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Abstract. In this paper we develop an approach to valuation of a multiple names security 
portfolio. The goal of the paper to present pricing and calculation of the risk 
characteristics of the corporate debt based on randomization of the historical data of 
portfolio assets. Our approach close but it does not coincide with the reduced form 
interpretation of the credit risk. Based on stochastic interpretation of the default it follows 
that the market price of a bond is a stochastic process. Therefore, a spot price of a 
corporate bond implies risk and the bond value shows how market weights the risk. We 
will show in details how default correlation within securities will affect the basket 
exposure. 
 
JEL category: G13 Contingent Pricing 
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Introduction.  

 
This paper was prepared in the middle of 2008 year. It was happened that global financial 
troubles almost eliminated the interest to this particular area of finance. Nevertheless, 
recently looking through the original draft it seemed to me that it might make sense to 
present this draft. It represents somewhat different approach to portfolio valuation. 
 We begin with some comments to benchmarks approach used for valuation of a 
portfolio of multiple correlated assets. The initial step was done in [6]. This paper 
provides a framework for deriving the default probability on a firm. It was assumed there 
that the asset value V( t ) is a random process on a probability space { �, F, P } which 
follows  
 

                   d A ( t )  =  � A ( t ) d t  +  σ A ( t )  d W ( t )                  (0.1) 
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The default event D ( T ) ∈  F was assumed could occurred at the end of a period [ 0 , T ]. 
The probability of default was defined as 
 

P { A ( T )  <  D ( T ) }  =  Ф ( – d 1 ) ,   
 

where Ф ( ) is the normal commutative distribution function and 
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Recall that the linear SDE of the type (0.1) was used for the approximation of the 

equity price. It insure that two or n stocks offer the same rate of return as the one stock. 
Here n is assumed a small number compare with the market volumes traded during the 
period [ 0 , T ]. Equation (0.1) should be changed if we deal with a size approximately 
equal or more than day trading. In particular, the pricing equation can be a nonlinear 
SDE. There exists an upper bound for the market volume of the stock. It is the stock open 
interest.  
Next step in corporate pricing was made [7-9]. In these papers the portfolio of debt 
securities was studied. Let A i ( t ) be a security price at the date t and  
 

d A i ( t )  =  � i A i  ( t ) d t  +  σ i A i ( t )  d W i ( t ) 
 
where W i ( t ), i = 1, …, n are correlated Wiener processes E W i ( t ) W j ( t )  =  ρ t, for  
i ≠ j. The probability of default defined above for each debt was assumed to be equal and 
default could occurred only at the end of the period [ 0 , T ]. The asymptotic behavior of 
the portfolio’s losses when n tends to infinity was presented in [8]. In [7] was used first a 
representation that has been served later as a prototype of copula’s techniques.  
Statement 1.  
Let X i  be jointly normally distributed random variables with pair correlation ρ. Then  
 

 
Here Y and Z i , i = 1,2,…n are mutually independent standard normal random variables. 
The first term on the right hand side was interpreted as the i-th company exposure to 
common factor Y (such as the state of economy) and the second term on the right (0.2) 
the company the company risk. Now variables Y and Z i are called systematic and 
idiosyncratic terms correspondingly.  
As far as this statement is a mathematical result we formulate it more accurately. Next 
idea of the proof suggested by Vasicek. One can check that representation (0.2) could be 
achieved by putting  
 

)2.0(ρ-1  Y ρ     X ii Z  +=
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Thus, the in above statement one assumes that for a given set of n random variables X i  

there exists a standard normal random variable  U = U n . Hence, the corrected statement 
can be reformulated as the following theorem. 
Statement 2.  
 Let X i  be jointly normally distributed random variables with equal paired correlation ρ 
and let U be a standard normal random variable independent on X i . Then the 
representation (0.2) holds.  
The proof of the theorem is based on testing (0.2) given above formulas. This theorem 
was used in modeling asymptotic losses of a large portfolio [7-9].  
Remark. The first obstacle in application of this statement relates to the random variable 
U. It is clear that this variable should be defined when the problem is set. Some authors 
tried to interpret the variable Y as a macroeconomic index or another macroeconomic 
parameter. We argue that it might make sense to assume that individual assets do not 
have significant impact on say DJI index. On the other hand if the index sufficiently 
changes it is difficult to expect that a particular set of assets will be independent on these 
index changes.  
The next is a technical remark that relates to the risk neutral valuation. Merton and 
Vasicek [6,9] defined default in the ‘real’ world.   

Following Black Scholes’ option pricing which replaced real underlying security 
by its risk neutral counterpart by setting real security on the risk neutral world { �, F, Q } 
the price of credit instruments were neutralized by replacing their real drift coefficients 
by the risk free interest rate. This remark relates either to structural or reduced form 
approaches to the credit modeling. Some formal aspects of this problem were discussed 
in [3].   
 
Multi-names portfolio valuation. 
Let us now consider a basket of risky bonds. Following [2] consider a pricing model of a 
basket of risky bonds. We defined the market price of a risky bond at the date t with 
maturity T and recovery rate � which can defaults only at maturity as   
 

R ( t , T ; ω )   =   B ( t , T  ) { [ 1  –   χ ( ω , D ) ]   +   � χ ( ω , D ) }   = 
     (1) 

          =   B ( t , T ){ 1  –   ( 1  –  � ) χ ( ω , D ) }       
 
Here D denotes default event of the bond and � is assumed to be deterministic. From (1) 
it follows that 
 

E R ( t , T ; ω )   =   B ( t , T ) [  1 –  ( 1  –  �  ) P ( D ) ] 
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One can note that the market price given by (1) is a random function and therefore a 
particular spot price implies risk. This risk is associated with the event D which makes 
the price value (1) be bellow than the riskless price B ( t , T ) at any moment t before 
maturity T. The risk free price can also be assumed stochastic though here we consider 
the case when B is deterministic. 
There is a difference between (1) and reduced form pricing of the risky bond. We distinct 
the market price of the corporate bond given by (1) and the reduced form pricing. The 
market price at t is a random variable which values comes from the possibility of default. 
Note that (1) holds when recovery rate � is a random variable. We interpret the spot rate 
as equilibrium between demand and surplus that can be represented as a particular 
statistics of the random variable R ( t , T ; ω ). Reduced form model deals with the price 
defined as the expected value of the R ( t , T ; ω ). Thus the corporate bond price is took 
to the particular statistics in the reduced form model. We can interpret this reduction as 
the spot price. It makes sense when market is in equilibrium and demand and surplus 
does not remarkably change in time and therefore the expectation of the market price is a 
good estimate of the spot price. 

Let R i ( t , T i ; ω ) denote a risky bond price issued by i-company i = 1, 2,…, N 
and suppose that bonds might default only at maturity. Let T i ≤  T i + 1 , i = 1, 2,…, N,  
and denote χ i ( D i )  =  χ ( ω , T i , D i ) the indicator function of the default scenario D i  
occurred by assumption only at T i . Denote P i  j = P ( D i ∩ D j ) =  E χ i χ j the joint 
default distribution of the i-th and j-th bonds. Let us calculate the joint probability of 
default P i  j of two bonds. From (1) it follows that  
 

             ii
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    (2) 

 
Then  

 
This formula represents the joint distribution of the credit events given that default occurs 
at maturity only. Having joint distributions of two defaults it is easy to present the 
conditional probability P j | i  =  P ( D j | D i ) of default. Indeed, if   i  <  j  then by the 
definition of the conditional probability we have P j | i  =  P i j / P i where P i  = P ( D i ) is 
the default probability of the i-th bond [2] 
 

 
 The formula for multivariate defaults can be the represented in the form 
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These formulas present the basic correlation structure of the join defaults of the risky 
bonds when bonds default at maturity. This approach can also be used for calculations 
more complex multivariate distributions. The probability that a set of bonds marked by 
indexes J default at their maturities and a group of bonds specified by the set of indexes Λ 
would not default can be expressed by the formula 
 

  
Remark. The primary distinction between using probability formulas and statistical 
modeling is that in probability formulas we usually assume that all distributions and its 
parameters are known. For a statistical modeling historical data or other observations are 
used as a source of samples in order to perform tests and estimates of the model 
parameters. For some cases it might be difficult to produce statistical inference regarding 
unknown parameters of the model. In this case one may apply a mixed approach in which 
statistical approach could be combined with theoretical assumptions. Note that based on 
mathematical statistics the observations upon prices would straightforward lead to the 
statistical interpretation of the recovery rates [2].  

Now consider pricing dynamics of the portfolio. Let T i  , i = 1, 2,…, N be a non  
decreasing sequence of maturities and suppose that default of the i-th bond might occur 
only at T i . The conditional expectation of the corporate bond price R i , i  >  1 given 
default of the first bond at T1 is  

 
where probabilities P 1 j  and P i are defined in (3, 3').  Bearing in mind that indicator of 
the no-default of the bond R 1 at T 1 is equal to 1 – χ 1  it follows that the value of the 
risky bonds R i ( t , T i ; ω ), i = 2, 3, … , L immediately after T1 conditioning on no-
default at the date T1 is equal to  
 

 
Let n i  ≥  0 be a number of shares of the corporate bond R i in the portfolio Π and 

denote  
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Let k be a number, J a set of the indexes do not exceed k – 1 , and Λ = { 1, 2, …k – 1 }\ J. 
Then the value of the portfolio at t conditioning on defaults at J and no default at Λ  is 
equal to   
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Thus, assuming that portfolio’s securities defaults only at their maturities we could 
present the loss distribution of the portfolio in the compact form. An important risk 

)T...,,T,T(,)ω;T,t(Rn)ω;,t( L21iii

L

1i

==Π ∑
=

TT

]
})DD({P

})DD(D{P

)�1(1[)T,T(Bn

})DD(|)ω;T,0T(R{En

)}DD(|)ω;T,0T(Π{E

λj

Λλ

Jj

λj

Λλ

Jj

i

iipi

L

pi

λj

Λλ

Jj

ipii

L

pi

λj

Λλ

Jj

p

�

��

�

�

�

�

�

�

∈
∈

∈
∈

=

∈
∈=

∈
∈

−−=

=+=

=+

∑

∑



 7

characteristic of the multi name corporate securities is the loss distribution. Let us 
introduce a corporate portfolio in which number of shares is the same n i  =  n for all 
securities An example of such portfolio is a corporate equity or debt indexes. The 
portfolio loss is a cash flow which can be represented by a random stepwise function that 
can be written in the form 
 

)D(χn)ω,t(L j
tT:j

Π

j
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Recall that we assumed that the only moments when the function L Π ( t , ω ) can change 
its value are maturity dates. Therefore, in order to calculate statistical characteristics of 
the portfolio losses one needs to define the joint distribution of the random variables                            
L i ( ω )  =  L Π ( T i , ω ) , i  = 1, …, N. Let  q ,  q  <  k + 1 be an integer and                     
t ∈  [ T k  , T k + 1 ). Then  
 

 
where Q is a finite set of the integers chosen from the set K = {1, 2, …, k }. The 
probabilities on the right hand side of the above formula (6) can be calculated by using 
formula (5). We have presented the portfolio loss distribution assuming that defaults 
might occur at maturity of the bonds.  

The default time is another characteristic of the risky portfolio. By using default 
time one can represent new valuation approach for the pricing problem. Suppose that 
default of the bonds R i can occurs at the dates T j , j = 1, 2, … i. Let τ denote the time of 
the first default of the portfolio (6). Then τ is a random variable taking values T 1 , .. T L . 
The value  + ∞ we assign for τ ( ω ) for no default scenario ω during the lifetime of the 
portfolio. Next table represents the distribution of the first default time assuming that τ 
has the non homogeneous binomial distribution  
 
    Table 1 

τ T 1 T 2 …. T L + ∞ 
distribution P 1 Q 1 P 2 … Q 1 … Q L – 1 P L Q 1 … Q L – 1 Q L 

 
Here  P i  denotes the probability of default at the moment T i  and Q i  =  1  –  P i .  

The value of the portfolio at the moment of the first default can be presented in 
the form  
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Accepting a hypothesis regarding the default time distribution one can easy calculate risk 
characteristics of the portfolio. Introduce the random moment  τ k  which denotes the k-th 
, consecutive default k = 1, 2, ...  of the portfolio. Then the distribution of the k-th default 
can be presented in explicit form. In order to define distribution of the default we need to 
calculate the distribution P{ τ k   = T j } when j = 1, 2, …, L . For example, if k  =  2 then 
we note that 
 
P{ τ 2   = T 1 } =  0, and  
 
P{ τ 2   = T 2 } =  P{ τ 1   =  T 1 , τ 2   = T 2 } =  P 12 

 
From formula (2) it follows that 
 

 
k = 2, 3, ..., L. Recall that P { τ 1   = T j , τ 2   = T k } is the probability that the first credit 
event is the default of the j-th bond at its maturity T j , j = 1, 2, … k – 1 and the second 
credit event is the default of the k-th bond at T k . For arbitrary k  >  2 the default 
distribution P{ τ k   = T j } , j = k, k + 1, …, L can be represented by the formula 
 

 
where the set J k – 1  =  { j1 , j2 , …j k - 1 } is a subset of  J  =  { 1, 2, … , j }, 1 ≤ k ≤ j ≤ L. 

Let us consider a more general situation. The structure we will represent below is 
close to CDS basket trenching. Assume that the bond with maturity T i might default also 
at the prior maturity dates T j , 1 ≤ j ≤ i ≤  L . Taking into account equality      
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the i-th company corporate bond price (1) can be presented in the form 
 

 
Multiplying the first line of the formula (8) by { ω : τ i  = T j  } i  ≤  j , i = 1, … , L we 
note that  
 

R i ( t , T i ; ω )  =  ∆ i B ( t , T j )  =  R i ( t , T j ; ω ) 
 
Thus, in this model recovery rate does not depend on time of default. On the other hand if  
ω ∈  { τ i  > T i } then  R i ( t , T i ; ω )  =  B ( t , T i ). Consider portfolio of risky bonds      
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Here, the loss we interpret with respect to correspondent 0-default portfolio. Let ‘l ’ be a 
positive number  0  <  l  <  1.  Then a probability that the total loss of the corporate 
portfolio does not exceed level  l  prior of the date T k  is equal to 
 

 

where  N  = ∑
=

L

1i
in . The formula (10) coincides with the probability that the lifetime of 

the equity tranche of the portfolio will exceed T k . The probability that the equity tranche 
will be exhausted within the interval ( T k , T k + 1 ] , k = 1, … , L – 1 by definition is equal 
to 
 

 
Let  l 1  <  l 2  < … <  l L  =  1  be a sequence of numbers and define random moments     
λ ( p ) ( ω ) , p  =  1, 2, …, L putting  
 

 
and  λ ( p )  ( ω ) = T L  if the expression in braces does not exceed the barrier  l p . Then 
the lifetime of the tranche defined by attachment point  l k – 1  and  detachment point  l k  is 
the random semi-interval [ λ ( k  – 1 ) ( ω ) , λ ( k ) ( ω ) ) . We put t  =  T 0  ≥  0 and call the  
[ l k – 1 , l k ] tranche as the k-tranche. Let us calculate the market value of the spread of the          
k-tranche. This value will depend on a moment of calculation and it represents the fixed 
premium paid over the lifetime of the tranche in exchange for the insurance that 
reimburses the tranche losses. The market value of the k-trench can be represented as the 
difference of two equity tranches with detachment points  l k  and l k – 1  correspondingly. 
Consider first the [ 0 , l k ] equity tranche. The lifetime of this tranche is [ t , λ ( k ) ( ω ) ). 
The cash flow received by protection buyer from protection seller is equal to the tranche 

losses. On the other hand protection buyer pays a periodic coupon )j(
ks over the lifetime 

of the tranche. For example, suppose that for some  ω , T j ∈  [ λ ( k - 1 ) ( ω ) ,  λ ( k ) ( ω ) ). 
Then for this scenario applying PV reduction for the tranche valuation we arrive at the 
equality 
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In general case we have 
 

 
From this formula it follows that the market spread depends on the lifetime of the 
tranche. As far as this lifetime is random it is also an additional risk factor that should be 
taking into account for the pricing of the risk. Putting  
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we note that the solution of the equation is  
 

 
 
is the market spread value of the k-tranche that depends on scenario. On the other hand 
spot price used for trades of the tranche implies the market risk. 

Consider the basket insurance problem with respect to outstanding value. The 
losses of the portfolio over [ T 0 , T u ], u = 1, 2, … L is a stepwise random function in u    
 

 
 Let us introduce the lifetime of the [ 0, l k ]-tranche. Denote   
 

 
k  = 1, 2, …, L . The sequence θθθθ  = { θ ( k ) ( ω ) , k  =  1, 2, …, L } of the random times 
can be used to define future value, FV of the cash flow generated by the losses. To 
determine the full protection of the θθθθ-tranche [ l k – 1  , l k ] we first find the spread for the 
scenarios when the tranche’s default time is equal to T j . Indeed, the spread  s k  which 
would be periodically paid up to   θ ( k )  to a protection seller in exchange for the full 
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protection can be defined as following. Note that for the scenario { ω : θ ( k ) ( ω )  =  T j } 
the date -T j  FV of the k-equity tranche is defined as 
 

 
The left hand side of the equality represents losses of the portfolio corporate bonds 
having maturities T j , … ,T L that default at the date T j . On the other hand if l k -tranche 
occurs at T j then the protection payment would be paid j times to the protection seller 
prior to T j . Then the solution of the latter equation is 
 

 
Then the market spread of the k-equity tranche is equal to  
 

 
Then the market spread value of the [ l k - 1 , l k ]-trench is  S k ( ω )  –  S k - 1 ( ω ) 
representation. The spot market price of the trench at the date t is formed by the market 
supply-demand relationship at t. 
 
CDOs valuation. 

 
A CDO is a type of structured asset-backed security (ABS) presented in the form 

of a trenchant portfolio. Each tranche is a bilateral contract between protection sellers and 
protection buyers. The protection seller receives a fixed coupon (spread) of the 
outstanding notional of the tranche from the tranche buyers. The CDO buyer is a buyer of 
the protection. From the time when the total portfolio loss crosses the attachment point of 
the tranche the protection seller pays for any loss of the tranche. Let t and  t 1  < … <  t L  

be a current moment of time and payment dates correspondingly. If the time t is the first 
payment date then the CDO is called funded or partially funded. Otherwise the tranche is 
unfunded. Assume that the trench is unfunded and therefore the first protection payment 
is scheduled on the date t 1. The valuation of the unfunded tranche could be easily 
adjusted to cover the funded CDO by accepting that the first payment at t. 
Remark. There are several basic distinctions between our approach and the others 
commonly used benchmarks. The first difference is that in order to value the CDO 
tranche the ‘expected present values’ or the ‘risk-neutral’ expected present value are used 
to write equality of the two legs of the tranche. As we highlighted earlier in [3] this 
reduction eliminates market risk which is implied by the market price of the derivatives. 
This approach in derivative pricing remarkably oversimplifies valuation by reducing real 
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theoretical risk. In contrast to the benchmark valuation we present valuation of the 
transactions for each scenario. In this case we deal with the market price in the sense that 
each scenario implies a particular price of the instrument. Thus, the market prices of the 
tranche as well as its lifetime are random variables. The stochastic nature of the lifetime 
of a tranche could not be eliminated or ignored. Missing this factor leads to the loss of the 
general risk in tranche pricing. On the other hand we also need to remark that expected 
value of the market spread does not coincide with the value of the tranche which is 
derived by using expected values of the cash flows represented the tranche seller and 
buyer.   

Denote a ∧  b = min ( a , b ) and  a ∨  b = max ( a , b ). In a discrete scheme for the 
writing simplicity we relate losses occurred during a period  ( t j - 1 , t j ]  to the date t j . Then 
the PV of the cash flow from protection seller to protection buyer is the loss of the 
portfolio occurred during the period [ t u  ∧   θ ( k - 1 )  ,  t u ∧   θ ( k ) ] . The right hand side (9) 
represents total portfolio losses. Its reduction over the period [ t u  ∧   θ ( k - 1 )  ,  t u ∧   θ ( k ) ] 
leads to  
 

 

Recall that ∆ i  ≥ 0 is the recovery rate and n i ( 1  – ∆ i ) is the loss of the i-th asset at the 
default event at τ i . The lifetime of the k- tranche is the random time interval             
[ t ∨  θ ( k - 1) ,  T L ∧  θ ( k ) ] where the random variables  θ ( j ) j = 1 , … are defined in (12). 
The moment θ (k) is simultaneously the last moment of the lifetime of the k-tranche and 
the starting moment of the next ( k + 1)-tranche and the value of the outstanding principal 
of the tranche specifies the premium related to the exhausting and on-the-run tranche. 
The protection buyer pays a spread s k upon the notional outstanding at the scheduled 
dates T 1 , … , T N =  T which fall into the time interval. Putting ∆ T  =  T j  –  T j – 1 we 
note that the number of protection payments during the lifetime of the k-tranche is a 
random variable 
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Thus, if for particular market scenario a period ( T u - 1 , T u ] belongs to the lifetime of the 
k-tranche then for this ω the outstanding amount at next premium date T u is  
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Multiplying the PV of this outstanding by s k and then summing up over all appropriate u 
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Expression in the brackets on the right hand side of (13) is the outstanding remainder of 
the principal at T u . From the equation (13) it follows that the spread is a random variable 
 

 
Formula (14) represents the market value of the spread derived from the equality of the 
present values of the two legs of the k-tranche. This is the exact solution presents market 
value of the k-tranche. Admitting a hypothetical default distribution of the assets one can 
attempt to calculate expected value and higher moments of the market spread and 
calculate the risk characteristics implied by the spot price. Indeed, let  < s k ( t ) >  denote 
a spot value of the spread at t. If the tranche spread increases then prospective losses and 
probability of default will also increase. The buyer pays less for more risky assets while 
the tranche seller receives less than needed to cover risky assets. Conversely, if the spot 
tranche spread narrowing then buyer pays higher price for protection and the chance to 
default of the underlying securities becomes considerably lower. 
Remark. Recall that the well-known reduced form approach for valuation CDO uses risk 
neutral expectation to reduce real cash flows. As it showed above that there is no 
necessity for risk neutral problem setting.   
 
Comments.  
Here we comment some benchmark approaches which commonly used for pricing and 
hedging risky portfolios. We briefly outline bellow the copula and perfect copula 
constructions and its application to joint default modeling. Then we present some critical 
comments.  
 
I.  Let us consider a portfolio of risky arbitrary structured securities. This is a basket of 
correlated corporate securities. One of the most popular approaches has been used for 
valuation a risky multi name structures is a copula approach. It was introduced in the 
Gaussian form in [5]. Later different copulas were introduced to cover statistical 
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differences between historical data and Gaussian hypothetical distribution [1]. Let us 
briefly recall primary results. For simplicity we suppose that the all functions used next 
are continuous. Existing of the copula is represented by the next theorem.  
Theorem. Let F ( x ) be a distribution function in n-dimensional Euclid space and           
F 1, …, F n be the set of the one-dimensional marginal distribution functions constructed 
from F. Then there exist a distribution function C ( x ) on [ 0 , 1 ] n such that  
 

F ( x 1 , … x n )  =  C ( F 1 ( x 1 ) , … F n ( x n ) )                    (15) 
 
for an arbitrary x ∈  [ 0 , 1 ] n . 
 Note that the copulas C as well as the one dimensional marginal distributions F j on the 
right hand (15) are uniquely defined by the known distribution function F.  

In application when a set of marginal distributions f  i ( x i ) are given and a 
particular function g ( x ) is claimed to be a copula we should be aware that   

 
G ( x )   =      g ( f 1 ( x 1 ) , … f n ( x n ) )  

 
is multidimensional distribution function, i.e. for example that  G ( x ) is an increasing in 
each x j and  0  ≤  G ( x )  ≤  1. Otherwise copula and marginal distributions do not have 
the same multidimensional distribution function. The exceptions might be the case when 
marginal distributions are uniquely defines the joint distribution.  

In reduced form approach default is implied by the prices of corporate bonds. In 
this case copula approach is applied to the time of defaults which are interpreted as 
random variables. In structural approach two types of assets are involved. These are 
stocks and bonds of a company. Follow R. Merton [6] default of the company occurred 
when the stock price reaches a particular barrier specified by the company debt. In 
contrast to risk-neutral probability Q that commonly used in research papers which call 
for heuristic replacing real assets on its risk-neutral virtual counterparts we use a 
complete probability space { Ω , F , P } that in finance is associated with the ‘real’ world. 
In Black-Scholes theory they derived option pricing formula in which real underlying 
was replaced by the virtual underlying having risk neutral return. Later, the risk 
neutralization has been extended for other instruments. Note that if one wish to use risk 
neutral probability space it can be done by first defining the securities processes on the 
‘real’ probability space where they initially were defined regardless whether we are going 
to study its derivatives and then perform the change measure transformation 
 

∫=
A

)ω(Pd)ω(g     )A  ( Q  

 
where the density g ( ω ) can be defined explicitly by using Girsanov measure change 
techniques. Nevertheless, we need to note that in this case the calculations of the 
expected value of the cash flows on the use risk neutral probability space will revert the 
original parameters the hidden in the density g .  

To present conditional independence of the times of default we need to perform 
calculation of the survival joint distribution. One factor models assume that for a given 
sequence of the Gaussian ρ-correlated random variables ξ j  the next formula takes place  
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2
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where ε and Z j are mutually independent Gaussian distributed random variables. First 
note that presentation (16) was first applied for credit derivatives in [1]. Let us recall this 
result.  
 Statement. Let ξ j = ξ j ( t ) be ρ-correlated Wiener processes 
 

E [ � ξ j  ( t ) ] ²  = � t  ,    E  � ξ i  ( t ) � ξ j  ( t )  =  ρ � t  ,      i  ≠  j 
 
where  � ξ j  ( t )  = ξ j  ( t  + � t )   –   ξ j ( t ) ,  j  =  1, 2, …, n. Then the Wiener processes 
ξ j  ( t )  admit representation in the form (16).  

We represent a simple generalization of the similar statement used above for the 
proof of the formula (0.3). Let U ( t ) be a Wiener process independent on the given 
Wiener processes ξ j  ( t ), j = 1, 2, …, n.  Putting 
 

 
where 
 

 
we can easy to check that ε ( t ) and Z i ( t ), i = 1,2,…n are independent Wiener 
processes. Though the decomposition (16) is mathematically correct one could probably 
note that this decomposition is conditional in sense that if the Wiener process U ( t ) does 
not exist then (16) does not hold. As far as this composition is used for the portfolio when 
n tends to infinity one need to define explicitly the ‘risk’ factor U ( t ) which should be 
independent on infinite set of Wiener set  ξ j  ( t ). Otherwise we could not use the 
decomposition (16) as well as the limit asymptotic that follows from the decomposition. 
The equality (16) is used for the representation of the individual default times. Let ζ ( ω ) 
be arbitrary random variable having a continuous in x cumulative distribution function 
(cdf)  G ( x )  =  P { ζ ( ω ) <  x }. Consider random variable G ( ζ ( ω ) ). Then  
 

P { G ( ζ ( ω ) )  <  t }  =   P { ζ ( ω )  <  G – 1 ( t ) }  =   G ( G – 1 ( t ) )   =   t 
 
This equality proves that the random variable G ( ζ ( ω ) ) has uniform distribution on  
( 0 , 1 ) regardless of distribution of the random variable ζ ( ω ).  
For arbitrary random variables τ and ξ  with cumulative distribution functions F and  Φ 
correspondingly we have 
 

P { F ( τ ( ω ) )  <   t }   =   P { Φ ( ξ ( ω ) )  <   t }  =   t 
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Specific interpretation of this fact was put as the initial step for the application to credit 
derivatives pricing. Assume that  τ j  is the time of default of the i-security. In [5] the 
default times were assumed to be written in the form  
 

τ j    =   1
jF −

 
( Φ ( ξ j ) )                                           (L) 

 

j = 1, 2, …, n. Here 1
jF −  is the inverse function to the marginal cumulative distribution 

function  F j of the time of default , Φ is the standard one dimensional Gaussian cdf, and  
ξ j are independent standard Gaussian variables j = 1, 2, …, n. Hence, the equality (L) 
shows the connection of the observable default times τ j and the auxiliary correlated set of 
Gaussian random variables ξ j .    

 Comment. Note that from the equality of the distributions it does not 
follow in general equality of the correspondent random variables on original probability 
space. Let us consider an illustrative example. Let  ζ ρ and η ρ be two ρ - correlated 
random variables with equal cdfs G ( x ) and E ζ ρ η ρ =  ρ. Let  ζ , η be another pair of 
independent random variables having the same cdfs  G ( x ). Suppose that the equality (L) 
is true. Then with probability 1 it follows that   
 

ζ ρ  =  G - 1 ( G ( ζ ) )  =  ζ  ,     η ρ  =  G - 1 ( G ( η ) )  =  η 
 
If the latter equalities are true then with the probability 1 then  
 

P { ζ ρ  <  u ,  η ρ  <  v }  =   P { ζ  <  u ,  η  <  v }  =  P { ζ  <  u } P { η  <  v  } 
 
This equality is incorrect and therefore we prove that dealing with marginal distributions 
their correlation is ignored.  
 Let us consider conditional surviving probabilities which are used in Gaussian 
copula. It could be written as   
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Then taking into account (17) the joint distribution of the default times is the expected 
value of the product conditional probabilities 
 

                           }  ε  |   t  τ{ P   E  =  ) t , … , t , t ( S jj 

n

1j
n2 1 ≤∏

=

                                    (18) 

 
Let function C ( x 1 , … , x n ) be defined by (15). For example in a simple case when 
asset prices are mutually independent the default times are also independent and from 
(15) it follows that 
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F ( x 1 , … x n )  =  C ( F 1 ( x 1 ) , … F n ( x n ) )  =  ∏
=

n

1j
jj )x(F   

 
Hence, 

 

                    C ( x 1 , … , x n )  =  .x
n
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In the case when default times admit presentation (16) copula function has more complex 
presentation. Indeed, taking into account formulas (18) one sees that 
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Here d Ф ( λ )  denotes integration with respect to the standard Gaussian distribution 
related to the factor  ε. From this formula follows that copula represented as  
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Comment. Assume that equality  P { F ( τ j )  <  t }  =   P { Φ ( ξ j ) <  t } is true. 

Then for the given correlated sequence (16) of the standard Gaussian variables  ξ j , j = 1, 
2, … n we can consider conditional distribution  P { ξ j  <  t  | ε } the conditional 
distribution             P { τ j  <  t  | ε } remains undefined. According to definition of the 
conditional distributions one needs to provide the definition of the joint distributions of 
two random variables  ε  and  τ j  .  Such probabilities  P { τ j  <  t , ε  <  y } cannot be 
defined as far as factor ε  does not related to τ j  as far as the factor is a part of the 
arbitrary sequence of the random variables  ξ j .  

 
II. In the paper [4] a generalization of the representation (16) was established. It 

was initially assumed that the components Z j and the common factor ε are not Gaussian. 
In this case equality (16) defines the class of the random variables which we use for the 
correlated default time modeling. This problem differs from the above Gaussian case. 
Indeed, in the Gaussian case the random variables ξ j are observable while ε and  Z j on 
the right hand side of (16) should be defined based on these observations. In Gaussian 
case under certain assumptions the decomposition (16) is proved. For the Perfect Copula 
as it was presented in [4] the equality (16) is set for the class of random variables that 
only can be used for joint default time model. The degree of reliability of this assumption 
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remains open. If the class (16) does not sufficiently broad the solution of the problem can 
be fail to represent correlated default structure.  

Thus, let us suppose that the common and idiosyncratic default factors are given. 
Recall following [4] some details of the perfect copula construction. “ The perfect copula 
model maps x i  to t i on a “percentile to percentile” basis. That is the  5%  point on the x i 
distribution is mapped to the 5% point on the t i distribution; the 10% point on the x i   
distribution is mapped to the 10% point on the t i distribution; and so on. In general, the 
point t = t i  is mapped to x = x i  where  
 

x  =  1
iF − ( Q i ( t ) )        or equivalently       t   =   1

iQ −  ( F i ( x ) ) 

 
The copula model defines a correlation structure between the t i ’s while maintaining their 
marginal distributions. The essence of the copula model is that we do not define the 
correlation structure between the variables of interest directly. We map the variables 
of interest into other more manageable variables and define a correlation structure 
between those variables.”   

Let { x i , i = 1,2, …} be a class of random variables admitted presentation 
 

x i  =  a i  M   + 2
ia1 −  Z i                                               (HW1) 

 
where M and the Z i  are independent random variables with mean zero and standard 
deviation is equal to one. In (HW1) we chose other than in before letters for notations in 
order to highlight that these random variables are not Gaussian as it was assumed in (16). 
Let  t i  , i = 1,2, … denote random time of default of the i-th obligator and let Q i  and F i 
be the cdfs of the default time of the i-th obligator and  the cdf of the random variable x i  
in (HW1) . Suppose that these cumulative distribution are continuous functions. Let u be 
an arbitrary number from [ 0 , 1 ]. Then the “percentile to percentile” mapping can be 
defined as following. Then the numbers x = x ( u , i ) and  t = t ( u , i ) are defined such 
that 
 

F i ( x ( u , i ) )  =  Q i ( t ( u , i ) )  =  u 
 

Thus, for each ‘ i ’ and ‘ u ‘ there exists the continuous inverse functions 1
iF −  for which 

 

x ( u )  =  1
iF − ( Q i ( t ( u ) ) )              (HW2) 

 
Here the sub-index ‘ i ‘ was omitted for writing simplicity. It follows from (HW2) that   
 

P { x i  <  x ( u ) | M }   =   H i ( )
a1

Ma)u(x

2
i

i

−

−
                              (HW3) 

 
where H i  denotes the cdf of the random variable Z i . It was stated in [4] that from the 
equality (HW2) it follows also that  
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  P { t i  <  t ( u ) | M }  =  H i ( )
a1

Ma)))u(t(Q(F

2
i

ii
1
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                       (HW4) 

 
Here, bellow we represent some comments on above copula’s construction. 

  

               Annex. Now let us present other transformation of equally ρ-correlated Wiener 
processes system { Z } into independent Wiener system {W } which does not presume 
the existence of the collateral independent factor U or M.  
In case when n = 1 we have a Wiener process and the decomposition is achieved. The 
case n = 2 is a well-known one. Define Wiener processes W i  ( t ), i = 1, 2  putting 
 

Z 1 ( t )  = W 1 ( t ) 
           

 
From the second equality it follows that the second component of the independent system 
is  
 

 
Note that Wiener processes W 1 ( t ) and W 2 ( t ) are independent. Indeed,  
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Consider now the general case. Let Z ( t ) = { Z 1 ( t ), Z 2 ( t ), … Z n ( t ) } be a given     
ρ-correlated Wiener processes system. We can start with any Wiener process from the set 
Z ( t ) and let it be Z 1 ( t ). Put  
 

Z 1 ( t )  = W 1 ( t )      
  

           
 
Then it follows that 
 

 

The Wiener processes )t(W )1(
j are totally independent upon )t(W 1  but they remain 

correlated among themselves. Indeed,  
 

 
for  i ≠ j  and  i , j = 2, 3, …, n. Note that correlation ρ 1  <  ρ. Thus, we arrive at the new 
Wiener system  

 
of the size n – 1 with equal joint correlation ρ1 . This Wiener system  W ( 1 )  is 
independent upon  W1 ( t )  =  Z 1 ( t ). Now we can repeat transformations that were 
initially applied for original system Z ( t ) taking into account that its size is now n – 1. 
We put 
 

 
Then similarly to above we can justify that the W ( 2 )  is the Wiener system  
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of the size n – 2 is independent upon Wiener processes W 2 ( t ) and W 1 ( t ) and has a 
joint correlation ρ 2 

 
One can easy remark that ( k – 1 ) -th step leads us to the system the Wiener processes 
 

  
having equal joint correlation  

 
and it is independent on the system 
 

 
Using mathematical induction we can prove that for arbitrary k 
 

 
Indeed, assuming that equality holds for  k – 1  we get 
 

 
The joint correlation formula has proved for any finite number k. On the last step we 
have  
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 where the Wiener process W n ( t ) is independent on W n  - 1  ( t ). Thus, applying a 
special form of the linear transformations to the equally correlated system  Z ( t )  =  
=  { Z 1 ( t ) , … , Z n ( t ) } arrive at the independent Wiener processes system  
W( t ) = { W 1 ( t ) , … , W n ( t ) }. Now it is not difficult to present the closed form of 
these transformations. Indeed, 
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k  =  2 , 3, … n . In this representation we did not assume the existing the independent 
risk factor U. The problem whether or not the Vasicek’s limit distribution exists without 
the assumption regarding the existence of the process U remains open.   
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