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Revenue Management in Resoure Exhange SellerAllianesSo Yeon Chun *Shool of Industrial and Systems Engineering, Georgia Institute of Tehnology, shun�isye.gateh.eduAnton J. Kleywegt yShool of Industrial and Systems Engineering, Georgia Institute of Tehnology, anton�isye.gateh.eduAlexander Shapiro zShool of Industrial and Systems Engineering, Georgia Institute of Tehnology, ashapiro�isye.gateh.eduThe purpose of this paper is to obtain insight into onditions under whih a resoure exhange allianean provide greater pro�t than the setting without an alliane, and to propose a model to design a resoureexhange alliane. We �rst onsider a setting in whih ustomers want a ombined produt assembled fromproduts sold by di�erent sellers. We show that without an alliane the sellers will tend to prie theirproduts too high and sell too little, thereby foregoing potential pro�t, espeially when apaity is large.This provides an eonomi motivation for interest in allianes, beause the hope may be that some of theforegone pro�t may be aptured under an alliane. We then onsider a resoure exhange alliane, inludingthe e�et of the alliane on ompetition among alliane members. We show that the foregone pro�t mayindeed be aptured under suh an alliane. The problem of determining the optimal amounts of resouresto exhange is formulated as a stohasti mathematial program with equilibrium onstraints. We showhow to determine whether there exists a unique equilibrium after resoure exhange, how to ompute theequilibrium, and how to ompute the optimal resoure exhange.Key words : alliane, resoure exhange, priing, revenue management, stohasti mathematialprogramming with equilibrium onstraints, non-ooperative game
1. IntrodutionAn important way in whih arriers suh as airlines and oean arriers ollaborate is throughthe formation of allianes. For example, in an airline alliane eah alliane member (marketingmember) an sell tikets for ights operated by another alliane member (operating member) and�Researh of this author was supported by the NSF awards CMMI-0700161 and DMS-0914785.yResearh of this author was supported by the NSF awards ITR/DMI-0427446 and CMMI-0700161.zResearh of this author was supported by the NSF award DMS-0914785.1



2the marketing member an put its own ode on the ight. That enables airlines to sell tikets foritineraries that inlude ights operated by multiple airlines, thereby dramatially inreasing thenumber of itinerary produts that eah airline an sell.Another example of a widely used arrier alliane is the type of alliane that oean ontainer ar-riers enter into when they introdue new joint servies. A \servie" is a yle (also alled a \loop"or a \rotation") of voyages that repeat aording to a regular shedule, typially with weekly depar-tures at eah port inluded in the yle. Suppose the yle is ports A,B,C,D,E,A. A set of ships isdediated to the servie, with eah ship visiting the ports in the sequene A,B,C,D,E,A,B,. . . . Too�er weekly departures at eah port inluded in the yle, the headway between suessive shipstraversing the yle must be one week. Thus, if it takes a ship n weeks to omplete one yle,then n ships are needed to o�er the servie with weekly departures at eah port in the yle. Formany servies that visit ports in Asia and North Ameria, and servies that visit ports in Asiaand Europe, it takes a ship approximately 6 weeks to omplete one yle, and thus 6 ships areneeded to o�er the servie. Taking into aount that a large ontainer ship an ost several hundredmillion US dollars (and the trend is towards even larger ontainer ships, beause larger ontainerships tend to have signi�antly lower per unit operating osts), it beomes lear that for even thelarge arriers it would require an enormous investment to introdue a new servie. A solution isfor several arriers to enter into an alliane to o�er a new servie. Many servies that visit ports inAsia and North Ameria, and servies that visit ports in Asia and Europe, are o�ered by allianesbetween two arriers. Eah arrier in the alliane provides one or more ships to be used for theservie. The apaity on eah ship is then alloated to all the alliane members, often in propor-tion to the apaity that the alliane member ontributed to the servie. For example, if arrier 1ontributes 2 ships and arrier 2 ontributes 4 ships to the servie, and all the ships in the serviehave the same apaity, then arrier 1 an use 1=3 of eah ship's apaity, and arrier 2 an use2=3 of eah ship's apaity. That way, eah arrier in the alliane an o�er weekly departures ateah port in the servie even though it did not have enough ships by itself to do so.



3Vaation pakages provide another example of seller allianes enabling the sale of produtsombined from the resoures of several sellers. For example, a vaation pakage may onsist ofairline tikets for 2 people, a hotel room for 4 nights, and ar rental for 5 days. The resouresused to provide the ombined produt are provided by 3 sellers: the airline, the hotel, and the arrental ompany. Computers and peripherals provide another example of produts ombined fromthe resoures of several sellers. There are many similar examples.The examples above illustrate that allianes are or an be important in various industries, andthat allianes an be strutured in many di�erent ways. The detail rules of an alliane are learlyimportant for both the stability of the alliane, as well as the well-being of eah member of thealliane. Boyd (1998) and Vinod (2005) disuss the basi alliane types in the airline industry.The major distinguishing fators between di�erent alliane strutures involve the ontrol of theinventory of the resoures and the priing of the produts that alliane members o�er for sale.For example, in a so-alled \free-sell" airline alliane, the alliane members agree in advane ofthe selling season on the transfer pries at whih operating members will sell apaity on ightsto marketing members. However, under free-sell, during the selling season the operating membersstill ontrol the availability of all the apaity on the ights operated by them, even if the ightsare inluded in the ode-share agreement. Both legal and operational reasons prevent airlines inallianes from merging their revenue management systems (Barla and Constantatos 2006).Another type of alliane struture is a so-alled \resoure exhange" or \hard blok" alliane,in whih the sellers exhange resoures (for example, seat spae on various ights or ontainerapaity on various voyages, and possibly money). After the exhange, eah seller an ontrol thereeived resoures as though they are the owner of the resoures. Resoure exhange allianes aremore ommon among oean arriers than airlines. An example of a resoure exhange allianebetween oean arriers was given above. As an example of a resoure exhange alliane betweenairlines, airline 1 may reeive 15 seats on ight A operated by airline 2, and airline 2 may reeive10 seats on ight B operated by airline 1 as well as $2000. After the exhange, airline 1 ontrolsthe revenue management for the 15 seats on ight A that it reeived from airline 2, as well as



4for the remaining seats on the ights that it operates, and similarly, airline 2 ontrols the revenuemanagement for the 10 seats on ight B that it reeived from airline 1, as well as for the remainingseats on the ights that it operates.Sine the ontrol of transfer pries by free-sell allianes may ause suspiions of prie ollusion,resoure exhange allianes have a potential bene�t over free-sell allianes regarding ompetitionand anti-trust regulation. However, we should mention that the struture of arrier allianes variesfrom alliane to alliane, and no arrier alliane is strutured as simply as the stylisti ases offree-sell allianes or resoure exhange allianes.After formation of an alliane the alliane members ompete to sell substitute produts. In thatway, allianes inrease ompetition (more spei�ally, allianes inrease horizontal ompetition).Currently, airline revenue management systems do not take into aount the e�et of allianes onthe ompetition they are faing. For example, airline revenue management systems treat seats thatthey give to another airline in a resoure exhange alliane as sales (Vinod 2005), instead of as aninrease in the resoures available to the other airline for use in selling ompeting produts.In this paper we fous on resoure exhange allianes. We propose an alliane design modelthat takes into aount how the alliane members ompete after the resoure exhange by sellingsubstitutable (and also omplementary) produts. It will be shown that a resoure exhange allianean inrease both pro�ts and onsumer surplus at the same time that it inreases horizontalompetition.First we provide an eonomi motivation for interest in resoure exhange allianes. Spei�ally,in Setion 3 we onsider a model with two sellers, eah of whom sells one type of resoure. Customersare interested in a produt that requires both resoure types. First we onsider the ase without analliane, in whih eah seller sets the prie for its resoure, and ustomers buy resoures from bothsellers to obtain the desired produt. Then we ompare the equilibrium pries, quantities, pro�ts,and onsumer surpluses without an alliane with the pries, quantities, pro�ts, and onsumersurpluses that would result from perfet oordination. It is shown that the equilibrium prieswithout an alliane are higher than the pries under perfet oordination, and the equilibrium



5quantities without an alliane are lower than the quantities under perfet oordination. Intuitivelythis happens beause without an alliane eah seller is impliitly attempting to gather a largershare of the total revenue. This e�et is espeially pronouned if the apaity is large, and it resultsin both the total pro�t and the onsumer surplus being smaller without an alliane than underperfet oordination.Seond we onsider a resoure exhange alliane. We show that both the total pro�t and theonsumer surplus of a resoure exhange alliane with exhange quantities hosen to maximize thetotal pro�t are always greater than the total pro�t and the onsumer surplus respetively withoutan alliane (exept if the apaity is small, in whih ase the equilibrium pries, quantities, pro�ts,and onsumer surpluses are the same for the settings with an alliane, without an alliane, andwith perfet oordination). In addition, we show that the equilibrium pries, quantities, pro�ts,and onsumer surpluses are equal for a resoure exhange alliane with exhange quantities hosento maximize the total pro�t and for perfet oordination, exept when the sellers' produts areomplementary (whih would be unusual in a resoure exhange alliane) and the apaity is large.In Setion 4, we onsider models of no alliane, perfet oordination, and a resoure exhangealliane for the ase in whih eah seller has multiple resoures. For resoure exhange allianes weformulate an optimization model to determine the amount of eah resoure to be exhanged, takinginto aount the onsequenes of the exhange on the subsequent ompetition among the allianemembers. If one assumes that after the resoures have been exhanged, eah alliane memberhooses the pries of its produts to maximize its own pro�t, and that this behavior of the allianemembers leads to an equilibrium, then the problem an be formulated as a mathematial programwith equilibrium onstraints. An important question is whether, for eah resoure exhange, thereexists an equilibrium and, if so, whether it is unique. In Setion 5 we show how to determine whethera unique equilibrium exists, and how to ompute it. A trust region algorithm is used to solve themathematial program with equilibrium onstraints. Illustrative numerial results are provided inSetion 6, and we ompare the results for the ases with no alliane, perfet oordination, and aresoure exhange alliane.



62. Related LiteratureThere are broadly two streams of literature related to this paper | literature that study the impatof allianes, suh as the impat of airline allianes on priing, ompetition, and publi welfare; andliterature that address the design of alliane agreements. The literature on alliane design is sparserelative to the literature on the impat of allianes. Also, most papers on allianes have addressedeither oean shipping allianes or airline allianes.The literature on oean shipping allianes have addressed questions suh as network design underallianes, hoie of resoure exhange amounts, revenue sharing, or the stability of allianes. Forexample, Midoro and Pitto (2000) investigated fators whih a�et the stability of liner shippingallianes, and Slak et al. (2002) empirially examined the hanges in servies made by ontainershipping lines in response to the formation of allianes. Song and Panayides (2002) analyzed twoexamples using ooperative game theory to investigate the rationale behind and deision-makingbehavior in liner shipping allianes. Lu et al. (2010) studied a model of a resoure exhange allianebetween two arriers to determine the resoure exhange or purhase amount to maximize thepro�t of an individual alliane member. Agarwal and Ergun (2010) onsidered a servie networkdesign problem in whih oean arriers share apaity on their ships. Their design problem doesnot take into aount that arriers will ompete when they share apaity on the same ships.The literature on airline allianes have addressed questions suh as the hoie of ights to inludein ode-share agreements, the hoie of transfer pries or proration rates in free-sell allianes, thee�et of allianes on booking limits and the number of seats sold, and the e�et of argo allianeson the passenger market. For example, Bruekner (2001) onsiders a model with two airlines, withand without an alliane, and showed that for most parameter values, the alliane dereases theamount sold of the ommon interhub produt, and inreases the amounts sold of all the otherproduts, espeially the shared interline produts. Sivakumar (2003) presented Code Share Opti-mizer, a tool built by United Airlines that onsiders the interation between proration agreements,demand, fares, and market shares. O'Neal et al. (2007) built a ode-share ight pro�tability tool



7to automate the ode-share ight seletion proess at Delta airlines. Abdelghany et al. (2009) alsopresented a model for airlines to determine a set of ights for a ode-share agreement. Zhang et al.(2004) examined the e�et of an air argo alliane between two passenger airlines on the passen-ger market. Netessine and Shumsky (2005) onsider a model with multiple airlines, in whih eahairline has two fare lasses for eah ight, and eah airline hooses a booking limit for eah ight.The horizontal ompetition setting involves two airlines with one ight eah, in whih demandthat is not aommodated on the �rst hoie airline overows to the other airline. In the ver-tial ompetition setting onneting passengers travel on ights of more than one airline. Theequilibrium booking limits are ompared with the booking limits under perfet oordination. Thequestion of transfer pries that ahieves perfet oordination is also investigated. These transferpries are funtions of the booking limits of both airlines, and also depends on the expetationsof funtions of random demand. Thus these oordinating transfer pries are not numbers deter-mined before the airlines make their booking limit deisions. Wen and Hsu (2006) proposed amulti-objetive optimization model to determine ight frequenies on airline ode-share allianenetworks. Barla and Constantatos (2006) onsider a market with three ompetitors, two of whihdeide to ooperate where demand is unertain. Under a \strategi alliane (SA)", the partners(a) jointly hoose apaity in order to maximize their total expeted pro�t, (b) share this apaityamong themselves based on the Nash bargaining outome, and () market their apaity sharesindependently after demand is revealed. They show that the pro�ts of the ooperating �rms isgreater under SA than under a full merger (in their model, a merger does not inlude maintainingdi�erent brands), and thus SA is not neessarily a seond best solution that is justi�ed by regu-lations restriting airline mergers. Houghtalen et al. (2010) used the model in Agarwal and Ergun(2010) to hoose apaity exhange pries for air argo arriers. Their model also does not take intoaount that air argo arriers (and freight forwarders) will ompete when they exhange apaity.Wright et al. (2010) formulate a Markov-game model of two airlines under a free-sell alliane.They �rst desribe entralized booking ontrol whih gives an upper-bound on the total revenue



8for the alliane, and they �nd that no Markovian transfer-priing sheme with deentralized book-ing ontrol an guarantee the same revenues as entralized booking ontrol. They examine statiand dynami transfer-priing shemes, and show that the performane of stati transfer-priingshemes depends on the homogeneity and stability of the relative values that eah airline plaeson the inventory used in interline itineraries. They also onlude that there is no one best dynamiproration sheme.Hu et al. (2011) also study a model of a free-sell airline alliane. Similar to our model, theirmodel is a two-stage model with the alliane design deision in the �rst stage and operational sellingdeisions of individual airlines in the seond stage, formulated as a Nash equilibrium problem.Their alliane design deisions are stati proration rates, whereas our alliane design deisionsare stati resoure exhange amounts. In their model the pries and proration rates are the sameirrespetive of whih airline sells the interline itinerary, whereas our model makes provision fordi�erent pries and demands for the same interline itinerary sold by di�erent marketing airlines.Their seond-stage deisions are stati booking limits, whereas our seond-stage deisions are statiprodut pries. The booking limits in their model are apaity alloations to di�erent itineraries,and not nested booking limits on the ight legs. The demand in both models may be random.However, in their model the demand for di�erent itineraries (and fare lasses) are assumed to beindependent, and also independent of the seond-stage deisions (booking limits), whereas in ourmodel the demand for di�erent itineraries are allowed to be dependent, and to depend on theseond-stage deisions (pries). In both models existene and uniqueness of a Nash equilibrium inthe seond stage is somewhat problemati | for their model, a Nash equilibrium always exists,but is not unique, whereas for our model existene and uniqueness of a Nash equilibrium an beguaranteed in speial ases (for example, when the demands for produts are independent of thepries of other produts), but not in general. For our model, existene and uniqueness of a Nashequilibrium an be veri�ed numerially for a given demand model. In both papers, total pro�tsunder allianes are ompared with total pro�ts under a entralized solution, and it is investigated



9when the pro�ts are equal. In our paper we ompare the onsumer surplus in addition to totalseller pro�ts.3. Two-Resoure ModelConsider 2 sellers, indexed by �1 and 1. Eah seller produes one resoure. Seller i produesresoure i, and a maximum quantity bi of resoure i an be onsumed. Seller i has a onstantmarginal ost of i per unit of resoure i onsumed, and seller i hooses the prie ~yi + i per unitof resoure i, that is, ~yi denotes the prie in exess of the marginal ost i per unit of resoure i.Customers want to onsume a produt that requires one unit of eah resoure. (In this setion,there is no demand for a produt that onsists of only one resoure.) Thus ustomers buy units ofa produt onsisting of one unit of eah resoure and pay �1+ ~y�1+ 1+ ~y1 per unit of produt.The demand d for produts depends on the pries as follows:d = maxf0; ~�� ~�(~y�1+ ~y1)g (1)where ~� and ~� are positive onstants known to eah seller. Assume that ~�> 0, that is, demand ispositive if eah seller harges only its marginal ost. The detailed alulations for this setion aregiven in Appendix A.3.1. No AllianeFirst onsider the ase with no alliane, whih is modeled as a non-ooperative game. Let bmin :=minfb�1; b1g. Thus, the number of produts sold is given by minfbmin; maxf0; ~�� ~�(~y�1 + ~y1)gg,and the pro�t of seller i is given by~gi(~yi; ~y�i) := ~yiminfbmin; maxf0; ~�� ~�(~y�i + ~yi)ggIf bmin� ~�=3, then the equilibrium pries are given by~y�i = ~�3~� (2)



10the equilibrium demand is equal to~�� ~�(~y��1+ ~y�1) = ~�3 > 0 (3)the resulting pro�t of seller i is equal to~y�i minfbmin; maxf0; ~�� ~�(~y��i + ~y�i )gg = ~�29~� (4)and thus the total pro�t of both sellers together is equal to~y��1 h~�� ~�(~y��1+ ~y�1)i+ ~y�1 h~�� ~�(~y��1+ ~y�1)i = 2~�29~� (5)and the onsumer surplus is equal to12 � ~�~� � 2~�3~�� ~�3 = ~�218~� (6)If bmin� ~�=3, then all pairs of pries (~y�1; ~y1) on the line segment between (bmin=~�; [~��2bmin℄=~�)and ([~��2bmin℄=~�; bmin=~�) are equilibria. For all of these equilibrium pries the total prie is equalto (~�� bmin)=~�, the demand is equal to bmin, the resulting pro�t of seller i is equal to ~yibmin, andthus the total pro�t of both sellers together is equal to~y�1bmin+ ~y1bmin = ~�� bmin~� bmin (7)and the onsumer surplus is equal to12 � ~�~� � ~�� bmin~� � bmin = b2min2~� (8)3.2. Perfet CoordinationIn this setion we determine the maximum ahievable total pro�t of the two sellers together, thatis, the total pro�t if the sellers would perfetly oordinate priing.The total pro�t of the two sellers is given by~g(~y�1; ~y1) := [~y�1+ ~y1℄minfbmin; maxf0; ~�� ~�(~y�1+ ~y1)gg



11If bmin� ~�=2, then the optimal total prie is equal to�y�1+ �y1 = ~�2~� (9)Note that (2) and (9) show that ~y��1+ ~y�1 > �y�1+ �y1, that is, the total of the equilibrium pries isgreater than the optimal total prie. (These results are reminisent of the omparison of the aseswith and without vertial integration by Spengler (1950); however, the setting here is di�erentbeause one seller does not buy a produt from another seller and add a mark-up before resellingit.) The orresponding demand is equal to~�� ~�(�y�1+ �y1) = ~�2 > ~�3 = ~�� ~�(~y��1+ ~y�1) (10)the total pro�t of both sellers together is equal to[�y�1+ �y1℄ h~�� ~�(�y�1+ �y1)i = ~�24~� (11)and the onsumer surplus is equal to12 � ~�~� � ~�2~�� ~�2 = ~�28~� (12)If bmin� ~�=2, then the optimal total prie is given by �y�1+ �y1 = (~�� bmin)=~�, with orrespond-ing demand equal to bmin. The total pro�t of both sellers together is equal to (�y�1+ �y1) bmin =(~�� bmin) bmin=~�, and the onsumer surplus is equal to h~�=~�� (~�� bmin)=~�i bmin=2= b2min=(2~�).Note that when apaity is small, bmin � ~�=3, the total pro�t of the setting with no allianeannot be inreased by oordination, and the onsumer surplus is also the same for the two settings.When apaity is large, bmin� ~�=2, the relative amount by whih the total pro�t an be inreasedis given by ~�24~� � 2~�29~�2~�29~� = 18and the relative amount by whih the onsumer surplus an be inreased is given by~�28~� � ~�218~�~�218~� = 54



12When apaity is intermediate, ~�=3� bmin � ~�=2, then the relative amount by whih the totalpro�t an be inreased is bounded by0 � ~��bmin~� bmin� 2~�29~�2~�29~� � 18and the relative amount by whih the onsumer surplus an be inreased is bounded by0 � b2min2~� � ~�218~�~�218~� � 54This potential inrease in pro�t is the major eonomi motivation for sellers' interest in allianes.The extent to whih this inrease an be attained by an alliane depends on the apaity and theustomer hoie behavior, inluding the extent to whih the sellers an di�erentiate their produts.In the next setion we onsider a resoure exhange alliane and investigate the e�et of bothapaity and produt di�erentiation on the total pro�t and the onsumer surplus with and withoutan alliane.3.3. Resoure Exhange AllianeConsider a resoure exhange alliane involving the two sellers. Let xi 2 [0; bi℄ denote the amountof resoure i that seller i makes available to seller �i, and let x := (x�1; x1). Then the number ofunits of the two-resoure produt that seller i an sell is qi(x) := minfbi � xi; x�ig. Assume thatseller i pays seller �i an amount �i for eah unit of resoure �i that seller i onsumes, so thateah seller has marginal ost equal to �1+ 1 for the two-resoure produt.Spei�ally, a resoure exhange alliane with zero exhange of resoures (x= 0) may be hosen,in whih ase the sellers sell only the separate resoures as in the ase without an alliane. Thus,in general, the total pro�t of an optimally designed resoure exhange alliane is no less thanthe total pro�t without an alliane. We onsider the setting in whih eah alliane member sellsonly the two-resoure produt, and produts onsisting of a single resoure are not sold separately.Let yi denote the di�erene between the prie of seller i and the marginal ost �1 + 1 for thetwo-resoure produt.



13The demand di(yi; y�i) for the produt sold by seller i depends on the pries as follows:di(yi; y�i) = maxf0; ���yi + y�i)g (13)where � and � are positive onstants, and  2 (��;�). Here provision is made for brand distintionbetween the produts sold by the sellers. The onstants are known to eah seller. To keep thenumber of parameters in this example small, the onstants �, �, and  are the same for bothsellers.Thus, the number of units of produt sold by seller i is given byminfqi(x); maxf0; ���yi + y�i)gg, and the pro�t of seller i is given bygi(x; yi; y�i) := yiminfqi(x); maxf0; ���yi + y�iggNext we establish a relation between ~� and ~�, and �, � and , to failitate omparison amongthe settings with no alliane, with perfet oordination, and with an alliane. Consider pries(~y�1; ~y1) in the no-alliane setting, suh that ~y�1+~y1 < ~�=~�. Suppose that the two alliane membersharge the same prie y�1 = y1 = ~y�1 + ~y1 for the two-resoure produts. Then the total demandin the no-alliane setting given by (1) is equal to ~�� ~�(~y�1 + ~y1) > 0, and the total demand inthe alliane setting given by (13) is equal to 2(�� �y1 + y1) = 2� � 2(� � )(~y�1 + ~y1). Thusthe total demand in the two settings is the same if ~� = 2� and ~� = 2(� � ). It is also shown inAppendix A.4 that a model of perfet oordination with demand given by (13) leads to the sameoptimal pries, demands, pro�ts, and onsumer surplus as the model in Setion 3.2 with demandgiven by (1) if ~�= 2� and ~� = 2(�� ). Hene the results for the settings with no alliane, withperfet oordination, and with an alliane will be ompared using ~�= 2� and ~� = 2(�� ).For the setting with an alliane, for any given resoure exhange x, let (y��1(x); y�1(x)) denotethe equilibrium pries of the two sellers for the two-resoure produt (existene and uniqueness ofthe equilibrium are addressed in the detail alulations in Appendix A.3. The resulting pro�t ofseller i is given by gi(x; y�i (x); y��i(x)). The alliane design problem is to hoose x2 [0; b�1℄� [0; b1℄to maximize f(x) := g�1(x; y��1(x); y�1(x))+ g1(x; y�1(x); y��1(x))



14Let x� denote an optimal resoure exhange.A natural question is how the total pro�t f(x�) should be partitioned among the alliane mem-bers. First, note that if money an be exhanged together with the other resoures, then anypartition of the total pro�t an be ahieved. In that ase the Nash bargaining solution is easy:eah alliane member reeives its pro�t in the setting without an alliane plus half the di�erenebetween the maximum total pro�t f(x�) of the alliane and the total pro�t without an alliane.Table 1 and Figure 1 summarize the results for the settings with no alliane, with perfet oordi-nation, and with an alliane. The alulations are given in Appendix A. Here we just mention thatthere are three ases regarding apaity: (1) Capaity bmin is large enough so that both sellers anbe provided with suÆient produt apaity qi(x) to make apaity not onstraining in equilibrium(bmin� 2��=(2��)), (2) Capaity bmin is so small that the produt apaity qi(x) of both sellersmust be onstraining in equilibrium (bmin� ��(�+ )=(2�2� 2)), and (3) Capaity bmin is smallenough that the produt apaity qi(x) of at least one seller must be onstraining in equilibrium,but large enough so that one seller an be provided with suÆient produt apaity qi(x) to makeapaity not onstraining in equilibrium (��(� + )=(2�2 � 2) � bmin � 2��=(2� � )). In addi-tion, there are two ases regarding the degree of produt di�erentiation: (1)  � 0, and (2)  � 0.Figure 2 shows a plot of the relative inrease in total pro�t with an alliane over no alliane, thatis, (f(x�)� [~g�1(~y��1; ~y�1)+ ~g1(~y�1 ; ~y��1)℄)=[~g�1(~y��1; ~y�1)+ ~g1(~y�1 ; ~y��1)℄, as a funtion of bmin=� and =�.The �gure shows that the relative inrease is largest when the apaity is large (bmin��) and theproduts of the sellers are substitutes ( � 0). Figure 3 shows a plot of the relative gap in totalpro�t between perfet oordination and an alliane, that is, (~g(�y�1; �y1)� f(x�))=~g(�y�1; �y1), as afuntion of bmin=� and =�. The �gure shows that the total pro�t under an alliane equals the totalpro�t under perfet oordination, exept when the apaity is large (bmin� 2�=3) and the produtsof the sellers are omplements ( � 0). Figure 4 shows a plot of the relative inrease in onsumersurplus with an alliane over no alliane, as a funtion of bmin=� and =�. The �gure shows that,similar to total pro�t, the relative inrease is largest when the apaity is large (bmin� �) and theproduts of the sellers are substitutes ( � 0).
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17Table 1 Comparison of no alliane, perfet oordination, and a resoure exhange alliane, in terms of prie,demand, total pro�t, and onsumer surplus, for a single produt with two resoures.Region Capaity Cross-Prie Quantity No-Alliane Perfet Coordination AllianeCoeÆient1 0� bmin� 2�3  2 (��;�) Total Prie 2��bmin2(��) 2��bmin2(��) 2��bmin2(��)Total Demand bmin bmin bminTotal Pro�t (2��bmin)bmin2(��) (2��bmin)bmin2(��) (2��bmin)bmin2(��)Consumer Surplus bmin24(��) bmin24(��) bmin24(��)2 2�3 � bmin�minn�; 2��2��o  2 (��;�) Total Prie 2�3(��) 2��bmin2(��) 2��bmin2(��)Total Demand 2�3 bmin bminTotal Pro�t 4�29(��) (2��bmin)bmin2(��) (2��bmin)bmin2(��)Consumer Surplus �29(��) bmin24(��) bmin24(��)3 2��2�� � bmin��  2 (��;0℄ Total Prie 2�3(��) 2��bmin2(��) �2��Total Demand 2�3 bmin 2��2��Total Pro�t 4�29(��) (2��bmin)bmin2(��) 2�2�(2��)2Consumer Surplus �29(��) bmin24(��) �2�2(��)(2��)24 �� bmin  2 (��;0℄ Total Prie 2�3(��) �2(��) �2��Total Demand 2�3 � 2��2��Total Pro�t 4�29(��) �22(��) 2�2�(2��)2Consumer Surplus �29(��) �24(��) �2�2(��)(2��)25 �� bmin  2 [0; �) Total Prie 2�3(��) �2(��) �2(��)Total Demand 2�3 � �Total Pro�t 4�29(��) �22(��) �22(��)Consumer Surplus �29(��) �24(��) �24(��)4. Multiple-Resoure ModelIn this setion we present a model for a resoure exhange alliane with multiple resoures. Inaddition to the alliane model, we also present models for the settings with no alliane and withperfet oordination to failitate omparisons.Consider 2 sellers, indexed by i=�1. (It an easily be seen from the results in Setion 4.3 how toextend the model and the solution method to a setting with more than 2 sellers, at the ost of moreompliated notation.) Seller i produes ki resoure types indexed by j = 1; : : : ; ki. For example,resoure j may denote the ight of airline i sheduled to depart from Atlanta to New York everyMonday at 8am. Initially, before any resoure exhange, seller i has quantity bi;j of resoure j, anda onstant marginal ost of i;j per unit of resoure j onsumed.



184.1. Multiple-Resoure Network ExampleIn this setion we provide an example with multiple resoures to illustrate the models that will beformulated in later setions. An airline ight network is shown in Figure 5, and some ight dataare given in Table 2. In this network, airport 1 is a onnetion hub for both airlines. Eah airlineoperates 4 ights. For example, ight 5, taking plae from airport 1 to airport 4, is operated byairline 1, and has a apaity of 300 seats. The set of produts that an be sold by eah airline isdi�erent in the ase with no alliane and the ase with an alliane. Table 3 shows the produtsand the orresponding itineraries (here simply spei�ed by the origin-destination pair) whih ouldbe o�ered by the two airlines. The olumn labeled \Airline" spei�es whih airlines an sell eahprodut in the ase with no alliane and the ase with an alliane. For example, in the ase withno alliane, produt 7 an be sold by airline 1 only, and in the ase with an alliane, produt 7an be sold by both airlines (A denotes both airlines under alliane). Produt 17, involving travelfrom airport 3 to airport 4 via airport 1, an only be sold in the ase with an alliane, and in thatase it an be sold by both airlines. However, note that there is demand for travel from airport 3to airport 4 both in the ase with no alliane and in the ase with an alliane. In the ase withno alliane, all demand for travel from airport 3 to airport 4 is satis�ed by buying two separatetikets; a tiket from airline -1 for travel from airport 3 to airport 1 and a tiket from airline 1 fortravel from airport 1 to airport 4. In the ase with an alliane, demand for travel from airport 3to airport 4 an be satis�ed in four di�erent ways: (1) by buying a tiket from airline -1 for travelfrom airport 3 to airport 1 and a tiket from airline 1 for travel from airport 1 to airport 4, or (2)by buying a tiket from airline 1 for travel from airport 3 to airport 1 and a tiket from airline -1for travel from airport 1 to airport 4, or (3) by buying a tiket for travel from airport 3 to airport 4via airport 1 from airline -1, or (4) by buying a tiket for travel from airport 3 to airport 4 viaairport 1 from airline 1. In the ase with an alliane, the hoies exerised by the buyers, and thusthe resulting aggregate demand, depend on the pries of the airlines for the di�erent produts. Inthis paper we onsider linear models of aggregate demand, as spei�ed in more detail later.
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Figure 5 Multiple-resoure network example
Flight number Airline Departure Arrival Capaity1 -1 1 2 3002 -1 2 1 3003 -1 1 3 3004 -1 3 1 3005 1 1 4 3006 1 4 1 3007 1 1 5 3008 1 5 1 300Table 2 Flight informationTable 3 Produt information for network example.Produt Airline Origin Destination Produt Airline Origin Destination1 -1 or A 1 2 11 1 or A 4 52 -1 or A 2 1 12 1 or A 5 43 -1 or A 1 3 13 A only 2 44 -1 or A 3 1 14 A only 4 25 -1 or A 2 3 15 A only 2 56 -1 or A 3 2 16 A only 5 27 1 or A 1 4 17 A only 3 48 1 or A 4 1 18 A only 4 39 1 or A 1 5 19 A only 3 510 1 or A 5 1 20 A only 5 34.2. Resoure Exhange Alliane ModelIn this setion we introdue a model of a resoure exhange alliane involving multiple resoures.After resoure exhange, seller i may have some of eah resoure supplied by seller �i, as well assome of eah resoure supplied by itself. Index the union of the resoures by j = 1; : : : ; k, wherek= k�1+k1. Let bi = (bi;1; : : : ; bi;k) denote the initial endowment of seller i of eah resoure (bi;j =0if resoure j is supplied by seller �i). Let xj denote the amount of resoure j that seller 1 makesavailable to seller�1. For example, x= (�110;�120;�100;�150;140;170;130;160) for the networkin Setion 4.1 means that airline �1 gives 110 seats on ight 1 to airline 1, airline 1 gives 140 seatson ight 5 to airline �1, et.After resoure exhange, seller i an sell mi produts, indexed by `= 1; : : : ;mi. In the examplein Table 3, mi = 20 for i=�1. Let yi;` denote the prie of seller i for produt ` in exess of themarginal ost of the produt, and di;` denote the demand for produt ` of seller i. Consider thefollowing linear demand model:di;` = � miX̀0=1Ei;`;`0yi;`0 +m�iX̀0=1B�i;`;`0y�i;`0 +Ci;` (14)



20where Ei;`;`0 denotes the rate of hange of the demand for produt ` of seller i with respet to theprie of produt `0 of the same seller i, and B�i;`;`0 denotes the rate of hange of the demand forprodut ` of seller i with respet to the prie of produt `0 of the other seller �i. Using matrixnotation, di =�Eiyi+B�iy�i+Ci, where di; yi;Ci 2 Rmi , Ei 2 Rmi�mi , Bi 2 Rm�i�mi , and attentionis restrited to values of (y�1; y1) suh that di � 0 for i = �1. Let Ai 2 Rk�mi be the \networkmatrix", i.e., Ai;j;` denotes the amount of resoure j onsumed by eah unit of produt ` sold byseller i.Next we introdue the two-stage alliane design problem. Given a �rst stage resoure exhangedeision x2 Rk , at the seond stage eah seller i wants to solve the following optimization problem:maxyi;di2Rmi+ yTi dis:t: Aidi � bi� ixdi = �Eiyi+B�iy�i+Ci � 0 (15)We are interested in the Nash equilibrium de�ned by the two optimization problems (15) for i=�1.A stohasti version of the alliane design problem is as follows. At the �rst stage, when x ishosen, elements of matries Ei and Bi, and vetors Ci, are random. However, the network matriesAi are deterministi. Let � := (E�1;E1;B�1;B1;C�1;C1) denote the random data vetor. In the�rst stage the expeted value with respet to the distribution of � of an objetive (spei�ed below)is optimized. Also, note that the Nash equilibrium assoiated with the seond stage depends onthe realization of �.Let Qi := Ei +ETi 2 Rmi�mi denote the symmetri version of Ei. We assume that matries Ei,and hene Qi, are positive de�nite. Let Im denote the m�m identity matrix, 0m denotes the zerovetor in Rm , and 0m;n denotes the zero matrix in Rm�n . Then the optimization problem (15) anbe written as follows: minyi2Rmi+ 12yTi Qiyi� yTi B�iy�i�CTi yis:t: Wi (Eiyi�B�iy�i) � �i + iMix: (16)where Wi := � Ai�Imi � ; �i := Wi ~Ci+ ��bi0mi � ; Mi := � Ik0mi;k � :



21A point (y��1(x); y�1(x)) is a solution of the equilibrium problem if y�1(x) is an optimal solution ofproblem (16) for i= 1 when y�1 = y��1(x), and also y��1(x) is an optimal solution of problem (16)for i=�1 when y1 = y�1(x). Note that (y��1(x); y�1(x)) also depends on �, but the dependene is notshown in the notation. (The above problem is alled a generalized Nash equilibrium problem sinethe feasible set of problem (16) depends on y�i.) Let Vi(x; �), i=�1, denote the optimal objetivevalues of problem (16) at the equilibrium point given data �, i.e.,Vi(x; �) := 12y�i (x)TQiy�i (x)� y�i (x)TB�iy��i(x)�CTi y�i (x) (17)Note that these funtions are well de�ned only if the equilibrium point (y��1(x); y�1(x)) exists andis unique. We will disuss existene and uniqueness of the equilibrium point in Setion 4.3.At the �rst stage, we onsider designs of the resoure exhange alliane that aim to maximizethe total pro�t of the sellers. Let b = b1 � b�1 2 Rk . Note that bj > 0 if resoure j is suppliedby seller 1 and bj < 0 if resoure j is supplied by seller �1. Let lj and uj be lower and upperbounds, respetively, suh that bj lj � 0 and bjuj � 0, that is, lj , uj , and bj have the same sign, andjlj j � juj j � jbj j. Then the �rst stage problem is as follows:maxx2Rk �f(x) := E�V�1(x; �)+V1(x; �)�	s:t: bjxj � 0 8 j = 1; : : : ; kjlj j � jxj j � juj j 8 j = 1; : : : ; k (18)As mentioned, the expetation in (18) is with respet to a spei�ed probability distribution of thedata vetor �. In partiular, if a single value for � is onsidered in the �rst stage, then problem (18)is deterministi and the expetation operator an be removed.4.3. Existene and Uniqueness of Nash EquilibriumReall that the matries Qi are positive de�nite, and hene problem (16) is a onvex quadratiprogramming problem. The �rst order (KKT) neessary and suÆient optimality onditions forproblem (16) are Qiyi�B�iy�i�Ci�ETi W Ti �i = 0Wi (Eiyi�B�iy�i)� �i� iMix � 0�i � 0�Ti [Wi (Eiyi�B�iy�i)� �i� iMix℄ = 0 (19)



22where �i denotes the vetor of Lagrange multipliers assoiated with the inequality onstraintsin (16).The optimality onditions (19) an be written as a variational inequality. A widely used approahto establish existene and uniqueness of a solution to the optimality onditions, and thus existeneand uniqueness of a Nash equilibrium, is to exploit monotoniity of the variational inequality.However, in this ase the variational inequality is not monotone, and thus a di�erent approah isrequired.Consider the optimization problemminy�1;y1;��1;�1 Pi=�1�Ti [Wi (Eiyi�B�iy�i)� �i� iMix℄s:t: Qiyi�B�iy�i�Ci�ETi W Ti �i = 0; i=�1Wi (Eiyi�B�iy�i)� �i� iMix � 0; i=�1�i � 0; i=�1 (20)Note that the objetive value of problem (20) is nonnegative at all feasible points, and(y��1; y�1 ; ���1; ��1) is a solution of the optimality onditions (19) if and only if its objetive value inproblem (20) is zero, in whih ase it is an optimal solution of problem (20). It follows from the�rst equation of (19) that �TiWi = yTi QiE�1i � yT�iBT�iE�1i �CTi E�1iAfter substitution of this into the objetive, problem (20) beomesminy�1;y1;��1;�1 Pi=�1 �yTi QiE�1i � yT�iBT�iE�1i �CTi E�1i � (Eiyi�B�iy�i)��Ti (�i + iMix)s:t: Qiyi�B�iy�i�Ci�ETi W Ti �i = 0; i=�1Wi (Eiyi�B�iy�i)� �i� iMix � 0; i=�1�i � 0; i=�1 (21)Note that the objetive funtion of problem (21) is quadrati with its quadrati term(yT�1; yT1 )	(yT�1; yT1 )T, where	 := �Q�1+BT�1E�11 B�1 �B�1�Q�1E�1�1B1�B1�Q1E�11 B�1 Q1+BT1E�1�1B1 � (22)Note that problem (21) is a onvex quadrati program if and only if the matrix 	, or equivalentlythe symmetri matrix 	+	T, is positive semide�nite.



23Theorem 1. Suppose that the problem (21) is feasible and that the matrix 	, de�ned in (22), ispositive de�nite. Then problem (21) has an optimal solution (y��1; y�1 ; ���1; ��1) with (y��1; y�1) beingunique. Moreover, if the optimal objetive value of problem (21) is zero, then (y��1; y�1) is the uniqueNash equilibrium.The proof is given in Appendix B.Note that a similar approah an be used if there are more than two sellers. In suh a asemore than two sets of optimality onditions of the form (19) will be involved, and in the quadratiprogram (21) the index i will take on more than two values.Hene, the question of existene and uniqueness of the Nash equilibrium an be answered withthe following steps: (1) veri�ation that the matrix 	 (or the symmetri matrix 	+	T) is positivede�nite, (2) solution of the onvex quadrati program (21) if 	 is positive de�nite, and (3) veri�a-tion that the optimal objetive value is zero. Note that if 	 is positive de�nite, then the quadratiprogram (21) an be solved eÆiently and hene existene and uniqueness of the equilibrium pointan easily be veri�ed numerially. Some simple neessary onditions and suÆient onditions for	 to be positive de�nite an be identi�ed, but it seems diÆult to give simple onditions that areboth neessary and suÆient for 	 to be positive de�nite. A neessary ondition for 	 to be posi-tive de�nite is that its blok diagonal matries Q�1+BT�1E�11 B�1 and Q1+BT1E�1�1B1 be positivede�nite. Note that these matries are indeed positive de�nite beause E�1 and E1 are positivede�nite. Also, note that if B�1 and B1 are null matries, then matrix 	 is the blok diagonalmatrix diag(Q�1;Q1), and hene 	 is positive de�nite beause Q�1 and Q1 are positive de�nite.More general, if matries Ei are \signi�antly bigger" than Bi, then one may expet matrix 	 tobe positive de�nite. Intuitively, if the demand for a seller's produt depends more strongly on thepries of that seller (and espeially the prie of that produt) than the pries of the other seller,then one may expet matrix 	 to be positive de�nite. Another instrutive example is the following.Example 1. Suppose that the produts of the two sellers are diret substitutes for eah other,that is, for eah produt of seller i there is a produt of seller �i that is a lose substitute. This



24allows the possibility that seller �i may not be able to sell the substitute produt beause it doesnot have the resoures to do so. It seems that in the appliations of interest, the set of produts analways be hosen so that this property holds. Hene, the matries Bi are squared, i.e., m�1 =m1.Suppose that the matries Ei and Bi, i=�1, are diagonal. Then Qi =Ei and	 = �E�1+B2�1E�11 �B�1�B1�B�1�B1 E1+B21E�1�1 � :Sine matries Ei are positive de�nite it follows that E1 + B21E�1�1 is positive de�nite, and thusit follows by the Shur omplement ondition for positive de�niteness that 	 is positive de�niteif and only if the matrix E�1 +B2�1E�11 � (B�1 +B1)2(E1 +B21E�1�1)�1 is positive de�nite. Sinematries Ei and Bi are diagonal, this matrix is positive de�nite if and only if the matrix(E�1+B2�1E�11 )(E1+B21E�1�1)� (B�1+B1)2 = E�1E1+B2�1B21E�1�1E�11 � 2B�1B1is positive de�nite. In turn this matrix is positive de�nite if and only if the matrixE2�1E21 +B2�1B21 � 2E�1E1B�1B1 = (E�1E1�B�1B1)2is positive de�nite. Note that the last matrix is always positive semide�nite and is positive de�niteif and only if matrix E�1E1�B�1B1 does not have any zero diagonal elements.4.4. No Alliane ModelIn this setion, we present a model for the setting with no alliane. This model will be used toompare the pro�t under no alliane with the pro�t under an alliane and the pro�t under perfetoordination. First we desribe the demand model for the setting with no alliane.Under an alliane, there are a total of m distint produts. Some of the produts may be o�eredby only one seller, and some of the produts may be o�ered by both sellers. In the example inTable 3, m = 20 and eah of the 20 produts is o�ered by both sellers in an alliane. These mproduts an be partitioned into three subsets: sets Li, for i=�1, of produts whih an be o�eredby seller i with and without an alliane, and set L0 of produts whih ould be o�ered only under



25an alliane. For the example in Table 3, L�1 ontains produts 1 to 6, L1 ontains produts 7 to 12,and L0 ontains produts 13 to 20.As before, let ~yi;` denote the prie of seller i for produt ` 2 Li. Suppose that the resultingdemand for produt `2Li is given by~di;` = �X`02Li ~Ei;`;`0 ~yi;`0 + X`02L�i ~B�i;`;`0 ~y�i;`0 + ~Ci;` (23)Using matrix notation, ~di = � ~Ei~yi + ~B�i~y�i + ~Ci, where ~di; ~yi; ~Ci 2 RjLi j, ~Ei 2 RjLi j�jLij, ~Bi 2RjL�i j�jLij, and attention is restrited to values of (~y�1; ~y1) suh that ~di � 0 for i=�1. Let ~Ai;j;`denote the amount of resoure j onsumed by eah unit of produt ` 2 Li, and let ~Ai 2 Rki�jLijdenote the network matrix.Similar to the example with two resoures in Setion 3, the parameters E;B;C in demandmodel (14) and the parameters ~E; ~B; ~C in demand model (23) should be related in a partiular wayto failitate a fair omparison of the pries, demands, total pro�t, and onsumer surplus betweenthe settings with and without an alliane. The derivation of the relation is given in Appendix C.The setting with no alliane is formulated as a non-ooperative game in whih eah seller i wantsto solve the optimization problemmax~yi; ~di2RjLij+ ~yTi ~dis:t: ~Ai ~di � bi~di = � ~Ei~yi + ~B�i~y�i+ ~Ci � 0 (24)The no alliane outome is the Nash equilibrium de�ned by the two optimization problems (24)for i=�1, as long as it exists and is unique. The Nash equilibrium is omputed using the sameapproah desribed in Setion 4.3.4.5. Perfet Coordination ModelThe models with and without an alliane presented above are ompared with a perfet oordinationmodel, given in this setion. The perfet oordination model onsiders a setting in whih the sellers



26oordinate priing to maximize the sum of the sellers' pro�ts, as given by the following optimizationproblem: max(y�1;y1)2Rm�1�Rm1 Pi=�1yTi (�Eiyi+B�iy�i+Ci)s:t: Pi=�1Ai (�Eiyi+B�iy�i+Ci) � b�1+ b1�Eiyi+B�iy�i+Ci � 0 ; i=�1 (25)5. Solution ApproahIn this setion, we present a solution method for the multiple-resoure model desribed in Setion 4.Reall that we solve the problem (21) to solve the seond-stage Nash equilibrium problem, andthat problem (21) an be solved eÆiently if the matrix 	 de�ned in (22) is positive de�nite. Nextonsider the �rst stage problem (18). Reall that the expetation in (18) is taken with respet tothe probability distribution of the random data vetor �. We assume that we an sample from thatdistribution by using Monte Carlo sampling tehniques and hene generate an independent andidentially distributed sample �1; : : : ; �N . Next we approximate the expetation with the sampleaverage and onstrut the following Sample Average Approximation (SAA) problem:maxx2Rk nf̂N(x) := PNn=1 �V�1(x; �n)+V1(x; �n)�os:t: bjxj � 0 8 j = 1; : : : ; kjlj j � jxj j � juj j 8 j = 1; : : : ; k (26)Theoretial properties of the SAA approah have been studied extensively (e.g., Shapiro et al.2009). Under mild onditions, the optimal objetive value and optimal solution of the SAA prob-lem (26) onverge exponentially fast to the optimal objetive value and optimal solution of theproblem (18) (f., Shapiro and Xu 2008). The �rst-stage problem may not be onvex, and thus itmay be hard to solve problem (26) to optimality. For that reason, we may only ensure onvergeneto a stationary point of the problem (18). Nevertheless, in our numerial experiments, typiallysolutions seem to be stable and insensitive to the hoie of starting point.In order to solve the SAA problem (26) numerially, we need to ompute derivatives rxVi(x; �n)of the �rst-stage objetive funtions Vi at a feasible point x and sample point �n. Consider afeasible point x, and assume that 	 is positive de�nite and that the seond-stage problem hasan equilibrium point (y��1(x); y�1(x)) (the equilibrium depends on �n as well, but the dependene



27is not shown in the notation). Let (y��1(x); y�1(x); ���1(x); ��1(x)) be a solution of the system (19)of �rst order optimality onditions (and thus (y��1(x); y�1(x); ���1(x); ��1(x)) is also a solution ofthe quadrati programming problem (20)). Note that, sine 	 is positive de�nite, it holds that(y��1(x); y�1(x)) is unique and is a ontinuous funtion of x (e.g., Bonnans and Shapiro 2000).Reall that Lagrange multipliers orresponding to inative onstraints are zeros. LetIi(yi; y�i; x) := �j 2 f1; : : : ; k+mig : [Wi (Eiyi�B�iy�i)� �i� iMix℄j = 0	denote the index set of ative onstraints of the problem (16). It is said that the strit omplemen-tarity ondition holds at an equilibrium point (y��1(x); y�1(x)) if among the orresponding Lagrangemultiplier vetors �i, there exists at least one suh that [�i℄j > 0 for all j 2 Ii(y�i (x); y��i(x); x), fori=�1, i.e., there are Lagrange multipliers orresponding to the ative onstraints that are positive.Now, suppose that the strit omplementarity ondition holds at (y��1(x); y�1(x)), with [��i (x)℄j > 0for all j 2 Ii(y�i (x); y��i(x); x), for i = �1. Then for small perturbations dx of x, the ative on-straints remain ative and the inative onstraints remain inative. Therefore, by linearizing theoptimality onditions (19) at (y��1(x); y�1(x); ���1(x); ��1(x)), the following system of m�1+m1+2klinear equations in m�1+m1+2k unknowns (dy�1; dy1; d��1; d�1) is obtained:Qidyi�B�idy�i�ETi W Ti d�i = 0; i=�1[Wi (Eidyi�B�idy�i)� iMidx℄j = 0; j 2 Ii(y�i (x); y��i(x); x); i=�1[d�i℄j = 0; j 62 Ii(y�i (x); y��i(x); x); i=�1 (27)Suppose that the linear system (27) is nonsingular. Then for any dx suÆiently small, the sys-tem (27) has a unique solution, and by the Impliit Funtion Theorem, the solution of (27)gives the di�erential of (y��1(x); y�1(x); ���1(x); ��1(x)) at x. More spei�ally, the system (27)an be written in the form S(dy�1; dy1; d��1; d�1) = T dx, where S 2 R(m�1+m1+2k)�(m�1+m1+2k)and T 2 R(m�1+m1+2k)�k. If S is nonsingular, then (dy�1; dy1; d��1; d�1) = S�1T dx, and thusr(y��1(x); y�1(x); ���1(x); ��1(x))= S�1T . It follows from (17) thatrxVi(x; �) = ry�i (x)TQiy�i (x)�ry�i (x)TB�iy��i(x)�ry��i(x)TBT�iy�i (x)�ry�i (x)TCi (28)r2xxVi(x; �) = ry�i (x)TQiry�i (x)�ry�i (x)TB�iry��i(x)�ry��i(x)TBT�iry�i (x) (29)



28an be alulated easily.The analysis above shows that suÆient onditions for di�erentiability of Vi with respet to xat (x; �) are the strit omplementarity ondition and nondegeneray of the system (27). Theseonditions are not neessary | for example, ifMi = 0 for i=�1, then Vi(x; �) is onstant and henedi�erentiable with respet to x. Also, the expetation operator often smooths nondi�erentiablefuntions. For example, if rxVi(x; �) exists for almost every � and a mild boundedness onditionholds, then E [Vi (x; �)℄ is di�erentiable at x and rxE [Vi (x; �)℄ = E [rxVi(x; �)℄ (e.g., Shapiro et al.2009, Theorem 7.44).The derivatives in (28) and (29) are used to solve SAA problems (26) with a trust-region method.Numerial results are given in Setion 6.6. Numerial ExamplesIn this setion, we present numerial results to ompare pro�ts in settings with an alliane, noalliane, and perfet oordination, for the multiple-resoure models desribed in Setions 4. Wepresent results for the network example given in Setion 4.1. We �rst present the results for thedeterministi ase with known demand funtions in Setion 6.1, and then present results for thestohasti ase with random demand funtions in Setion 6.2.6.1. Deterministi ExamplesWe �rst desribe how the input data Ei, Bi, and Ci for the numerial examples were hosen. Forthe example network, m�1 =m1 = 20, and thus Ei;Bi 2 R20�20 and Ci 2 R20 for i=�1. For eahinstane, a spei� ratio r1 2 [0;1) is hosen suh that jB�i;`;`0 j= r1jEi;`;`0 j. Thus, r1 is similar tothe ratio =� of the two-resoure example in Setion 3.3, and represents the level of di�erentiationbetween the sellers' produts. For all instanes, it was veri�ed that the resulting matrix 	 de�nedin (22) was positive de�nite.For the no alliane setting, we used the transformations in Appendix C to obtain ~Ei, ~Bi, and ~Ci.In addition, we investigated the e�et of a di�erene in produt attrativeness between the settingswith and without an alliane. As mentioned, in a setting without an alliane, a buyer may have to



29buy produts from multiple sellers and ombine them to obtain the produt desired by the buyer.Under an alliane a seller may o�er the ombined produt to the buyer, making it more onvenientfor the buyer to obtain the produt (\one-stop shopping"). There may be additional ways in whihan alliane inreases demand. For example, with an airline alliane, the oordination of onnetingight shedules to redue lay-over time or missed onnetions, rebooking in ase of missed on-netions, and oordination of baggage handling, may further enhane the ombined produt underan alliane. This might inrease the potential demand level under an alliane ompared to thatunder no alliane. Motivated by these observations, we solved some instanes in whih the demandsunder no alliane is obtained using the transformations in Appendix C, but with a redution in thedemand for produts assembled from more than one seller by a fator of r2 2 (0;1℄ (in the notationof that setion, the part of the demand for produts in Li derived from the demand for produtsin L0;�1 [L0;1 was redued by a fator of r2).The two-stage alliane design problem (18) was solved using a trust region algorithm. At eahiteration, given the urrent value of the resoure exhange vetor x, the onvex quadrati pro-gram (20) was solved. It was veri�ed that the optimal objetive value of (20) was zero, that is, thesolution of (20) gave a solution of the seond stage equilibrium problem (15) for i=�1. It was alsoveri�ed that the strit omplimentary ondition held and that the system (27) was nonsingular.Next the derivatives of the objetive funtion of (18) with respet to x ould be omputed, andthe trust region algorithm ould exeute the next iteration.As mentioned, the objetive funtion of (18) may not be onvex. To address the onern ofpotential multiple loal optima, for eah instane we used 50 di�erent starting points x0 for the �rstiteration. For eah instane, all 50 starting points lead to similar �nal solutions and �nal objetivevalues.For the no alliane model, the seond-stage equilibrium problem had to be solved only one foreah instane. For the perfet oordination model, the onvex quadrati optimization problem (25)also had to be solved only one for eah instane.



30Table 4 Comparison of total pro�t for a resoure exhange alliane, no alliane, and perfet oordination, fordi�erent levels of produt di�erentiation.Deterministi Model r1 = 0:2 r1 = 0:5 r1 = 0:8Total Relative Total Relative Total Relative(r2 = 1) Revenue inrease (%) Revenue inrease (%) Revenue inrease (%)No alliane 318060.00 322790.00 326980.00Perfet Coordination 343430.00 7.98 343340.00 6.37 343300.00 4.99Alliane 343235.54 7.92 341615.26 5.83 336386.89 2.88Table 5 Comparison of maximum ahievable total revenue under di�erent onveniene levelDeterministi Model r2 = 0:2 (High) r2 = 0:6 r2 = 1 (No Di�erene)Total Relative Total Relative Total Relative(r1 =0:5) Revenue inrease (%) Revenue inrease (%) Revenue inrease (%)No alliane 311590.00 318450.00 322790.00Perfet Coordination 343340.00 10.19 343340.00 7.82 343340.00 6.37Alliane 341615.26 9.64 318450.00 7.27 341615.26 5.83Table 4 presents the total pro�ts under di�erent levels of produt di�erentiation representedby di�erent values of r1 for r2 = 1 and with diagonal matries Ei and Bi. The largest inrease inpro�ts relative to the no alliane setting was obtained under high levels of produt di�erentiation.For example, when r1 =0:2, an alliane inreases the pro�t of the no alliane setting by 7.92%, andperfet oordination inreases the pro�t by 7.98%. Even under a low level of produt di�erentiation(r1 = 0:8), an alliane still inreases the pro�t by 2.88%, and perfet oordination inreases thepro�t by 4.99%. Similar results were obtained with non-diagonal matries.We also ompared pro�ts for di�erent values of r2. Table 5 ompares the total pro�ts underdi�erent levels of onveniene represented by di�erent values of r2 for r1 = 0:5 and with diagonalmatries Ei and Bi. As expeted, the relative inrease in pro�t is larger for smaller values of r2.6.2. Stohasti ExamplesIn this setion, we present results for the stohasti model (that is, the �rst stage problem (18)with expetation in the objetive) presented in Setion 4. The random data Ei, Bi, and Ci followeda multivariate normal distribution with means as desribed in Setion 6.1, standard deviationsproportional to the means, and orrelation oeÆients of 0.6.We generated and solved SAA problems with di�erent sample sizes N = 20;40; : : : ;500. At eahiteration of the �rst-stage problem, the seond-stage problem was solved for eah of the N sample



31Table 6 Optimal solution under di�erent sample sizes for the stohasti asen iter objopt kgk xopt20 41 -340950.08 1.08E-04 144.41 154.96 139.45 148.01 -150.07 -158.56 -139.32 -152.32100 39 -340886.90 3.53E-05 144.35 154.93 139.36 147.87 -150.27 -158.53 -139.27 -152.48300 43 -340933.57 3.25E-05 144.67 155.34 139.76 148.27 -149.94 -158.16 -138.82 -152.14500 41 -341329.49 8.62E-05 144.61 155.32 139.73 148.23 -149.95 -158.20 -138.86 -152.18a n: sample sizeb iter: number of iterations when algorithm stopped objopt: objetive funtion value at the optimal solutiond kgk: gradient norm at the optimal solutione xopt: optimal solutionpoints �n. Then, for eah of the N sample points �n, the derivatives of Vi(x; �n) were omputed asgiven in (28) and (29). The averages of these derivatives over the N sample points then gave thederivatives of the �rst-stage objetive of the SAA problem (26).Finally, after a resoure exhange x was hosen by solving a SAA problem, we ompared thetotal pro�ts in the alliane, no alliane, and perfet oordination settings with an independent andidentially distributed sample of 1000 sample points, independent of the samples used in the SAAproblem. Table 6 reports the number of iterations of the trust region algorithm until termination,the resoure exhange solution xopt at termination, the objetive value (objopt) of the SAA problemat xopt, and the gradient norm (kgk) of the SAA objetive funtion at xopt, for di�erent samplesizes N , for the network example in Setion 4.1. As far as we know, these are the �rst stohastimathematial programs with equilibrium onstraints motivated by an appliation that have beensolved.Figure 6 presents a histogram of the pairwise di�erene in total pro�t between an allianeand no alliane, using a sample of 1000 sample points, independent of the samples used in theSAA problem. The total pro�t under an alliane was larger for all 1000 sample points, with theperentage inrease varying from 5:24% to 6:31%.6.3. Robustness With Respet To Resoure ExhangeSo far, we have ompared the total pro�t under an alliane with the total pro�t under no allianeafter omputing the optimal exhange. An important question is how robust the improvement intotal pro�t is with respet to hoie of resoure exhange. In this setion we present a simple



32Figure 6 Histogram of the pairwise di�erene in total pro�t between an alliane and no alliane, using a sampleof 1000 sample points.
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example to ast some light on the question.Suppose that airline �1 operates a ight with apaity 300 from A to B, and airline 1 operates aight with apaity 300 from B to C. After resoure exhange, eah airline an o�er three produts:itineraries from A to B, from B to C, and from A via B to C. Figure 7(a) shows the perentageinrease in total pro�t of the alliane relative to no alliane, as a funtion of the number of seatsthat airline 1 (airline �1) makes available to airline �1 (airline 1) shown on the x-axis (y-axis).Figure 7(b) shows a histogram of the perentage inrease in total pro�t of the alliane relative to noalliane for 770 di�erent resoure exhanges. As shown, the perentage inrease ranges from -4.78%to 3.77%, the alliane pro�t is larger than the no alliane pro�t for 68% of the exhanges, andthe average perentage inrease is 0.75%. Thus, an alliane with an exhange that is not arefullyhosen ould be worse than no alliane, but the improvement of an alliane over no alliane seemsquite robust with respet to deviations from the optimal exhange.7. ConlusionIn this paper we presented an eonomi motivation for interest in allianes, by showing that withoutan alliane sellers will tend to prie their produts too high and sell too little, thereby foregoingpotential pro�t, espeially if the apaity is large. We showed that under a resoure exhangealliane, some of the foregone pro�t an be aptured. In fat, in the two-resoure example, the
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(a) Perentage inrease in total pro�t of the allianerelative to no alliane, as a funtion of the resoureexhange.
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Relative Revenue (%)(b) Histogram of perentage inrease in total pro�tof the alliane relative to no alliane for 770 di�erentresoure exhanges.Figure 7 Robustness of inrease in total pro�t of the alliane relative to no alliane with respet to resoureexhange.alliane attained the same total pro�t as perfet oordination, exept when apaity is large andthe produts of the sellers are omplements.We formulated the problem of determining the optimal amounts of resoures to exhange asa mathematial program with equilibrium onstraints, taking the ompetition into aount thatresults from alliane members selling similar produts. In general, mathematial programs withequilibrium onstraints are hard to solve, espeially in the stohasti ase with random problemparameters. We used a trust region algorithm to searh for an optimal exhange, and used it tosolve example problems.Many researh questions regarding allianes remain. In this paper we onsider one type ofalliane, namely resoure exhange allianes. Suh allianes are attrative beause they do notrequire ompliated oordination after the resoure exhange has taken plae, and beause suhallianes should not have anti-trust problems, sine they enhane ompetition instead of reduingompetition. However, there are many other potential alliane strutures of interest that remainto be analyzed and ompared in greater detail.The problem of optimal revenue management under an alliane is very hallenging, and has not



34reeived muh attention in the literature. This paper does not address operational level revenuemanagement under an alliane | the purpose of this paper is to obtain insight into onditionsunder whih a resoure exhange alliane an provide greater pro�t than the setting without analliane, and to propose a model and a method to ompute good resoure exhange amounts. Thusthe problem of optimal revenue management under an alliane remains to be addressed.
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37Appendix A: Derivation of Results for Two-Resoure ModelAppendix A.1: No AllianeFirst onsider the ase in whih bmin � ~� � ~�(~y�1 + ~y1) > 0 (it is shown later for whih inputparameter values this ondition holds). In this ase the pro�t funtion of seller i is given by~gi(~yi; ~y�i) = ~yi h~�� ~�(~y�i + ~yi)iThen the best response funtion of seller i is given byBi(~y�i) = ~�� ~�~y�i2~�Solving the system ~yi = ~�� ~�~y�i2~�for i=�1, the equilibrium (~y��1; ~y�1) is obtained, where~y�i = ~�3~� > 0The demand at the equilibrium pries (~y��1; ~y�1) is equal to~�� ~�(~y��1+ ~y�1) = ~�3 > 0 (30)Therefore, if bmin � ~�=3, then the equilibrium pries are given by (2), the equilibrium demand isgiven by (3), the resulting pro�t of seller i is given by (4), and thus the total pro�t of both sellerstogether is given by (5) and the onsumer surplus is given by (6).Next, onsider the ase in whih bmin� ~�=3. Note that in this ase ~�� 3bmin> bmin.Case (1): First, onsider any pair of pries (~y�1; ~y1) suh that ~y�1+ ~y1 < (~�� bmin)=~�. In Figure 8,this orresponds to (a). Then ~�� ~�(~y�1+ ~y1)> bmin> 0, and thus the pro�t of seller i is given by~gi(~yi; ~y�i) = ~yibminThus, if ~y�1+ ~y1 < (~�� bmin)=~�, then the pro�t of seller i is inreasing in ~yi, and hene suh a pairof pries (~y�1; ~y1) annot be an equilibrium.
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(a) Case 1: ~y�1+ ~y1 < (~�� bmin)=~�. (b) Case 2: ~y�1 + ~y1 � ~�=~�.

() Case 3.1: ~�=~� > ~y�1+~y1 > (~��bmin)=~� and ~y�1+2~y1 > ~�=~�. (d) Case 3.2: ~�=~� > ~y�1 + ~y1 > (~� � bmin)=~� and2~y�1+ ~y1 > ~�=~�.

(e) Case 4: ~y�1+~y1 = (~��bmin)=~� and (~y�1 < bmin=~�or ~y1 < bmin=~�). (f) Case 5: The line segment between (bmin=~�; ~�=~��2bmin=~�) and (~�=~�� 2bmin=~�; bmin=~�).Figure 8 Di�erent regions of the pair of pries (~y�1; ~y1) orresponding to di�erent ases.



39Case (2): Next, onsider any pair of pries (~y�1; ~y1) suh that ~y�1 + ~y1 � ~�=~�. In Figure 8, thisorresponds to (b). Then the demand and pro�t of eah seller is zero.Case (3.1): Next, onsider any pair of pries (~y�1; ~y1) suh that ~�=~� > ~y�1+ ~y1> (~�� bmin)=~� and~y�1 + 2~y1 > ~�=~�. In Figure 8, this orresponds to (). Then 0< ~�� ~�(~y�1 + ~y1)< bmin, and thusthe pro�t of seller i is given by ~gi(~yi; ~y�i) = ~yi h~�� ~�(~y�i + ~yi)iNote that �~g1(~y1; ~y�1)=�~y1 = ~�� ~�~y�1� 2~�~y1 < 0Thus, if ~�=~� > ~y�1+ ~y1> (~�� bmin)=~� and ~y�1+2~y1 > ~�=~�, then the pro�t of seller 1 is dereasingin ~y1, and hene suh a pair of pries (~y�1; ~y1) annot be an equilibrium.Case (3.2): Next, onsider any pair of pries (~y�1; ~y1) suh that ~�=~� > ~y�1+ ~y1> (~�� bmin)=~� and2~y�1+ ~y1 > ~�=~�. In Figure 8, this orresponds to (d). It follows similarly to Case 3.1 that the pro�tof seller �1 is dereasing in ~y�1, and hene suh a pair of pries (~y�1; ~y1) annot be an equilibrium.Case (4.1): Next, onsider any pair of pries (~y�1; ~y1) suh that ~y�1 + ~y1 = (~�� bmin)=~� and 0�~y�1 < bmin=~�. Note that ~�� ~�(~y�1 + ~y1) = bmin, and thus the orresponding pro�t of seller �1 isgiven by ~g�1(~y�1; ~y1) = ~y�1bminNext, onsider ŷ�1 := �~�=~�� ~y1�=2. First, note that~y1 � ~y�1+ ~y1 = ~�� bmin~� < ~�~�) ~�� ~�~y12 > 0, ~�� ~� ~�=~�� ~y12 + ~y1! > 0, ~�� ~� (ŷ�1+ ~y1) > 0Also, note that ~y�1 < bmin=~�



40 , ~y�1+(~�� bmin)=~� < ~�=~�, 2~y�1+ ~y1 < ~�=~�, ~y�1 < ~�=~�� ~y12 = ŷ�1and thus ~�� ~� (ŷ�1+ ~y1)< ~�� ~� (~y�1+ ~y1) = bmin. Thus the orresponding pro�t of seller �1 isgiven by ~g�1(ŷ�1; ~y1) = ŷ�1 h~�� ~� (ŷ�1+ ~y1)iNext, note that~y�1 < bmin=~�) �bmin� ~�~y�1�2 > 0, b2min+2bmin ~�~y�1+ ~�2~y2�1 > 4bmin ~�~y�1, �bmin+ ~�~y�1�2 > 4~�~y�1bmin,  bmin=~�+ ~y�12 ! bmin+ ~�~y�12 ! > ~y�1bmin, 0� ~�=~���~�=~�� bmin=~�� ~y�1�2 1A0� ~�� ~� �~�=~�� bmin=~�� ~y�1�2 1A > ~y�1bmin,  ~�=~�� ~y12 ! ~�� ~�~y12 ! > ~y�1bmin,  ~�=~�� ~y12 !0�~�� ~� �~�=~�� ~y1�2 � ~�~y11A > ~y�1bmin, ŷ�1 �~�� ~�ŷ�1� ~�~y1� > ~y�1bmin, ~g�1(ŷ�1; ~y1) > ~g�1(~y�1; ~y1)Thus suh a pair of pries (~y�1; ~y1) annot be an equilibrium.Case (4.2): Next, onsider any pair of pries (~y�1; ~y1) suh that ~y�1+~y1 = (~��bmin)=~� and 0� ~y1 <bmin=~�. Consider ŷ1 := �~�=~�� ~y�1�=2. It follows similarly to Case 4.1 that ~g1(ŷ1; ~y�1)> ~g1(~y1; ~y�1)and thus suh a pair of pries (~y�1; ~y1) annot be an equilibrium. In Figure 8, Case (4.1) andCase (4.2) orrespond to (e).



41Case (5): The only remaining pairs of pries to hek are pairs (~y�1; ~y1) on the line segment between(bmin=~�; ~�=~� � 2bmin=~�) and (~�=~� � 2bmin=~�; bmin=~�). In Figure 8, this orresponds to the linesegment on (f). Consider any pair of pries (~y�1; ~y1) = (1� )(bmin=~�; ~�=~� � 2bmin=~�) + (~�=~� �2bmin=~�; bmin=~�) for  2 [0;1℄. It follows from bmin � ~�=3 that 0 < bmin=~� � ~�=~� � 2bmin=~�, andthus ~yi > 0. Note that ~y�1 + ~y1 = (1� )(~�=~� � bmin=~�) + (~�=~� � bmin=~�) = (~� � bmin)=~�, that~y�1 +2~y1 = (1� )(2~�=~�� 3bmin=~�) +  ~�=~� � ~�=~�, where the inequality follows from bmin � ~�=3,and similarly 2~y�1+ ~y1 � ~�=~�. Then, for any ŷ1 < ~y1, it holds that ~y�1+ ŷ1 < (~��bmin)=~�, and thusit follows from Case (a) that ~g1(ŷ1; ~y�1)< ~g1(~y1; ~y�1). Also, for any ŷ1 > ~y1, it holds that ~y�1+ ŷ1 >(~�� bmin)=~� and ~y�1+2ŷ1 > ~�=~�, and thus it follows from Case () that ~g1(ŷ1; ~y�1)< ~g1(~y1; ~y�1).Hene, given ~y�1, ~y1 is the best response for seller 1. Similarly, given ~y1, ~y�1 is the best responsefor seller �1.Therefore, if bmin � ~�=3, then all pairs of pries (~y�1; ~y1) on the line segment between(bmin=~�; ~�=~� � 2bmin=~�) and (~�=~� � 2bmin=~�; bmin=~�) are equilibria. For all of these equilibriumpries total prie is equal to (~��bmin)=~�, the demand is equal to bmin, the resulting pro�t of seller iis equal to ~yibmin, and thus the total pro�t of both sellers together is given by (7) and the onsumersurplus is given by (8).Appendix A.2: Perfet CoordinationIn this setion we determine the maximum ahievable total pro�t of the two sellers together, thatis, the total pro�t if the sellers would perfetly oordinate priing.The total pro�t of the two sellers is given by~g(~y�1; ~y1) := (~y�1+ ~y1)minfbmin; maxf0; ~�� ~�(~y�1+ ~y1)ggFirst onsider the ase in whih bmin � ~�� ~�(~y�1+ ~y1)> 0. In this ase the total pro�t of the twosellers is given by ~g(~y�1; ~y1) := (~y�1+ ~y1)h~�� ~�(~y�1+ ~y1)i



42The optimal total prie �y�1+ �y1 that maximizes the total pro�t is given by�y�1+ �y1 = ~�2~� > 0The demand at the optimal total prie �y�1+ �y1 is equal to~�� ~�(�y�1+ �y1) = ~�2 > ~�3 = ~�� ~�(~y��1+ ~y�1) (31)Therefore, if bmin� ~�=2, then the optimal total prie is given by (9), the orresponding demand isgiven by (10), the total pro�t of both sellers together is given by (11), and the onsumer surplusis given by (12).Next, onsider the ase in whih bmin� ~�=2. In this ase the optimal total prie is given by~y�1+ ~y1 = ~�� bmin~� > 0with orresponding demand equal to bmin. The total pro�t of both sellers together is equal to(~y�1+ ~y1) bmin = ~�� bmin~� bminand the onsumer surplus is equal to12 � ~�~� � ~�� bmin~� � bmin = b2min2~�Appendix A.3: Resoure Exhange AllianeFor given values of b�1 and b1, the feasible set S1 of two-resoure produts that an be sold bythe two sellers is given by S1 := f(q�1(x); q1(x)) : xi 2 [0; bi℄; i=�1g. Next we show that this setS1 is equal to S2 := f(q�1; q1) 2 [0; bmin℄2 : q�1+ q1 � bming. First, onsider any (q�1(x); q1(x))2 S1with orresponding (x�1; x1)2 [0; b�1℄� [0; b1℄. Without loss of generality, suppose that b�1 = bmin.Then q�1(x)+ q1(x) =minfb�1� x�1; x1g+minfb1 � x1; x�1g � b�1� x�1 + x�1 = b�1 = bmin, andthus (q�1(x); q1(x)) 2 S2. Next, onsider any (q�1; q1) 2 S2. Choose xi = q�i for i=�1. Note thatxi 2 [0; bi℄ sine q�i 2 [0; bmin℄. Also, xi = q�i � bmin� qi = bmin� x�i � b�i� x�i, and thus q�i(x) =minfb�i�x�i; xig= xi = q�i. Thus (q�1; q1)2 S1, and hene S1 = S2. Hene, the �rst-stage deisionvariables may be onsidered to be the resoure exhange quantities x= (x�1; x1)2 [0; b�1℄� [0; b1℄,or equivalently the apaities q= (q�1; q1)2 S2 of two-resoure produts after exhange.



43Case 1. First onsider the ase in whih qi >���yi+y�i > 0 for i=�1 (it is onsidered laterfor whih input parameter values and values of q and y this ondition holds). In this ase the pro�tfuntion of eah seller i is given bygi(yi; y�i) = yi [���yi + y�i℄Then the best response funtion of eah seller i is given byBi(y�i) = �+ y�i2�Solving the system yi = �+ y�i2�for i=�1, the equilibrium (y��1; y�1) is obtained, wherey�i = �2��  > 0 (32)Note that the equilibrium pries are greater than the marginal ost �1 + 1 of the two-resoureprodut. The demand at the equilibrium pries (y��1; y�1) is equal to���y�i + y��i = ��2��  > 0 (33)The resulting pro�t of eah seller is equal toy�i minfqi; maxf0; ���y�i + y��igg = �2�(2�� )2 (34)and thus the total pro�t of both sellers together is equal to2 �2�(2�� )2 (35)Therefore, if qi ���=(2��) for i=�1, then the equilibrium pries are given by (32), the equilib-rium demand is given by (33), the resulting pro�t of eah seller is given by (34), and thus the totalpro�t of both sellers together is given by (35). Note that qi � ��=(2��) for i=�1 requires thatbmin� 2��=(2��). Thus the results above hold if bmin� 2��=(2��) and the resoure exhange
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0Figure 9 Di�erent ases of apaity bmin for a resoure exhange alliane.x is hosen suh that qi ���=(2��) for i=�1. In Figure 9, the line ABCD shows pairs (q�1; q1)suh that q�1+ q1 = bmin> 2��=(2�� ), obtained with resoure exhange x= (x�1; x1) suh thatxi = q�i = bmin� qi = bmin� x�i � b�i� x�i. Thus, for the given value of bmin > 2��=(2�� ), theset of points (q�1; q1) suh that qi � ��=(2� � ) for i = �1 and q�1 + q1 � bmin orresponds totriangle BCI. All orresponding resoure exhanges x lead to sales of two-resoure produts of��=(2�� ) by eah seller, orresponding to point I, and provide total pro�t of 2�2�=(2�� )2.Case 2. Next, onsider the ase in whih 0� q�i ����y�i+yi and qi >���yi+y�i > 0 (asbefore, it is onsidered later for whih input parameter values and values of q and y this onditionholds). In this ase the pro�t funtion of seller �i is given by



45g�i(y�i; yi) = y�iq�iand the pro�t funtion of seller i is given bygi(yi; y�i) = yi [���yi + y�i℄Then the best response funtion of seller �i is given byB�i(yi) = maxfy�i : q�i ����y�i + yig = �+ yi� q�i�and the best response funtion of seller i is given byBi(y�i) = �+ y�i2�Solving the system y�i = �+ yi� q�i�yi = �+ y�i2�the solution (y��1; y�1) is obtained, wherey��i = 2��+� � 2�q�i2�2� 2y�i = ��+�� q�i2�2� 2 (36)(It is heked later under what onditions y��i; y�i > 0 and (y��i; y�i ) is the unique equilibrium.) Thedemands at the pries (y��i; y�i ) are equal tod�i(y��i; y�i ) = ���y��i + y�i = q�i (37)di(y�i ; y��i) = ���y�i + y��i = ��(�+ )��q�i2�2� 2 (38)Reall that we are onsidering the ase in whih q�i ����y�i+yi and qi >���yi+y�i. Notethat q�i = ���y��i + y�i . Also note that qi >���y�i + y��i if and only if qi >��(�+ )=(2�2�2)��q�i=(2�2�2). Examples of the line qi =��(�+)=(2�2�2)��q�i=(2�2�2) are givenin Figure 9 by line LFI for i= 1 and by line MGI for i=�1. It an be veri�ed that the interept



46satis�es ��(�+ )=(2�2� 2)2 (0;2��=(2�� )). The slope of the lines are negative if  > 0 andpositive if  < 0. Note that if q�i = ��=(2�� ), then ��(�+ )=(2�2� 2)� �q�i=(2�2� 2) =��=(2��), and thus in all ases the lines go through I = (��=(2��); ��=(2��)). In Figure 9,if bmin> 2��=(2��), suh as in the ase in whih the line ABCD shows pairs (q�1; q1) suh thatq�1+ q1 = bmin, then the set of points (q�1; q1) suh that 0� q�1 � �� �y��1+ y�1 , q1 >�� �y�1 +y��1, and q�1+ q1 � bmin, orresponds to quadrilateral ABIL. (Note that q�1� ��=(2��), sineit has already been shown that q�1>���y��1+ y�1 in triangle BCI.) Similarly, the set of points(q�1; q1) suh that 0� q1� ���y�1+y��1, q�1 >���y��1+y�1 , and q�1+q1 � bmin, orresponds toquadrilateral DCIM (note that q1 ���=(2��)). If ��(�+)=(2�2�2)< bmin� 2��=(2��),suh as in the ase in whih the line EFGH shows pairs (q�1; q1) suh that q�1+q1 = bmin, then theset of points (q�1; q1) suh that 0� q�1 ����y��1+ y�1 , q1 >���y�1 + y��1, and q�1+ q1 � bmin,orresponds to triangle EFL, and the set of points (q�1; q1) suh that 0 � q1 � �� �y�1 + y��1,q�1 > �� �y��1 + y�1 , and q�1 + q1 � bmin, orresponds to triangle HGM . It is veri�ed in Case 3that, if bmin���(�+ )=(2�2� 2), then qi � ���y�i + y��i for i=�1.Next we verify that, if q�i ���=(2��), then the pries y��i; y�i given in (36) satisfy y��i; y�i > 0,that is, the pries are greater than the marginal ost �1+1 of the two-resoure produt. First notethat the denominator in the expressions for y��i and y�i is positive. Next onsider the numerator inthe expression for y��i. Note that 2�2 < 4�2� 2 = (2�+ )(2�� ), ��2��  < 2��+�2�Thus, if q�i � ��=(2�� ), then q�i < 2��+�2�, 0 < 2��+�� 2�q�i, 0 < 2��+�� 2�q�i2�2� 2 = y��i



47Next onsider the numerator in the expression for y�i . If  � 0, then �(�+)�q�i > 0 (reall that 2 (��;�)), and thus y�i = ��+�� q�i2�2� 2 > 0Next, onsider the ase with  > 0. Note that��2��  < �� < ��+�Thus, if q�i � ��=(2�� ), then q�i < ��+�, 0 < ��+�� q�i, 0 < ��+�� q�i2�2� 2 = y�iNext we verify that, if q�i � ��=(2� � ) and qi > ��(� + )=(2�2 � 2)� �q�i=(2�2 � 2),then (y��i; y�i ) given in (36) is the unique equilibrium. First, reall that Bi(y�i) = (�+ y�i)=(2�)is the unique best response for seller i if the apaity qi of seller i is not onstraining. Note that ifseller �i hooses prie y��i and qi >��(�+ )=(2�2� 2)��q�i=(2�2� 2), then the apaity qiof seller i is not onstraining, and thus y�i given in (36) is the unique best response for seller i toy��i. Next we verify that y��i given in (36) is the unique best response for seller �i to y�i . Given y�i ,the pro�t of seller �i is given byg�i(y�i; y�i ) = y�iminfq�i; maxf0; ���y�i+ y�i gg= 8><>: y�iq�i if y�i � �+y�i �q�i�y�i (���y�i+ y�i ) if �+y�i �q�i� � y�i � �+y�i�0 if y�i � �+y�i�Thus g�i(y�i; y�i ) is a nondereasing linear funtion of y�i if y�i � (�+ y�i � q�i)=�. If (�+ y�i �q�i)=� < y�i < (�+ y�i )=�, then g�i(y�i; y�i ) is a onave quadrati funtion of y�i, withg0�i(y�i; y�i ) = �2�y�i+�+ y�i< �2 (�+ y�i � q�i)+�+ y�i



48 = ��� y�i +2q�i= ��� ��+�� q�i2�2� 2 +2q�i= �2��2���+(4�2� 2)q�i2�2� 2Note that �2��2���+(4�2� 2)q�i2�2� 2 � 0, �2��2���+(4�2� 2)q�i � 0, ���(2�+ )+ (2�� )(2�+ )q�i � 0, ���+(2�� )q�i � 0, q�i � ��2�� Hene, if q�i � ��=(2� � ), then g0�i(y�i; y�i ) < 0 for all y�i 2 ((�+ y�i � q�i)=�; (�+ y�i )=�).Hene, the unique best response for seller �i to y�i is B�i(y�i ) = (�+ y�i � q�i)=�. Therefore, ifq�i ���=(2��) and qi >��(�+)=(2�2�2)��q�i=(2�2�2), then (y��i; y�i ) given in (36) isthe unique equilibrium.The resulting pro�t of eah seller is equal tog�i(y��i; y�i ) = y��iq�i= � (2�+ )q�i� 2�q2�i2�2� 2gi(y�i ; y��i) = y�i ����y�i + y��i�= ���+�� q�i2�2� 2 ���� (�+ )��q�i2�2� 2 �= �2� (�+ )2� 2�� (�+ ) q�i +�2q2�i(2�2� 2)2 (39)and thus the total pro�t of both sellers together is equal toG(q�i) = � (2�+ ) q�i� 2�q2�i2�2� 2 + �2� (�+ )2� 2�� (�+ ) q�i +�2q2�i(2�2� 2)2= � (2�+ ) (2�2� 2)q�i� 2� (2�2� 2)q2�i +�2� (�+ )2� 2�� (�+ ) q�i +�2q2�i(2�2� 2)2



49= �2� (�+ )2 +� (4�3� 4�2� 3) q�i�� (4�2� 32)q2�i(2�2� 2)2 (40)Therefore, if q�i � ��=(2�� ) and qi >��(�+ )=(2�2� 2)� �q�i=(2�2� 2), then the equi-librium pries are given by (36), the equilibrium demand is given by (38), the resulting pro�t ofeah seller is given by (39), and thus the total pro�t of both sellers together is given by (40).Case 3. Next onsider the ase in whih 0� qi � �� �yi + y�i for i = �1. (It will be shownthat this ase holds if and only if 0� qi � ��(�+ )=(2�2� 2)� �q�i=(2�2� 2) for i=�1. InFigure 9 this ase orresponds to two-resoure produt apaities (q�1; q1) in region 0LIM . Thusthe entire region f(q�1; q1) : qi � 0; i=�1g is overed by Cases 1{3.) In this ase the pro�t funtionof eah seller i is given by gi(yi; y�i) = yiqiThen the best response funtion of eah seller i is given byBi(y�i) = maxfyi : qi ����yi + y�ig = �+ y�i� qi�Solving the system yi = �+ y�i� qi�for i=�1, the equilibrium (y��1; y�1) is obtained, wherey�i = �(�+ )��qi� q�i�2� 2 (41)(It is heked later under what onditions y�i > 0 and (y��1; y�1) is the unique equilibrium.) Thedemand of seller i at the pries (y��1; y�1) is equal to���y�i + y��i = qi > 0 (42)Next we verify that, if qi ���(�+)=(2�2�2)��q�i=(2�2�2) for i=�1, then the pries y�igiven in (41) satisfy y�i > 0 for i=�1, that is, the pries are greater than the marginal ost �1+ 1of the two-resoure produt. Note that qi � ��(� + )=(2�2 � 2)� �q�i=(2�2 � 2) for i = �1implies that q�1 + q1 � 2��=(2� � ). For a given pair (q�1; q1) suh that qi � ��(� + )=(2�2�



502)��q�i=(2�2� 2) for i=�1, onsider the line with slope �1 through the point (q�1; q1). Forexample, in Figure 9, EFGH is suh a line, with points (q�1; q1) on line segment FG satisfyingqi ���(�+)=(2�2�2)��q�i=(2�2�2) for i=�1; and JK is also suh a line, with all points(q�1; q1) on line segment JK satisfying qi � ��(� + )=(2�2� 2)� �q�i=(2�2� 2) for i=�1.We show that the pries y�i given by (41) orresponding to all points (q�1; q1) on line segment FGsatisfy y�i > 0. It follows that the pries y�i given by (41) orresponding to all points (q�1; q1) online segment JK also satisfy y�i > 0. The oordinates of point F are ([(2�2�2)(q�1+q1)���(�+)℄=(2�2���2); [��(�+)��(q�1+q1)℄=(2�2���2)) and the oordinates of point G are([��(� + )� �(q�1 + q1)℄=(2�2� � � 2); [(2�2 � 2)(q�1 + q1)� ��(� + )℄=(2�2� � � 2)).Consider the pries y�i given in (41). Note thaty�i = �(�+ )��qi� q�i�2� 2 > 0, �(�+ )��qi� q�i > 0, �qi + (q�i + qi� qi) < �(�+ ), (�� )qi + (q�i + qi) < �(�+ ) (43)If (q�1; q1) is on line segment FG, thenqi � ��(�+ )��(q�1+ q1)2�2��� 2, (�� )qi + (q�i + qi) � (�� )��(�+ )��(q�1+ q1)2�2��� 2 + (q�i + qi)= ��3���2 +�2(q�1+ q1)� 3(q�i + qi)2�2��� 2= ��(�2� 2)+ (�2� 2)(q�1+ q1)2�2��� 2= (�� )(�+ )[��+ (q�1+ q1)℄(�� )(2�+ )= (�+ )[��+ (q�1+ q1)℄2�+  (44)Next, by separately onsidering the ases  � 0 and  � 0, we show that [��+(q�1+q1)℄=(2�+)<�, then it follows from (44) that (�� )qi + (q�i + qi)<�(�+ ), and hene it follows from (43)



51that y�i > 0.First, suppose that  � 0. Note that �  < �, � < 2�+ , ��2�+  < �) ��+ (q�1+ q1)2�+  < � (45)The last step follows sine  � 0 and q�1+ q1 � 0. It follows from (43), (44) and (45) that, if  � 0,then y�i > 0.Next, suppose that  � 0. Note that  < �, � < 2�� , ��(2�� +2)(2�� )(2�+ ) < �, ��+ 2��2��2�+  < �) ��+ (q�1+ q1)2�+  < � (46)The last step follows sine  � 0 and q�1+ q1 � 2��=(2�� ). It follows from (43), (44) and (46)that, if  � 0, then y�i > 0.Next we verify that, if qi � ��(� + )=(2�2� 2)� �q�i=(2�2� 2) for i =�1, then (y��1; y�1)given in (41) is the unique equilibrium. We verify that y�i given in (41) is the unique best responsefor seller i to y��i. Given y��i, the pro�t of seller i is given bygi(yi; y��i) = yimin�qi; maxf0; ���yi+ y��ig	= 8>><>>: yiqi if yi � �+y��i�qi�yi ����yi+ y��i� if �+y��i�qi� � yi � �+y��i�0 if yi � �+y��i�



52Thus gi(yi; y��i) is a nondereasing linear funtion of yi if yi � (�+y��i�qi)=�. If (�+y��i�qi)=� <yi < (�+ y��i)=�, then gi(yi; y��i) is a onave quadrati funtion of yi, withg0i(yi; y��i) = �2�yi +�+ y��i< �2 ��+ y��i� qi�+�+ y��i= ��� y��i +2qi= ��� �(�+ )��q�i� qi�2� 2 +2qi= ���2���+�q�i +(2�2� 2)qi�2� 2If (q�1; q1) is on line segment FG, thenqi � ��(�+ )��(q�i + qi)2�2��� 2, 0 � ���2���+�(q�i + qi)+ (2�2��� 2)qi= ���2���+�q�i +(2�2� 2)qi, 0 � ���2���+�q�i +(2�2� 2)qi�2� 2, g0i(yi; y��i) < 0Hene, if (q�1; q1) is on line segment FG, then g0i(yi; y��i)< 0 for all yi 2 ((�+ y��i � qi)=�; (�+y��i)=�). Hene, the unique best response for seller i to y��i is Bi(y��i) = (�+y��i�qi)=�. It followsin the same way that if (q�1; q1) is on line segment JK, then the unique best response for seller ito y��i is Bi(y��i) = (�+y��i� qi)=�. Therefore, if qi � ��(�+)=(2�2�2)��q�i=(2�2�2) fori=�1, then (y��1; y�1) given in (41) is the unique equilibrium.The resulting pro�t of eah seller i is equal toy�i minfqi; maxf0; ���y�i + y��igg = �(�+ )qi��q2i � q�iqi�2� 2 (47)and thus the total pro�t of both sellers together is equal to�(�+ )(q�1+ q1)��(q2�1+ q21)� 2q�1q1�2� 2 (48)



53Therefore, if qi � ��(�+ )=(2�2� 2)� �q�i=(2�2� 2) for i=�1, then the equilibrium priesare given by (41), the equilibrium demand is given by (42), the resulting pro�t of eah seller isgiven by (47), and thus the total pro�t of both sellers together is given by (48).Next we determine the value of (q�1; q1) that maximizes the total pro�t of both sellers togetherunder Case 3. First we �x the value of q�1+ q1 at some value q� bmin, and hoose q1 to maximizethe total pro�t subjet to q�1+ q1 = q. Thereafter we hoose q to maximize the total pro�t subjetto q� bmin. It follows from (48) that the total pro�t is equal to�(�+ )(q�1+ q1)��(q2�1+ q21)� 2q�1q1�2� 2 = �(�+ )(q�1+ q1)��(q2�1+2q�1q1+ q21)+ 2�q�1q1� 2q�1q1�2� 2= �(�+ )q��q2+2(�� )(q� q1)q1�2� 2= �(�+ )q��q2+2(�� )qq1� 2(�� )q21�2� 2Let H1(q1) := �(�+ )q��q2+2(�� )qq1� 2(�� )q21�2� 2Note that H1 is a onave quadrati funtion that is maximized at q�1 = q=2, and the orrespondingvalue of q�1 is also q��1 = q=2. Reall that (48) applies if qi ���(�+)=(2�2�2)��q�i=(2�2�2)for i=�1. Note that q�i � ��(�+ )2�2� 2 � �2�2� 2 q��i for i=�1, q2 � ��(�+ )2�2� 2 � �2�2� 2 q2, q � 2��2�� Next we hoose q to maximize the total pro�t subjet to q� bmin and q� 2��=(2�� ). LetH2(q) := H1(q=2)= �(�+ )q��q2+2(�� )q2=2� 2(�� )q2=4�2� 2= 2�(�+ )q� (�+ )q22(�� )(�+ )= 2�q� q22(�� )
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≈ 0.618Figure 10 Di�erent ases of the apaity ratio bmin=� and the prie oeÆient ratio =�.Note that H2 is a onave quadrati funtion and H 02(q�) = 0, q� = �. Also note that q� = � �2��=(2��) if and only if  � 0. Let amin :=minf�; bmin;2��=(2��)g. Then the value of (q�1; q1)that maximizes the total pro�t and that satis�es qi ���(�+ )=(2�2� 2)��q�i=(2�2� 2) fori=�1, is q��1 = q�1 = amin=2. The orresponding total pro�t is H2(amin) = (2��amin)amin=[2(��)℄.This onludes Case 3.Optimal exhange. Next, we ompare the pro�ts under Cases 1, 2, and 3, and determine thevalue of (q�1; q1), that is, the value of the exhange x= (x�1; x1), that maximizes the total pro�tof both sellers together. Di�erent ases hold, depending on the apaity ratio bmin=� and the prieoeÆient ratio =� (reall that =� 2 (�1;1)). The di�erent ases are depited in Figure 10.Case A (small apaity). bmin=�� [1+ =�℄=[2� (=�)2℄, that is, bmin� ��(�+ )=(2�2� 2):In Figure 9, line JK shows an example of pairs (q�1; q1) suh that q�1+q1 = bmin for a given valueof bmin<��(�+)=(2�2�2), and triangle 0JK shows pairs (q�1; q1)� 0 suh that q�1+q1 � bmin.In this ase, the apaity bmin is so small that all feasible values of (q�1; q1) orrespond to Case 3.Reall that ��(�+ )=(2�2� 2)2 (0;2��=(2�� )).



55Case A1. =� � 0 and bmin=�� [1+=�℄=[2�(=�)2℄, that is,  � 0 and bmin���(�+)=(2�2�2):Reall that 2��=(2��)�� if and only if  � 0. Sine bmin���(�+)=(2�2�2)< 2��=(2��)��, it follows that bmin =minf�; bmin;2��=(2��)g, and thus the value of (q�1; q1) that maxi-mizes the total pro�t is q��1 = q�1 = bmin=2, and the maximum total pro�t is (2��bmin)bmin=[2(��)℄.The resulting equilibrium prie of eah seller, given by (41), is y�i = (2�� bmin)=[2(��)℄, and theresulting equilibrium demand of eah seller, given by (42), is equal to q�i = bmin=2.Case A2. =� � 0 and bmin=�� [1+=�℄=[2�(=�)2℄, that is,  � 0 and bmin���(�+)=(2�2�2):In this ase, bmin � ��(� + )=(2�2 � 2) < 2��=(2� � ) and � � 2��=(2� � ). If ��(� +)=(2�2� 2)� �, then bmin � � and thus bmin =minf�; bmin;2��=(2�� )g, the value of (q�1; q1)that maximizes the total pro�t is q��1 = q�1 = bmin=2, and the maximum total pro�t is (2� �bmin)bmin=[2(� � )℄. The resulting equilibrium prie of eah seller, given by (41), is y�i = (2��bmin)=[2(� � )℄, and the resulting equilibrium demand of eah seller, given by (42), is equal toq�i = bmin=2. Note that ��(�+ )=(2�2� 2)� � if and only if =� � (p5� 1)=2 = 1='= '� 1�0:618, where ' denotes the golden ratio. If =� > (p5�1)=2 (and thus �<��(�+)=(2�2�2)),then there are two possibilities. If bmin � �, then as before, q��1 = q�1 = bmin=2, the equilibriumprie of eah seller is y�i = (2�� bmin)=[2(�� )℄, the equilibrium demand of eah seller is equal toq�i = bmin=2, and the maximum total pro�t is (2�� bmin)bmin=[2(��)℄. Otherwise, if �< bmin, thenq��1 = q�1 = �=2, the resulting equilibrium prie of eah seller, given by (41), is y�i =�=[2(��)℄, theresulting equilibrium demand of eah seller, given by (42), is equal to q�i = �=2, and the maximumtotal pro�t is (2�� �)�=[2(� � )℄ = �2=[2(� � )℄. Note that in this ase the optimal resoureexhange x� is suh that q��1+ q�1 = �< bmin, that is, some apaity is not used.Case B (intermediate apaity). [1 + =�℄=[2� (=�)2℄� bmin=�� 2=(2� =�), that is, ��(�+)=(2�2� 2)� bmin� 2��=(2�� ):In Figure 9, line EFGH shows an example of pairs (q�1; q1) suh that q�1+ q1 = bmin for a givenvalue of bmin 2 (��(� + )=(2�2� 2); 2��=(2�� )), and triangle 0EH shows pairs (q�1; q1)� 0



56suh that q�1 + q1 � bmin. In this ase with intermediate apaity bmin, there are feasible valuesof (q�1; q1) orresponding to Case 3, for example in pentagon 0LFGM in Figure 9, and there arefeasible values of (q�1; q1) orresponding to Case 2, for example in triangles EFL and GHM inFigure 9.Consider any two pairs (q�1; q1) and (q0�1; q01) in triangle EFL suh that q�1 = q0�1. It followsfrom (36), (38), (39), and (40) that the equilibrium pries, the equilibrium demand, the pro�t ofeah seller, and thus the total pro�t of both sellers together are the same for (q�1; q1) and (q0�1; q01).Therefore, for any point (q�1; q1) in triangle EFL, there is a point (q�1; ��(� + )=(2�2� 2)��q�1=(2�2� 2)) on the boundary LF between triangle EFL and pentagon 0LFGM with thesame total pro�t as at point (q�1; q1). Next, we show that the total pro�t as a funtion of (q�1; q1)is ontinuous on the boundary between triangle EFL and pentagon 0LFGM . Reall from (48)that the total pro�t at a point (q�1; q1) in pentagon 0LFGM is equal to�(�+ ) (q�1+ q1)�� �q2�1+ q21�� 2q�1q1�2� 2Spei�ally, at the boundary point (q�1; ��(�+)=(2�2�2)��q�1=(2�2�2)) the total pro�tis equal to�(�+ )�q�1+ ��(�+)��q�12�2�2 ����q2�1+ h��(�+)��q�12�2�2 i2�� 2q�1 ��(�+)��q�12�2�2�2� 2
= 8>><>>: [�2�(�+ )2 (2�2� 2)��2�3(�+ )2℄+ h�(�+ ) (2�2� 2)2���(�+ ) (2�2� 2)+ 2��3(�+ )� 2��(�+ ) (2�2� 2)i q�1+ h�� (2�2� 2)2��32+2�2 (2�2� 2)i q2�1 9>>=>>;(2�2� 2)2 (�2� 2)= 8<: �2� (2�2� 2��2) (�+ )2+� (4�4� 4�22+ 4� 2�3+�3+2�3� 4�3+2�3) (�+ )q�1�� (4�4� 4�22+ 4+�22� 4�22+24)q2�1 9=;(2�2� 2)2 (�2� 2)= 8<: �2� (�2� 2) (�+ )2+� (4�4� 4�3� 4�22+3�3+ 4) (�+ )q�1�� (4�4� 7�22+34)q2�1 9=;(2�2� 2)2 (�2� 2)



57
= 8<: �2� (�� ) (�+ )3+� (4�3� 4�2� 3) (�� ) (�+ )q�1�� (4�2� 32) (�� ) (�+ )q2�1 9=;(2�2� 2)2 (�� ) (�+ )= �2�(�+ )2+� (4�3� 4�2� 3)q�1�� (4�2� 32)q2�1(2�2� 2)2whih is the same as the total pro�t given by (40) for point (q�1; ��(� + )=(2�2 � 2) ��q�1=(2�2� 2)) in triangle EFL. Thus the total pro�t as a funtion of (q�1; q1) is ontinuouson the boundary between triangle EFL and pentagon 0LFGM . The same observation applies tothe total pro�t as a funtion of (q�1; q1) in triangle GHM . Hene, in Case B with intermediateapaity, it is suÆient to optimize (q�1; q1) over pentagon 0LFGM only, that is, it is suÆient torestrit attention to feasible values of (q�1; q1) orresponding to Case 3. The rest of Case B followsin the same way as for Case A with small apaity.Case B1. =� � 0 and [1+ =�℄=[2� (=�)2℄� bmin=�� 2=(2� =�), that is,  � 0 and ��(�+)=(2�2� 2)� bmin� 2��=(2�� ):Consider the optimal value of (q�1; q1) in pentagon 0LFGM . Sine bmin � 2��=(2� � ) � �,it follows that bmin = minf�; bmin;2��=(2� � )g, and thus the value of (q�1; q1) in pentagon0LFGM that maximizes the total pro�t is q��1 = q�1 = bmin=2, and the maximum total pro�t is(2��bmin)bmin=[2(��)℄. The resulting equilibrium prie of eah seller is y�i = (2��bmin)=[2(��)℄,and the resulting equilibrium demand of eah seller is equal to q�i = bmin=2.Case B2. =� � 0 and [1+ =�℄=[2� (=�)2℄� bmin=�� 2=(2� =�), that is,  � 0 and ��(�+)=(2�2� 2)� bmin� 2��=(2�� ):If =� � (p5� 1)=2 (and thus �� ��(�+ )=(2�2� 2)), then �=minf�; bmin;2��=(2�� )g,the value of (q�1; q1) that maximizes the total pro�t is q��1 = q�1 = �=2, and the maximum totalpro�t is (2���)�=[2(�� )℄ = �2=[2(�� )℄. The resulting equilibrium prie of eah seller, givenby (41), is y�i = �=[2(��)℄, and the resulting equilibrium demand of eah seller, given by (42), isequal to q�i = �=2. In this ase the optimal resoure exhange x� is suh that q��1+ q�1 = �� bmin,that is, some apaity is not used. If =� < (p5 � 1)=2 (and thus � > ��(� + )=(2�2 � 2)),



58then there are two possibilities. If �� bmin, then as before, q��1 = q�1 = �=2, the equilibrium prieof eah seller is y�i = �=[2(� � )℄, the equilibrium demand of eah seller is equal to q�i = �=2,and the maximum total pro�t is �2=[2(�� )℄. Otherwise, if bmin � �, then q��1 = q�1 = bmin=2, theequilibrium prie of eah seller is y�i = (2�� bmin)=[2(��)℄, the equilibrium demand of eah selleris equal to q�i = bmin=2, and the maximum total pro�t is (2�� bmin)bmin=[2(�� )℄.Case C (large apaity). bmin=�� 2=(2� =�), that is, bmin� 2��=(2�� ):In Figure 9, line ABCD shows an example of pairs (q�1; q1) suh that q�1+ q1 = bmin for a givenvalue of bmin� 2��=(2�� ), and triangle 0AD shows pairs (q�1; q1)� 0 suh that q�1+ q1 � bmin.In this ase with large apaity bmin, there are feasible values of (q�1; q1) in quadrilateral 0LIM inFigure 9 orresponding to Case 3, there are feasible values of (q�1; q1) orresponding to Case 2, forexample in quadrilaterals ABIL and DCIM in Figure 9, and there are feasible values of (q�1; q1)orresponding to Case 1, for example in triangle BCI in Figure 9.For any point (q�1; q1) in ABIL, there is a point (q�1; ��(�+)=(2�2�2)��q�1=(2�2�2))on the boundary IL between ABIL and 0LIM with the same total pro�t as at point (q�1; q1).It was shown under Case B that the total pro�t as a funtion of (q�1; q1) is ontinuous on theboundary. The same observation applies to the total pro�t as a funtion of (q�1; q1) in DCIM .Hene, in Case C with large apaity, it is suÆient to optimize (q�1; q1) over quadrilateral 0LIMand triangle BCI only, that is, it is suÆient to restrit attention to feasible values of (q�1; q1)orresponding to Case 3 and Case 1.Case C1. =� � 0 and bmin=�� 2=(2� =�), that is,  � 0 and bmin� 2��=(2�� ):Sine 2��=(2� � ) � � and bmin � 2��=(2� � ), it follows that 2��=(2� � ) =minf�; bmin;2��=(2� � )g, and thus the value of (q�1; q1) that maximizes the total pro�t over0LIM is given by q��1 = q�1 = ��=(2� � ) represented by point I, and the orresponding totalpro�t is (2�� 2��=(2�� ))2��=(2�� )=[2(�� )℄ = 2�2�=(2�� )2. Also, as shown in Case 1,all values of (q�1; q1) in triangle BCI have the same total pro�t of 2�2�=(2��)2. Thus, any point(q�1; q1) in triangle BCI represents an optimal resoure exhange for Case C1. For all suh optimalresoure exhanges, the resulting equilibrium prie of eah seller, given by both (32) and (41), is



59y�i = �=(2��), and the resulting equilibrium demand of eah seller, given by both (33) and (42),is equal to ��=(2�� ).Case C2. =� � 0 and bmin=�� 2=(2� =�), that is,  � 0 and bmin� 2��=(2�� ):Sine bmin� 2��=(2��)��, it follows that �=minf�; bmin;2��=(2��)g, and thus the valueof (q�1; q1) that maximizes the total pro�t over 0LIM is q��1 = q�1 = �=2, and the orrespondingtotal pro�t is (2���)�=[2(��)℄ = �2=[2(��)℄. Also, all values of (q�1; q1) in triangle BCI havethe same total pro�t of 2�2�=(2�� )2. Note that4�2� 4�+ 2 � 4�2� 4�) (2�� )2 � 4�(�� )) �22(�� ) � 2�2�(2�� )2Thus the optimal point for Case C2 is q��1 = q�1 = �=2, and the maximum total pro�t is �2=[2(��)℄.The resulting equilibrium prie of eah seller, given by (41), is y�i = �=[2(��)℄, and the resultingequilibrium demand of eah seller, given by (42), is equal to q�i =�=2.Inspetion of the results above for the settings with no alliane, perfet oordination, and aresoure exhange alliane reveal that the results an be summarized by 5 ases, as in Table 1.Consumer surplus. To alulate the onsumer surplus assoiated with demand model (13), it isinstrutive to start with a utility model that leads to demand model (13). Consider a representativeonsumer who onsumes z�1 units of the produt sold by seller �1 and z1 units of the produt soldby seller 1. Suppose that the resulting utility is given by U(z�1; z1) := a�1z�1+ a1z1� b�1z2�1=2�b1z21=2�z�1z1 with b�1; b1; b�1b1�2 > 0. Given a prie pi for the produt sold by eah seller i, theonsumer hooses quantities (z�1; z1) to maximize the onsumer surplus U(z�1; z1)�p�1z�1�p1z1.It follows that the hosen quantities satisfyzi = aib�i� a�ib�1b1� 2 � b�ib�1b1� 2 pi + b�1b1� 2p�iThis utility model leads to the demand model (13) if �= (aib�i�a�i)=(b�1b1�2), � = bi=(b�1b1�2), and  = =(b�1b1�2) for i=�1, that is, if ai = �=(��), bi = �=(�2�2), and = =(�2�2)for i=�1.



60In regions 1 and 2 in Table 1, the resulting onsumer surplus is given byU(bmin=2; bmin=2)� 2�� bmin2(�� ) bmin2 � 2�� bmin2(�� ) bmin2 = b2min4(�� )In regions 3 and 4, the resulting onsumer surplus is given byU(��=(2�� ); ��=(2�� ))� �2��  ��2��  � �2��  ��2��  = �2�2(�� )(2�� )2In region 5, the resulting onsumer surplus is given byU(�=2; �=2)� �2(�� ) �2 � �2(�� ) �2 = �24(�� )Thus, in region 1 all three settings have the same onsumer surplus. In region 2, the onsumersurplus under perfet oordination and under the alliane are the same, and as shown in Setion 3.2,both are larger than the onsumer surplus under no alliane. To ompare the onsumer surplusunder the alliane and under no alliane in regions 3 and 4, note that�29(�� ) � �2�2(�� )(2�� )2, �4�+ 2 � 5�2whih holds sine  2 (��;�), and thus in regions 3 and 4 the onsumer surplus under the allianeis greater than the onsumer surplus under no alliane. To ompare the onsumer surplus underthe alliane and under perfet oordination in region 3, note thatb2min4(�� ) � �2�2(�� )(2�� )2, bmin � 2��2�� and thus in region 3 the onsumer surplus under perfet oordination is greater than the onsumersurplus under the alliane. To ompare the onsumer surplus under the alliane and under perfetoordination in region 4, note that �24(�� ) � �2�2(�� )(2�� )2



61, (2�� )2 � 4�2whih holds sine  � 0 in region 4, and thus in region 4 the onsumer surplus under perfetoordination is greater than the onsumer surplus under the alliane. Finally, in region 5 theonsumer surplus under perfet oordination and under the alliane are the same, and both arelarger than the onsumer surplus under no alliane by a fator of 9=4. Note that, similar to totalpro�t, the onsumer surplus under perfet oordination and under the alliane are the same exeptwhen apaity is large (bmin� 2��=(2�� )) and the sellers' produts are omplements ( � 0).Appendix A.4: Perfet Coordination with Produt Di�erentiationThe model of perfet oordination introdued in Setion 3.2 (with details given in Setion 7) wasbased on a model of demand d for the two-resoure produt given by d=maxf0; ~�� ~�(~y�1+ ~y1)g,and the model of an alliane introdued in Setion 3.3 (with details given in Setion 7) was basedon a model of demand di(yi; y�i) for the two-resoure produt of seller i given by di(yi; y�i) =maxf0; �� �yi + y�ig, where ~�= 2�+2(�� )(�1+ 1) and ~� = 2(�� ). Thus, the model ofperfet oordination in Setion 3.2 does not make provision for di�erent brands of the two-resoureprodut, but the model of an alliane in Setion 3.3 makes provision for di�erent brands of the two-resoure produt. In this setion we onsider a model of perfet oordination that makes provisionfor di�erent brands of the two-resoure produt.The demand di(yi; y�i) for the brand i produt sold is given as follows:di(yi; y�i) = ���yi + y�iwhere as before yi denotes the exess of the prie of the brand i produt over the marginal ost�1+ 1, and we onsider only values of (y�1; y1) suh that ���yi + y�i � 0 for i=�1.First onsider the ase in whih the apaity is not onstraining (it is determined later whatamount of apaity is suÆient for this ondition to hold). In this ase, the total pro�t is given byg(y�1; y1) := y�1d�1(y�1; y1)+ y1d1(y1; y�1) = �(y�1+ y1)��(y2�1+ y21)+ 2y�1y1



62Note that rg(y�1; y1) = ��� 2�y�1+2y1�� 2�y1+2y�1 �r2g(y�1; y1) = ��2� 22 �2� �and thus r2g(y�1; y1) is negative de�nite (� > 0, �2� 2 > 0), and hene g is a onave quadratifuntion. Therefore, the pries that maximize the total pro�t are given byy��1 = y�1 = �2(�� ) ; (49)and the orresponding total demand at the optimal pries is equal to �. Thus, if bmin��, then thetotal pro�t of the two sellers under perfet oordination is given by �22(��) . Note that the optimalpries, demand, pro�t, and onsumer surplus are the same as for perfet oordination in Setion 3.2when bmin� �.Next onsider the ase in whih bmin < �. First we onsider prie points (y�1; y1) suh thatd�1(y�1; y1)+d1(y1; y�1)� bmin, and then we onsider prie points (y�1; y1) suh that d�1(y�1; y1)+d1(y1; y�1)� bmin. It follows from the results above for g that the point (�y�1; �y1) that maximizes gsubjet to the onstraint d�1(y�1; y1)+ d1(y1; y�1)� bmin satis�es d�1(�y�1; �y1)+ d1(�y1; �y�1) = bmin,that is, 2�� (�� )(�y�1+ �y1) = bmin. Letg1(y1) := g ([2�� bmin℄=[�� ℄� y1; y1)= �2�� bmin��  �� (2�� bmin)2(�� )2 +2(�+ )�2�� bmin��  � y1�y1Note that g1 is a onave quadrati funtion with maximum at �y1 = (2�� bmin)=[2(� � )℄ (andthus �y�1 = �y1 = (2�� bmin)=[2(�� )℄).Next onsider prie points (y�1; y1) suh that d�1(y�1; y1)+d1(y1; y�1)� bmin, that is, 2�� (��)(y�1+y1)� bmin. The model should speify how apaity bmin is to be alloated between the twobrands if d�1(y�1; y1)+ d1(y1; y�1)> bmin. There are various ways to alloate onstrained apaity.Here we present one suh way, the equal rationing rule, in detail, and then we point out other ways



63that lead to the same results. Under the equal rationing rule, if d�1(y�1; y1) + d1(y1; y�1)> bmin,then the same fration � of the demands di(yi; y�i) for the di�erent brands is satis�ed, where� = bmind�1(y�1; y1)+ d1(y1; y�1) = bmin2�� (�� )(y�1+ y1)Then, the total pro�t is given byg2(y�1; y1) = �y�1(���y�1+ y1)+�y1(���y1+ y�1)= bmin�(y�1+ y1)��(y�1+ y1)2+2(�+ )y�1y12�� (�� )(y�1+ y1)Let y := y�1+ y1, and letg3(y; y1) := g2(y� y1; y1)= bmin�y��y2+2(�+ )yy1� 2(�+ )y212�� (�� )yReall that, in this ase, 2�� (� � )(y�1 + y1) � bmin, and thus y � (2�� bmin)=(� � ). First,onsider any �xed value of y 2 [0; (2��bmin)=(��)℄, and maximize g3(y; �) with respet to y1. Notethat g3(y; �) is a onave quadrati funtion with maximum at ŷ1 = y=2 (and thus ŷ�1 = ŷ1 = y=2).Next, let g4(y) := g2(y=2; y=2)= bmin2 2�y+ y2��y22�� (�� )y= bmin2 yNote that the maximum of g4 over y 2 [0; (2�� bmin)=(��)℄ is attained at y= (2�� bmin)=(��),and thus ŷ�1 = ŷ1 = (2�� bmin)=[2(�� )℄. Therefore, if bmin<�, then the optimal pries arey��1 = y�1 = �y�1 = �y1 = ŷ�1 = ŷ1 = 2�� bmin2(�� ) (50)with orresponding total demand equal to bmin. Thus, the total pro�t under perfet oordinationis equal to (2�� bmin)bmin=[2(�� )℄. Note that the optimal pries, demand, pro�t and onsumersurplus are also the same as for perfet oordination in Setion 3.2 when bmin� �.



64Other rationing rules also lead to the same results. For example, suppose that the demand forbrand �1 is satis�ed �rst and then the remaining apaity, if any, is used for brand 1. In this ase,the total pro�t is given byg5(y�1; y1) = y�1minfbmin; ���y�1+y1g+y1minfmaxf0; bmin�(���y�1+y1)g; ���y1+y�1gFor this rationing rule the optimal pries are same as in (50).Appendix B: Proof of Theorem 1Theorem 1 Suppose that the problem (21) is feasible and that the matrix 	, de�ned in (22), ispositive de�nite. Then problem (21) has an optimal solution (y��1; y�1 ; ���1; ��1) with (y��1; y�1) beingunique. Moreover, if the optimal objetive value of problem (21) is zero, then (y��1; y�1) is the uniqueNash equilibrium.Proof. The objetive value of problem (21) is bounded below by zero. It is known that a quadratiprogram with a bounded objetive value has an optimal solution. To establish uniqueness, onsiderthe problem min(x;y)2X �f(x; y) := xTQx+ aTx+ bTy	 (51)where X �Rn1 �Rn2 is a onvex set and Q is an n1�n1 positive de�nite matrix. Let (x�1; y�1) and(x�2; y�2) be two optimal solutions of (51). Consider the funtion �(t) := f(tx�1+(1� t)x�2; ty�1 +(1�t)y�2). Note that � is a quadrati funtion, �(t) = �t2 + �t+ , where � = (x�1 � x�2)TQ(x�1 � x�2).Note that �� 0 sine Q is positive de�nite, and thus � is onvex. Convexity of X and optimalityof (x�1; y�1) and (x�2; y�2) implies that �(t) � �(0) = �(1) for all t 2 [0;1℄. Moreover, onvexity of �implies that �(t)� �(0) = �(1) for all t2 [0;1℄. Hene �(t) = �(0) = �(1) for all t 2 [0;1℄, and thus�=0. Sine Q is positive de�nite it follows that x�1 = x�2. Finally, if the optimal objetive value ofproblem (21), and hene of problem (20), is zero, then (y��1; y�1 ; ���1; ��1) satis�es the neessary andsuÆient optimality onditions (19), and thus (y��1; y�1) is the Nash equilibrium.



65Appendix C: Details of Demand Transformation for No Alliane ModelThe parameters E;B;C in demand model (14) and the parameters ~E; ~B; ~C in demand model (23)should be related in a partiular way to failitate a fair omparison of the pries, demands, totalpro�t, and onsumer surplus between the settings with and without an alliane. In this setion wederive the relation.The relation between the demand models with and without an alliane is based on the assumptionthat the overall demand level for eah produt is the same with and without an alliane. Reallthat Li denotes the set of produts whih an be o�ered by seller i with and without an alliane,for i=�1, and L0 denotes the set of produts whih ould be o�ered only under an alliane. Inaddition, let L0;i � L0 denote the set of produts in L0 that an be o�ered by seller i under analliane, and let Li;�i �Li denote the set of produts in Li that an be o�ered by seller �i under analliane, but not without an alliane. Thus, for the setting with an alliane the number of demandequations (and pries) for eah seller i is mi = jLij+ jL0;ij+ jL�i;ij, and for the setting without analliane the number of demand equations (and pries) for eah seller i is only jLij.The following example is used to explain the derivation of the relation between the demandmodels. Seller �1 produes resoure A, and seller 1 produes resoures B and C. With an alliane,the following produts are o�ered by eah seller: Produt A using 1 unit of resoure A eah,produt B using 1 unit of resoure B eah, produt C using 1 unit of resoure C eah, produt BCusing 1 unit of resoure B and 1 unit of resoure C eah, and produt A2BC using 2 units ofresoure A, 1 unit of resoure B, and 1 unit of resoure C eah. Without an alliane, produt A iso�ered by seller �1 only and seller �1 aptures all the demand for produt A, and produts B, C,and BC are o�ered by seller 1 only and seller 1 aptures all the demand for produtsB, C, and BC.Produt A2BC is not o�ered by either seller, but there still is the same demand for produt A2BC;buyers buy eah unit of produt A2BC by buying 2 units of produt A from seller �1, and 1 unitof produt BC from seller 1. As shown later, the demands for produts A and BC derived fromthe demand for produt A2BC is added to the respetive demands for produts A and BC by



66themselves. Note that this derivation assumes that buyers buy eah unit of produt A2BC bybuying 1 unit of produt BC from seller 1 instead of buying 1 unit of produt B and 1 unit ofprodut C separately from the same seller. This assumption may be questionable if the prie ofbuying produts B and C separately is less than the prie of produt BC. In the numerial work,we veri�ed that the pries of multiple resoure produts o�ered by a seller were less than the sumof the pries of any produts that ould be bought separately to make up the multiple resoureprodut. Thus, in this example, L�1 = fAg, L1 = fB;C;BCg, L0;�1 = fA2BCg, L0;1 = fA2BCg,L�1;1 = fAg, and L1;�1 = fB;C;BCg. With an alliane, the demand for eah produt is givenby (14):di;A = �Ei;A;Ayi;A�Ei;A;Byi;B �Ei;A;Cyi;C �Ei;A;BCyi;BC �Ei;A;A2BCyi;A2BC+B�i;A;Ay�i;A+B�i;A;By�i;B +B�i;A;Cy�i;C +B�i;A;BCy�i;BC +B�i;A;A2BCy�i;A2BC +Ci;Adi;B = �Ei;B;Ayi;A�Ei;B;Byi;B �Ei;B;Cyi;C �Ei;B;BCyi;BC �Ei;B;A2BCyi;A2BC+B�i;B;Ay�i;A+B�i;B;By�i;B +B�i;B;Cy�i;C +B�i;B;BCy�i;BC +B�i;B;A2BCy�i;A2BC +Ci;Bdi;C = �Ei;C;Ayi;A�Ei;C;Byi;B �Ei;C;Cyi;C �Ei;C;BCyi;BC �Ei;C;A2BCyi;A2BC+B�i;C;Ay�i;A+B�i;C;By�i;B +B�i;C;Cy�i;C +B�i;C;BCy�i;BC +B�i;C;A2BCy�i;A2BC +Ci;Cdi;BC = �Ei;BC;Ayi;A�Ei;BC;Byi;B �Ei;BC;Cyi;C �Ei;BC;BCyi;BC �Ei;BC;A2BCyi;A2BC+B�i;BC;Ay�i;A+B�i;BC;By�i;B +B�i;BC;Cy�i;C +B�i;BC;BCy�i;BC+B�i;BC;A2BCy�i;A2BC +Ci;BCdi;A2BC = �Ei;A2BC;Ayi;A�Ei;A2BC;Byi;B �Ei;A2BC;Cyi;C �Ei;A2BC;BCyi;BC �Ei;A2BC;A2BCyi;A2BC+B�i;A2BC;Ay�i;A+B�i;A2BC;By�i;B +B�i;A2BC;Cy�i;C +B�i;A2BC;BCy�i;BC+B�i;A2BC;A2BCy�i;A2BC +Ci;A2BCTo use these observations and the demand funtions given by (14) for the alliane setting toderive the demand funtions for the produts with no alliane, �rst note that the demands in (14)depend on jL0;�1j+ jL0;1j+ jL�1j+ jL1j+ jL�1;1j+ jL1;�1j pries yi;`, but the demands in (23) depend



67on only jL�1j+ jL1j pries. Thus, to derive the demands of the produts with no alliane (as afuntion of the jL�1j+ jL1j pries ~y with no alliane), it remains to determine appropriate valuesto substitute into (14) for the jL0;�1j+ jL0;1j+ jL�1j+ jL1j+ jL�1;1j+ jL1;�1j pries y given thepries ~y. First, onsider the easy ase: if a produt ` is o�ered by the same seller i in both thesetting with an alliane and the setting without an alliane, that is, `2Li, then simply substituteprie ~yi;` for yi;` in the demand model (14). Thus, in the example above, ~y�1;A, ~y1;B, ~y1;C, and ~y1;BCare substituted for y�1;A, y1;B, y1;C , and y1;BC respetively. Next, if a produt ` o�ered by a seller iin the alliane setting is not o�ered by any seller in the no alliane setting, that is, `2L0;i, but itan be assembled in the no alliane setting by buying a�1 units of produt `�1 from seller �1 anda1 units of produt `1 from seller 1, then substitute prie a�1~y�1;`�1 +a1~y1;`1 for yi;` in the demandmodel (14). Thus, in the example above, 2~y�1;A + ~y1;BC is substituted for y�1;A2BC and y1;A2BC .Next, if a produt ` o�ered by a seller i in the alliane setting is not o�ered by seller i in the noalliane setting, but it is o�ered by seller �i in the no alliane setting, that is, ` 2L�i;i), then wehoose the prie yi;` in the demand model (14) so that together with the other pries yi0;`0 , i0 =�1,`0 2 Li0 [L0;i0 , already determined as desribed above, will equate di;` to zero. Note that if thereare n suh produts, then n linear equations are obtained by equating the n linear expressions fordi;` to zero, and under reasonable onditions these equations an be solved for the n desired valuesof yi;`. Thus, for the example above, the system of equations�E1;A;Ay1;A�E1;A;B~y1;B �E1;A;C~y1;C �E1;A;BC ~y1;BC �E1;A;A2BC(2~y�1;A+ ~y1;BC)+B�1;A;A~y�1;A+B�1;A;By�1;B +B�1;A;Cy�1;C +B�1;A;BCy�1;BC +B�1;A;A2BC(2~y�1;A+ ~y1;BC)+C1;A= 0�E�1;B;A~y�1;A�E�1;B;By�1;B �E�1;B;Cy�1;C �E�1;B;BCy�1;BC �E�1;B;A2BC(2~y�1;A+ ~y1;BC)+B1;B;Ay1;A+B1;B;B ~y1;B +B1;B;C ~y1;C +B1;B;BC ~y1;BC +B1;B;A2BC(2~y�1;A+ ~y1;BC)+C�1;B= 0�E�1;C;A~y�1;A�E�1;C;By�1;B �E�1;C;Cy�1;C �E�1;C;BCy�1;BC �E�1;C;A2BC(2~y�1;A+ ~y1;BC)



68 +B1;C;Ay1;A+B1;C;B ~y1;B+B1;C;C ~y1;C +B1;C;BC ~y1;BC +B1;C;A2BC(2~y�1;A+ ~y1;BC)+C�1;C= 0�E�1;BC;A~y�1;A�E�1;BC;By�1;B �E�1;BC;Cy�1;C �E�1;BC;BCy�1;BC �E�1;BC;A2BC(2~y�1;A+ ~y1;BC)+B1;BC;Ay1;A+B1;BC;B ~y1;B+B1;BC;C ~y1;C +B1;BC;BC ~y1;BC +B1;BC;A2BC(2~y�1;A+ ~y1;BC)+C�1;BC= 0is solved for y1;A, y�1;B, y�1;C , and y�1;BC as linear funtions of ~y�1;A, ~y1;B, ~y1;C , and ~y1;BC. Supposethe solution isy1;A = b1;A;�1;A~y�1;A+ b1;A;1;B~y1;B + b1;A;1;C~y1;C + b1;A;1;BC ~y1;BC + b1;A;0y�1;B = b�1;B;�1;A~y�1;A+ b�1;B;1;B~y1;B + b�1;B;1;C~y1;C + b�1;B;1;BC~y1;BC + b�1;B;0y�1;C = b�1;C;�1;A~y�1;A+ b�1;C;1;B~y1;B + b�1;C;1;C ~y1;C + b�1;C;1;BC ~y1;BC + b�1;C;0y�1;BC = b�1;BC;�1;A~y�1;A+ b�1;BC;1;B~y1;B + b�1;BC;1;C ~y1;C + b�1;BC;1;BC ~y1;BC + b�1;BC;0Now we are ready to use the observations above and the demand funtions given by (14) for thealliane setting to derive the demand funtions for the produts with no alliane. For the exampleabove, we obtain the following demand funtions:~d�1;A = �E�1;A;A~y�1;A�E�1;A;B(b�1;B;�1;A~y�1;A+ b�1;B;1;B~y1;B + b�1;B;1;C ~y1;C + b�1;B;1;BC ~y1;BC + b�1;B;0)�E�1;A;C(b�1;C;�1;A~y�1;A+ b�1;C;1;B~y1;B + b�1;C;1;C ~y1;C + b�1;C;1;BC ~y1;BC + b�1;C;0)�E�1;A;BC(b�1;BC;�1;A~y�1;A+ b�1;BC;1;B~y1;B + b�1;BC;1;C ~y1;C + b�1;BC;1;BC ~y1;BC + b�1;BC;0)�E�1;A;A2BC(2~y�1;A+ ~y1;BC)+B1;A;A(b1;A;�1;A~y�1;A+ b1;A;1;B ~y1;B + b1;A;1;C ~y1;C + b1;A;1;BC ~y1;BC + b1;A;0)+B1;A;B~y1;B +B1;A;C ~y1;C +B1;A;BC ~y1;BC +B1;A;A2BC(2~y�1;A+ ~y1;BC)+C�1;A+2 ��E�1;A2BC;A~y�1;A�E�1;A2BC;B(b�1;B;�1;A~y�1;A+ b�1;B;1;B~y1;B+ b�1;B;1;C ~y1;C + b�1;B;1;BC~y1;BC + b�1;B;0)�E�1;A2BC;C(b�1;C;�1;A~y�1;A+ b�1;C;1;B~y1;B+ b�1;C;1;C ~y1;C + b�1;C;1;BC~y1;BC + b�1;C;0)



69�E�1;A2BC;BC(b�1;BC;�1;A~y�1;A+ b�1;BC;1;B~y1;B+ b�1;BC;1;C ~y1;C + b�1;BC;1;BC~y1;BC + b�1;BC;0)�E�1;A2BC;A2BC(2~y�1;A+ ~y1;BC)+B1;A2BC;A(b1;A;�1;A~y�1;A+ b1;A;1;B~y1;B + b1;A;1;C ~y1;C + b1;A;1;BC ~y1;BC + b1;A;0)+B1;A2BC;B~y1;B+B1;A2BC;C ~y1;C +B1;A2BC;BC ~y1;BC +B1;A2BC;A2BC(2~y�1;A+ ~y1;BC)+C�1;A2BC�E1;A2BC;A(b1;A;�1;A~y�1;A+ b1;A;1;B~y1;B + b1;A;1;C~y1;C + b1;A;1;BC~y1;BC + b1;A;0)�E1;A2BC;B ~y1;B �E1;A2BC;C ~y1;C �E1;A2BC;BC ~y1;BC �E1;A2BC;A2BC(2~y�1;A+ ~y1;BC)+B�1;A2BC;A~y�1;A+B�1;A2BC;B(b�1;B;�1;A~y�1;A+ b�1;B;1;B~y1;B + b�1;B;1;C~y1;C + b�1;B;1;BC~y1;BC + b�1;B;0)+B�1;A2BC;C(b�1;C;�1;A~y�1;A+ b�1;C;1;B~y1;B + b�1;C;1;C~y1;C + b�1;C;1;BC ~y1;BC + b�1;C;0)+B�1;A2BC;BC(b�1;BC;�1;A~y�1;A+ b�1;BC;1;B~y1;B + b�1;BC;1;C~y1;C + b�1;BC;1;BC ~y1;BC + b�1;BC;0)+B�1;A2BC;A2BC(2~y�1;A+ ~y1;BC)+C1;A2BC�~d1;B = �E1;B;A(b1;A;�1;A~y�1;A+ b1;A;1;B~y1;B + b1;A;1;C ~y1;C + b1;A;1;BC ~y1;BC + b1;A;0)�E1;B;B~y1;B �E1;B;C ~y1;C �E1;B;BC ~y1;BC �E1;B;A2BC(2~y�1;A+ ~y1;BC)+B�1;B;A~y�1;A+B�1;B;B(b�1;B;�1;A~y�1;A+ b�1;B;1;B~y1;B + b�1;B;1;C~y1;C + b�1;B;1;BC~y1;BC + b�1;B;0)+B�1;B;C(b�1;C;�1;A~y�1;A+ b�1;C;1;B~y1;B + b�1;C;1;C ~y1;C + b�1;C;1;BC ~y1;BC + b�1;C;0)+B�1;B;BC(b�1;BC;�1;A~y�1;A+ b�1;BC;1;B~y1;B + b�1;BC;1;C ~y1;C + b�1;BC;1;BC ~y1;BC + b�1;BC;0)+B�1;B;A2BC(2~y�1;A+ ~y1;BC)+C1;B~d1;C = �E1;C;A(b1;A;�1;A~y�1;A+ b1;A;1;B ~y1;B + b1;A;1;C ~y1;C + b1;A;1;BC ~y1;BC + b1;A;0)�E1;C;B~y1;B �E1;C;C ~y1;C �E1;C;BC ~y1;BC�E1;C;A2BC(2~y�1;A+ ~y1;BC)+B�1;C;A~y�1;A+B�1;C;B(b�1;B;�1;A~y�1;A+ b�1;B;1;B~y1;B + b�1;B;1;C ~y1;C + b�1;B;1;BC ~y1;BC + b�1;B;0)+B�1;C;C(b�1;C;�1;A~y�1;A+ b�1;C;1;B ~y1;B + b�1;C;1;C ~y1;C + b�1;C;1;BC ~y1;BC + b�1;C;0)+B�1;C;BC(b�1;BC;�1;A~y�1;A+ b�1;BC;1;B~y1;B + b�1;BC;1;C ~y1;C + b�1;BC;1;BC ~y1;BC + b�1;BC;0)+B�1;C;A2BC(2~y�1;A+ ~y1;BC)+C1;C



70~d1;BC = �E1;BC;A(b1;A;�1;A~y�1;A+ b1;A;1;B ~y1;B + b1;A;1;C ~y1;C + b1;A;1;BC ~y1;BC + b1;A;0)�E1;BC;B~y1;B �E1;BC;C ~y1;C +B1;BC;BC ~y1;BC�E1;BC;A2BC(2~y�1;A+ ~y1;BC)+B�1;BC;A~y�1;A+B�1;BC;B(b�1;B;�1;A~y�1;A+ b�1;B;1;B~y1;B + b�1;B;1;C ~y1;C + b�1;B;1;BC ~y1;BC + b�1;B;0)+B�1;BC;C(b�1;C;�1;A~y�1;A+ b�1;C;1;B ~y1;B + b�1;C;1;C ~y1;C + b�1;C;1;BC ~y1;BC + b�1;C;0)+B�1;BC;BC(b�1;BC;�1;A~y�1;A+ b�1;BC;1;B~y1;B + b�1;BC;1;C ~y1;C + b�1;BC;1;BC ~y1;BC + b�1;BC;0)+B�1;BC;A2BC(2~y�1;A+ ~y1;BC)+C1;BC �E�1;A2BC;A~y�1;A�E�1;A2BC;B(b�1;B;�1;A~y�1;A+ b�1;B;1;B~y1;B + b�1;B;1;C~y1;C + b�1;B;1;BC~y1;BC + b�1;B;0)�E�1;A2BC;C(b�1;C;�1;A~y�1;A+ b�1;C;1;B~y1;B+ b�1;C;1;C ~y1;C + b�1;C;1;BC~y1;BC + b�1;C;0)�E�1;A2BC;BC(b�1;BC;�1;A~y�1;A+ b�1;BC;1;B~y1;B+ b�1;BC;1;C ~y1;C + b�1;BC;1;BC~y1;BC + b�1;BC;0)�E�1;A2BC;A2BC(2~y�1;A+ ~y1;BC)+B1;A2BC;A(b1;A;�1;A~y�1;A+ b1;A;1;B~y1;B + b1;A;1;C ~y1;C + b1;A;1;BC ~y1;BC + b1;A;0)+B1;A2BC;B~y1;B+B1;A2BC;C ~y1;C +B1;A2BC;BC ~y1;BC+B1;A2BC;A2BC(2~y�1;A+ ~y1;BC)+C�1;A2BC�E1;A2BC;A(b1;A;�1;A~y�1;A+ b1;A;1;B~y1;B + b1;A;1;C~y1;C + b1;A;1;BC~y1;BC + b1;A;0)�E1;A2BC;B ~y1;B �E1;A2BC;C ~y1;C �E1;A2BC;BC ~y1;BC�E1;A2BC;A2BC(2~y�1;A+ ~y1;BC)+B�1;A2BC;A~y�1;A+B�1;A2BC;B(b�1;B;�1;A~y�1;A+ b�1;B;1;B~y1;B + b�1;B;1;C~y1;C + b�1;B;1;BC~y1;BC + b�1;B;0)+B�1;A2BC;C(b�1;C;�1;A~y�1;A+ b�1;C;1;B~y1;B + b�1;C;1;C~y1;C + b�1;C;1;BC ~y1;BC + b�1;C;0)+B�1;A2BC;BC(b�1;BC;�1;A~y�1;A+ b�1;BC;1;B~y1;B + b�1;BC;1;C~y1;C + b�1;BC;1;BC ~y1;BC + b�1;BC;0)+B�1;A2BC;A2BC(2~y�1;A+ ~y1;BC)+C1;A2BCThus, the demand model given by (23) is obtained for the setting with no alliane. For the exampleabove, the parameters ~E; ~B; ~C are given by E;B;C as follows:~E�1;A;A = E�1;A;A+E�1;A;Bb�1;B;�1;A+E�1;A;Cb�1;C;�1;A+E�1;A;BCb�1;BC;�1;A+2E�1;A;A2BC



71�B1;A;Ab1;A;�1;A� 2B1;A;A2BC +2(E�1;A2BC;A+E�1;A2BC;Bb�1;B;�1;A+E�1;A2BC;Cb�1;C;�1;A+E�1;A2BC;BCb�1;BC;�1;A+2E�1;A2BC;A2BC �B1;A2BC;Ab1;A;�1;A�2B1;A2BC;A2BC +E1;A2BC;Ab1;A;�1;A+2E1;A2BC;A2BC �B�1;A2BC;A�B�1;A2BC;Bb�1;B;�1;A�B�1;A2BC;Cb�1;C;�1;A�B�1;A2BC;BCb�1;BC;�1;A� 2B�1;A2BC;A2BC)~E1;B;B = E1;B;Ab1;A;1;B+E1;B;B �B�1;B;Bb�1;B;1;B�B�1;B;Cb�1;C;1;B�B�1;B;BCb�1;BC;1;B~E1;B;C = E1;B;Ab1;A;1;C +E1;B;C �B�1;B;Bb�1;B;1;C �B�1;B;Cb�1;C;1;C �B�1;B;BCb�1;BC;1;C~E1;B;BC = E1;B;Ab1;A;1;BC +E1;B;BC �B�1;B;Bb�1;B;1;BC �B�1;B;Cb�1;C;1;BC �B�1;B;BCb�1;BC;1;BC~E1;C;B = E1;C;Ab1;A;1;B +E1;C;B �B�1;C;Bb�1;B;1;B �B�1;C;Cb�1;C;1;B �B�1;C;BCb�1;BC;1;B~E1;C;C = E1;C;Ab1;A;1;C +E1;C;C �B�1;C;Bb�1;C;1;C �B�1;C;Cb�1;C;1;C �B�1;C;BCb�1;BC;1;C~E1;C;BC = E1;C;Ab1;A;1;BC +E1;C;BC �B�1;C;Bb�1;B;1;BC �B�1;C;Cb�1;C;1;BC �B�1;C;BCb�1;BC;1;BC~E1;BC;B = E1;BC;Ab1;A;1;B +E1;BC;B �B�1;BC;Bb�1;B;1;B �B�1;BC;Cb�1;BC;1;B �B�1;BC;BCb�1;BC;1;B+E�1;A2BC;Bb�1;B;1;B +E�1;A2BC;Cb�1;C;1;B+E�1;A2BC;BCb�1;BC;1;B �B1;A2BC;Ab1;A;1;B �B1;A2BC;B+E1;A2BC;Ab1;A;1;B +E1;A2BC;B �B�1;A2BC;Bb�1;B;1;B �B�1;A2BC;Cb�1;C;1;B �B�1;A2BC;BCb�1;BC;1;B~E1;BC;C = E1;BC;Ab1;A;1;C +E1;BC;C �B�1;BC;Bb�1;B;1;C �B�1;BC;Cb�1;BC;1;C �B�1;BC;BCb�1;BC;1;C+E�1;A2BC;Bb�1;B;1;C +E�1;A2BC;Cb�1;C;1;C +E�1;A2BC;BCb�1;BC;1;C �B1;A2BC;Ab1;A;1;C �B1;A2BC;C+E1;A2BC;Ab1;A;1;C +E1;A2BC;C �B�1;A2BC;Bb�1;B;1;C �B�1;A2BC;Cb�1;C;1;C �B�1;A2BC;BCb�1;BC;1;C~E1;BC;BC = E1;BC;Ab1;A;1;BC �B1;BC;BC +E1;BC;A2BC�B�1;BC;Bb�1;B;1;BC �B�1;BC;Cb�1;BC;1;BC �B�1;BC;BCb�1;BC;1;BC �B�1;BC;A2BC+E�1;A2BC;Bb�1;B;1;BC +E�1;A2BC;Cb�1;C;1;BC +E�1;A2BC;BCb�1;BC;1;BC +E�1;A2BC;A2BC�B1;A2BC;Ab1;A;1;BC �B1;A2BC;BC �B1;A2BC;A2BC+E1;A2BC;Ab1;A;1;BC +E1;A2BC;BC +E1;A2BC;A2BC�B�1;A2BC;Bb�1;B;1;BC �B�1;A2BC;Cb�1;C;1;BC �B�1;A2BC;BCb�1;BC;1;BC �B�1;A2BC;A2BC~B�1;B;A = �E1;B;Ab1;A;�1;A� 2E1;B;A2BC +B�1;B;A+B�1;B;Bb�1;B;�1;A+B�1;B;Cb�1;C;�1;A+B�1;B;BCb�1;BC;�1;A+2B�1;B;A2BC



72~B�1;C;A = �E1;C;Ab1;A;�1;A� 2E1;C;A2BC +B�1;C;A�B�1;C;Bb�1;B;�1;A+B�1;C;Cb�1;C;�1;A+B�1;C;BCb�1;BC;�1;A+2B�1;C;A2BC~B�1;BC;A = �E1;BC;Ab1;A;�1;A� 2E1;BC;A2BC+B�1;BC;Bb�1;B;�1;A+B�1;BC;Cb�1;C;�1;A+B�1;BC;BCb�1;BC;�1;A+2B�1;BC;A2BC �E�1;A2BC;A�E�1;A2BC;Bb�1;B;�1;A�E�1;A2BC;Cb�1;C;�1;A�E�1;A2BC;BCb�1;BC;�1;A� 2E�1;A2BC;A2BC+B1;A2BC;Ab1;A;�1;A+2B1;A2BC;A2BC �E1;A2BC;Ab1;A;�1;A� 2E1;A2BC;A2BC+B�1;A2BC;Bb�1;B;�1;A+B�1;A2BC;Cb�1;C;�1;A+B�1;A2BC;BCb�1;BC;�1;A+2B�1;A2BC;A2BC~B1;A;B = �E1;A;Bb�1;B;1;B �E�1;A;Cb�1;C;1;B�E�1;A;BCb�1;BC;1;B +B1;A;Ab1;A;1;B+B1;A;B�2(E�1;A2BC;Bb�1;B;1;B �E�1;A2BC;Cb�1;C;1;B �E�1;A2BC;BCb�1;BC;1;B+B1;A2BC;Ab1;A;1;B +B1;A2BC;B �E1;A2BC;Ab1;A;1;B �E1;A2BC;B+B�1;A2BC;Bb�1;B;1;B +B�1;A2BC;Cb�1;C;1;B +B�1;A2BC;BCb�1;BC;1;B)~B1;A;C = �E1;A;Bb�1;B;1;C �E�1;A;Cb�1;C;1;C �E�1;A;BCb�1;BC;1;C +B1;A;Ab1;A;1;C +B1;A;C�2(E�1;A2BC;Bb�1;B;1;C �E�1;A2BC;Cb�1;C;1;C �E�1;A2BC;BCb�1;BC;1;C+B1;A2BC;Ab1;A;1;C +B1;A2BC;C �E1;A2BC;Ab1;A;1;C �E1;A2BC;C+B�1;A2BC;Bb�1;B;1;C +B�1;A2BC;Cb�1;C;1;C +B�1;A2BC;BCb�1;BC;1;C)~B1;A;BC = �E1;A;Bb�1;B;1;BC �E�1;A;Cb�1;C;1;BC �E�1;A;BCb�1;BC;1;BC �E�1;A;A2BC+B1;A;Ab1;A;1;BC +B1;A;BC +B1;A;A2BC�2(E�1;A2BC;Bb�1;B;1;BC �E�1;A2BC;Cb�1;C;1;BC �E�1;A2BC;BCb�1;BC;1;BC �E�1;A2BC;A2BC+B1;A2BC;Ab1;A;1;BC +B1;A2BC;BC +B1;A2BC;A2BC �E1;A2BC;Ab1;A;1;BC �E1;A2BC;BC �E1;A2BC;A2BC+B�1;A2BC;Bb�1;B;1;BC +B�1;A2BC;Cb�1;C;1;BC +B�1;A2BC;BCb�1;BC;1;BC +B�1;A2BC;A2BC)~C�1;A = C�1;A+2(C�1;A2BC +C1;A2BC)~C1;B = C1;B~C1;C = C1;C~C1;BC = C1;BC +C�1;A2BC +C1;A2BC
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To state the relation between parameters E;B;C in demand model (14) and the parameters~E; ~B; ~C in demand model (23) in general, we �rst develop the notation needed for a onise rep-resentation. Let the rows and olumns of matrix Ei be grouped so that the �rst group of rowsand olumns orrespond to produts in Li, the seond group of rows and olumns orrespond toproduts in L0;i, and the third group of rows and olumns orrespond to produts in L�i;i. HeneEi an be partitioned into submatries as follows:Li L0;i L�i;iEi = 24 Ei;i Ei;0;i Ei;�i;iE0;i;i E0;i;0;i E0;i;�i;iE�i;i;i E�i;i;0;i E�i;i;�i;i 35 LiL0;iL�i;iThis grouping of the rows and olumns of Ei implies that the rows and olumns of di, yi, Bi, andCi are similarly grouped:L�i L0;�i Li;�iB�i = 24 Bi;�i Bi;0;�i Bi;i;�iB0;i;�i B0;i;0;�i B0;i;i;�iB�i;i;�i B�i;i;0;�i B�i;i;i;�i 35 LiL0;iL�i;i ; yi = 24 yi;iyi;0;iyi;�i;i 35 ; Ci = 24 Ci;iCi;0;iCi;�i;i 35 ; di = 24 di;idi;0;idi;�i;i 35Note that given the pries ~y in the no alliane setting, the pries for the same produts in thealliane setting are yi;i = ~yi 2RjLi j. Let Ri;i0 ;`;`0 denote the number of units of produt `0 2Li0 usedto assemble one unit of produt ` 2 L0;i. Then, given the pries ~y in the no alliane setting, theprie paid to assemble one unit of produt `2L0;i in the no alliane setting isXi0=�1 X`02Li0 Ri;i0;`;`0 ~yi0;`0Let Ri;i0 2RjL0;i j�jLi0 j denote the matrix with entry Ri;i0;`;`0 in the row orresponding to `2L0;i andthe olumn orresponding to `0 2Li0 . Then, given the pries ~y in the no alliane setting, the priespaid to assemble eah unit of produt in L0;i is given byyi;0;i = Xi0=�1Ri;i0 ~yi0



74Next, onsider the demand for produts in L�i;i.di;�i;i = �E�i;i;iyi;i�E�i;i;0;iyi;0;i�E�i;i;�i;iyi;�i;i +B�i;i;�iy�i;�i +B�i;i;0;�iy�i;0;�i+B�i;i;i;�iy�i;i;�i+Ci;�i;i= �E�i;i;i~yi�E�i;i;0;i Xi0=�1Ri;i0 ~yi0 �E�i;i;�i;iyi;�i;i+B�i;i;�i~y�i +B�i;i;0;�i Xi0=�1R�i;i0 ~yi0 +B�i;i;i;�iy�i;i;�i +Ci;�i;iThen, given the pries ~y in the no alliane setting, the value of (y�1;1;�1; y1;�1;1) is hosen to set(d�1;1;�1; d1;�1;1) = 0. The system of equations (d�1;1;�1; d1;�1;1) = 0 an be written as �Dy�+F ~y+C� = 0, wherey� := � y�1;1;�1y1;�1;1 � ; ~y := � ~y�1~y1 � ; C� := �C�1;1;�1C1;�1;1 � ; D := � E1;�1;1;�1 �B1;�1;�1;1�B�1;1;1;�1 E�1;1;�1;1 �F := ��E1;�1;�1�E1;�1;0;�1R�1;�1+B1;�1;0;1R1;�1 �E1;�1;0;�1R�1;1+B1;�1;1+B1;�1;0;1R1;1�E�1;1;0;1R1;�1+B�1;1;�1+B�1;1;0;�1R�1;�1 �E�1;1;1�E�1;1;0;1R1;1+B�1;1;0;�1R�1;1 �Under reasonable onditions D is nonsingular (more spei�ally, positive de�nite), and then theunique solution is y� =D�1F ~y+D�1C�. LetL1;�1 L�1;1 L�1 L1D�1 = �D�1�1;�1 D�1�1;1D�11;�1 D�11;1 � L1;�1L�1;1 ; F = �F�1;�1 F�1;1F1;�1 F1;1 � L1;�1L�1;1Thenyi;�i;i = (D�1i;�iF�i;i+D�1i;i Fi;i)~yi+(D�1i;�iF�i;�i+D�1i;i Fi;�i)~y�i+(D�1i;�iC�i;i;�i +D�1i;i Ci;�i;i)= Xi0=�1 Xi00=�1D�1i;i00Fi00;i0 ~yi0 +D�1i;i0Ci0;�i0;i0!Next, the demand model (14) is used to derive the demand for eah produt `2Li that is o�eredin the no alliane setting:di;` = 24�X`02LiEi;`;`0yi;i;`0 � X`02L0;iEi;`;`0yi;0;i;`0 � X`02L�i;iEi;`;`0yi;�i;i;`0+ X`02L�iB�i;`;`0y�i;�i;`0 + X`02L0;�iB�i;`;`0y�i;0;�i;`0 + X`02Li;�iB�i;`;`0y�i;i;�i;`0 +Ci;`35+ Xi0=�124 X`02L0;i0 Ri0;i;`0;`0�� X`002Li0Ei0 ;`0;`00yi0;i0;`00 � X`002L0;i0 Ei0;`0;`00yi0;0;i0;`00 � X`002L�i0;i0 Ei0;`0;`00yi0;�i0;i0;`00



75+ X`002L�i0 B�i0;`0;`00y�i0;�i0;`00 + X`002L0;�i0 B�i0;`0;`00y�i0;0;�i0;`00 + X`002Li0;�i0 B�i0;`0;`00y�i0;i0;�i0;`00 +Ci0;`01A35The �rst term in brakets above orresponds to the demand for produt ` 2 Li by itself, and theseond term in brakets orresponds to the demand for produt ` to assemble produts `0 2 L0;i0 ,i0 =�1. In terms of matrix notation, the demands for the produts in Li that are o�ered in the noalliane setting is given bydi;i = [�Ei;iyi;i�Ei;0;iyi;0;i�Ei;�i;iyi;�i;i +Bi;�iy�i;�i +Bi;0;�iy�i;0;�i +Bi;i;�iy�i;i;�i +Ci;i℄+ Xi0=�1 �RTi0;i (�E0;i0;i0yi0;i0 �E0;i0;0;i0yi0;0;i0 �E0;i0;�i0;i0yi0;�i0;i0+B0;i0;�i0y�i0;�i0 +B0;i0;0;�i0y�i0;0;�i0 +B0;i0;i0;�i0y�i0;i0;�i0 +Ci0;0;i0)℄Next, replae yi;i, yi;0;i, and yi;�i;i with the expressions in terms of ~y derived above. Then thedemands ~di for the produts in Li in the no alliane setting as a funtion of the pries ~y in the noalliane setting are obtained, as follows:~di = "�Ei;i~yi�Ei;0;i Xi0=�1Ri;i0 ~yi0 �Ei;�i;i Xi0=�1 Xi00=�1D�1i;i00Fi00;i0 ~yi0 +D�1i;i0Ci0;�i0;i0!+Bi;�i~y�i +Bi;0;�i Xi0=�1R�i;i0 ~yi0 +Bi;i;�i Xi0=�1 Xi00=�1D�1�i;i00Fi00;i0 ~yi0 +D�1�i;i0Ci0;�i0;i0!+Ci;i#+ Xi0=�1"RTi0 ;i �E0;i0;i0 ~yi0 �E0;i0;0;i0 Xi00=�1Ri0;i00 ~yi00 �E0;i0;�i0;i0 Xi00=�1 Xi000=�1D�1i0;i000Fi000;i00 ~yi00 +D�1i0;i00Ci00;�i00;i00!+B0;i0;�i0 ~y�i0 +B0;i0;0;�i0 Xi00=�1R�i0;i00 ~yi00+B0;i0;i0;�i0 Xi00=�1 Xi000=�1D�1�i0;i000Fi000;i00 ~yi00 +D�1�i0;i00Ci00;�i00;i00!+Ci0;0;i0!#Note that the demands ~di above are onsistent with the demand model (23), for the followingparameter values:~Ei = Ei;i +Ei;0;iRi;i +Ei;�i;i Xi0=�1D�1i;i0Fi0;i�Bi;0;�iR�i;i�Bi;i;�i Xi0=�1D�1�i;i0Fi0;i+RTi;iE0;i;i�RT�i;iB0;�i;i+ Xi0=�1RTi0;i E0;i0;0;i0Ri0;i +E0;i0;�i0;i0 Xi00=�1D�1i0;i00Fi00;i�B0;i0;0;�i0R�i0;i�B0;i0;i0;�i0 Xi00=�1D�1�i0;i00Fi00;i!
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