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Abstract

We extend the war of attrition and all-pay auction analysis of Krishna and Morgan

(1997) to a stochastic competition setting. We determine the existence of equilibrium

bidding strategies and discuss the potential shape of these strategies. Results for the war

of attrition contrast with the characterization of the bidding equilibrium strategies in the

first-price all-pay auction as well as the winner-pay auctions. Furthermore we investigate

the expected revenue comparisons among the war of attrition, the all-pay auction and the

winner-pay auctions and discuss the Linkage Principle as well. Our findings are applicable

to future works on contests and charity auctions.
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1 Introduction

The wide and growing literature on all-pay auctions assumes that the number of bidders

is common knowledge. Yet, in many situations where all-pay auctions illustrate economic,

social and political issues, participants do not know the number of their opponents. Indeed,

in lobbying contests, R&D races or battles to control some markets, agents do not know the

exact number of their rivals. In a lobbying contest, some groups of interest give a bribe to

the decision maker in order to obtain a market or a political favor. In R&D races, firms

compete each other to be the first one to obtain a patent. The money spent in this race is
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not refundable. More generally, the effect of an unknown number of bidders is an important

question in auction theory (see the recent papers of Harstad, Pekec, and Tsetlin (2008) and

Pekec and Tsetlin (2008)). However, to our knowledge there is no analysis of all-pay auctions

with an uncertain number of bidders.

Krishna and Morgan (1997) analyzed these auction designs with affiliated signals where

the number of bidders is fixed and common knowledge. In this paper, we extend their analysis

to a stochastic competition framework. In the following we call “all-pay auction” the first-

price all-pay auction and “war of attrition” the second-price all-pay auction. We focus on

equilibrium bidding strategies analysis and expected revenue comparisons as most of previous

papers on winner-pay auctions with uncertain number of bidders.

McAfee and McMillan (1987) and Matthews (1987) studied first-price auctions with a

stochastic number of bidders. They determined whether it is better to conceal or to reveal

the information about the number of bidders for first and second-price winner-pay auctions in

different frameworks.1 However, they did not characterize the equilibrium strategies. Using

a model à la Milgrom and Weber (1982) with independent private signals instead of affili-

ated ones, Harstad, Kagel, and Levin (1990) established that equilibrium bids with stochastic

competition are weighted averages of the equilibrium bids in auctions where the number of

bidders is common knowledge. Krishna (2002) investigated this result in another way with

an independent private value model. In a recent paper Harstad, Pekec, and Tsetlin (2008)

found the same result in multi-unit winner-pay auctions with common value.2 Pekec and

Tsetlin (2008) also investigate multi-unit auctions with unknown number of bidders. Indeed

they determine the ranking of the expected revenues for uniform and discriminatory auctions.

In addition they compare the expected revenues for each auction design when the number of

bidders is known and unknown.

In this paper we determine the equilibrium strategies for the all-pay auction and the war of

attrition under a monotonicity assumption when the number of bidders is unknown. Indeed we

assume the Bayesian assessment of the bidder’s value times a hazard rate given a stochastic

number of bidders is an increasing function in the bidder’s signal. It is a generalization

of an assumption of Krishna and Morgan (1997) when the number of bidders is fixed and

common knowledge. The consistency of this assumption is discussed through an example.

The equilibrium strategies of the all-pay auction, as well as winner-pay auctions (Harstad,

Kagel, and Levin, 1990), is a weighted average of equilibrium strategies that would be chosen

for each number of bidders. However, it is not obvious for the war of attrition. Indeed,

contrary to the – first and second-price – winner-pay auctions, it does not directly follow

from the first order condition that the equilibrium strategy should be equal to a weighted

1Matthews (1987) considered bidders with an increasing, a decreasing or a constant absolute risk-aversion

and McAfee and McMillan (1987) focused only on the risk-averse bidders and determined the optimal auction.
2In their framework, the number of identical prizes is proportional to the number of bidders. They showed

that an unknown number of bidders could change the results on information aggregation. Common knowledge

of the proportional ratio allows to find the results on information aggregation when the number of bidders is

sufficiently high.
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average. Using an example, this result is discussed. Moreover an answer for the independent-

private-values model is provided.

Expected revenues are not only compared for the war of attrition and the all-pay auc-

tion but also among all-pay and winner-pay mechanisms. Then, we show that the stochastic

competition does not affect the ranking of the expected revenues and the Linkage Principle

as well. It is not an intuitive result. Indeed, we prove that the unknown number of bid-

ders affects bidding strategies differently for the war of attrition, the all-pay auction and the

winner-pay auctions. Moreover bidding strategy comparisons are provided among the all-pay

and winner-pay mechanisms.

The paper is organized as follows. The model and preliminaries are described in Section

2. The analysis of the war of attrition and the all-pay auctions are given in Sections 3 and

4. Section 5 compares expected revenues and bidding strategies. Some computational details

are provided in Appendix.

2 Model with Stochastic Competition

The model follows and generalizes the preliminaries of Krishna and Morgan (1997) (hence-

forth K-M) in a stochastic competition setting (as McAfee and McMillan (1987) and Harstad,

Kagel, and Levin (1990) used in the study of winner-pay auctions). There is an indivisible

object that can be allocated to N = {1, 2, ..., n} potential bidders, with n < ∞. Every poten-

tial bidder is risk neutral. Firstly, we consider a set of bidders A ⊂ N . Denote |A| = a the

cardinality of set A.

Prior to the auction, each bidder i observes a real-valued signal Xi ∈ [0, x̄]. The value of the

object to bidder i, which depends on his signal and those of the other bidders, is denoted by

Va,i = Va,i(X) = Va(Xi,X−i)

where Va, which is the same function for all bidders, is symmetric in the opponent bidders’

signals X−i = (X1, ..., Xi−1, Xi+1, ..., Xa). It is assumed that Va is non-negative, continuous,

and non-decreasing in each argument. Moreover, the bidders’ valuation for the object is

supposed bounded for all a: EVa,i < ∞.

Let f be the joint density of X1, X2, ..., Xa, a symmetric function in the bidders’ signals.

Besides, for any a-tuple y, z ∈ [0, x̄]a with m̄ = {max(yi, zi)}ai=1 and m = {min(yi, zi)}ai=1, f

satisfies the affiliation inequality

f(m̄)f(m) ≥ f(y)f(z).

Affiliation is a strong form of positive correlation as discussed by Milgrom and Weber (1982).

It means that if a bidder’s signal is high, then other bidders’ signals are likely high too.

As a consequence, the competition is likely to be strong. Let FY 1
a
(.|x) be the conditional

distribution of Y 1
a , where Y 1

a = max{Xj}aj=2, given X1 = x and fY 1
a
(.|x) the corresponding

density function.
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When the number of potential bidders a is common knowledge, we can define

va(x, y) = E(Va,1|X1 = x, Y 1
a = y), (1)

the Bayesian assessment of bidder 1 when his private signal is x and the maximal signal of

his opponents is y. As in K-M, we assume that va(x, y) is increasing.
3

We consider the situation in which bidders do not know the number of their rivals when they

choose their strategy. For any subset A of N , we denote πA the probability that A is the set

of active bidders. Moreover, the probabilities πA are independent of the bidders’ identities

and auction rules. Sets with equal cardinality have equal probabilities. Therefore, the ex ante

probability to have a participants in the auction is the sum of probabilities with the same

cardinal a:

sa :=
∑

|A|=a,A⊂N

πA

Let pia bidder i’s updated probability that there are a bidders conditional upon the event

that he is an active bidder. We suppose that these probabilities are common knowledge and

symmetric such as pia = pa. Therefore
4

pia :=

∑

|A|=a,i∈A⊂N

πA

∑

i∈B⊂N

πB
and pa = pia =

asa
n
∑

i=1

isi

3 Analysis of the War of Attrition

In this section we determine the equilibrium strategies for the war of attrition with affiliated

signals. It is not clear from the first order condition that the equilibrium strategies are

weighted average of the equilibrium strategies that would be chosen for each number of

bidders. Then we consider an independent-private-values model to investigate further this

question.

3.1 General Case with Affiliated Signals

Assume that the number of bidders is common knowledge and each bidder i bids an amount

bi. Thus, the payoff of the bidder i if b is the vector of bids is

Ua,i(b,X) =























Va,i(X)−max
j 6=i

bj if bi > max
j 6=i

bj

1

#Q(b)
Va,i(X)− bi if bi = max

i 6=j
bj

−bi if bi < max
j 6=i

bj

3As Milgrom and Weber (1982) and K-M remark, since X1 and Y 1

a are affiliated, va(x, y) is a non-decreasing

function of its arguments. But they adopted the same assumption.
4For detail, see McAfee and McMillan (1987).
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where i 6= j and Q(b) := {argmaxi bi} is the collection of the highest bids. Strategies at the

symmetric equilibrium are noted βa when the number of bidders a is known. K-M show that

the bidding equilibrium strategy when the bidders are informed about the number of bidders

a is

βa(x) =

∫ x

0
va(y, y)λ(y|y, a)dt (2)

where λ(y|x, a) =
fY 1

a
(y|x)

1− FY 1
a
(y|x) and with the following boundary conditions:

βa(0) = 0 and lim
x→x̄

βa(x) = ∞.

Let us assume the same mechanism for a stochastic number of bidders and denoted βi :

[0, x̄] → R+ a bidder’s i pure strategy, mapping signals into bids. As we consider only the

symmetric equilibria, we focus on the symmetric and increasing pure strategies β ≡ β1 =

β2 = ... = βa. As the number of bidders is stochastic, the definition of the equilibrium

strategy concerns bidders’ beliefs about the number of active bidders. Strategy β is called a

equilibrium strategy if for all bidders i

β(x) ∈ argmaxbi EaE[Ua,i(bi,β(X−i),X)|Xi = x] ∀x ∈ [0, x̄] (3)

where β(X
−i) = (β(X1), ...β(Xi−1), β(Xi+1), ..., β(Xa)) and Ea is the expectation operator

with respect to the distribution of the bidders’ beliefs.

The uncertain number of bidders enters the expected utility through the value of the

object for the bidder and the size of the vector of bids b.5. Assume that all bidders except

bidder 1 follow a symmetric – and differentiable – equilibrium strategy. Bidder 1 receives a

signal x and bids an amount b. The expected utility of bidder 1 is

ΠW (b, x) = EaE[Ua,1(b,β(X−1),X)|X1 = x]

= EaE{[Va,1 − β(Y 1
a )]1β(Y 1

a )≤b − b1β(Y 1
a )>b|X1 = x}

= EaE{E{[Va,1 − β(Y 1
a )]1β(Y 1

a )≤b − b|X1, Y
1
a }|X1 = x}

=
∑

a

pa

∫ β−1(b)

0
[va(x, y)− β(y))]fY 1

a
(y|x)dy − b

[

1−
∑

a

paFY 1
a
(β−1(b)|x)

]

(4)

with β−1(.) the inverse function of β(.). The maximization of (4) with respect to b leads to:

∑

a

pava(x, β
−1(b))fY 1

a
(β−1(b)|x) 1

β′(β−1(b))
−
[

1−
∑

a

paFY 1
a
(β−1(b)|x)

]

= 0 (5)

At the symmetric equilibrium b = β(x), thus (5) yields

β′(x) =
∑

a

pava(x, x)fY 1
a
(x|x)

1−∑

i piFY 1

i

(x|x)

=
∑

a

wa(x)β
′
a(x) (6)

5It also enters through the collection of the highest bids Q(b). Yet, when #Q(b) > 1 the value of the

integral is zero: at least one of the support is an atom. Thus, we do not need to consider it.
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with the weights

wa(x) =
pa(1− FY 1

a
(x|x))

1−
∑

i piFY 1

i

(x|x) (7)

By (2) and (6) we know that β(.) is increasing. It follows that an equilibrium strategy

must be given by

β(x) =
∑

a

wa(x)βa(x)−
∑

a

∫ x

0
w′
a(t)βa(t)dt (8)

Thus, we have a necessary condition about the shape of β. We prove that it is indeed

an equilibrium strategy under an additional assumption, as stated in the next theorem. This

assumption provides a sufficient condition for the existence of the symmetric monotonic equi-

librium bidding strategies.

Definition 1. Let φ : R2 −→ R be defined by φ(x, y|a) = va(x, y)λ̃(y|x, a) where λ̃(y|x, a) =
fY 1

a
(y|x)

1−
∑

i piFY 1

i

(y|x) .

φ(., y|a) is the product of va(., y), an increasing function, and λ̃(y|x, a), a non-increasing

function.6 Besides, φ is equivalent to va(x, y)λ(y|x, a) defined by K-M when the number of

agents a is common knowledge.

Assumption 1. φ(x, y|a) is increasing in x for all y.

Theorem 1. Under assumption 1, a symmetric equilibrium in a war of attrition is represented

by

β(x) =
∑

a

wa(x)βa(x)−
∑

a

∫ x

0
w′
a(t)βa(t)dt

with βa(t) and wa(t) given by (2) and (7).

Proof. First, β(.) is a continuous and differentiable function. Indeed, by K-M we know that

βa(.) is a continuous and differentiable function. We have to verify the optimality of β(z)

when bidder 1’s signal is x. Using equation (5), we find that

∂ΠW

∂β(z)
(β(z), x) =

∑

a

pava(x, z)fY 1
a
(z|x) 1

β′(z)
− 1 +

∑

a

paFY 1
a
(z|x)

=
1

β′(z)

[

∑

a

pava(x, z)fY 1
a
(z|x)−

∑

a

pava(z, z)λ̃(z|z, a)(1−
∑

i

piFY 1

i

(z|x))
]

=
1

β′(z)
(1−

∑

i

piFY 1

i

(z|x))
∑

a

pa[φ(x, z|a)− φ(z, z|a)]

When x > z, as φ(x|y, a) is increasing in x, it follows that
∂ΠW

∂β(z)
(β(z), x) > 0. In a similar

manner, when x < z,
∂ΠW

∂β(z)
(β(z), x) < 0. Thus,

∂ΠW

∂β(z)
(β(x), x) = 0. As a result, the

maximum of ΠW (β(z), x) is achieved for z = x. �

6This fact can be proved in a similar way that the hazard rate λ(y|x, a) of the distribution FY 1
a

(y|x) is

non-increasing in x.
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K-M discussed assumption 1 when the number of bidders is common knowledge. This

assumption means that va(., y) increases faster than λ̃(y|x, a) decreases. However, as in the

war of attrition with a fixed number of bidders, this is not a problem. Indeed, this assumption

holds if the affiliation between X and Y 1
a is not so strong. We give an example below to

illustrate this discussion with a stochastic number of bidders.7

Example 1. Let f(x) = 2a

2a+1(1 +
∏a

i=1 xi) on [0, 1]a with Xi bidder i’s signals and let us

denote fYa
(x, y1, y2, ..., ya−1) the joint density of (X1, Y

1
a , Y

2
a , ..., Y

a−1
a ) with Y k

a the kth-highest

order statistic of (X2, ..., Xa) such as Y 1
a ≥ Y 2

a ≥ ... ≥ Y a−1
a . Let us consider a ∈ {2, 3}.

Therefore,
fY2

(x, y) = 4
5(1 + xy) on [0, 1]2

fY3
(x, y1, y2) =

16
9 (1 + xy1y2)1y1≥y2 on [0, 1]3

First of all, we can easily verify that the affiliation inequality given holds. We also assume

that va(x, y) = a(x+ y). Then computations lead to

fY 1

2

(y|x) = 2
1 + xy

2 + x
and FY 1

2

(y|x) = y
2 + xy

2 + x

fY 1

3

(y|x) = 4y
2 + xy2

4 + x
and FY 1

3

(y|x) = y2
4 + xy2

4 + x

We can also verify that FY 1
a
(y|x) is non-increasing in x. We obtain

φ(x, y|2) = 2(x+ y)
2(1 + xy)(x+ 4)

(x+ 4)(x+ 2)− p2y(2 + xy)(4 + x)− p3y2(4 + xy2)(2 + x)

φ(x, y|3) = 3(x+ y)
4y(2 + xy2)(2 + x)

(x+ 4)(x+ 2)− p2y(2 + xy)(4 + x)− p3y2(4 + xy2)(2 + x)

Thus, assumption 1 holds (some details are given in appendix).

Using the results where the number of bidders is common knowledge, the boundary con-

dition β(0) = 0 follows. Thus, if the expected value is bounded whatever the number of

potential bidders, then the bidding strategy will be bounded too. Following the same logic

than K-M, we could determine that lim
x→x̄

β(x) = ∞. Indeed, in this situation,

β(x) ≥
∑

a

pa

∫ x

0
va(y, y)λ̃(y|y, a)dy +min

a
va(z, z) ln

(

1−∑

a paFY 1
a
(z|z)

1−
∑

a paFY 1
a
(x|z)

)

Harstad, Kagel, and Levin (1990) and Harstad, Pekec, and Tsetlin (2008) show that the

form of the equilibrium strategies for winner-pay auctions is such that β(x) =
∑

awa(x)βa(x).

However, this result is not obvious for the war of attrition. Indeed, contrary to winner-pay

auctions and the all-pay auction (cf infra.), in the case of the war attrition, it is not a direct

result of the first order condition that the equilibrium strategy should be equal to a weighted

average. Yet, the following example illustrates in a simple case that the bidding strategy in

the war of attrition with stochastic competition could be written as a weighted average of the

bidding strategies that would have been chosen for each number of competitors.

7This example generalizes an example of K-M with two – fixed – bidders.
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Example 2. Let f(x) = 2a
∏a

i=1 xi on [0, 1]a with Xi bidder i’s signals and let a ∈ {2, 3}.
As in Example 1 we assume that va(x, y) = a(x+ y). Therefore,

fY2
(x, y) = 4xy on [0, 1]2

fY3
(x, y1, y2) = 16xy1y21y1≥y2 on [0, 1]3

We can easily verify that the affiliation inequality and the assumption 1 hold. Then the

equilibrium strategies for a fixed number of bidders are given by

β2(x) = 8

∫ x

0

y2

1− y2
dy

= −8x+ 4 ln
1 + x

1− x

and

toto

β3(x) = 24

∫ x

0

y4

1− y4
dy

= 24

(

−x+
1

4
ln

1 + x

1− x
+ arctanx

)

When the number of bidders is stochastic and p2 = p3 = 0.5

β(x) = 8

∫ x

0
y2

1 + 3x2

2− x2 − x4
dy

= −8

3

∫ x

0
2

y

y + 1
+ 2

y

y − 1
+ 5

y2

y2 + 2
dy

= −12x+
16

3
ln

1 + x

1− x
+

16
√
2

3
arctan

x√
2

All these bidding strategies are depicted in Figure 1. The bidding strategy with a stochastic

number of bidders β (solid line) is always higher than the bidding strategy with 2 bidders (long

dashed line) and lower than the bidding strategy with 3 bidders (short dashed line) for all

value of x. Then we can find a vector of weights such as the bidding strategy with stochastic

competition would be written as a weighted average of the bidding strategies with a fixed number

of bidders.

0.2 0.4 0.6 0.8 1
x

10

20

30

40

Β2!x", Β3!x", Β!x"

Figure 1: Bidding strategies β2, β3 and β.

3.2 An Example: Independent-Private-Values Model

As we have seen previously, and despite Example 2, it is not obvious that the equilibrium

strategy in the war of attrition is equal to a weighted average such that β(x) =
∑

awa(x)βa(x).
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In this section, we provide an answer for the IPV model.

Let us consider that each bidder i assigns valueXi to the object, independently distributed

on [0, x̄] from the identically distribution F . Therefore, the bidding strategy where the number

of bidders a is common knowledge is

βa(x) = (a− 1)

∫ x

0

yf(y)F a−2(y)

1− F a−1(y)
dy

and the bidding strategy with stochastic competition is given by

β(x) =
∑

a

pa(a− 1)

∫ x

0

yf(y)F a−2(y)

1−
∑

i piF
i−1(y)

dy

.

Lemma 1. The equilibrium strategy in a war of attrition is decreasing in a for all a ≥ 2.

Proof.

∂βa

∂a
(x) =

∫ x

0

yf(y)F a−2(y)

(1− F a−1(y))2
[1− F a−1(y) + (a− 1) lnF (y)]dy

As 1− F a−1(y) + (a− 1) lnF (y) is negative for all a, y, the result follows. �

If β(x) ∈ [βa(x), βā(x)] for all x with βa(x) = mina{βa(x)∀a ∈ N |sa > 0} and βā(x) =

maxa{βa(x)∀a ∈ N |sa > 0} then we can find a vector of weights (za(.))a with
∑

a za(.) =

1, za(.) ≥ 0 for all x such that β(x) =
∑

a za(x)βa(x). Thus, we state:

Proposition 1. In an IPV model, the equilibrium strategy in the war of attrition with stochas-

tic competition is a weighted average of equilibrium strategies where the number of bidders is

common knowledge.

Proof. We have to distinguish two cases. Indeed from Lemma 1 either p1 = 0 and then

βā(x) = β2(x) or p1 > 0 and βa(x) = βn(x).

β(x)− β2(x) =

∫ x

0

yf(y)

[1−∑

i piF
i−1(y)][1− F (y)]

[

∑

a

pa(a− 1)F a−2(y)−
∑

a

pa(a− 2)F a−1(y)− 1

]

dy

As
∑

a pa(a− 1)F a−2(y)−
∑

a pa(a− 2)F a−1(y)− 1 is negative, β(x) ≤ β2(x).

If p1 > 0 βa(x) = β1(x) = 0 then the result follows. However if p1 = 0:

β(x)− βn(x) =

∫ x

0

yf(y)

[1−
∑

i>1 piF
i−1(y)][1− Fn−1(y)]

∑

a>1

pak(y, a)dy

where k(y, a) = (a− 1)F a−2(y) + (n− a)Fn+a−3(y)− (n− 1)Fn−2(y) is positive for all a ≥ 2

and y.

Thus in both cases, p1 = 0 and p1 > 0, β(x) ∈ [βa(x), βā(x)] for all x and the equilibrium

strategy with stochastic competition can be written as a weighted average of equilibrium

strategies with a fixed number of bidders. �
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The next example considers uniform distributions and at most three bidders. Then an

explicit shape of the vector of weights is determined. Even in this simple case, this vector

cannot be written as easily as for the winner-pay auctions.

Example 3. Let us consider the value Xi is given by a uniform distribution on [0, 1] and the

number of bidders a could be 2 or 3. Then the equilibrium strategies for a fixed number of

bidders are given by

β2(x) =

∫ x

0

y

1− y
dy

= −x− ln(1− x)
and

toto

β3(x) = 2

∫ x

0

y2

1− y2
dy

= −2x+ ln
1 + x

1− x

When the number of bidders is stochastic

β(x) =

∫ x

0

p2y + 2p3y
2

1− p2y − p3y2
dy

= −2x−
∫ x

0

2− p2y

p3(y − 1)(y − yo)
dy

= −2x− 1

p3

2− p2

1− yo
ln(1− x) +

1

p3

2− p2yo

1− yo
ln[−yo(x− yo)]

where yo =
−p2 −

√

p22 + 4p3
2p3

and belongs to (−2,−1].

Using Proposition 1 there exists a vector of weights (z2(.), z3(.)) such that z2(x)β2(x) +

z3(x)β3(x) = β(x) for all x ∈ (0, 1]. It follows that

z3(x) =

−x+ ln(1− x)−
∫ x

0

2− p2y

p3(y − 1)(y − yo)
dy

−x+ ln(1 + x)
and z2(x) = 1− z3(x) for all x ∈ (0, 1].

Remark that if p2 = 0 then z3(x) = 1 for all x.8 Moreover it is routine to verify that

z3(x) ∈ [0, 1].

4 Analysis of the All-Pay Auction

As before assume the number of bidders is common knowledge and each bidder i bids an

amount bi. Thus, the payoff of the bidder i is

Ua,i(b,X) =























Va,i(X)− bi if bi > max
j 6=i

bj

1

#Q(b)
Va,i(X)− bi if bi = max

i 6=j
bj

−bi if bi < max
j 6=i

bj

where i 6= j and Q(b) := {argmaxi bi} is the collection of the highest bids. Strategies at the

symmetric equilibrium are noted αa when the number of bidders a is known. K-M show that

8Indeed −

∫
x

0

2− p2y

p3(y − 1)(y − yo)
dy = 2

∫
x

0

dy

1− y2
.
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the bidding equilibrium strategy when the bidders are informed about the number of bidders

a is

αa(x) =

∫ x

0
va(t, t)fY 1

a
(t|t)dt (9)

with the following boundary conditions:

αa(0) = 0 and lim
x→x̄

αa(x) = lim
x→x̄

va(x, x). (10)

As for the war of attrition, we focus only on the symmetric pure strategies α : [0, x̄] → R+,

called an equilibrium strategy if for all bidders i (such that i ≤ a)

α(x) ∈ argmaxbi EaE[Ua,i(bi,α(X
−i),X)|Xi = x] ∀x ∈ [0, x̄]

where α(X
−i) = (α(X1), ...α(Xi−1), α(Xi+1), ..., α(Xa)).

Assume that all bidders except bidder 1 follow a symmetric – and differentiable – equi-

librium strategy. Bidder 1 receives a signal x and bids an amount b. The expected utility of

bidder 1 is

ΠA(b, x) = EaE[Ua,1(b,α(X
−1),X)|X1 = x]

= EaE[Va,11α(Y 1
a )≤b − b|X1 = x]

= EaE[E[Va,11α(Y 1
a )≤b − b|X1, Y

1
a ]|X1 = x]

=
∑

a

pa

∫ α−1(b)

0
[va(x, y)− α(y))]fY 1

a
(y|x)dy − b (11)

with α−1(.) the inverse function of α(.). The maximisation of (11) with respect to b leads, at

the symmetric equilibrium b = α(x), to

α′(x) =
∑

a

paα
′
a(x) (12)

By (9) and (12) the bidding strategy α(.) is an increasing function. It follows from the

boundary condition (10) that an equilibrium strategy must be given by

α(x) =
∑

a

paαa(x) (13)

Once again, we have only a necessary condition about the shape of the equilibrium strat-

egy. Under assumption9 1 we prove that α(.) is indeed an equilibrium strategy, as stated in

the next theorem.

9Indeed, this assumption implies that va(., y)fY 1
a

(y|.) is increasing for all y. The proof is similar to the

proof of Proposition 3 of K-M.
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Theorem 2. Under assumption 1, a symmetric equilibrium in an all-pay auction, denoted

α(.), is a weighted average of equilibrium strategies, denoted αa(.), that would be chosen for

each number of bidders such that α(x) =
∑

a paαa(x).

Proof. To prove that α is optimal, we follow the same way that for the war of attrition. α(.) is

a continuous and differentiable function. Indeed, by K-M we know that αa(.) is a continuous

and differentiable function. We verify the optimality of α(z) when bidder 1’s signal is x.

Using equation (12), we find that

∂ΠA

∂α(z)
(α(z), x) =

∑

a

pava(x, z)fY 1
a
(z|x) 1

α′(z)
− 1

=
1

α′(z)

∑

a

pa[va(x, z)fY 1
a
(z|x)− va(z, z)fY 1

a
(z|z)]

As we said before, assumption 1 implies that va(x, y)fY 1
a
(y|x) is increasing in x for all y. When

x > z, it follows that
∂ΠA

∂α(z)
(α(z), x) > 0. In a similar manner, when x < z,

∂ΠA

∂α(z)
(α(z), x) <

0. Thus,
∂ΠA

∂α(z)
(α(x), x) = 0. As a result, the maximum of ΠA(α(z), x) is achieved for

z = x. �

Using the results where the number of bidders is common knowledge, the boundary con-

dition α(0) = 0 follows. Thus, if the expected value is bounded whatever the number of

potential bidders, then the bidding strategy will be bounded too. Following the same logic

than K-M, we could determine that lim
x→x̄

α(x) = lim
x→x̄

max
a

va(x, x).

Thus, the bidders’ beliefs about the number of competitors is crucial to determine the

equilibrium strategies. Indeed, the stochastic number of bidders does not affect the bidders’

strategies at the equilibrium of the all-pay auction and the war of attrition in the same way.

5 Bidding Strategy and Revenue Comparisons

In this section we investigate the expected revenue comparisons for the war of attrition and

the all-pay auction. We also compare the expected revenues and the equilibrium strategies

obtained from the all-pay and winner-pay mechanisms. Finally the Linkage Principle is

discussed.10 The probability that a potential bidder i is taking part of the auction is given

by
∑

i∈A πA. Let us denote ed(.) the expected payment of the current bidder i in an auction

design d. Then the expected revenue is
∑n

i=1[
∑

i∈A πA]Ee
d(X).

5.1 War of Attrition versus All-Pay Auction

K-M show that the expected revenue from the war of attrition is greater than the expected

revenue from the all-pay auction when the number of bidders is known and signals affiliated.

10Note that the proofs of the expected revenue comparisons use the same logic than the proofs of K-M.
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In our stochastic setting, it is not obvious that this result still holds. Indeed, the uncer-

tainty about the number of bidders has various consequences on the bidders’ strategies at the

equilibrium. As opposed to the all-pay auction, the equilibrium bidding strategy in the war

of attrition is not average with weight pa of the bidding strategies for each fixed number of

bidders. Intuitively it is difficult to determine from the equilibrium bidding strategies how

the stochastic competition modifies the ranking of the expected revenues. However, as we

state in the next proposition, the stochastic competition does not affect the ranking of the

expected revenues.

Proposition 2. Under assumption 1, the expected revenue from the war of attrition is greater

than or equal to the expected revenue from the all-pay auction.

Proof. Denote eA(.), the bidders’ expected payment in the all-pay auction at the symmetric

equilibrium and eW (.) in the war of attrition. Then, under assumption 1,

eW (x) =

∫ x

0
β(y)

∑

a

pafY 1
a
(x|x)dy + β(x)(1−

∑

a

paFY 1
a
(y|x))

= β(x)−
∫ x

0
β′(y)

∑

a

paFY 1
a
(y|x)dy

=
∑

a

∫ x

0
wa(y)β

′
a(y)dy −

∑

a

∫ x

0
wa(y)β

′
a(y)

∑

i

piFY 1

i

(y|x)dy

=
∑

a

∫ x

0
wa(y)β

′
a(y)(1−

∑

i

piFY 1

i

(y|x))dy

=
∑

a

pa

∫ x

0
va(y, y)fY 1

a
(y|y)

1−
∑

i piFY 1

i

(y|x)
1−

∑

i piFY 1

i

(y|y)dy

≥ α(x)

As eA(x) = α(x) and FY 1

i

(y|.) is a non-increasing function for all y, the war of attrition

outperforms the all-pay auction. �

5.2 War of Attrition versus Second-Price Auction

Our second result describes, under Assumption 1, the ranking of the equilibrium strategies

from the war of attrition and the second-price auction.

Proposition 3. Under assumption 1, the equilibrium strategies from the war of attrition and

the second-price auction intersect at least once.

Proof. Denote ωII(.), the bidding strategy at the symmetric equilibrium in the second-price

winner-pay auction. Following Harstad, Kagel, and Levin (1990) the equilibrium strategy is

given by ωII(x) =
∑

a

pafY 1
a
(x|x)

∑

i pifY 1

i

(x|x)va(x, x).

Then,

13



E[ωII(Y )|X1 = x, Y 1
a < x] =

∑

a

pa

∫ x

0
va(y, y)fY 1

a
(y|y)

∑

i pifY 1

i

(y|x)
∑

i pifY 1

i

(y|y)
∑

i piFY 1

i

(x|x)dy

In addition,

E[β(Y )|X1 = x, Y 1
a < x] =

∫ x
0 β(y)

∑

a pafY 1
a
(y|x)dy

∑

i piFY 1

i

(x|x)

= β(x)−
∫ x

0
β′(y)

∑

a paFY 1
a
(y|x)

∑

i piFY 1

i

(x|x) dy

=
∑

a

∫ x

0
wa(y)β

′
a(y)dy −

∑

a

∫ x

0
wa(y)β

′
a(y)

∑

i piFY 1

i

(y|x)
∑

i piFY 1

i

(x|x)dy

=
∑

a

∫ x

0
wa(y)β

′
a(y)

∑

i piFY 1

i

(x|x)−
∑

i piFY 1

i

(y|x)
∑

i piFY 1

i

(x|x) dy

=
∑

a

pa

∫ x

0
va(y, y)fY 1

a
(y|y)

∑

i piFY 1

i

(x|x)−
∑

i piFY 1

i

(y|x)
(1−

∑

i piFY 1

i

(y|y))
∑

i piFY 1

i

(x|x)dy

From the affiliation inequality it follows for all y ≤ x that

∫ x

y

∑

i

pifY 1

i

(t|x)dt
∑

i

pifY 1

i

(y|x)
<

∫ x̄

y

∑

i

pifY 1

i

(t|y)dt
∑

i

pifY 1

i

(y|y)

if x is sufficiently low and

∫ x

y

∑

i

pifY 1

i

(t|x)dt
∑

i

pifY 1

i

(y|x)
>

∫ x̄

y

∑

i

pifY 1

i

(t|y)dt
∑

i

pifY 1

i

(y|y)
if x sufficiently high.

It follows that E[β(Y )|X1 = x, Y 1
a < x] < E[ωII(Y )|X1 = x, Y 1

a < x] if x is sufficiently

low and E[β(Y )|X1 = x, Y 1
a < x] > E[ωII(Y )|X1 = x, Y 1

a < x] if x is sufficiently high.

�

K-M also show that the expected revenue from the war of attrition is greater than the

expected revenue from the second-price winner-pay auction when the number of bidders is

known and signals affiliated. For similar reasons than above, it is not obvious that this result

still holds here. Yet, as we state in the next proposition, the stochastic competition still does

not affect the ranking of the expected revenues.

Proposition 4. Under assumption 1, the expected revenue from the war of attrition is greater

than or equal to the expected revenue from the second-price auction.

Proof. Denote eII(.) the expected payment at the symmetric equilibrium in the second-price

winner-pay auction such as

eII(x) =
∑

i

piFY 1

i

(x|x)E[ωII(Y )|X1 = x, Y 1
a < x]
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with ωII(x) =
∑

a

pafY 1
a
(x|x)

∑

i pifY 1

i

(x|x)va(x, x).

eW (x) =
∑

a

pa

∫ x

0
va(y, y)fY 1

a
(y|y)

1−
∑

i piFY 1

i

(y|x)
1−∑

i piFY 1

i

(y|y)dy

≥
∑

a

pa

∫ x

0
va(y, y)fY 1

a
(y|y)

∑

i pifY 1

i

(y|x)
∑

i pifY 1

i

(y|y)dy

=eII(x)

To get this result remark that

∑

i pifY 1

i

(y|y)
1−∑

i piFY 1

i

(y|y) ≥
∑

i pifY 1

i

(y|x)
1−∑

i piFY 1

i

(y|x)

holds for all y ≤ x.11 �

5.3 All-Pay Auction versus First-Price Auction

The next Proposition describes, under assumption 1, the ranking of the equilibrium strategies

from the all-pay auction and the first-price auction. We show in an example that these two

bidding strategies are not strictly ordered for a fixed number of bidders for all range of x.

Proposition 5. Under assumption 1, the equilibrium strategies from the all-pay auction and

the first-price auction intersect at least once.

Proof. Denote ωI(.), the bidding equilibrium strategy in the first-price winner-pay auction

such as (see Harstad, Kagel, and Levin (1990)) ωI(x) =
∑

a

paFY 1
a
(x|x)

∑

i piFY 1

i

(x|x)ω
I
a(x) with ωI

a(x) =

∫ x

0
va(y, y)

fY 1
a
(y|y)

FY 1
a
(y|y)exp

{

−
∫ x

y

fY 1
a
(t|t)

FY 1
a
(t|t)dt

}

dy.

Let us consider the Example 1 for va(x, y) = ax. If bidding strategies cannot be strictly

ordered for p2 = 1 they cannot be strictly ordered neither for p2 < 1. Computations lead to

α2(x) =

∫ x

0
y
1 + y2

2 + y
dy

=
4

3
x3 − x2 + 20x− 40 ln

x+ 2

2

and

11This fact can be proved in a similar way that the hazard rate λ(y|x, a) of the distribution FY 1
a

(y|x) is

non-increasing in x.
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ωI
2(x) =

∫ x

0
y
1 + y2

2 + y
dy

= 4

∫ x

0

1 + y2

2 + y2
exp

{

−
∫ x

y

1 + t2

2t+ t3
dt

}

dy

= 4

∫ x

0

(

1− 1

2 + y2

)

exp

{

−
∫ x

y

(

1

t
+

t

2 + t2

)

dt

}

dy

= 4

∫ x

0

y

x

(

2 + y2

2 + x2

)1/2

− y

x

(2 + y2)−1/2

(2 + x2)1/2
dy

=
4

3x
(x2 − 1) +

4
√
2

3x(2 + x2)1/2

As ωI
2(0.15) = 0.15 > α2(0.15) = 0.09 and ωI

2(0.75) = 0.79 < α2(0.75) = 2.26 the result

follows. �

Our next result compares the expected revenues obtained from the all-pay auction and

the first-price auction. Equilibrium bidding strategies in the first-price winner-pay auction

and the all-pay auction with stochastic competition can be written as weighted average of

equilibrium strategies that would be chosen for each number of bidders. However the weight of

the average are different and cannot be strictly ranked. Then once again, it is not obvious that

results with exogenous number of bidders still holds. Yet, as we state in the next proposition,

the stochastic competition does not affect the ranking of the expected revenues.

Proposition 6. Under assumption 1, the expected revenue from the all-pay auction is greater

than or equal to the expected revenue from the first-price auction.

Proof. Denote eI(.) the expected payment at the symmetric equilibrium in the first-price

winner-pay auction such as

eI(x) =
∑

i

piFY 1

i

(x|x)ωI(x)

Then,

eI(x) =
∑

a

paFY 1
a
(x|x)

∑

i

piFY 1
a
(x|x)

∑

a paFY 1
a
(x|x)ω

I
i (x)

=
∑

a

pa

∫ x

0
va(y, y)fY 1

a
(y|y)

FY 1
a
(x|x)

FY 1
a
(y|y) exp

{

−
∫ x

y

fY 1
a
(t|t)

FY 1
a
(t|t)dt

}

dy

≤
∑

a

pa

∫ x

0
va(y, y)fY 1

a
(y|y)dy

=eA(x)

To get this result remark that12 exp

{

−
∫ x

y

fY 1
a
(t|t)

FY 1
a
(t|t)dt

}

≤
FY 1

a
(x|x)

FY 1
a
(y|y) for all y ≤ x. �

12This fact is proved by K-M page 353.
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5.4 Linkage Principle

When the number of bidders is common knowledge, Milgrom and Weber (1982) and K-M

determine a ranking relationship in the expected revenue among first and second-price in

winner-pay and all-pay auctions. That derives from the comparison of the statistical linkages

between the bidder’s expected payment and his signal. This result, called linkage principle,

is based on the affiliation.

Let us consider bidder 1. Let eM (z, x) be his expected payment with a bid z and a signal

x in the auction mechanism M and eM2 (x, x) be the derivative with respect to the second

argument at z = x.

Theorem 3 (K-M’s Linkage Principle, 1997). Suppose M and L are two auction mechanisms

with symmetric and increasing equilibria such that eM (0, 0) = eL(0, 0) = 0. If for all x,

eM2 (x, x) ≥ eL2 (x, x) then for all x eM (x, x) ≥ eL(x, x).

The linkage principle is still satisfied with the stochastic competition. To see this formally,

consider the auction mechanism M and let ΠM (z, x) be the expected payoff of a bidder with

a bid z and a signal x. Then,

ΠM (z, x) = R(z, x)− eM (z, x)

=
∑

a

pa

∫ z

0
va(x, y)fY 1

a
(y|x)dy − eM (z, x)

The expected gain of winning is the same in all mechanisms with stochastic competition

(as in the case of a fixed number of bidders). Moreover the stochastic number of bidders is

integrated in the expected payment and then does not affect the linkage principle properties.

We could apply the linkage principle to compare the expected payment between winner-pay

and all-pay mechanisms and then get the same results than above.

6 Conclusion

In this paper we determine the equilibrium strategies in the war of attrition and the all-pay

auction with affiliated values and stochastic competition. We establish a sufficient condition

for the existence of the monotonic equilibrium bidding strategies. We have shown that in

the war of attrition, in opposite to the all-pay auction and the winner-pay auctions, it does

not directly follow from the first order condition that the equilibrium strategy is equal to

a weighted average. Even if stochastic competition affects the all-pay auction and the war

of attrition in different ways, we prove that it does not modify the ranking of the expected

revenues and the K-M’s linkage principle.

Our results can be useful for many applications of all-pay designs such as in contest theory

and charity auctions. Indeed, recent papers compare all-pay and winner-pay auctions to raise

money for charity and suggest to use an all-pay design. In particular, Goeree, Maasland,
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Onderstal, and Turner (2005) show that the second-price all-pay auction is better to raise

money for charity than the first-price all-pay auction and the winner-pay auctions. Charity

auctions may be implemented for special events or on the Internet. A large number of charity

auctions take place while potential bidders do not know the number of competitors.13 As

we do not introduce externalities in the bidders’ payoff, our results could not be applied to

charity auctions. However, as they change some insights in the second-price all-pay auction

this work lets us open questions for future research on charity auctions.

7 Appendix

Boundary Condition of the Equilibrium Strategy for the war of attrition.

β(x) =
∑

a

pa

∫ z

0
va(y, y)λ̃(y|y, a)dy +

∑

a

pa

∫ x

z
va(y, y)λ̃(y|y, a)dy

≥
∑

a

pa

∫ z

0
va(y, y)λ̃(y|y, a)dy +

∑

a

pa

∫ x

z
va(z, z)λ̃(y|z, a)dy

≥
∑

a

pa

∫ z

0
va(y, y)λ̃(y|y, a)dy +min

a
va(z, z)

∫ x

z

∑

a

paλ̃(y|z, a)dy

=
∑

a

pa

∫ z

0
va(y, y)λ̃(y|y, a)dy +min

a
va(z, z) ln

(

1−
∑

a paFY 1
a
(z|z)

1−
∑

a paFY 1
a
(x|z)

)

Boundary Condition of the Equilibrium Strategy for the all-pay auction.

α(x) =
∑

a

pa

∫ x

0
va(y, y)fY 1

a
(y|y)dy

≤
∑

a

pa

∫ x

0
va(x, y)fY 1

a
(y|x)dy (14)

≤ max
a

va(x, x)

∫ x

0

∑

a

pafY 1
a
(y|x)dy

≤ max
a

va(x, x)

(14) is a consequence of assumption 1.

Derivation of Example 1.

∂

∂x
φ1(x, y|2) = 4

(x+ 2)(1− p2FY 1

2

(y|x)− p3FY 1

3

(y|x))

[

y2 + 2xy2 + 1− (x+ y)(xy + 1)

x+ 2

− (x+ y)(xy + 1)
−p3y4

x+4 + p3(xy2+4)y2

(x+4)2
− p2y2

x+2 + p2(xy2+2y)
(x+2)2

1− p2FY 1

2

(y|x)− p3FY 1

3

(y|x)

]

13They can know the number of their potential opponents but not the number of their active rivals.
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∂

∂x
φ1(x, y|3) = 12y

(x+ 4)(1− p2FY 1

2

(y|x)− p3FY 1

3

(y|x))

[

y3 + 2xy2 + 2− (x+ y)(xy2 + 2)

x+ 4

− (x+ y)(xy2 + 2)
−p3y4

x+4 + p3y2(xy2+4)
(x+4)2

− p2y2

x+2 + p2y(xy+2)
(x+2)2

1− p2FY 1

2

(y|x)− p3FY 1

3

(y|x)

]

Computations lead to non-negative derivatives.
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