incumbents and new born �rms

decide how much to invest, and then choose between safe and risky technologies. At the

same time, the operating cost and capital adjustment cost are paid.

� Stage 4: Production. Production takes place in the form F (Z; k0), where k0 is the new

working capital, and Z is the productivity. If a �rm chooses safe technology, then the

productivity is deterministic, Z = A. Otherwise, with probability p (A), the risky technology

turns out to be a success, Z = �z, and with probability 1� p (A), it fails, and Z = 0.

4.2 Individual Decision

An Incumbent�s Problem. At the beginning of each period, an incumbent �rm is characterized

by (Z�1; k; �; A), where Z�1 2 fA�1; 0; �zg is the realized productivity of last period for a speci�c

�rm, which can be either of the safe productivity A�1, the bad realization 0, or the good realization

�z, k is the total amount of capital that was used in last period, � is the realized random depreciation

rate, and A represents the economic condition of current period.

The �rst choice an incumbent �rm owner makes is between keeping operating and closing the

�rm and leaving.

V (Z�1; k; �; A) = max (1� �)V 1 (Z�1; k; �; A) + �V 0 (Z�1; k; �; A) ;

where � 2 f�; 1g is the exiting choice, and � is the exogenous exiting hazard. If a �rm with

(Z�1; k; �; A) chooses to exit, the value is:

V 0 (Z�1; k; �; A) = � (A) (Z�1k
� + (1� �) k) ;

where � (A) < 1 is the fraction of resource a �rm owner can take away when exiting, which is

actually a resale price and is potentially a function of A. If this �rm chooses to stay, the owner

must then decide on investment, i, and technology choice, safe or risky. The capital stock evolves

as follows


k0 = (1� �) k + i;
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where, following Khan and Thomas (2008), 
 > 1 determines the growth rates on the balanced

growth path13. The operating cost C (i;Z�1; k; �; A) of a �rm consists of a �xed cost cf and a

capital adjustment cost:

C (i;Z�1; k; �; A) = cf + ckF (Z�1; k) 1fi6=0g + (1� � (A)) (�i) 1fi<0g:

Actively adjusting capital stock and choosing i 6= 0, costs a �rm ck fraction of its revenue from

last period�s production. In addition, if a �rm reduces its scale, it can only sell its current

capital possession at price � (A) < 1. Combining these pieces gives the �ow pro�t of this �rm

D (k0;Z�1; k; �; A) ; and

P (i;Z�1; k; �; A) = F (Z�1; k)� i� C (i;Z�1; k; �; A) � 0:

I enforce non-negative pro�t as a constraint. The �rm also has to choose between safe and risky

technology. A safe technology produces F (A; k0) for sure; while a risky technology results in

productivity at �z with probability p (A) and 0 with 1 � p (A). If the safe one is chosen, the �rm

gets:

V 1
safe (i; k; �; A) = EA0;�0 [V (A; k

0; �0; A0) jA] ;

and likewise,

V 1
risky (i; k; �; A) = p (A)EA0;�0 [V (�z; k

0; �0; A0) jA] + (1� p (A))EA0;�0 [V (0; k
0; �0; A0) jA] :

Therefore, conditional on staying, an incumbent �rm solves the following maximization problem:

V 1 (Z�1; k; �; A) = max
i

�
P (i;Z�1; k; �; A) + �max

�
V 1
safe (k

0;Z�1; k; �; A) ; V
1
risky (k

0;Z�1; k; �; A)
		

:

Denote the state variables of an incumbent as  = (Z�1; k; �; A) 2 	, with 	 being the set of

all possible states. Solution to an incumbent�s question with state  is a list of policy functions

f� ( ) ; � ( ) ; � ( )g such that (1) � ( ) is the exiting choice, � : 	 ! f�; 1g; and conditional on

surviving, (2) � ( ) is the technology choice, � : f 2 	 : � ( ) = �g ! f0; 1g, where 0 represents

the safe technology and 1 the risky one, and (3) � ( ) is the investment level, � : f 2 	 : � ( ) = �g

! R.

13This assumption is not crucial for generating countercyclical variance in productivity. The quantitative results

on countercyclicality does not alter if 
 = 1 as in standard business cycles models. The only reason of introducing

this parameter is to make the simulated model moments comparable to data moments. The average annual growth

rate of per capital output, assuming balanced growth path, is 
 = 1:016, which is not removed from the data

moments, especially those of investment dynamics.
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A Potential Entrant�s Problem. A potential entrant draws initial capital holding k0 from a

invariant Pareto distribution G0 (k0) with parameter �. The value of staying outside the market is

V 0
0 (k0; A) = � (A) k0:

To start up a business, one must pay a setup cost ce from initial capital, and thereafter acts as an

incumbent with state (Z�1; k; �; A) being  0 = (0; (k0 � ce) = (1� �) ; �; A), where, without loss of

generality, � = �0 := E (�). Hence, the payo¤ of opening a �rm will be:

V 1
0 (k0; A) = V 1 (0; (k0 � ce) = (1� �) ; �; A) :

A new �rm will be born if

V 1
0 (k0; A) > V 0

0 (k0; A) :

Solution to this problem is a binomial entry choice " : 	0 � 	 ! f0; 1g, where 	0 contains all

possible  0, and " ( 0) = 1 if an entrant enters and 0 otherwise.

4.3 Aggregate Dynamics

Given the solutions to the individual problems described before, f� (�) ; � (�) ; � (�) ; " (�)g, it is

straightforward to write down the transition dynamics for the distribution over  = (Z�1; k; �; A) :

For an arbitrary  2 	, it is either  2 	0 or  can only be the state of an incumbent.

I denote � ( ) as the measure or density of point  = (Z�1; k; �; A) at Stage 1 of a typical

period with aggregate state A, before entry and exit takes place. If � ( ) = 1, then a �rm

with this state exits for sure, and no other transition can happen. If � ( ) = �, then with

probability � this �rm exogenously exits, and with a complementary probability, it stays. Con-

ditional on staying, if the �rm chooses the safe technology, � ( ) = 0, then with probability

� (�0) its individual state becomes (A; (k + � ( )) =
; �0). On the other hand, if the �rm chooses

the risky technology, � ( ) = 1, then with probability p (A) � (�0) its individual state becomes

(�z; (k + � ( )) =
; �0), and with probability (1� p (A)) � (�0) it becomes (0; (k + � ( )) =
; �0). Now

turn to the new borns. Denote g0 ( 0) the entrant�s measure or density at point  0 determined

by G0 (�). A new born with  0 enters if " ( 0) = 1. After entering, this �rm acts exactly the

same as a surviving incumbent with  =  0. To summarize, starting from � ( ), a fraction

� ( )� ( ) exits, (1� � ( )) (1� � ( )) � (�0)� ( ) goes to individual state (A; (k + � ( )) =
; �0),

(1� � ( )) � ( ) p (A) � (�0)� ( ) goes to (�z; (k + � ( )) =
; �0), and the rest to (0; (k + � ( )) =
; �0);

starting from g0 ( 0), (1� � ( )) � (�0) g0 ( 0) goes to (A; (k + � ( 0)) =
; �
0), � ( ) p (A) � (�0) g0 ( 0)

goes to (�z; (k + � ( 0)) =
; �
0), and the rest to (0; (k + � ( 0)) =
; �

0). Finally, the aggregate states

becomes A0 with probability Pr (A0jA), A0 2 A. Formally, suppose the aggregate state at Stage 1
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of a period is A0 = Aj, and that of last period is A = Ai, meaning the realized productivity Z is

one of fAi; �z; 0g. Every state not on the realization path has zero measure, or

�0 (A; k0; �0; A0) = 0 if A 6= Ai or A
0 6= Aj;

where primed variables are ones realized at the same period as A0. The rest of the states can then

be divided into three groups by realization of Z, all of which come from both incumbents and new

borns. For Z = Ai,

�0 (Ai; k
0; �0; Aj) = � (�0)

" R
(1� � ( )) (1� � ( ))1f :
k0=(1��)k+�( )g� ( ) d 

+
R
" ( 0) (1� � ( 0))1f 0:
k0=(1��0)k0+�( 0)gg

0 ( 0) d 0

#

;

where variables with no prime are ones observed one period back, with  = (Z�1; k; �; Ai) and

 0 = (0; (k0 � ce) = (1� �0) ; �0; Ai). For Z = �z or 0,

�0 (f�z; 0g ; k0; �0; Aj) = � (�0)

" R
(1� � ( )) � ( )1f :
k0=(1��)k+�( )g� ( ) d 

+
R
" ( 0) � ( 0)1f 0:
k0=(1��0)k0+�( 0)gg

0 ( 0) d 0

#

:

By independence, a fraction p (Ai) has Z = �z, and the rest gets Z = 0, that is,

�0 (�z; k0; �0; Aj) = p (Ai)�
0 (f�z; 0g ; k0; �0; Aj) ;

�0 (0; k0; �0; Aj) = (1� p (Ai))�
0 (f�z; 0g ; k0; �0; Aj) :

The di¢culty in obtaining a closed form transition function is due to the aggregate �uctuation

in A, therefore I turn to numerical solutions. In the following subsection, I �rst pick the parameter

values that generate reasonable moments when the model is simulated at a stationarity. The

stationarity here means the following. The aggregate state sequence, fAtg, is set to be constant

at its mean, but the �rms still expect the future states to be changing according to a transition

probability of A, �ij. At the same time, the time-moving average in�ow and out�ow of the pool

of incumbents roughly equal. Then, leaving all parameters unchanged, I simulate a long sequence

of fAtg that actually evolves following �ij, and throw away the �rst burnt-in periods. It is now

that I can look at the generated correlations and other business cycles features of the model.
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4.4 Quantitative Results

Table 3. Parameter Values and Rationale

Parameters Explanation

Aggregate Fluctuation

�z = 1 Normalization

A Tauchen (1986). NA = 5;E (A) = 0:5; �A = 0:9; �" = 0:1

Production

� = 0:5 Capital share

� = 0:9 Discount factor

� Random depreciation rate, with E (�) = 0:1.

� = 0:6 Resale price, temporarily assumed to be constant.

� = 0:05 Exogenous exiting probability

cf = 0:2 Fixed cost

ck = 0:05 Capital adjustment cost as fraction of revenue


 = 1:016 Growth rate on the balanced growth path

Entrants

ce = 0:01 Entry cost

� = 0:3 Pareto distribution parameter for G0

For the purpose of an illustration, I set the parameters as are described in Table 3. In order

to set up a baseline for the model, I shut down the �uctuation and simulate a long history of the

model under the selected parameter values. Speci�cally, the realization of A is controlled to be

its mean level through the whole history, while all �rms actually expect aggregate �uctuation in

At with transition probabilities �ij. To make sure the scale of the economy is not exploding or

shrinking, I let the number of new born �rms and that of exiting �rms be balanced such that

the time-moving average of entry and exit rates are roughly the same. The simulated sequence is

then truncated to remove the burnt-in stage. The generated moments and data counterparts are

listed in Table 4. The moments on investment dynamics are from Cooper and Haltiwanger (2006),

average entry and exit rates are taken from Table 2.
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Table 4. Moments from Model

Moments Generated from Model Data Moments

Investment

Mean of investment rate 0.166 0.122

Fraction of inaction 0.090 0.081

Fraction with positive investment 0.816 0.815

Fraction with positive investment burst 0.106 0.18

Fraction with negative investment burst 0.088 0.018

Entry and Exit

Mean entry rate 0.086 9.36

Mean exit rate 0.086 9.28

Productivity

Mean of productivity, A 0.5 �

Productivity dispersion, Std. Dev. of Z 0.17 �

Firm Size Reshu­e

Fraction of large-to-small tbd tbd

Fraction of small-to-large tbd tbd

The main goal of this numerical exercise is to generate countercyclical �rm-level productivity

dispersion as a result of �rm�s risk taking behavior, without introducing any time varying volatility

in the driving force, At. I add the aggregate �uctuation by simulating a sequence of realizations

of productivity level A, and let the model evolves accordingly without changing other parameter

values. The �uctuation in productivity A follows the Markov process speci�ed in the Table 3,

and not surprisingly, it is positively correlated with the total output with correlation coe¢cient

0:78 (p-value = 1.5e-41). Therefore, the cross-sectionally averaged productivity can serve as a

valid cyclical indicator. The measures for productivity dispersion are chosen to be (1) standard

deviation of cross-sectional distribution of realized Z, productivity, (2) fraction of �rms that prefer

risky technology, and (3) the 95% to 5% interpercentile range of realized Z, which is the value of

Z at 95% percentile minus the value of Z at 5% percentile.
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Figure 6: Simulated sequences of (1) cross sectional productivity dispersion measured as standard

deviation in realized productivity Z (solid line, left axis), and (2) fraction of �rms that choose

risky technology (dotted line, right axis, in %). The grey bars indicate the economic condition as

value of A. In particular, darker bars represent lower values of A.

Figure 7: Simulated sequences of entry and exit rates. The solid line represents the exit rates, and

the dashed line records entry rates. Grey bars indicate the value of A as in previous �gure.
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Table 5. Generated Cyclicality

Cyclicality: Correlations (p-value) with Cyclical Indicators

Cyclical Indicators

Variables of Interests Avg. Productivity, A Total Output, O

Productivity Dispersion std:dev: (Z) -0.385 (1.6e-8) -0.374 (4.7e-8)

Frac. of Risky Firms � -0.389 (1.2e-8) -0.372 (5.3e-8)

Interpercentile Range 95%-5% IPR955 -0.273 (8.6e-5) -0.26 (1.7e-4)

Entry Rate rEN 0.495 (8.1e-14) -0.096 (0.174)

Exit Rate rEX -0.386 (1.5e-8) -0.562 (0)

The correlation coe¢cients of productivity dispersion is signi�cantly negative, and the absolute

values are in line with the data counterparts. Moreover, the cyclicality of productivity dispersion

measured is in comparable scale to that of the fraction of �rms that choose risky technology, and

the movements are in very similar patterns as can be read o¤ from Figure (6). This implies that it

is the change in fraction of risk taking �rms that drives the cyclicality of productivity dispersion. In

bad times, more �rms are willing to take the risk and randomize their future values. Consequently,

the resulting dispersion measured as standard deviation of cross-sectional productivity distribution

is larger, so is the interpercentile range.14 The assumed binomial outcome of a risky technology

has the potential to impact the behavior of the dispersion, however, such impact is of a much

smaller scale and does not alter the main pattern.

5 Discussions and Extensions

The Case with Heterogeneity. I have assumed a common risk-free productivity level for all

�rms in each period. In order for this paper to be comparable to models of heterogeneous �rms

with idiosyncratic productivity change, one option is to simulate it many times using di¤erent

14Due to the model assumption, cross-sectional IPR in productivity can only be either �z, �z�At, or At, and does

not have very interesting dynamics, although it is still countercyclical. This can be overcome by allowing a richer

set of productivity lotteries and keeping the expected productivity to be A. For example, in addition to (p (A) ; �z),

�rms can also choose any (p; �zA) pair with binary outcomes such that p�zA = A. Intuitively, the IPR measure in

this case will again be negatively correlated to At because smaller �rms have incentive to take even more risk in

bad times than in the original case. Therefore, the range of realized productivities is wider, and potentially the

IPR is larger and has more possible values.
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but correlated processes of A, and then combined the results. This practice will not result in an

essentially di¤erent relationship between productivity dispersion and cyclical indicators.

The Case with Collateralized Borrowing Constraints. Firms are not allowed to raise fund

externally in this model. However, the qualitative result will be the same if �rms can borrow

and are subject to collateralized borrowing constraints against capital stocks. It is still the small

�rms that will be constraint. Consequently, small �rms choose the risky technology, and they

need to bear both the riskiness in the random productivity realizations and the default risk. The

cyclical pattern therefore remains. Moreover, tighter borrowing constraint in bad times acts as an

ampli�cation device in the resulting productivity dispersion. In fact, the tightness of the constraint

moves in the same direction as productivity dispersion, with or without aggregate state controlled.

The Case in General Equilibrium. To mimic the case of general equilibrium, especially the

change in prices, I set the capital resale price � as an increasing function of A. When the economy

is in better condition, a �rm can sell its capital stock at a higher price. This modi�cation can be

supported by empirical �nding by Balasubramania and Sivadasan (2009), who �nd positive corre-

lation between capital resalability and mean of productivity distribution, and negative correlation

between capital resalability and productivity dispersion across industries at four digit SIC level.

Such modi�cation impacts the model economy by directly a¤ecting the entry and exit decisions

through the option values of not entering or exiting, which in turn may change the risk taking

behavior of the marginal �rms. Intuitively, whether partial equilibrium results can survive, espe-

cially the cyclicality, depends on two forces in opposite directions of this modi�cation. The �rst

force in favor of the cyclicality result is due to the local non-concavity in �rm�s value function.

Higher � at higher A results in higher curvature in the value function and a smaller region for risk

taking. Lower � has the opposite e¤ect. The other force is twofold. For incumbents, � moving

in the same direction as A increases the option value of exiting in good times and decreases it

otherwise, therefore it promotes risk taking in good times and depresses it in bad times. For en-

trants, it also leads to a higher option value of not entering the market and reduces the incentive

of opening new �rms. The simulation suggests that the �rst force dominates the other one, and

the countercyclicality actually becomes more pronounced in this case.
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Table 6. Generated Cyclicality when � = � (A)

Cyclicality with Fluctuations in Capital Resale Price

Cyclical Indicators: Corr (A;O) = 0:71

Variables of Interests Avg. Productivity, A Total Output, O

Productivity Dispersion std:dev: (Z) -0.441 -0.601

Frac. of Risky Firms � -0.441 -0.598

Entry Rate rEN 0.708 0.038

Exit Rate rEX -0.359 -0.576

6 Conclusion

Empirical works have shown that dispersion in �rms� pro�tability measured as the second

moment of �rm level TFP evolves countercyclically over time. I explore a mechanism in which the

time-varying and countercyclical second moment is a natural result of the standard �rst moment

change. I incorporate �rms� technology adoption decision into �rm dynamics model with business

cycle features to explain these empirical �ndings both qualitatively and quantitatively. The option

of endogenous exiting and credit constraint jointly play an important role in motivating �rms� risk

taking behavior. The model predicts that relatively small sized �rms are more likely to take risk,

and that the dispersion measured as the variance/standard deviation of �rm-level pro�tability is

larger in recessions, which are consistent to the data.
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