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Marginal Likelihood Calculation for Gelfand-Dey and

Chib Method

Abstract

One advantage of Bayesian estimation is its solid theoretical ground on model
comparison, which relies heavily upon the accurate calculation of marginal likeli-
hood. The Gelfand-Dey (1994) and Chib (1995) methods are two popular means
of calculating marginal likelihood. A trade-off exists between these two methods.
The Gelfand-Dey method is simpler and faster to conduct, while Chib method is
more accurate, yet intricate. In this paper, we compare the two methods by their
ability to identify structural breaks in a reduced form volatility model. Using the
Markov Chain Monte Carlo method, we demonstrate that the performance of the
two methods is fairly close. Since the Chib method is normally more difficult to
implement in many econometric problems, it is safe to choose Gelfand-Dey method
when calculating marginal likelihood.

Key words: Model Comparison; Structural Break; Heterogeneous Autoregressive
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1 Introduction

One advantage of Bayesian estimation is its solid theoretical ground on model comparison,
which relies upon the accurate calculation of marginal likelihood (ML). In academia there
are two popular methods for calculating ML; the Gelfand-Dey (1994) and Chib (1995)
methods.

Gelfand-Dey (GD) is a general method. The GD method is efficient and utilizes
the same routines when calculating the ML for different models. Meanwhile, the Chib
method is often thought of as a more accurate method of calculating ML since its routine
adjusts to specific model forms. The Chib method requires detailed information about
the conditional distributions of all parameters. Unfortunately, it is difficult to attain this
detailed information in many cases. Furthermore, the Chib method is more demanding
for programming and computation since it is necessary to run simulations for each block
of parameters. Hence, it is generally accepted that a trade-off exists between the two
methods. The GD method is simpler and faster, while the Chib method is more accurate,
yet difficult to implement.
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In this paper, we use a Markov Chain Monte Carol simulation to compare the per-
formance of the two methods with a reduced-form volatility model as a benchmark. By
investigating the power of the two methods to identify the true models when the under-
lying data generating processes (DGP) are unstable, we find the GD method performs
almost identically to the Chib method. Therefore, we believe it is safe to choose the GD
method when calculating ML.

2 Settings

We use the Heterogeneous Autoregressive (HAR) model proposed by Corsi (2009) to
model volatility. Corsi shows that the HAR model can account for many of the features
of volatility, including long memory. With the observation YT = {y1, y2, · · · , yT}, HAR
model is defined as

yt = β0 + β1yt−1 + β2yt−5,t−1 + β3yt−22,t−1 + ǫt, ǫt ∼ NID(0, σ2). (1)

where yt−5,t−1 and yt−22,t−1 are the average value of yt in the last 5 or 22 days, respectively.
This model postulates three factors that affect yt: the daily effect yt−1, the weekly effect
yt−5,t−1 and the monthly effect yt−22,t−1.

The DGP instability is captured by the change-point model proposed by Chib (1998).
Assume there are m − 1, m ∈ {1, 2, ...} change points. The density of observation yt

depends on parameter θk = {βk, σ
2
k}, k = 1, ..., m, whose value changes at the change

points and remains constant otherwise. The state of the system is denoted by S =
{s1, s2, · · · , sT} where st = k indicates that the observation yt is from regime k and fol-
lows the conditional distribution f (yt|It−1, θk). The one-step ahead transition probability
matrix for st is assumed to be

P =
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where pi,j = Pr (st = j|st−1 = i) with j = i or i + 1, and this is the probability of moving
from regime i at time t − 1 to regime j at time t.

In Bayesian framework, the model comparison is through the Bayes factor (BF), which
is defined as BFAB = p(YT |A)/p(YT |B), where p(YT |A) and p(YT |B) are marginal like-
lihoods for model A and B respectively. Kass and Raftery (1995) suggest interpreting
the evidence for A as: not worth more than a bare mention for 1 ≤ BFAB < 3; positive
for 3 ≤ BFAB < 20; strong for 20 ≤ BFAB < 150; and very strong for BFAB ≥ 150.
Equivalently, based on a log scale, log(BFAB) > 0 is evidence in favor of A versus B.
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3 GD Method

Gelfand and Dey (1994) propose a method to calculate ML. They show that for any
distribution g (θ) with the domain contained in the posterior distribution, the reciprocal
of ML

(p (YT ))−1 = E

[

g (θ)

p (YT |θ) p (θ)
|YT

]

(2)

where p (YT |θ) and p (θ) are the likelihood and the prior for the model, respectively. To

calculate, the GD method collects all the samples {θj}
R

j=1 from the posterior distribution,
and the equation (2) is estimated as

p̂ (YT )
−1

=
1

R

R
∑

j=1

g (θj)

p (YT |θj) p (θj)
. (3)

The prior density p (θj) can be evaluated directly and p (YT |θ
j) is calculated by substi-

tuting θj into the likelihood function. For the details about the estimation, see Liu and
Maheu (2008). According to Gelfand and Dey (1994), if g (θ) is thin-tailed relative to
p (YT |θ) p (θ) , then g (θ) / (p (YT |θ) p (θ)) is bounded above and the estimator is consistent.
Therefore, we follow Geweke (1999) and use a truncated normal distribution N (θ∗, Σ∗)
for g (θ) , where θ∗ and Σ∗ are the posterior sample moments calculated as

θ∗ =
1

R

R
∑

j=1

θj, and Σ∗ =
1

R

R
∑

j=1

(

θj − θ∗
) (

θj − θ∗
)

′

. (4)

When θj in the domain of the truncated normal Θ, g (θj) = c−1φ (θj) where φ() is the
cdf of the truncated normal, and it is 0 otherwise. The constant c ensures g (θ) integrates
to 1.1 The domain Θ is defined as

Θ =
{

θ :
(

θj − θ∗
)

′

(Σ∗)−1 (

θj − θ∗
)

≤ χ2
α (d)

}

(5)

where d is the dimension of the parameter vector and χ2
α (d) is the α quantile of the chi-

squared distribution with d degrees of freedom. As a smaller α produces a better behaved
ratio in equation (2) at a cost of more simulation errors because more draws are dropped,
in practice, 0.5, 0.75 and 0.9 are popular selections for α.

4 Chib Method

Chib (1995) advocates a way to calculate the ML. A rearrangement of Bayes rule gives
the ML, p(YT ), as

p(YT ) =
p (YT |θ) p (θ)

p (θ|YT )
(6)

1Empirically, c can be obtained by taking a large number of draws from the multivariate normal
distribution N (θ∗, Σ∗) and counting the frequency of draws that are in the domain of g (θ).
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where p (θ|YT ) is the posterior ordinate. Although this equation is valid for any value
θ in the parameter space, a point with high posterior mass will tend to provide a more
accurate estimate. Therefore, we select the posterior mean denoted as θ∗. Then

log p (YT ) = log p (YT |θ
∗) + log p (θ∗) − log p (θ∗|YT ) . (7)

The prior density and the likelihood function can be calculated as above. To calculate
the posterior ordinate p (θ∗|YT ), note the decomposition

p (θ∗|YT ) = p (β∗|YT ) p
(

σ2∗|YT , β∗
)

p
(

P ∗|YT , β∗, σ2∗
)

(8)

where each term on the right hand side can be estimated from Markov Chain Monte Carol
simulations. The first term is,

p (β∗|YT ) =

∫

p
(

β∗|YT , S, σ2
)

p
(

S, σ2|YT

)

dSdσ2 (9)

and can be estimated as

̂p (β∗|YT ) =
1

R

R
∑

j=1

p
(

β∗|YT , σ2(j), S(j)
)

(10)

where the draws {σ2(j), S(j)}R
j=1 are available directly from our estimation step.2 The

second term in (8) is equal to

p
(

σ2∗|YT , β∗
)

=

∫

p
(

σ2∗|YT , β∗, S
)

p (S|, YT , β∗) dS. (11)

To obtain the draws from p (S|YT , β∗), we run an additional reduced Gibbs sampling
conditional on β∗; i.e. we run all the sampling again except that we do not draw the
values for β but fix them to be β∗. From this reduced run simulation, {S(j)}R

j=1 is used in

̂p (σ2∗|YT , β∗) =
1

R

R
∑

j=1

p
(

σ2∗|YT , β∗, S(j)
)

. (12)

The last term of (9) can be calculated similarly.

5 Monte Carlo Simulation

We consider the HAR model based on the equation (1) and use two structural break
specifications:

• Specification I: all parameters θ change in each regime.

• Specification II: Only β0 and β1 change.

2The conditional density of β and σ2 is determined by the standard Bayesion estimation equations.
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In specification I, the time series properties change greatly and the change points can
be identified relatively easily. In specification II, it is challenging to capture the change
points when the model structure is more stable. To make our simulation empirically
realistic, we select parameter values of the HAR model which are close to those reported
in Andersen, Bollerslev and Diebold (2007). They are listed in Table 1. For example, in
specification I, if there is 1 break, β0 changes from −0.1 to −0.4. If there are two breaks,
it changes from −0.1 to −0.4 and finally to −0.1.

For each model, we generate T = 1000 observations. The true models we consider
include cases of no change point, 1 and 2 change points. When there is 1 change point,
the position of this change point follows a uniform distribution U(0.25 × T, 0.75 × T ).
When there are 2 change points, the first one follows U(0.2 × T, 0.4 × T ) and the second
follows U(0.6 × T, 0.8 × T ). This setting allows us to account for the randomness of the
change points as well as ensuring sufficient observations in each regime to conduct an
estimation.

In the following, the model specifications assumed are known but the number of struc-
tural breaks and model parameters are unknown. For each draw from the DGP, we
estimate the change-point model assuming 0, 1, 2,and 3 structural breaks. We rank the
evidence for the number of break points according to the largest ML. The best change
point specification has the largest ML, while the second best has the next largest, etc.
We draw a new sample of data from the DGP and repeat this until 100 repetitions are
completed. Then we report the frequency of repetitions in which each specification is best

according to ML.
The comparison results of the two methods are summarized in table (2). Panel A

is for specification I and Panel B for specification II. The second column indicates the
underlying DGP. The 3 − 6 columns report the frequency over 100 repetitions in which
each model is best according to ML. For convenience, bold entries in these cells should be
100 if classification is perfect. For example, the first entry tells when underlying DGP is
stable (M0). Out of 100 repetitions, 100 are correctly identified as no change point while
0 are identified incorrectly as 1, 2, or 3 change points according to the Chib method.
The next entry in the table repeats this for a DGP with 1 change point (M1). Here, 100
times the 1 change point is correctly identified. For this ”easy” specification, the model
ranking results from the Chib and GD methods are identical. The frequencies in their
corresponding cells are all 100.

The last three columns report the average log BF over the 100 repetitions, with
log BFi,j denoting the log BF of the model with i change points to the model with j
change points. Those numbers are fairly close across the two methods. For example,
when underlying DGP is stable (M0), the log BF of the model with 1 change point to
the stable model log BF1,0 is −17.8632 by the Chib method and −18.5999, −18.5440 and
−18.5061 by the GD method with a = 0.5, 0.75 and 0.9 respectively. This means although
the GD and Chib methods calculate different marginal likelihoods, they provide almost
identical evidence for the relative strengthen between two models.

Panel B contains the results from the more challenging specification II, where only
the first two parameters are allowed to change. The results are very similar to the first
case. The frequencies with which the two methods can correctly identify the underlying
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DGP are very close: When underlying DGP is stable, 99 out of 100 repetitions are correct
by the Chib method, and 100, 98, 98 by the GD method. When underlying DGP have
1 or 2 changes points, these numbers are 90 or 95 by the Chib method, and 94, 93, 93
or 97, 96, 96 by the GD method respectively. Furthermore, their corresponding log BF
are roughly the same. Therefore, model comparison and selection using the two methods
reports similar results.

In summary, when calculating ML, the Chib and GD methods with difference α prefer
the same candidate model. As a result, it is safe to choose GD method under usual
conditions (the parameters are not more than 20).
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Table 1: Parameters Values for Simulations
Changed Par. β0 β1 β2 β3 σ2

Regimes 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Specification I −.1 −.4 −.1 .1 .4 .1 .4 .15 .4 .1 .4 .1 .2 .5 .2
Specification II −.1 −.4 −.1 .1 .4 .1 .25 .25 .25 .2 .2 .2 .2 .2 .2

This table lists the hypothetic parameter values for our Monte Carlo simulation. The first column
is the changed parameters. The second column lists the index of the regimes. The first row is the
Specification index.
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Table 2: Method Comparison Using Different Model Specifications

A: Specification I: All parameters are changed
Frequency of Models by ML Ave. Log Bayes Factor

Methods DGP 0 CP 1 CP 2 CP 3 CP log BF1,0 log BF2,1 log BF3,2

Chib M0 100 0 0 0 -17.8632 -15.1169 -15.1169
M1 0 100 0 0 42.5784 -16.0212 -14.8024
M2 0 0 100 0 41.3661 44.8382 -18.2613

G − D M0 100 0 0 0 -18.5999 -16.3442 -18.4340
(α = 0.5) M1 0 100 0 0 42.6793 -17.7100 -16.0211

M2 0 0 100 0 41.4677 44.9537 -19.3698
G − D M0 100 0 0 0 -18.5440 -16.3452 -18.3874

(α = 0.75) M1 0 100 0 0 42.7026 -17.6752 -16.0227
M2 0 0 100 0 41.4906 44.9676 -19.3760

G − D M0 100 0 0 0 -18.5061 -16.3325 -18.3713
(α = 0.9) M1 0 100 0 0 42.7166 -17.6872 -16.0063

M2 0 0 100 0 41.5044 44.9754 -19.3593

B: Specification II: Only first two parameters are changed
Frequency of Models by ML Ave. Log Bayes Factor

Methods DGP 0 CP 1 CP 2 CP 3 CP log BF1,0 log BF2,1 log BF3,2

Chib M0 99 1 0 0 -6.1262 -5.1291 -5.3248
M1 0 90 8 2 18.4132 -1.1588 -2.2764
M2 0 1 95 4 11.2407 17.3668 -1.7567

G − D M0 100 0 0 0 -6.4047 -5.4062 -5.9070
(α = 0.5) M1 0 94 6 0 18.5095 -1.5342 -2.7379

M2 0 0 97 3 9.9774 18.8452 -2.4243
G − D M0 98 2 0 0 -6.3441 -5.3698 -5.8625

(α = 0.75) M1 0 93 7 0 18.5339 -1.5018 -2.6975
M2 0 0 96 4 9.9590 18.9105 -2.4013

G − D M0 98 2 0 0 -6.3037 -5.3470 -5.8571
(α = 0.9) M1 0 93 7 0 18.5480 -1.4781 -2.6761

M2 0 0 96 4 9.9541 18.9412 -2.3863
This table reports the comparison results of calculating ML using GD method and Chib method
for two model specifications. The second column indicates the underlying DGP. The 3-6 columns
display the number of times in the 100 repetitions when that specification had the largest ML. The
last three columns report the average log BF between two models.
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