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Abstract

The Clarke pivotal mechanism is inappropriate for nonpecuniary public goods,
because the assumption of quasilinear utility is invalid, and because the mech-
anism gives disproportionate influence to wealthier voters. But by introducing
a ‘stochastic’ Clarke tax, we can convert any separable utility function into a
quasilinear one. Also, by stratifying a large population by wealth, and apply-
ing different ‘weights’ to the votes from different wealth-strata, we can ensure
that the mechanism is fair in the sense that the voters in different strata all
have equal influence (on average) over the outcome. These weights can be fine-
tuned to their optimal values over time, by using the rich dataset generated
by a series of large-population referenda. The result is a fair, strategy-proof
implementation of weighted utilitarian social choice over nonpecuniary public
goods.
Keywords. pivotal mechanism; strategy-proof implementation; nonpecuniary
public good; utilitarian; inequality

1 Introduction

Let A be a menu of social alternatives, which involve the provision of pure public
goods (i.e. nonrivalrous and nonexcludable). Let I be a set of voters. For each i ∈ I,
let ui be the cardinal utility function of voter i over the alternatives in A, and suppose
that i’s joint utility over A and money is quasilinear. Thus, if alternative a is chosen
and voter i pays a tax ti, then her utility will be ui(a)−ci ti, where ci is the (constant)
marginal utility of money for voter i. The social planner wishes to find the element of
A which maximizes aggregate utility, but does not know the true values of the utility
functions ui.

One solution to this problem is the Clarke (1971) pivotal mechanism. Each voter i
announces a monetary value or bid vi(a) for each alternative a in A (so that vi(a)−vi(b)
measures how much i prefers a over b). The social planner then chooses the alternative
with the highest aggregate bid, and levies a ‘Clarke tax’ against any ‘pivotal’ voters.
The Clarke tax is structured such that it is a dominant strategy1 for voter i to set

1That is: a strategy which is utility-maximizing for i, regardless of the actions of the other players.
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vi(a) = ui(a)/ci for each a in A.2 If every voter deploys her dominant strategy, then
the mechanism selects the alternative a in A which maximizes the weighted utilitarian
sum

∑

i∈I

ui(a)

ci

. (1)

In other words, the pivotal mechanism is a strategy-proof implementation of the social
choice rule defined by maximizing (1): no voter ever has any incentive to strategically
misrepresent her utility function.3

This mechanism is ideal in a purely pecuniary decision problem, where the voters
have purely financial interests about the public good, so that ‘utility’ can be measured
in dollars. For example, the voters might be the stakeholders (i.e. employees, cus-
tomers, shareholders, and creditors) of various firms in an industrial district, and the
elements of A might be various proposals to build or improve public roads through
that district. In this case, ui(a) is the extra revenue which stakeholder i expects to
personally receive (minus the extra taxes she expects to pay) if proposal a is imple-
mented. Thus, ci = 1 for all i in I, and the mechanism selects the outcome which
maximizes the aggregate financial gain for the voters.

However, many public goods are purely nonpecuniary: they affect the subjective
well-being of the voters, rather than their income. For example, suppose a municipal
government must decide how to divide a fixed4 budget between sanitation and waste
disposal, public cultural events and festivals, the preservation of historic edifices, and
the construction and maintenance of public buildings, monuments, plazas, parks, play-
grounds and recreational facilities. Or suppose a federal government must divide a
fixed budget between national parks and wilderness reserves, public radio and televi-
sion stations, academic research, and public health. Of course, some voters may have
some pecuniary interest in some of these decisions. But for most voters, such public
goods are relevant mainly in how they affect quality of life.5 Many other political
issues have little pecuniary relevance; they are mainly about the conflict between the
values or ethical sensibilities of different voters.

In all these examples, it seems desirable to choose the social alternative which will
maximize aggregate utility. But for nonpecuniary decisions, the pivotal mechanism
has two obvious problems. First, the assumption of quasilinear utility is not realistic;
it is more realistic to suppose the marginal utility of money is declining for each voter
(e.g. due to satiation). This leads to the second problem: the Clarke mechanism

2See e.g. Proposition 23.C.4 of Mas-Colell et al. (1995) or Lemma 8.1 of Moulin (1988).
3The terms ‘strategy-proof’, ‘dominant-strategy incentive-compatible’, ‘dominant-strategy truth-

revealing’ and ‘demand-revealing’ are all used interchangeably in the literature.
4The budget must be fixed, because otherwise the decision would also have a pecuniary component.
5Of course, any potential change to a voter’s quality of life can be given a pecuniary value in

terms of her ‘willingness to pay’ (WTP). But her WTP for the potential change depends on the price
and marginal utility of all other goods in her current consumption bundle. In particular, it depends
on her current level of wealth. Thus, WTP is fundamentally different from the ‘purely pecuniary’
effects in the previous paragraph. The meaning of a sum of pecuniary effects is clear: it is just the
net impact on aggregate income, measured in dollars. The meaning of a sum of nonpecuniary WTPs
is not clear.
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seems to be inequitable. The political ‘influence’ of voter i on the weighted utilitarian
sum (1) is proportional to 1/ci, and which is (ceteris paribus) proportional to her level
of wealth. In other words, rich voters generally have more influence than poor voters.

For example, in 2007, 10% of Americans amassed nearly 50% of all income earned
in the United States, after having averaged over 45% during the previous decade
(Atkinson et al., 2011, Table 1). Thus, if people’s bids in the pivotal mechanism are
roughly proportional to their income (which seems plausible), then this 10% alone
could effectively control the outcome. The pivotal mechanism would devolve into a
plutocracy. This is not only unjust; it also undermines the democratic legitimacy of
the mechanism, and makes it unlikely that it will ever be adopted by any democratic
society.6

The first problem is relatively easy to resolve: instead of a dollars, we must levy
the Clarke tax in some units which are guaranteed to be linear in cardinal utility. If
we assume that each voter has a von Neumann-Morgenstern utility function, this can
be done using a suitably constructed lottery, as we explain below.

The second problem is more difficult. Although it seems intuitively obvious that
rich voters have more influence over the pivotal mechanism than poor voters, it is
difficult to make this intuition precise without making strong (and questionable) as-
sumptions about interpersonal comparisons of cardinal utility. And even if such inter-
personal comparisons were meaningful in theory (so that we could precisely quantify
the ‘unfairness’ of the mechanism), it is not clear how this unfairness could be rectified
in practice. There is no known way to obtain from each voter i the true value of ci on
some interpersonal cardinal utility scale. At best, we might be able to estimate the
ratio c′i between voter i’s marginal utility for money, and the ‘intensity’ of her political
preferences. If c′i < c′j, then voter i effectively exerts more influence over the pivotal
mechanism than voter j (i.e. she will generally bid larger sums of money). But we
might have c′i < c′j for many reasons; it may be partly because i is richer than j, it
may be partly because i is less materialistic or has less expensive tastes than j, and it
may be partly because i honestly has stronger political preferences than j. It seems
impossible to disentangle these effects.

Indeed, it is necessary to examine carefully what we mean by ‘unfair’. It does not
seem unfair if voter i exerts more influence than j because i has very strong preferences
about public policy, while j is politically apathetic. Nor does it seem unfair if i exerts
more influence because she is simply less materialistic than j, and is willing to endure
a greater sacrifice of material consumption to achieve her political goals. It only seems
unfair if i has more political influence simply because she is richer than j, and for no
other reason. Thus, our goal should be to isolate this last effect.

To do this, we will stratify the population of voters according to their level of
wealth, and examine the statistical distribution of voting behaviour within each wealth

6If pivotal voting is proportional to wealth, rather than income, then the inequality becomes
even more extreme. According to Saez and Kopczuk (2004), the wealthiest 1% of Americans alone
control more than 20% of all wealth in the U.S. According to some other estimates, the wealthiest
5% of Americans possessed at least 62% of all wealth in the U.S. in 2007, whereas the poorest 80%
collectively owned less than 15%; see (Wolff, 2010, Table 2) and (Allegretto, 2011, p.5).
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stratum. If the statistical distribution of voting behaviour is the same in Stratum A
as it is in Stratum B, then voters in Stratum A exert, on average, the same political
influence as voters in Stratum B. (Of course, individual voters in Stratum A may
exert greater or lesser influence than the Stratum A average, due to factors such as
more intense political preferences, or less expensive material tastes.) If we implement
some ‘wealth-adjusted’ version of the pivotal mechanism, such that voters of all wealth
strata exert the same influence, on average, then we can say that this mechanism is
‘fair’ in the sense that it does not give more power to rich voters than poor voters.

To make this intuition precise, we must make several assumptions:

1. The population I of voters is large enough that we can stratify voters according
to wealth, and still have enough voters in each stratum to obtain good statistics.

2. We are not facing a single referendum, but a series of many referenda on different
issues. Thus, the statistics acquired from earlier referenda can be used to ‘tune’
the parameters of the mechanism for later referenda.

3. Voters’ political preference intensities are statistically independent of their wealth
stratum, and the statistical distribution of preference intensities is unchanging
over time. Thus, any statistical difference we observe between the average voting
intensity of different wealth strata is evidence of ‘unfairness’.

This paper is organized as follows. Section 2 introduces the nonpecuniary pivotal mech-
anism, and shows that, under certain plausible assumptions, it is not only strategy-
proof, but converges rapidly to a mechanism which is ‘fair’ in the sense that all wealth
strata have roughly the same influence. Section 3 discusses an application to taxation
and redistribution. Appendix A contains all proofs. Appendix B is an alphabetized
index of notation.

2 The nonpecuniary pivotal mechanism

Suppose I = I1 ⊔ I2 ⊔ · · · ⊔ IN , where, for each n in [1 . . . N ], all voters in stratum
In have roughly the same net wealth.7 (For example, we might set N := 100, and
define In to be the nth percentile-interval of the wealth distribution.) For all n in
[1 . . . N ], let ϕn > 0 be a positive ‘fee’. (Heuristically, these fees should be chosen
so that the average marginal utility of ϕn dollars for voters in stratum In is about
the same as the average marginal utility of ϕm dollars for voters in stratum Im, in a

7The precise definition of a voter’s ‘net wealth’ is complicated. For simplicity, we could define it to
be the average, over all members of the voter’s household (including dependents), of that household
member’s total financial assets and marketable physical assets, minus liabilities, plus the net present
value of that member’s projected lifetime earnings from labour income (where we set this value to
zero for dependents, and otherwise extrapolate future earnings based on, say, the past 12 months of
labour income). The information necessary to compute each voter’s net wealth is already available
to most governments; it is the information which is used to assess of income tax, capital gains tax,
property tax, etc.
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sense which will be made precise by condition (F2) below.) We refer to the N -tuple
ϕ := (ϕ1, ϕ2, . . . , ϕN) as the fee schedule.

Imagine a series of referenda, occurring at times t = 1, 2, 3, . . .. Let At be the
menu of social alternatives for the referendum occurring at time t. We assume that
each voter i in I is an expected-utility maximizer (i.e. satisfies the von Neumann-
Morgenstern axioms). Let ut

i : At−→R+ be voter i’s vNM utility function over At,
and let u$

i : R−→R be her (possibly nonlinear) vNM utility function for net wealth.8

Assume without loss of generality that mina∈At
ut

i(a) = 0 (add a constant to ut
i if

necessary, to achieve this). We now suppose that i’s joint vNM utility over At and
wealth is separable; that is, if alternative a is chosen and voter i is left with a net
wealth of w dollars, then her utility will be ut

i(a) + u$
i (w). We now come to the first

component of our mechanism.

(P1) For all n in [1 . . . N ], the stratum In is randomly split into two equal-sized
subgroups, I+

n and I−
n . (Each voter knows her subgroup assignment). Let ϕ+

n

be slightly larger than ϕn, and let ϕ−
n be slightly smaller than ϕn. (For example,

we might set ϕ+
n := 1.001ϕn and ϕ−

n := 0.999ϕn.)

(P2) For all i in I, and each a in At, voter i declares a value vt
i(a) in [0, 1] for

alternative a.9 We require that min
a∈At

vt
i(a) = 0.

(P3) Given the data v := (vt
i)i∈I , society chooses the alternative a∗ in At which

maximizes the sum V (a) :=
∑

i∈I

vt
i(a).

(P4) Voter i is pivotal if there is some other b in At with V (a∗)−V (b) ≤ vt
i(a

∗)−vt
i(b).

In this case, define pt
i(v) :=

∑

j∈I\{i}

[vt
j(b) − vt

j(a
∗)].

Note that 0 ≤ pt
i(v) ≤ vt

i(a
∗) − vt

i(b) ≤ 1.

(P5) For all n in [1 . . . N ], any pivotal voter i in subgroup I±
n now faces a gamble: with

probability pt
i(v), she pays a fee of ϕ±

n dollars, while with probability 1 − pt
i(v),

she pays nothing. We refer to this gamble as a stochastic Clarke tax.

To understand this mechanism, let i be in I+
n , and suppose voter i’s net wealth at

time t is wt
i . If ct

i := u$
i (w

t
i) − u$

i (w
t
i − ϕ+

n ), then the expected utility cost imposed
upon i by the stochastic Clarke tax is ct

i · pt
i(v), which is a linear function of pt

i(v).
Suppose ut

i(a) ≤ ct
i for all a in At. Then, by a simple modification of the standard

analysis of the pivotal mechanism, it is easy to show that voter i’s dominant strategy
is to set vt

i(a) = ut
i(a)/ct

i for all a in At. If all voters deploy their dominant strategies,
then the alternative chosen in (P3) will be the alternative in At which maximizes the
weighted utilitarian sum in Eq.(1).

8Here, R is the set of real numbers, and R+ is the set of nonnegative real numbers.
9If the mechanism is working properly, then the function vt

i should be a scalar multiple of ut
i.
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However, if ut
i(a) > ct

i for some a in At, then voter i’s dominant strategy is to set
vt

i(a) = 1; in this case, we say i hits the ceiling. If enough voters hit the ceiling, then
the outcome of (P3) may no longer maximize the utilitarian sum (1).

For all i in I, let V t
i := maxa∈At

vt
i(a); then V t

i measures the ‘influence’ of voter i
over the outcome of referendum t. We define

I := |I| and V
t

:=
1

I

∑

i∈I

Vi. (2)

Thus, V
t
measures the per capita average influence of any voter during referendum t.

For all n in [1 . . . N ], we also define

In := |In| and V
t

n :=
1

In

∑

i∈In

V t
i . (3)

Thus, V
t

n measures the per capita average influence of a voter in stratum n on the out-
come of referendum t. We say that the fee schedule ϕ was perfectly fair in referendum
t if:

(F1) V t
i < 1 for all voters i in I; and

(F2) V
t

n = V
t
for all n in [1 . . . N ].

Condition (F1) says that no voter hit the ceiling; this ensures that every voter’s domi-
nant strategy was a scalar multiple of her true utility function. Condition (F2) means
that each wealth stratum had, on average, the same influence over the referendum as
every other wealth stratum.

Unfortunately, it will not generally be possible to guarantee that ϕ is perfectly
fair. Instead, let ǫ > 0 be some small but positive ‘error tolerance’. We say that the
fee schedule ϕ was ǫ-fair in referendum t if

(F1ǫ) #{i ∈ I; V t
i = 1} < ǫ · I.

(F2ǫ) 1 − ǫ < |V t

n/V
t| < 1 + ǫ for all n in [1 . . . N ].

Condition (F1ǫ) says that almost nobody hit the ceiling, and (F2ǫ) says all strata
had almost the same influence. Unfortunately, we cannot even know whether a fee
schedule is ǫ-fair until after the referendum has occurred. However, assuming that the
statistical distribution of votes is roughly the same from one referendum to the next,
we can compute in advance the probability that ϕ will be ǫ-fair in a referendum. Let
0 < p < 1 and let ǫ > 0. Given a particular statistical distribution of voter behaviour,
we say that the fee schedule ϕ is (p, ǫ)-fair if it has a probability of at least p to
be ǫ-fair in a referendum where the behaviour of the voters is randomly generated
according to this distribution.

Our goal now is to design a (p, ǫ)-fair fee schedule, for the empirically observed
distribution of voter behaviour. This is the purpose of the second component of our
mechanism: to use historical data to ‘tune’ the fee schedule ϕ so that it will converge
to (p, ǫ)-fairness over time. Let ϕ

t = (ϕt
1, ϕ

t
2, . . . , ϕ

t
n) be the fee schedule at time t.

Fix a constant λ > 1. Construct ϕ
t+1 as follows:
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(R1) Let Et := #{i ∈ I; V t
i = 1}/I. If Et ≥ ǫ, then for all n in [1 . . . N ], set

ϕ′
n := λ · (Et/ǫ) ·ϕt

n. Otherwise, if Et < ǫ, then set ϕ′
n := ϕt

n for all n in [1 . . . N ].

(R2) For all n in [1 . . . N ], set ϕt+1
n := (V

t

n/V
t
)sn · ϕ′

n, where

sn :=
log(V

t,+

n ) − log(V
t,−

n )

log(ϕt,+
n ) − log(ϕt,−

n )
, with V

t,+

n :=
1

|I+
n |
∑

i∈I+
n

V t
i and V

t,−

n :=
1

|I−
n |
∑

i∈I−
n

V t
i .

Rule (R1) says that, if too many voters hit the ceiling, then all fees in the schedule
should be adjusted upwards in proportion to the number of voters who hit the ceiling.
Rule (R2) says we should then further adjust the fee of stratum n up (respectively,
down) if the average influence of that stratum was higher (respectively, lower) than
the population average. (Heuristically, sn estimates the per capita average elasticity
of disutility with respect to the fee ϕt

n for stratum n.)
We refer to the sequence of referenda described by rules (P1)-(P5) and (R1)-(R2)

as the nonpecuniary pivotal mechanism. We shall now see that, for any ǫ > 0 and
0 < p < 1, if the strata are large enough and the statistical distribution of voter
preferences satisfies certain regularity conditions, then this mechanism will rapidly
converge to a (p, ǫ)-fair fee schedule.

Formally, let N := {0, 1, 2, 3, . . .}. For all i in I and all t in N, let U t
i :=

maxa∈At
ut

i(a), where At and ui
t are as defined prior to (P1). Thus U t

i measures
the ‘intensity’ of voter i’s preferences on referendum t. Here is our first assumption:

(U) For all t in N, there is a probability distribution µt on R+ such that U t
i is a

µt-random variable, for all i in I. Furthermore, {U t
i ; i ∈ I and t ∈ N} is a set

of independent random variables.

Assumption (U) says all strata have the same statistical distribution of political pref-
erence intensities on any particular referendum,10 and there is no correlation of pref-
erence intensities between different referenda or between different voters.

For all i in I, and all ϕ > 0, let Ct
i (ϕ) := u$

i (w
t
i) − u$

i (w
t
i − ϕ) be the ‘cost’

(in utility) of a fee of size ϕ for voter i at time t. In particular, if voter i is in
stratum In, and deploys her dominant strategy for the mechanism (P1)-(P5), then
vt

i(a) = max{1, ut
i(a)/Ct

i (ϕ
t
i} for every alternative a in At. Thus,

for all n in [1 . . . N ] and all i in In, V t
i = min

{

1,
U t

i

Ct
i (ϕ

t
n)

}

. (4)

Let C be the space of all nondecreasing functions from R+ to itself. Here is our second
assumption:

10Note that we do not assume that all strata have the same distribution of political preferences,
but only the same distribution of preference intensities. In general, different strata will have different
preference distributions. (Indeed if all strata had the same preference distribution, then ‘fairness’
would be unnecessary: we could simply allow one stratum to entirely control the mechanism, and
obtain the same outcome).
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(C) For all n in [1 . . . N ], there is a probability distribution ρn on C, such that:

(C1) For every t in N, the set {Ct
i}i∈In

is a set of independent, ρn-random
elements of C.

(C2) For every t in N, and every i in In, the random variables U t
i and Ct

i are
independent.

(C3) For any ǫ > 0, there is some constant ϕǫ
n > 0 with the following property.

For all t in N, if Ut is a µt-random variable and Cn is an independent,
ρn-random function, then Prob [Ut ≥ Cn(ϕǫ

n)] < ǫ.

(C4) There is a decreasing, continuously twice-differentiable function Vn : R+−→[0, 1]
such that V (0) = 1 and limϕ→∞ V (ϕ) = 0, and such that for any ϕ ≥
0 and any t in N, Vn(ϕ) is the expected value of the random variable
min{1, Ut/Cn(ϕ)}, where Ut and Cn are as in (C3).

In words: Vn(ϕ) the expected influence which a random voter in stratum n would have
on the outcome of referendum t, if ϕt

n = ϕ. Assumption (C4) says that this function is
well-behaved, and the same for all referenda.11 Assumption (C3) says that it is highly
improbable that a voter’s political preference intensity will be huge, when measured
in monetary terms. Assumptions (C1) and (C2) say there is no correlation between
voters, or across time periods.

For example, suppose ǫ = 0.01 in (C3); then ϕǫ
n is the minimum fee required such

that less than 1% of the voters in stratum In would be willing to pay more than ϕǫ
n

dollars to change the outcome in a typical referendum. For a typical middle-class
stratum, we would expect ϕ0.01

n to be perhaps a few thousand dollars.

Our first result says that, if the set I of voters is large enough, and we divide it
into N equal-sized subgroups I1, . . . , IN , then there exists a (p, ǫ)-fair fee schedule.

Proposition 1 Assume (U) and (C), and let 0 < V ∗ < 1 be any constant.

(a) For all n in [1 . . . N ], there exists a unique ϕ∗
n in R+ such that Vn(ϕ∗

n) = V ∗.

Now let 0 < ǫ, p < 1, and suppose that

(5.1) I ≥ 8
√

N3 + 1

ǫ V ∗
√

1 − p
, and (5.2) I1 = I2 = · · · = IN =

I

N
. (5)

(b) There is a constant K > 0 such that, for any t in N, if |ϕt
n − ϕ∗

n| < K ǫ for
all n in [1 . . . N ], then ϕ

t will satisfy (F2ǫ) with probability p or higher.12

(c) If V ∗ is close enough to zero, then ϕ
t will also satisfy condition (F1ǫ) with

probability p or higher.

11Note that we do not assume that the individual response functions {U t
i /Ct

i}i∈In
are well-behaved

(or equivalently, that the cost functions {Ct
i}i∈In

are well-behaved). In principle, these functions
could be nondifferentiable, or even discontinuous. We only require their average to be well-behaved.

12K is proportional to the slopes of the functions V1, . . . , VN near the values ϕ∗
1, . . . , ϕ

∗
N .
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For example, if N = 10, ǫ = 0.01, p = 0.99, and V ∗ = 0.5, then it suffices for
I ≥ 507, 000 to satisfy inequality (5.1); this is the population of a medium-sized
city. If we make V ∗ small enough, and define ϕ

∗ := (ϕ∗
1, . . . , ϕ

∗
N) as in Proposition

1(a), then Proposition 1(b,c) guarantees that the fee schedule ϕ
∗ will be (0.99, 0.01)-

fair; thus, there would be no need for the calibration rules (R1) and (R2). But to
know what value of V ∗ is ‘small enough’, and to compute the corresponding values of
ϕ∗

1, . . . , ϕ
∗
N , we must know the exact structure of the probability distributions {µt}∞t=1

and ρ1, . . . , ρN in assumptions (U) and (C). Since we don’t know their exact structure,
the calibration rules (R1) and (R2) are still necessary.

The effect of rules (R1) and (R2) can be heuristically understood as follows. Iter-
ating rule (R2) effectively causes the values of (ϕt

1, . . . , ϕ
t
N) to converge to the values

(ϕ∗
1, . . . , ϕ

∗
N) described in Proposition 1(a) (for some unspecified value of V ∗). Thus,

after enough iterations of (R2), the conditions of Proposition 1(b) are satisfied, so
that ϕ

t satisfies (F2ǫ) with probability p. Meanwhile, iterating rule (R1) effectively
decreases the value of V ∗ which is being targeted (by uniformly increasing all of
ϕt

1, . . . , ϕ
t
N). Thus, after enough iterations of (R1), the hypothesis of Proposition 1(c)

is also satisfied, so that ϕ
t also satisfies (F1ǫ) with probability p. At this point, ϕ

t

is (p, ǫ)-fair. The next two propositions provide a more precise description of this
calibration process. First, we need one more technicality. For any ǫ > 0, define

L(ǫ) :=
max{log(ϕǫ

n/ϕ
0
n)}N

n=1

log(λ)
, (6)

where (ϕ0
1, . . . , ϕ

0
N) is the initial fee schedule at time 0, and ϕǫ

1, . . . , ϕ
ǫ
N are as in

assumption (C3), and where λ is as in rule (R1). The behaviour of the function L de-
pends on the shape of the distributions {µt}∞t=1 and ρ1, . . . , ρN in assumptions (U) and
(C). For our purposes, the important thing is that typically, L(ǫ)→∞ relatively slowly
as ǫ ց 0. For example, under reasonable hypotheses, we have L(ǫ) = O (log(1/ǫ)) as
ǫ ց 0.13 Furthermore, L(ǫ) will be small if our initial guess ϕ0

n was not too far from
ϕǫ

n. For example, suppose λ = 1.26 ≈ 3
√

2; then we will have L(ǫ) ≤ 6 as long as
ϕ0

n ≥ ϕǫ
n/4 for all n ∈ [1 . . . N ].

Proposition 2 Let 0 < ǫ, p < 1, and suppose I > 1/ǫ
√

1 − p. If only the calibration
rule (R1) is applied during each referendum, then there will almost surely come a time
T ǫ

p such that, for all t > T ǫ
p , condition (F1ǫ) will be satisfied with probability p or

higher. The expected value of the random variable T ǫ
p is at most

1

1 − p
L

(

ǫ − 1

I
√

1 − p

)

. (7)

13That is: there is some constant k > 0 such that 0 ≤ L(ǫ) < k log(1/ǫ) for all sufficiently
small ǫ > 0. For example, suppose that, for all t in N, the µt-random variable Ut has mean U
and variance σ2

1 , and that, for any n in [1 . . . N ] and ϕ > 0, the (independent) ρn-random variable
Cn(ϕ) has mean Cn(ϕ) and variance σ2

2 . Let σ2 := σ2
1 + σ2

2 . Then Chebyshev’s inequality yields

ϕǫ
n ≤ C

−1

n

(

U + σ/
√

ǫ
)

. Thus, if there is some s ∈ R such that Cn(ϕ) = O(ϕs) as ϕ→∞, then

ϕǫ
n = O(ǫ−1/2s) as ǫ ց 0. Thus, L(ǫ) = O (log(1/ǫ)) as ǫ ց 0.
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For example, let ǫ := 0.01, and suppose we want to ensure that condition (F1ǫ) is
violated in less than 4% of all referenda. If I ≥ 10 000 and L(0.0095) ≤ 6, then 150
iterations of rule (R1) will usually suffice to reach this goal. (To see this, set p := 0.96
in Proposition 2.)

If p ≈ 1, and t > T ǫ
p , then Proposition 2 says that condition (F1ǫ) will be satisfied

with very high probability, so that rule (R1) will almost never be invoked after time
T ǫ

p . Thus, after time T ǫ
p , we can focus on the dynamics of rule (R2) only. We will now

show that (R2) causes the fee schedule ϕ
t to converge to the fee schedule ϕ

∗ described
in Proposition 1(b).

Consider the random variable V t
n := min{1, Ut/Cn(ϕt

n)} (where Ut and Cn are
as in (C3)). Since 0 ≤ V t

n ≤ 1, the variance of V t
n is less than 1. If every voter

deploys her dominant strategy, then Eq.(4) and assumptions (U), (C1) and (C2) imply
that the random variables {V t

i }i∈In
are independent and identically distributed to V t

n .

Assumption (C4) says Vn(ϕt
n) is the expected value of V t

n , while definition (3) says V
t

n

is the average of {V t
i }i∈In

. Thus, the Central Limit Theorem says V
t

n = Vn(ϕt
n) + γt

n,
where γt

n is some random variable with mean zero, variance less than 1/In, and an
‘almost Gaussian’ distribution.

In practice, In will be very large, so that |γt
n| will be extremely small, with very

high probability. For example, if N = 10 and each In represents one decile-interval
of the wealth distribution of a polity with 10 million voters, then In = 106. Then we

will have |γt
n| < 0.004, with probability greater than 99.99%. Thus, V

t

n ≈ V t
n(ϕt

n). For
simplicity, in the next proposition we will assume that this approximation is exact.

Proposition 3 Suppose that:

(S1) V
t

n = Vn(ϕt
n) all t in N and all n in [1 . . . N ].

(S2) There is some V ∗ such that V
t
= V ∗ for all t in N.

Suppose that only rule (R2) is applied during each referendum.

(a) Let (ϕ∗
1, . . . , ϕ

∗
N) be as defined in Proposition 1(a). For any δ > 0, there

exists T0(δ) > 0 such that |ϕt
n − ϕ∗

n| < δ for all t ≥ T0(δ) and all n in [1 . . . N ].

Furthermore, T0(δ) = O
(

√

log(1/δ)
)

.

(b) For any ǫ > 0, there exists T1(ǫ) > 0 such that (F2ǫ) is satisfied for all

t ≥ T1(ǫ). Furthermore, T1(ǫ) = O
(

√

log(1/ǫ)
)

.

(c) If the functions V1, . . . , VN in (C4) are isolestic14, then T0(δ) = T1(ǫ) = 1.

Of course, Proposition 3 does not exactly describe the behaviour of rule (R2), because
assumptions (S1) and (S2) are both approximations. But by setting δ := K ǫ2 and
combining Propositions 1(b) and 3(a), we obtain the following heuristic statement:

14That is: if V1, . . . , VN have constant elasticity —e.g. Vn(ϕ) = (1 + ϕ/cn)sn for some sn < 0 and
cn > 0.
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Suppose that V
t

n ≈ Vn(ϕt
n) all t in N and all n in [1 . . . N ], and there is

some V ∗ such that V
t ≈ V ∗ for all t in N. If I1, . . . , IN and I satisfy the

conditions (5), and only rule (R2) is applied during each referendum, then
for any ǫ > 0, there exists T0(ǫ) > 0 such that ϕ

t will satisfy (F2ǫ) with

probability p or higher. Furthermore, T0(ǫ) = O
(

√

log(1/ǫ)
)

.

The convergence described in Propositions 2 and 3 is extremely fast. Obviously, these
results are idealizations. First of all, both rules (R1) and (R2) will be applied dur-
ing each iteration, complicating the analysis (although (R1) will be invoked less and
less often). Second, assumptions (S1) and (S2) are both approximations. Neverthe-
less, Propositions 2 and 3 strongly suggest that, under assumptions (U) and (C), the
nonpecuniary pivotal mechanism will converge rapidly to a (p, ǫ)-fair fee distribution.

3 Taxation and redistribution

So far, we have assumed the government has a fixed, exogenous revenue stream; the
nonpecuniary pivotal mechanism is used to decide how this revenue should be allocated
towards various nonpecuniary public goods. But there is also the question of how to
structure the system of taxes which generate this revenue stream in the first place.
More generally, there is the question of how to structure a system of transfers (i.e.
taxes and benefits), not only to generate revenue, but also to redistribute wealth for
the sake of altruism or social justice. For simplicity, we will refer to such a system as
a tax schedule (even though the effective ‘tax’ on some voters may be negative).

Assuming a fixed revenue target of R dollars per year, the choice of tax schedule is
a ‘zero-sum’ policy problem: every tax schedule has the same net pecuniary impact on
society (namely, it extracts R dollars), but different schedules will have different pe-
cuniary costs/benefits for different people. The classic pivotal mechanism is indecisive
on such zero-sum questions: every tax schedule will get the same level of aggregate
support from voters (namely −R), and none will appear to be ‘socially preferred’ to
any other.

A tax schedule affects each voter in two ways. First, it has a private, purely
pecuniary impact on the voter: the net financial cost/benefit which she expects to
receive from the schedule, both due to direct monetary transfers and due to the indirect
economic distortions generated by the tax. But the tax schedule can also generates
nonpecuniary public goods, by achieving certain goals of altruism and social justice,
and perhaps through the indirect social benefits of greater material equality.15 We
want to use the nonpecuniary pivotal mechanism from §2 to decide the structure of this
nonpecuniary public good. The problem is that each voter’s private, pecuniary interest
makes it difficult to obtain accurate information about her nonpecuniary preferences
over the social justice aspect of the tax schedule.

15For example, Wilkinson and Pickett (2010) have argued that there is robust empirical evidence
that lower material inequality in a society is correlated with greater levels of trust and civic engage-
ment, and lower levels of violent crime, emotional stress, mental illness, and physical disease.
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However, at a purely pecuniary level, a tax schedule has two parts, which we
will call personal and impersonal. The personal part consists of taxes or benefits
targeted at specific, identifiable voters. This includes income tax, dividend tax, capital
gains tax, residential property tax, welfare payments, unemployment insurance, state
pensions, and vouchers (e.g. to purchase food or education). The impersonal part
of the schedule consists of taxes or benefits which cannot be tied to a particular
voter. This includes corporate income tax, commercial property tax, value-added
taxes, excise taxes, import tariffs, and subsidized or state-provided food, housing,
education and health care. It also includes any economic distortions caused by any of
these taxes and subsidies (e.g. distortions in the labour market due to the income tax
schedule).

We will now discuss a way to use the nonpecuniary pivotal mechanism to optimally
determine the personal part of the tax schedule. First, divide the households into K
equally sized, randomly chosen groups —call them G1,G2, . . . ,GK . These groups are
not the ‘wealth strata’ considered in §2; each group should be statistically represen-
tative of the entire population. For example, we might divide households into twelve
groups, depending on the birth-month of the eldest member of the household. Or we
might divide them into ten groups, depending upon the last digit in the social insur-
ance number of the eldest household member. Each of the groups G1, . . . ,GK must
provide exactly 1/K of the government’s revenue target; however, different groups
might provide this revenue through different personal tax schedules, as we now de-
scribe.

The voters are also divided into K equally sized ‘juries’ —call them J1, . . . ,JK .
The members of jury Jk are randomly chosen from I \ Gk. Thus, no member of
group Gk can be part of the household of any member of jury Jk, but other than this
restriction, group membership and jury membership are statistically independent, and
each jury is a statistically representative sample of the whole population. The personal
tax schedule for group Gk will be decided by jury Jk, using the nonpecuniary pivotal
mechanism. We impose the following requirements:

• K is reasonably large (e.g K ≥ 10) so that members of Gk comprise only a small
fraction (1/K) of the friends and family of a typical voter in Jk, and also so
that any taxation-induced economic distortions in group Gk have little direct
pecuniary impact on voters in Jk.

• The tax schedules for all K groups are decided simultaneously. Thus, a voter in
Jk has no incentive to manipulate the tax schedule of Gk, in the hope of setting
a precedent or receiving some sort of quid pro quo for her own group.

• No juror knows which jury she belongs to until after the referendum is over.
Thus, a voter in Jk cannot strategically vote for a tax schedule which helps her
friends or hurt her enemies in Gk (because she doesn’t know she is in Jk).

If these conditions are satisfied, then a juror in this mechanism has little or no private
pecuniary interest in the personal tax schedule she is voting on; for her, this is an
almost purely nonpecuniary public good (involving social justice within an as-yet
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unspecified group Gk which is disjoint from her own household). Thus, her dominant
strategy is to reveal her true utility function with respect to this public good.16

Since the juries J1, . . . ,JK are all large, statistically representative samples from
the same population, we expect that the K personal tax schedules they select will
all be virtually identical, ex post. The result is a strategy-proof implementation of
weighted utilitarian social choice over the personal tax schedules, decided purely on
nonpecuniary social justice grounds, without interference from private pecuniary in-
centives.

This mechanism cannot be applied to the impersonal tax schedule, because we
cannot isolate the people who will be affected by an impersonal tax from the jurors
who will vote on it. A partial solution is to replace impersonal taxes/subsidies with
roughly equivalent personal taxes/subsidies whenever possible. For example, taxes on
corporate profits could be replaced with (personal) dividend taxes of equal revenue
yield. Instead of applying a value-added tax to goods and services, we could provide
an income tax deduction for any income which is saved or invested (with an equal-
sized tax on any cash which is withdrawn from said savings or investments). Thus, a
taxpayer would pay a lower tax on any income she saves or invests, and a higher tax
on any income which she spends on consumption; this would act like a ‘personal value-
added tax’. Instead of subsidizing or publicly providing food, housing, education, and
healthcare, we could provide vouchers to citizens to purchase these services privately.

The remaining instruments in the impersonal tax schedule cannot be decided with
the pivotal mechanism. These include Pigouvian instruments (to internalize external-
ities), countercyclical instruments (for macroeconomic stabilization), ‘seed money’ or
tax breaks directed at nascent industries (for industrial policy), and perhaps other
instruments designed to correct market distortions introduced by the personal tax
schedule. These instruments are best designed by technocrats, not by referenda.

Conclusion

The classic pivotal mechanism is a strategy-proof implementation of weighted utilitar-
ian social choice amongst pecuniary public goods. We have modified this mechanism
to obtain a fair, strategy-proof implementation of weighted utilitarian social choice
amongst nonpecuniary public goods. But in reality, no public good is purely pecu-
niary or purely non-pecuniary. The examples in Section 1 all roughly approximate one
extreme or the other. But many public goods are not even ‘approximately’ pure: they
generate a substantial amount of both pecuniary and nonpecuniary costs/benefits,
for a substantial proportion of voters. These ‘hybrid’ public goods include: law en-
forcement, urban zoning laws, most roads and public transportation systems, public
education, regulations regarding goods and services, and of course, the composition
of the government itself. Neither the classic pivotal mechanism nor the nonpecuniary

16Of course, many voters in a particular economic class may vote for tax schedules which favour
this class, either because most of their friends and family come from the same class, or out of some
general sense of ‘class solidarity’. But they cannot expect any personal pecuniary gain from this vote.
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pivotal mechanism seems appropriate for these questions.
There remain four other unresolved problems. First: all revenue from the Clarke

tax must be destroyed, or the mechanism is not strategy-proof. Thus, the pivotal
mechanism is not efficient. This problem has been extensively studied, and several
more or less satisfactory solutions have been proposed for the classic pivotal mecha-
nism. For example, Green et al. (1976) and Green and Laffont (1979) showed that,
under reasonable assumptions, the per capita inefficiency introduced by the Clarke tax
goes to zero like 1/

√
I as I→∞ (where I is the number of voters). Gary-Bobo and

Jaaidane (2000) and Faltings (2004) suggest that the pivotal mechanism could be ap-
plied to randomly selected, statistically representative jury, with Clarke tax revenues
being redistributed to non-jurors. (For example, in the multi-jury system of Section 3,
any Clarke tax revenues from Jk could be redistributed to I \Jk.) Bailey (1997) and
Cavallo (2006) suggest strategy-proof tax refund schemes which are revenue-neutral on
average. For example, in the large-population, multi-referendum scenario considered
in this paper, the simplest solution is perhaps to collect all Clarke tax revenue in a
fund, and pay every voter t dollars out of this fund every year, where t is the annual
per capita average Clarke tax over the previous ten or twenty years.

Second, the nonpecuniary pivotal mechanism is even more informationally inten-
sive than the classic pivotal mechanism (especially the version proposed in Section 3).
This creates some technological challenges, especially since all votes must remain con-
fidential, so that voters cannot be bribed or intimidated, or coordinate their actions in
voting blocs. In particular, the identities of pivotal voters must remain secret, so that
they cannot be retroactively rewarded or punished by someone seeking to manipulate
the outcome. It is not clear that this is feasible.

Third, we have assumed that each voter’s joint utility function over wealth and
nonpecuniary public goods is separable. But this is false; a large gain or loss of wealth
will generally change a voter’s preferences over nonpecuniary public goods. However,
for relatively small variations of wealth (such as those implied by the fee schedule
ϕ

t), separability may be an adequate approximation. A more fundamental problem
is that the use of a stochastic Clarke tax assumes that the voters are von Neumann-
Morgenstern expected utility maximizers —an assumption which is empirically false
(Kahneman and Tversky, 2000). In reality, many voters may fail to reliably identify
their dominant (i.e. truth-revealing) strategy, due to cognitive distortions. Thus, vt

i

might not be a scalar multiple of ut
i, for many i in I. However, hopefully it will

generally be a good enough approximation that step (P3) of the mechanism will still
maximize the weighted utilitarian sum (1).

Fourth, we have assumed the nonpecuniary pivotal mechanism operates with a
budget of fixed size (either when deciding nonpecuniary public goods in Section 2, or
when deciding personal tax schedules in Section 3). This budget size must be fixed
in advance, because otherwise these decisions would involve an inextricable pecuniary
component. But how should society determine the size of this budget? This is a one-
dimensional policy problem, over which most voters presumably have single-peaked
preferences; thus, the decision could be made by simple majority vote, which would be
a strategy-proof implementation of the choice of the median voter. But it is not clear
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that the median is the welfare-maximizing choice; it only aggregates voters’ ordinal
preferences, not their cardinal utilities. The optimal size of the government remains
an open problem.

Appendix A: Proofs

The next lemma is used in the proofs of Propositions 1 and 2.

Lemma A.1 Let r :=
√

1/(1 − p), and suppose I > r/ǫ. Let δ := ǫ − r/I (so
0 < δ < ǫ). Define ϕδ

1, . . . , ϕ
δ
N as in assumption (C3). If ϕt

n ≥ ϕδ
n for all n ∈ [1 . . . N ],

then the fee schedule ϕ
t will satisfy (F1ǫ) with probability greater than p.

Proof. Define Et as in rule (R1); we must show that Prob [Et ≥ ǫ] < 1 − p. For all
n ∈ [1 . . . N ], let Ut and Cn be as defined in (C3), and let pn := Prob

[

Ut ≥ Cn(ϕδ
n)
]

.
Then pn < δ, by assumption (C3). For all n ∈ [1 . . . N ], we have

1

In

#
{

i ∈ In ; U t
i ≥ Ct

i (ϕ
δ
n)
}

(∗)
γn + pn <

(C3)

γn + δ. (A1)

Here, γn is some random variable with mean zero and variance less than 1/In, and
(∗) is because assumptions (U), (C1) and (C2) together imply that we are averaging
a set of In independent random variables with mean pn and variance less than 1.
Now,

{

i ∈ I ; V t
i = 1

}

(⋄)

N
⋃

n=1

{

i ∈ In ; U t
i ≥ Ct

i (ϕ
t
n)
} ⊆

(†)

N
⋃

n=1

{

i ∈ In ; U t
i ≥ Ct

i (ϕ
δ
n)
}

.

(A2)
Here, (⋄) is by Eq.(4), (†) is because ϕt

n ≥ ϕδ
n for all n ∈ [1 . . . N ], and Ct

i is
nondecreasing, for all i ∈ I. Thus,

I Et = #
{

i ∈ I ; V t
i = 1

}

≤
(†)

N
∑

n=1

#
{

i ∈ In ; U t
i ≥ Ct

i (ϕ
δ
n)
}

<
(∗)

N
∑

n=1

In (δ+γn).

where (†) is by formula (A2), while (∗) is by inequality (A1). It follows that

Et <
1

I

N
∑

n=1

In (δ + γn) =
1

I

(

N
∑

n=1

In

)

δ +
1

I

N
∑

n=1

In γn (†)
δ + γ, (A3)

where γ is some random variable with mean zero and variance less than 1/I, and
where (†) is because (I1 γ1), . . . , (IN γN) are independent random variables (by (U),
(C1) and (C2)) with mean zero and variances less than I1, . . . , IN respectively (so
their sum I γ has mean zero and variance less than I1 + · · · + IN = I). Thus,

Prob [Et ≥ ǫ] <
(∗)

Prob [δ + γ ≥ ǫ]
(⋄)

Prob [γ ≥ r/I] ≤
(†)

1

r2 (‡)
1 − p,

as desired. Here, (∗) is by inequality (A3), (⋄) is by the definition of δ, (†) is by
Chebyshev’s inequality (because γ has mean 0 and variance 1/I), and (‡) is by the
definition of r. ✷
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Proof of Proposition 1. (a) For all n ∈ [1 . . . N ], the Intermediate Value Theorem
yields a unique ϕ∗

n such that Vn(ϕ∗
n) = V ∗, because Vn is continuous and decreasing,

by assumption (C4).

(b) Claim 1: There exists a constant k > 0 such that, for all n ∈ [1 . . . N ] and any

small enough ǫ > 0, if |ϕ − ϕ∗
n| < k ǫ, then Vn(ϕ)/V ∗ ∈ (1 − ǫ, 1 + ǫ).

Proof. For all n ∈ [1 . . . N ] we have Vn(ϕ∗
n)/V ∗ = 1, and the function Vn is con-

tinuously differentiable by (C4). Thus, Taylor’s theorem says there is some
kn > 0 and ǫn > 0 such that, for all ǫ ∈ (0, ǫn), if |ϕ − ϕ∗

n| < knǫ, then
Vn(ϕ)/V ∗ ∈ (1 − ǫ, 1 + ǫ). Now let k := min{k1, . . . , kN}. ✸ Claim 1

Fix δ ∈ (0, 1), and suppose |ϕt
n − ϕ∗

n| < k δ/2 for all n ∈ [1 . . . N ].

Claim 2: (i) For all n ∈ [1 . . . N ], Prob
[

V
t

n/V
∗ 6∈ (1 − δ, 1 + δ)

]

<
4

(δ V ∗ In)2
.

(ii) Prob
[

V
t
/V ∗ 6∈ (1 − δ, 1 + δ)

]

<
4

(δ V ∗ I)2
.

Proof. Consider the random variable V t
n := min{1, Ut/Cn(ϕt

n)} (where Ut and
Cn are as in (C3)). Since 0 ≤ V t

n ≤ 1, the variance of V t
n is less than 1. If

every voter deploys her dominant strategy, then Eq.(4) and assumptions (U),
(C1) and (C2) imply that the random variables {V t

i }i∈In
are independent and

identically distributed to V t
n . For all n ∈ [1 . . . N ], assumption (C4) says that

the expected value of V t
n is Vn(ϕt

n), while Claim 1 says Vn(ϕt
n) = hn V ∗ for some

hn ∈ (1 − δ
2
, 1 + δ

2
). Meanwhile, definition (3) says that V

t

n is the average of the
In i.i.d. random variables {V t

i }i∈In
. Thus,

V
t

n = Vn(ϕt
n) + γt

n = hn V ∗ + γt
n, (A4)

where γt
n is some random variable with mean zero and variance less than 1/In.

Thus,

V
t

(∗)

1

I

∑

i∈I

vt
i =

1

I

N
∑

n=1

∑

n∈In

vt
i (†)

1

I

N
∑

n=1

InV
t

n (⋄)

1

I

N
∑

n=1

In(hn V ∗ + γt
n)

=
V ∗

I

N
∑

n=1

In hn +
1

I

N
∑

n=1

Inγ
t
n = V ∗ h + γt, (A5)

where h ∈ (1 − δ
2
, 1 + δ

2
), and where γt is some random variable with mean zero

and variance less than 1/I. Here, (∗) is by Eq.(2), (†) is by Eq.(3), and (⋄) is by
Eq.(A4).

Now, for all n ∈ [1 . . . N ], we have

(

V
t

n/V
∗ ≥ 1 + δ

)

⇐
(⋄)
⇒

(

hn + γt
n/V

∗ ≥ 1 + δ
)

⇐⇒
(

γt
n/V

∗ ≥ 1 + δ − hn

)

(∗)
=⇒

(

γt
n/V

∗ > δ
2

)

⇐⇒
(

γt
n ≥ δ V ∗/2

)

,
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where (⋄) is by Eq.(A4), and (∗) is because 1 + δ − hn > δ
2

because hn < 1 + δ
2
.

A very similar argument shows that

(

V
t

n/V ∗ ≤ 1 − δ
)

=⇒
(

γt
n ≤ −δ V ∗/2

)

, and thus,

Prob
[

V
t

n/V
∗ 6∈ (1 − δ, 1 + δ)

]

≤ Prob
[

|γt
n| ≥ δ V ∗/2

]

<
(∗)

4

(δ V ∗ In)2
,

where (∗) is by Chebyshev’s inequality. This proves part (i) of the claim.

In a similar way, using Eq.(A5) and the fact that 1 − δ
2

< h < 1 + δ
2

we can
show that

(

V
t
/V ∗ 6∈ (1 − δ, 1 + δ)

)

=⇒
(

|γt| ≥ δ V ∗/2
)

, and thus,

Prob
[

V
t
/V ∗ 6∈ (1 − δ, 1 + δ)

]

≤ Prob
[

γt ≥ δ V ∗/2
]

<
(∗)

4

(δ V ∗ I)2
,

where (∗) is by Chebyshev’s inequality. This proves part (ii). ✸ Claim 2

Now let δ := ǫ/4.

Claim 3: If V
t

n/V ∗ ∈ (1 − δ, 1 + δ) and V
t
/V ∗ ∈ (1 − δ, 1 + δ), then V

t

n/V
t ∈

(1 − ǫ, 1 + ǫ).

Proof. Since V
t

n/V
∗ > 1 − δ and V

t
/V ∗ < 1 + δ, we have

V
t

n

V
t >

(1 − δ)V ∗

(1 + δ)V ∗
=

1 + δ − 2δ

1 + δ
= 1 − 2δ

1 + δ
>
(∗)

1 − 2δ
(†)

1 − ǫ

2
> 1 − ǫ.

Here (∗) is because 1+δ > 1, so that 2δ
1+δ

< 2δ. Meanwhile, (†) is because δ = ǫ/4.

Meanwhile, since V
t

n/V
∗ < 1 + δ and V

t
/V ∗ > 1 − δ, we have

V
t

n

V
t <

(1 + δ)V ∗

(1 − δ)V ∗
=

1 − δ + 2δ

1 − δ
= 1 +

2δ

1 − δ
<
(∗)

1 + 4δ
(†)

1 + ǫ,

where (†) is because δ = ǫ/4, and (∗) is because δ < 1/4, so that 1−δ > 3/4 > 1/2,
so that 2δ

1−δ
< 4δ. ✸ Claim 3

Thus,

Prob [ϕt violates (F2ǫ)] = Prob

[

∃ n ∈ [1 . . . N ] with
V

t

n

V
t 6∈ (1 − ǫ, 1 + ǫ)

]

≤
(†)

Prob

[

V
t

V ∗
6∈ (1 − δ, 1 + δ) or ∃ n ∈ [1 . . . N ] with

V
t

n

V ∗
6∈ (1 − δ, 1 + δ)

]

≤ Prob

[

V
t

V ∗
6∈ (1 − δ, 1 + δ)

]

+
N
∑

n=1

Prob

[

V
t

n

V ∗
6∈ (1 − δ, 1 + δ)

]
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≤
(⋄)

4

(δ V ∗ I)2
+

N
∑

n=1

4

(δ V ∗ In)2 (‡)

4

(δ V ∗ I)2
+ N · 4

(δ V ∗ I/N)2

=
4 (N3 + 1)

(δ V ∗ I)2
<
(∗)

1 − p

where (†) is by Claim 3, (⋄) is by Claim 2, (‡) is by equation (5.2), and (∗) is by
inequality (5.1) (with δ = ǫ/4).

Thus, Prob [ϕt satisfies (F2ǫ)] > p, as desired. Set K := k/8 to complete the
proof.

(c) Let r :=
√

1/(1 − p); then inequality (5.1) implies that I > r/ǫ. Let δ := ǫ − r/I,
and define ϕδ

1, . . . , ϕ
δ
N as in assumption (C3). Now let V ∗ < min{V1(ϕ

δ
1), . . . , VN(ϕδ

N)}.
Thus, if we select ϕ∗

1, . . . , ϕ
∗
N as in part (a), then ϕ∗

n > ϕδ
n for all n ∈ [1 . . . N ], be-

cause the functions V1, . . . , VN are decreasing, by assumption (C4). Thus, if ϕ
t is

close enough to ϕ
∗, then ϕt

n ≥ ϕδ
n for all n ∈ [1 . . . N ]. Then Lemma A.1 implies

that the fee schedule ϕ
t will satisfy (F1ǫ) with probability greater than p. ✷

Proof of Proposition 2. Recall that Et := #{i ∈ I; V t
i = 1}/|I|, and ϕ

t :=
(ϕt

1, . . . , ϕ
t
N). We will analyze the convergence of a simplified version of rule (R1):

(R1*) If Et ≥ ǫ, then set ϕ
t+1 := λ ·ϕt. Otherwise, if Et < ǫ, then set ϕ

t+1 := ϕ
t.

Clearly, the convergence of (R1*) will be slightly slower than (R1) (because it mul-
tiplies ϕ

t by a slightly smaller factor, so ϕ
t grows more slowly as t→∞). Thus, it

suffices to establish the desired conclusion for (R1*).

For any T ∈ N, let ST := #{t ∈ [1 . . . T ]; Et ≥ ǫ}. Note that ST is a ran-
dom variable, because {E1, . . . , ET} are random variables (because V t

i is a random
variable for every i ∈ I and t ∈ N). Rule (R1*) implies that ϕ

T = λST ϕ
0. Let

S∗ := min{s ∈ N; λs
ϕ

0 satisfies (F1ǫ) with probability greater than p}; we must
determine how quickly ST reaches S∗ as T→∞. Let T ∗

ǫ,p := min{t ∈ N; ST ≥ S∗}.
Note that T ∗

ǫ,p is a random variable, because {St}∞t=1 are random variables.

Claim 1: T ∗
ǫ,p is almost surely finite, and E[T ∗

ǫ,p] ≤ S∗/(1 − p).

Proof. Let {Bt}∞t=1 be a Bernoulli process (i.e. a sequence of independent, identically
distributed, {0, 1}-valued random variables) with Prob [Bt = 1] = 1 − p for all
t ∈ N. For any t ∈ N, n ∈ [1 . . . N ], and i ∈ In, equation (4) implies that V t

i = 1
if and only if U t

i ≥ Ct
i (ϕ

t
n). Thus,

Et =
1

I

N
∑

n=1

#
{

i ∈ In ; U t
i ≥ Ct

i (ϕ
t
n)
}

. (A6)

For all t ∈ N, define

E ′
t :=

1

I

N
∑

n=1

#
{

i ∈ In ; U t
i ≥ Ct

i (λ
S∗−1 ϕ0

n)
}

. (A7)
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Then {E ′
1, E

′
2, E

′
3, . . .} are independent random variables, by assumptions (U),

(C1), and (C2). Furthermore, for all t ∈ N, we have

Prob [E ′
t ≥ ǫ] = Prob

[

λS∗−1
ϕ

0 violates (F1ǫ)
]

≥
(∗)

1 − p = Prob [Bt = 1] ,

(A8)
where (∗) is by the definition of S∗. Thus, for all T ∈ N, if we define the random
variables

S ′
T := #{t ∈ [1 . . . T ] ; E ′

t ≥ ǫ} and S ′′
T :=

T
∑

t=1

Bt,

then inequality (A8) implies that S ′
T stochastically dominates S ′′

T . Thus, if we
define the random hitting times T ′ := min{t ∈ N; S ′

t ≥ S∗} and T ′′ := min{t ∈ N;
S ′′

t ≥ S∗}, then T ′′ stochastically dominates T ′. Thus, E[T ′′] ≥ E[T ′]. But T ′′

is a Pascal (or ‘negative binomial’) random variable of type (S∗, 1 − p), which is
almost-surely finite. Thus, T ′ is also almost-surely finite. Furthermore, E[T ′′] =
S∗/(1 − p). Thus, E[T ′] ≤ S∗/(1 − p). Now, if t < T ∗

ǫ,p, then

Et (∗)

1

I

N
∑

n=1

#
{

i ∈ In ; U t
i ≥ Ct

i (ϕ
t
n)
}

≥
(†)

1

I

N
∑

n=1

#
{

i ∈ In ; U t
i ≥ Ct

i (λ
S∗−1 ϕ0

n)
}

(⋄)
E ′

t, (A9)

where (∗) is by Eq.(A6) and (⋄) is by Eq.(A7), and where (†) is because

(

t < T ∗
ǫ,p

)

⇐⇒
(

St ≤ S∗ − 1
)

=⇒
(

∀ n ∈ [1 . . . N ], ϕt
n = λStϕ0

n ≤ λS∗−1 ϕ0
n

)

(‡)
=⇒

(

for all n ∈ [1 . . . N ] and all i ∈ In, Ct
i (ϕ

t
n) ≤ Ct

i (λ
S∗−1 ϕ0

n)
)

.

(Here (‡) is because the function Ct
i is nondecreasing, for every i ∈ I and t ∈ N.)

Now, inequality (A9) implies that St ≥ S ′
t for all t ∈

[

0 . . . T ∗
ǫ,p

)

. Thus, T ∗
ǫ,p ≤ T ′.

Thus, T ∗
ǫ,p is almost surely finite, and E[T ∗

ǫ,p] ≤ E[T ′] ≤ S∗/(1 − p). ✸ Claim 1

Now, let δ := ǫ − 1/I
√

1 − p, and let ϕδ
1, . . . , ϕ

δ
N be as in assumption (C3). Let

S := min{s ∈ N; λs ϕ0
n ≥ ϕδ

n for all n ∈ [1 . . . N ]}. Thus, for all t ∈ N, if St ≥ S,
then Lemma A.1 implies that ϕ

t will satisfy (F1ǫ) with probability greater than p.
Thus, S∗ ≤ S. But it is easy to verify that S = L(δ), where L(δ) is defined by
expression (6). This, together with Claim 1, implies that T ∗

ǫ,p is almost-surely finite,
and E[T ∗

ǫ,p] < L(δ)/(1 − p).

Finally, observe that, since rule (R1) increases the fee schedule ϕ
t faster than

(R1*), we must have T ǫ
p ≤ T ∗

ǫ,p. This completes the proof. ✷
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Proof of Proposition 3. (a) For all n ∈ [1 . . . N ], and all λ ∈ R, define Ln(λ) :=
log(Vn(eλ)). The function Ln : R−→R is finite, decreasing, and continuously twice-
differentiable everywhere on R, by assumption (C4). For all n ∈ [1 . . . N ] and t ∈ N,
if λt

n := log(ϕt
n), and sn is defined as in (R2), then it is easy to see that

log(V
t

n)
(S1)

log(Vn(ϕt
n)) = Ln(λt

n) and sn ≈ L′
n(λt

n). (A10)

Let L∗ := log(V ∗) and λt+1
n := log(ϕt+1

n ). Then taking the logarithm of both sides
in rule (R2), and substituting the identities in (A10) and (S2), we get

λt+1
n = λt

n + sn ·
(

Ln(λt
n) − L∗

)

≈ λt
n + L′

n(λt
n) ·
(

Ln(λt
n) − L∗

)

, (A11)

Formula (A11) is the Newton-Raphson method; when iterated, the sequence of values
{λt

n}∞t=1 converges rapidly to the (unique) value λ∗
n such that Ln(λ∗

n) = L∗. Indeed,
under hypothesis (C4), there is some k > 1 such that

|λt
n − λ∗

n| = O(k−t2) as t→∞. (A12)

But ϕt
n = exp(λt

n) and ϕ∗
n = exp(λ∗

n), and the exponential function is continuously
differentiable. Thus, Taylor’s theorem and Eq.(A12) imply that |ϕt

n−ϕ∗
n| = O(k−t2)

as t→∞. In other words, there is some constant B0 > 0 such that |ϕt
n−ϕ∗

n| < B0 k−t2

for all sufficiently large t ∈ N. For any δ > 0, let

T0(δ) :=

√

log(B0) − log(δ)

log(k)
.

If t ≥ T0(δ), then B0 k−t2 ≤ δ, so that |ϕt
n − ϕ∗

n| < δ for all t ≥ T0(δ). Finally,

observe that T0(δ) = O
(

√

log(1/δ)
)

.

(b) For all n ∈ [1 . . . N ], recall that V ∗ = Vn(ϕ∗
n) and ϕt

n = exp(λt
n) and ϕ∗

n = exp(λ∗
n).

Thus,
∣

∣

∣

∣

log

(

Vn(ϕt
n)

V ∗

)

− 0

∣

∣

∣

∣

=

∣

∣

∣

∣

log

(

Vn(ϕt
n)

Vn(ϕ∗
n)

)∣

∣

∣

∣

=
∣

∣log
[

Vn(exp[λt
n])
]

− log [Vn(exp[λ∗
n])]
∣

∣

=
∣

∣Ln(λt
n) − Ln(λ∗

n)
∣

∣

(∗)
O(k−t2) as t→∞.

Here, (∗) is by Taylor’s theorem and Eq.(A12), because the function Ln is continu-
ously differentiable by (C4). Now, exp(0) = 1, and the exponential function is also
continuously differentiable near zero, so a second application of Taylor’s theorem
implies that
∣

∣

∣

∣

Vn(ϕt
n)

V ∗
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

exp

[

log

(

Vn(ϕt
n)

V ∗

)]

− exp(0)

∣

∣

∣

∣

= O(k−t2) as t→∞.

Thus, there is some B1 > 0 such that
∣

∣

∣

Vn(ϕt
n)

V ∗ − 1
∣

∣

∣
< B1 k−t2 , for all large enough

t > 0. For any ǫ > 0, define

T1(ǫ) :=

√

log(B1) − log(ǫ)

log(k)
.
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If t ≥ T (ǫ), then B1 k−t2 ≤ ǫ, so that
∣

∣

∣

Vn(ϕt
n)

V ∗ − 1
∣

∣

∣
< ǫ. By assumptions (S1) and

(S2), this yields
∣

∣

∣

V
t

n

V
t − 1

∣

∣

∣
< ǫ, for all n ∈ [1 . . . N ]; this is equivalent to (F2ǫ).

Finally, observe that T1(ǫ) = O
(

√

log(1/ǫ)
)

.

(c) If Vn is isolestic, then Ln will be a linear function with slope sn; in this case,
the Newton-Raphson formula (A11) will cause λt+1

n = λ∗
n for any choice of initial

condition λt
n. That is: (R2) will converge in a single iteration to the optimal value

of ϕn. ✷

Remark. Newton-Raphson (which is the content of rule (R2)) is only one of many
numerical methods for finding the root of a function, and it is the reason we require the
regularity hypothesis (C4). If we wish to weaken hypothesis (C4), and assume only
that the functions Vn are continuous and increasing, then we can use the bisection
method instead; this will require a suitably modified form of rule (R2). The price we
pay is slightly slower convergence in Proposition 3: we would have T (ǫ) = O (log(1/ǫ)).

Appendix B: Notational Index

Symbol First use Brief Description

At ↑ (P1) the menu of alternatives during referendum t.
a, b §1 generic elements of At.
ci §1 only (constant) marginal utility of money for voter i.
ct
i ↓ (P5) the disutility of the fee ϕt

n for voter i at time t.
Ct

i (ϕ) ↑ Eq.(4) the disutility of a fee of size ϕ for voter i at time t.
C ↑ (C) the space of nondecreasing functions from R to R.
ǫ (F1ǫ),(F2ǫ) a small ‘error tolerance’, used in definition of ‘ǫ-fair’ .
Et (R1) #{i ∈ I; V t

i = 1}/I.
ϕt

n ↑ (P1) the stochastic Clarke tax ‘fee’ for stratum n in referendum t.
ϕt,−

n (P1) slightly smaller than ϕt
n.

ϕt,+
n (P1) slightly larger than ϕt

n.
ϕ

t ↑ (P1) ϕ
t = (ϕt

1, ϕ
t
2, . . . , ϕ

t
N ) is the fee schedule for referendum t.

ϕǫ
n (C3) a fee large enough that Prob [Ut ≥ Cn(ϕǫ

n)] < ǫ.
γ Eq.(A3) a random variable, mean 0, variance less than 1/I.
γt Eq.(A5) a random variable, mean 0, variance less than 1/I.
γt

n ↑ Prop.3 a random variable, mean 0, variance less than 1/In.
Gk §3 a group for personal tax schedule assignment.
I §1 the set of voters.
i, j §1 generic voters in I.
In ↑ (P1) the nth ‘wealth stratum’ of voters in I.
I+

n (P1) a random selection of half the voters in In.
I−

n (P1) the other half of the voters in In.
I Eq.(2) the cardinality of I.
In Eq.(3) the cardinality of In

Jk §3 the jury deciding personal tax schedule for group Gk.
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Symbol First use Brief Description

L(ǫ) Eq.(6) max{log(ϕǫ
n/ϕ0

n)}N
n=1/log(λ).

µt (U) probability distribution of the random variables {U t
i }i∈I .

n ↑ (P1) an element of [1 . . . N ], indexing a wealth stratum.
N ↑ (P1) the number of wealth strata (typically N = 10).
N {0, 1, 2, 3, . . .}; the set of natural numbers.
p ↓ (F2ǫ) the probability that the fee schedule ϕ will be ǫ-fair.
pt

i(v) (P4)
∑

j∈I\{i}[v
t
j(b) − vt

j(a
∗)]; probability of stochastic Clarke tax.

R the set of real numbers.
R+ the set of nonnegative real numbers.
ρn (C) probability distribution of random variable Ct

i , for all i ∈ I and t ∈ N.
t ↑ (P1) time (indexes the sequence of referenda).
T ǫ

p Prop.2 time after which (F1ǫ) is satisfied with probability p.

T0(δ) Prop.3(a) time after which |ϕt
n − ϕ∗

n| < δ for all n ∈ [1 . . . N ].
T1(ǫ) Prop.3(b) time after which (F2ǫ) is satisfied.
ut

i ↑ (P1) voter i’s vNM cardinal utility function over At.

u$
i ↑ (P1) voter i’s vNM cardinal utility function for money.

U t
i ↑ (U) maxa∈At

ut
i(a), the ‘intensity’ of i’s preferences.

vt
i(a) (P2) voter i’s declared value for alternative a in At.

v (P3) v := (vt
i)i∈I .

V (a) (P3) V (a) :=
∑

i∈I vt
i(a).

V t
i ↑ Eq.(2) maxa∈At

vt
i(a); voter i’s ‘influence’ on referendum t.

V
t

Eq.(2) 1
I

∑

i∈I Vi.

V
t

n Eq.(3) 1
In

∑

i∈In
V t

i .

V
t,+

n (R2) 1
|I+

n |

∑

i∈I+
n

V t
i .

V
t,−

n (R2) 1
|I−

n |

∑

i∈I−
n

V t
i .

Vn(ϕ) (C4) expected influence of a stratum n voter, given fee ϕ.

V ∗ Prop.1 a target value for V1(ϕ
∗
1), . . . , VN (ϕ∗

N ) and/or V
t
.

wt
i ↓ (P5) voter i’s wealth level prior to referendum t.
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