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Abstract

This paper contributes to the large number of studies on intergenerational
earnings and income mobility by providing new evidence for Spain. Since there
are no Spanish surveys covering long-term information on both children and
their fathers’ income or earnings, we deal with this selection problem using the
two-sample two-stage least squares estimator. We find that intergenerational
mobility in Spain is similar to France, lower than in the Nordic countries and
Britain and higher than in Italy and the United States. Furthermore, we use the
Chadwick and Solon (2002) approach to explore the intergenerational mobility
in the case of daughters overcoming employment selection, and we find similar
results by gender.
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1 Introduction

Intergenerational mobility refers to the association between socioeconomic achieve-

ments of parents and those of their children. If we believe that equal opportunity is

a desirable characteristic of society, a high degree of intergenerational mobility is an

important indicator of the health and success of society. In this context, the socioeco-

nomic status of children from different families are not predetermined by their parents

and they have equal options to achieve education and higher earnings (Behrman and

Taubman (1990)).

Intergenerational mobility studies usually estimate the correlation between the

socioeconomic status of parents and their offspring. On the one hand, a high corre-

lation would imply that people born in disadvantaged families have a smaller chance

to occupy the highest socioeconomic positions than those born in privileged families.

On the other hand, a zero correlation would imply a high degree of mobility and more

equal opportunities. Sociologists explore the association measures between ordered

categorical variables, such as social and economic class position. Meanwhile the eco-

nomics literature has primarily concentrated on the relationship between parents’ and

their offspring’s permanent incomes or earnings.1 In particular, the standard measure

of intergenerational mobility that economists use is earnings or income elasticity.

In this paper, we contribute to the empirical literature by estimating the earnings

and income mobility for Spain. In general these type of papers estimate the elasticity

only for sons to avoid the typical employment selection of daughters. Therefore, an-

other important contribution of our paper is to explore the intergenerational earnings

mobility for daughters.

The estimation of intergenerational mobility can be biased due to different sample

selection problems. One of these problems arises from the fact that, in a panel, we have

information regarding offspring’s and parents’ earnings when they live together in at

least one wave; however, the probability of observing offspring living with their parents

decreases as the children grow older. Thus, in short panels, it is impossible to follow

children during their adult life.2 This selection problem is particularly important in

1See Solon (1999), Björklund and Jäntti (2000), Bowles and Gintis (2002), Erikson and Goldthorpe
(2002) for a review.

2Nicoletti and Francesconi (2006) refer to this sample selection problem as co-residence selection.

2



Spain, where we have only short panels, and thus, do not have information on both

children’s and their fathers’ permanent earnings. When we have information regarding

the father, the children are too young to observe their permanent earnings, and when

we have adults, we do not have information about their father’s earnings.

In order to overcome this selection problem, it is possible to estimate intergen-

erational earnings mobility using the two-sample two-stage least squares (TSTSLS)

estimator.3 This method combines information from two separate samples: a sample

of adults (sons and daughters) with observations of their earnings and their parents’

characteristics, and a sample of potential parents with observations on earnings and

the same characteristics. The latter sample is used to estimate an earnings equation

for parents using their characteristics as explanatory variables, while the former is used

to estimate an intergenerational earnings equation by replacing the missing parents’

earnings with its best linear prediction.

When we want to study the intergenerational earnings mobility in the case of

daughters, a second problem that arises is the employment selection, wherein we only

have earnings for adults who are employed. Since the decision to work or not work

is not random, especially in the case of women, estimating intergenerational earnings

mobility only for those who are working gives us biased estimators. To give some

intuitions of what happens in the case of daughters, we deal with this selection problem

following Chadwick and Solon (2002) and using family incomes instead of daughter’s

individual earnings.

Why Spain? The literature on intergenerational earnings mobility has concentrated

on the United States, Canada, and some European countries, including England, Scan-

dinavian countries, Germany, and France. However, there is comparably less evidence

for the intergenerational mobility in southern European countries, probably due to

the lack of long panels. The studies of Mocetti (2007) and Piraino (2007) are two

Nicoletti and Francesconi (2006) analyse intergenerational mobility using an occupational prestige
score. They find that the β coefficient (where β represents the elasticity between father’s and off-
spring’s occupational prestige scores) is underestimated when they only consider the pairs of children
and parent who are cohabiting.

3Following the paper written by Angrist and Krueger (1992) on two-sample instrumental variables
(TSIV) estimation, numerous empirical researchers have applied a computationally convenient TST-
SLS variant to the study of intergenerational mobility, like Björklund and Jäntti (1997) in Sweden;
Fortin and Lefebvre (1998) in Canada; Grawe (2004)) in Ecuador, Nepal, Pakistan, and Peru; Lefranc
and Trannoy (2005) in France; Nicoletti and Ermisch (2007) in Britain; and by Mocetti (2007) in
Italy.
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exceptions, exploring intergenerational earnings mobility in Italy.

As in other southern European countries, Spain experiences stronger intergener-

ational family bonds compared to other countries outside the region. Indeed after

leaving home, children maintain a close relationship with parents. Therefore, it is

valuable to explore how earnings mobility in Spain compares to other countries, and it

is particularly interesting to compare our results to those obtained by Mocetti (2007)

and Piraino (2007) for Italy.

Intergenerational mobility in Spain has primarily been studied by sociologists. For

example, Carabaña (1999) studied occupational mobility. From an economic point

of view, Sanchez-Hugalde (2004) analyses the intergenerational income and education

mobility in Spain using the Family Expenditure Survey (Encuesta de Presupuestos

Familiares) for 1980 and 1990; however, she only estimates the elasticity when children

and their fathers live together. Another recent study about the intergenerational

mobility in Spain is the paper of Güell, Mora, and Telmer (2007), in which they study

the information contained in the surnames of the inhabitants of a large Spanish region

as indicative of the degree of intergenerational mobility of an economy. The idea is

that surnames capture family links in a manner that allows them to be used to extract

longitudinal information from census data.

We find an elasticity around 0.40 for sons. When we analyse daughters following

Chadwick and Solon (2002) approach we find nearly the same elasticities as for sons.

By comparing the elasticities obtained in Spain with the results for other countries,

we find that intergenerational mobility in Spain is similar to mobility in France, is

lower than in Nordic countries and Britain, and is higher than in Italy and the United

States.

The rest of the paper is organised as follows. In the next section, we describe

how we implement the two-sample two-stage least squares estimator. In Section 3 we

describe the data source, the selection sample, and the variables used in the empirical

analysis. In Section 4, we report the results, and finally, in Section 5, we offer some

final remarks.
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2 Estimation method

2.1 The econometric model

As we explained above, we focus on intergenerational mobility measured by the in-

tergenerational elasticity of children’s earnings (or income) with respect to paternal

earnings (or income). More precisely, we consider the following intergenerational mo-

bility equation:

Wit = α + βWit−1 + µit (1)

where Wit is the children’s log earnings (or our economic variable of permanent

income), Wit−1 is the fathers’ log earnings (the economic variable of the previous

generation), α is the intercept term representing the average change in the child’s log

earnings, and µ is a random error. The coefficient β is the intergenerational elasticity

of children’s earnings with respect to their father’s earnings, and it is our parameter

of interest.

Let ρ be the correlation between Wit and Wit−1; then β is related to ρ by the

following equation:

β = ρ
σWit

σWit−1

(2)

where σ is the standard deviation. In other words, the coefficient is related to the

correlation between children’s and fathers’ log earnings. In particular, the coefficient

β will be exactly equal to ρ when: σWit−1
= σWit

.

On the one hand, when β = 0, sons’ earnings are not determined by their fathers’

earnings. On the other hand, a value of β = 1 represents a situation of complete

immobility; that is, children’s earnings are fully determined by their fathers’ earn-

ings. Generally, the coefficient is between these two values. Therefore, to evaluate

adequately if the coefficient is high or low, it is necessary to compare the results to

those found for other countries.

If we had permanent income for successive generations in our sample, we would

directly estimate equation 1 using the ordinary least squares estimator without any

problem. Unfortunately, we do not have this information in one data set.
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First, most data sets only provide measures of current earnings and fail to provide

measures of individual permanent income. Solon (1992) and Zimmerman (1992) show

that the use of current earnings as a proxy for permanent earnings leads to downward

OLS estimates of β. Different solutions can be implemented to reduce or eliminate

this bias. If we work with panel data, we can calculate an average of current earnings

over several years as a proxy of permanent income. Another possibility lies in using

instrumental variables to estimate β. In this paper, in the case of the father’s earnings,

we estimate it by using auxiliary variables. Therefore, the estimated earnings is an

average that can be considered as a proxy of the father’s permanent earnings. In the

case of children, we select adult ages as close as possible to the age in which earnings

are similar to permanent income. In particular, Haider and Solon (2006) suggests the

use of offspring around 40 years old.

Second, we also have other selection problems that lead us to inconsistent estima-

tions of β. In the next subsection, we describe the main selection problems that we

face and how we solve them in this paper.

2.2 Two sample two stage least squares estimator

The estimation of intergenerational earnings mobility can frequently be biased due to

different sample selection problems. One of the most important selection problems

we experience in short panels is the fact that we only observe earnings for pairs of

parents and children when they live together in at least one wave of the panel. On

the contrary, we do not have information for sons who never co-reside with their

parents during the panel. This selection problem could lead to a sub-estimation of

the offspring’s earnings, since living in the parental household is either because they

are still students or they do not have enough income to live alone. Thus, they are

not a random sample. In general, this selection problem causes an overestimation

of intergenerational mobility (an underestimation of the elasticity between parents’

earnings and offspring’s earnings).

If the panel is long, we do not have to deal with this selection problem, as it is

easy to observe young children living together with their parents and follow them to

adulthood to know their earnings, except if they leave the panel (attrition problems).
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We deal with this selection problem linking two samples and using the TSTSLS

estimator. We use one sample with information on adults and the characteristics

(occupation, education, age) of the fathers when the sons are between 12 and 14 years

old, and another sample with the same paternal characteristics, but also with their

earnings.

The TSTSLS estimator is a computationally easier variant of two-sample instru-

mental variable estimator (2SIV) described by Angrist and Krueger (1992), Arellano

and Meghir (1992), and Ridder and Moffit (2006).4 Concretely, in the two-sample con-

text, unlike the single-sample situation, the IV and 2SLS estimators are numerically

distinct. Inoue and Solon (2010) derive and compare the asymptotic distributions

of the two estimators and find that the commonly used TSTSLS estimator is more

asymptotically efficient than the TSIV estimator because it implicitly corrects for dif-

ferences in the distribution of variables between the two samples. Therefore, they

explain that, although computationally simplicity was the original motive that drew

applied researchers to use the TSTSLS estimator instead of the TSIV estimator, it

turns out that the TSTSLS estimator also is theoretically superior.

Since we do not have information about Wit−1, but do have a set of instrumental

variables Z of Wit−1, we can estimate equation (1) in two steps. As we have explained

before, we consider two different samples: The first, which we call the main sample,

has data on offspring log earnings, Wit, and characteristics of their fathers, Z, while

the second, which we call the supplemental sample, has information on fathers’ log

earnings, Wt−1, and their age, education, and occupational characteristics, Z. In

the previous studies that estimate intergenerational mobility combining two different

datasets, different variables have been used to impute the missing father’s earnings.5

In the first step, we use the supplemental sample to estimate a log earnings equation

4For a detailed description of the properties of this estimator, see Arellano and Meghir (1992),
Angrist and Krueger (1992) and Ridder and Moffit (2006).

5For example, Björklund and Jäntti (1997) use father’s education and occupation. Grawe (2004)
uses only the education levels, while Fortin and Lefebvre (1998) uses only 16 occupational groups,
which, as the authors admit, can affect the quality of the imputation of earnings for fathers. Lefranc
and Trannoy (2005) instead use eight different levels of education, seven occupational groups, and
age. In Nicoletti and Ermisch (2007), the set of candidates as instrumental variables is also quite
large, and the researchers try different combinations of the available instrumental variables.
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for fathers using, as explanatory variables, their characteristics, Z, that is:

Wt−1 = Zt−1δ + vi (3)

In the second step, we estimate the intergenerational mobility equation 1 by using

the main sample and replacing the unobserved Wit−1 with its predictor,

Ŵit−1 = Zit−1δ̂, (4)

where δ̂ represents the coefficients estimated in the first step, and Z represents the

variables observed in the main sample. Thus, we estimate equation 1 by using the

fathers’ imputed earnings.

Wit = α + β(Zit−1δ̂) + ui (5)

The β̂ we obtain is the TSTSLS estimate of intergenerational earnings elasticity.

The standard errors are properly estimated as Murphy and Topel (1985) and Inoue

and Solon (2010) propose. In order to take into account the life-cycle profiles, the

estimation of both equations includes additional controls for individual’s and father’s

ages.

The properties of the two-sample estimator depend on the nature of the instrument

used. Nicoletti and Ermisch (2007) express how important it is to choose instrumental

variables that are strongly correlated with the variable to be instrumented. Therefore,

we have to choose the instruments such that the R2 of the regression can be as high

as possible.

Furthermore, consistency requires that the error term in the intergenerational mo-

bility equation be independent of the instrumental variables or that the instrumental

variables explain perfectly the father’s missing earnings.

Therefore, the well-known rule for the choice of the instruments in the instrumental

variable estimation based on a single sample applies to the TSTSLS estimation too.

The instruments chosen should have the least correlation with the error in the main

equation -the intergenerational mobility equation- and maximum multiple correlation

with the variable to be instrumented -the fathers’ earnings. Choosing instruments

with minimum correlation with the error, but with low correlation with the fathers’
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earnings (or, vice versa, with maximum correlation with the fathers’ earnings, but

high correlation with the error) does not cancel the potential bias.

As Nicoletti and Ermisch (2007) point out, the TSTSLS estimator of the intergen-

erational elasticity could be under- or overestimated when the auxiliary variables are

endogenous. Moreover, since the instruments we use -paternal educational and occu-

pational characteristics- are likely to be positively related to the sons’ earnings even

after controlling for fathers’ earnings, the bias is probably positive. Therefore, the

potential endogeneity problem is likely to affect most of the empirical papers on inter-

generational mobility applying 2SIV and TSTSLS estimators. In order to measure the

potential bias of the TSTSLS, we present in Appendix B the results of comparing the

estimates using OLS and TSTSLS for the restricted sample of co-residing father-son

pairs.

We also want to give some insight on the intergenerational earnings mobility for

daughters. We deal with the selection problem mentioned in the introduction following

Chadwick and Solon (2002) using family incomes instead of daughter’s individual

earnings.6

3 Data Sources and Sample Selection Rules

We combine two separate samples to estimate intergenerational earnings mobility, a

main sample and a supplemental sample. In our case, the main sample is the Survey of

Living Conditions (Encuesta de Condiciones de Vida (ECV)) for the year 2005, that

is, the Spanish component of the European Union Statistics on Income and Living

Conditions (EU-SILC).7

The ECV has annually interviewed a sample of about 14,000 households represen-

tative of the Spanish households, and has keep each household in the sample for four

years. Personal interviews are conducted at approximately one-year intervals with

adult members of all the households.

6Chadwick and Solon (2002) use this approach to analyse the role of the assortative mating in the
intergenerational economic mobility in the United States.

7The EU-SILC is an instrument that aims to collect timely and comparable cross-sectional and
longitudinal multidimensional microdata on income, poverty, social exclusion, and living conditions.
This instrument is anchored in the European Statistical System (ESS).
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From the ECV, we have information about adults’ earnings and a set of character-

istics of their fathers when they were between 12 and 14 years old.

Our supplemental sample is the Family Expenditure Survey of 1980-1981 (Encuesta

de Presupuestos Familiares). This survey was designed to estimate consumption and

weigh the different goods used in the consumer price index. In addition, we also have

information regarding earnings, occupation, and the education level of the head of the

household. Thus, in this sample we have data on the father’s earnings and the same

set of their characteristics that are available in the main sample.

Although we have the same characteristics in both samples, we have to recode some

variables to have a homogenous classification across surveys.8

Our main sample is composed of children born between 1955 and 1975 who have

information about father’s characteristics. Thus, in 2005, these adults were between

30 and 50 years old, and they were 12 or 14 years old between 1969 and 1989. This

is the reason we use the Family Expenditure Survey of 1980-1981 as the supplemental

sample with which to estimate paternal earnings.

We suppose that when the children were 12 or 14 years old, their fathers were

between 37 and 57 years old. Thus, when we estimate the fathers’ earnings regression

(and the fathers’ income regression) we select males between those ages.

As noted above, one problem that can bias intergenerational mobility studies is

measurement error with regard to earnings. Theoretically, we would like to consider

the intergenerational elasticity in long-run permanent earnings, but we can observe

earnings only in a single or a few specific years. Thus, the question is, what is the

age at which the current earnings should be observed to provide the closest measure

of permanent earnings? Haider and Solon (2006) show that it is reasonable to choose

children around age 40 and fathers with ages between 31 and 55. Therefore, assuming

that these results hold for other countries, we choose similar age intervals in our

empirical application.

After the exclusions, we have a sample of 3,520 son/father pairs and 3,995 daugh-

ter/father pairs. Table 1 and Table 2 present the principal descriptive statistics of our

sample of sons and daughters respectively.

8For a detailed description of the frequencies of the different characteristics in the main and
supplemental samples see Table A.1 in Appendix A.
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Table 1: Descriptive statistics: Characteristics of sons in the main sample
Variable Mean Standard deviation Minimum Maximum
Son’s age in 2005 39.36 5.64 30 49
Son’s log family income 2005 10.06 0.63 0.87 12.29
Father’s age in 1981 45.84 5.08 37 57
Father’s log earnings 13.2 0.36 12.34 14.11
Father’s log income 13.24 0.33 12.46 14.13
Sample size 3520

Table 2: Descriptive statistics: Characteristics of daughters in the main sample
Variable Mean Standard deviation Minimum Maximum
Daughter’s age in 2005 39.55 5.66 30 49
Daughter’s log family income 2005 10.02 0.66 4.09 12.05
Father’s age in 1981 45.89 4.97 37 57
Father’s log earnings 13.21 0.36 12.34 14.11
Father’s log income 13.24 0.34 12.46 14.13
Sample size 3995

4 Results

4.1 Intergenerational earnings mobility for sons

In order to compare our results with the empirical literature on intergenerational

mobility, we present in this subsection our estimation of intergenerational earnings

mobility for sons. We use a two-sample two-stage estimation, whose first step consists

of the estimation of the paternal earnings regression using the supplemental sample,

and the results of this regression are presented in Table 3. These coefficients are then

used to impute the paternal earnings in the main sample, since we have the same

characteristics in both samples (main and supplemental). Therefore, in the second

step, using the coefficients from the supplemental sample and the characteristics of

the main sample, we estimate earnings for each father in the main sample.

Table 4 reports the second step, that is, the coefficients of the intergenerational

regression between annual sons’ earnings and the fathers’ imputed earnings. In all

columns, the father’s predicted log earnings has a significant positive effect on child’s

earnings.

We estimate the elasticity for sons for different age ranges. The ranges considered

are 30 to 40, 40 to 50, 30 to 50 (the whole sample) and a narrower range around 40

(those who are between 35 to 45). All the coefficients obtained are around 0.40 for all

age specifications. We obtain a bit smaller elasticity for the younger sons. However
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Table 3: First step: estimates of father’s earnings equation with the supplemental
sample

Dependent variable log father’s earnings
Age 0.0571 (0.0211)
Age square -0.0006 (0.0002)

Education

Primary education 0.1873 (0.0148)
Secondary education (first step) 0.3919 (0.0276)
Secondary education (second step) 0.5254 (0.0326)
Vocational qualification 0.5581 (0.0487)
Higher education (university) 0.8455 (0.0281)

Occupation

Upper-level manager -0.4381 (0.0404)
Lower-level professional -0.0753 (0.0986)
Routine upper-level non-manual employee -0.0913 (0.0279)
Routine lower-level non-manual employee -0.3158 (0.0320)
Skilled agriculture worker -0.8155 (0.0306)
Skilled manual worker -0.1395 (0.0300)
Lower-level technician -0.2009 (0.0298)
Unskilled worker -0.3177 (0.0285)
Constant 11.9961 (0.4918)

Obs 5929
R2 0.402

Note: Standard errors in parentheses. In Education: none (reference) and in Occupation: Upper-level professionals

(reference).

Table 4: Second Step: Intergenerational regression in annual earnings in the main
sample for sons

Sons 30–40 Sons 40–50 Sons 30–50 Sons 35–45

Father’s earnings 0.38 (0.042) 0.43 (0.042) 0.40 (0.029) 0.41 (0.041)
Age 0.14 (0.004) 0.02 (0.004) 0.02 (0.002) 0.02 (0.004)
Constant 4.26 (0.597) 3.32 (0.603) 3.89 (0.413) 3.21 (0.585)

Obs. 1334 1322 2656 1501
R2 0.061 0.08 0.08 0.08

Note: The dependant variable is the log of annual labor earnings. Father’s earnings refers to the log of father’s annual
labor earnings. Standard errors are corrected using Murphy and Topel (1985) and Inoue and Solon (2010) procedure.
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we do not have enough information to know if it is due to a change in the trend such

that we will have more mobility or if it is only a matter of age in the sense that when

these young sons grow older they would become more correlated with their parents.

Once we have estimated our beta for sons is not immediate if the figure we get

means high or low mobility. We can use the figures reported in other studies to

compare. However, the comparability of studies is problematic and very difficult since

the estimates are sensitive to different factors such as the income measure used, the

adequacy of the database, the different criteria for sample selection and the different

estimation methods followed. Therefore, so as to compare our results with those of

other studies, we must be careful and choose the studies that are most similar to ours

in terms of choice of the sample, using two-sample approach.9

Fortunately, at present there are some studies that appear very close to our analysis

because they use similar methodologies and sample selection rules, allowing us to make

an international comparison. One of these papers is Björklund and Jäntti (1997) for

Sweden and the US. They find an elasticity of 0.52 for the United State and 0.28

for Sweden. Nicoletti and Ermisch (2007) apply the same methodology for Britain

and they obtain elasticities that ranges from 0.20 to 0.25 for sons. In the same way,

Lefranc and Trannoy (2005) for France, find an elasticity of 0.40 for sons. Furthermore,

Mocetti (2007) show Italy as a very immobile society. In particular, he finds elasticities

around 0.50.

As Lefranc and Trannoy (2005) point out, one possible explanation for why Europe

shows more intergenerational mobility than the United States is the way in which

higher education is financed. In Spain, France, and Sweden the access to higher

education is free, while in the United States payment of tuition may be a problem for

poor households, even if generous grants are available for bright students.

Evidence available for other countries and surveyed by Solon (2002) suggest a

rather high degree of intergenerational mobility in Finland (Österbacka (2001)) and

Canada (Corak and Heisz (1999)), where the elasticity is around 0.2 or lower. There

9 For example, in the US, depending on the study considered, we can observe a wide range of
elasticities, from 0.13 to 0.61. Solon (1999) provides an extensive survey of the US results obtained in
the 90s and concludes that a reasonable guess of the intergenerational elasticity in long-run earnings
for men in the United States is 0.4 or higher. This conclusion is obtained in studies using multi-
year averages of father’s and child’s earnings, computed from panel data, as a measure of individual
permanent income.
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is some empirical evidence for Germany (see Couch and Dunn (1997)) that expresses

a similar correlation to the United States.

Overall, we find an intergenerational correlation for Spain that ranks between a

group of more mobile societies, including the Nordic countries, Canada, and Britain

and a group of less mobile countries, which include the United States and Italy. We

find an elasticity that is similar to France for sons.

Tables A.2 and A.3 in Appendix A show the transition matrices for earnings and

education between fathers and sons. These tables give us an intuitive vision of the

persistence of earnings or education. Both tables show a strong degree of persistence.

If we consider the persistence of education as one of the mechanisms that enhances the

persistence of earnings, the design of education policies should take this into account

to increase mobility.

4.2 Intergenerational earnings and income mobility for daugh-

ters

As explained above, the empirical literature on intergenerational earnings mobility has

concentrated on the analysis of sons to avoid the employment selection problem. The

increase in female labour force participation in Spain began at the end of the 70s, but

this participation is still presently lower than that of men. It is intuitive that full-

time women workers are probably more common in some types of household (highly

educated households or very poor households).

However, in this subsection we want to give some insight into the intergenera-

tional earnings mobility for daughters. We deal with this selection problem following

Chadwick and Solon (2002) and using family incomes instead of daughter’s individual

earnings.10

In Table 5 we reproduce the Chadwick and Solon (2002) approach and we estimate

the elasticity between daughters (using different dependent variables) and fathers earn-

ings. In order to compare these results, we also do the same exercise for sons in Table

6.

In the first row of Table 5 and Table 6, we consider the log of family income as

10Chadwick and Solon (2002) use this approach to analyse the role of the assortative mating in the
intergenerational economic mobility in the United States.
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Table 5: Intergenerational elasticity for daughters respect to their father’s earnings

Dependent variable Full daughters sample Married daughters
Log family income 0.386 0.384

(0.028) (0.033)

Log couple’s earnings 0.497

(0.044)

Sample size 3995 1904

Note:Standard errors are corrected using Murphy and Topel (1985) and Inoue and Solon (2010) procedure.

Table 6: Intergenerational elasticity for sons respect to their father’s earnings

Dependent variable Full sons sample Married sons
Log family income 0.404 0.388

(0.027) (0.032)

Log couple’s earnings 0.565

(0.042)

Sample size 3520 1940

Note:Standard errors are corrected using Murphy and Topel (1985) and Inoue and Solon (2010) procedure.

a dependent variable. In the second row, we restrict the sample to those who are

married and we consider the log of the couple’s combined earnings.

Concretely, we present the results of the estimation of equation 5 by the TSTSLS

estimator with different dependent variables and samples. We begin (in the first row,

first column of Table 5) with the estimation of the elasticity of daughter’s family

income with respect to her father’s earnings for our full sample of 3995 daughters

and we obtain an elasticity of 0.38. As we can see in Table 6, for the full sample of

3520 sons, we find an elasticity of 0.40. Therefore, the elasticities between daughter’s

and father’s earnings are very little smaller than the sons’ elasticity, however not

statistically different.11

When we do the same, but considering only daughters who are married (first row,

second column) with respect to paternal earnings in Table 5, we obtain a very similar

elasticity of 0.384.12 For sons we estimate an elasticity of 0.388. Again, the results

11The t-ratio for the contrasts between these two coefficient is 0.46, so the contrast is not statistically
significant at conventional significance levels.

12We consider married daughters those who are legally married and those who live in couple.
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obtained are very similar by genders.

For married daughters and sons we also analyse the paper of couple’s earnings.

Therefore, in the second row of each table we estimate the elasticity between couple

earnings (the log of the sum of the daughter’s earnings and her husband’s earnings) and

paternal earnings. In this case the elasticities increase to 0.50 for married daughters

and 0.57 married sons. The figure 0.57 may seem relatively high compared to 0.50,

and higher mobility for daughters is also found in Chadwick and Solon (2002) and

Ermisch, Francesconi, and Siedler (2006), but the t-ratio of 1.12 again did not allow

us to reject the null hypothesis of equal coefficients.

In Table A.4 and Table A.5 in Appendix A, we present the same exercise using

paternal income as an explanatory variable. Again we obtain results in the same

direction.

5 Final remarks

In this paper, we contribute to the empirical literature that calculate the intergener-

ational mobility for different countries estimating the earnings and income elasticity

for Spain. Using the two-sample two-stage least squares estimator, we find sons’ elas-

ticities around 0.40. Using Chadwick and Solon (2002) approach and comparing the

estimates for sons and daughters, our results suggest that elasticities for both genders

are nearly the same.

Where does Spain fit into the larger picture of intergenerational mobility? In some

ways, it’s in the middle. It is similar to France, lower than the Nordic countries and

Britain, and higher than the United States. Compared to other developed countries,

Spain is relatively immobile, but it is more mobile than Italy, the only other southern

European country for which we have evidence.
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Appendix A

Table A.1: Distribution of father’s education and occupation as well as coincidences
between supplemental and main sample

supplemental sample main sample

Observation 5,032 4,352

Education

Did not finish primary education 23.82 20.09
Primary education 51.28 57.65

Secondary education (first step) 8.46 6.08
Secondary education (second step) 5.90 5.84

Vocational qualification 2.07 0.49
Higher education (university) 8.47 9.85

Occupation

Upper-level professional 9.25 8.04
Upper-level manager 4.28 3.70

Lower-level professional 3.43 5.58
Regular upper-level non-manual employee 11.04 6.18
Regular lower-level non-manual employees 9.85 7.25

Skilled agriculture worker 12.74 12.85
Skilled manual worker 15.88 24.99
Lower-level technician 13.81 11.82

Unskilled worker 19.71 19.60

Note: All frequencies are weighted using the respective sampling weights.
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Table A.2: Transition matrices of earnings between fathers and children

Father’s quantile
1 2 3 4 5

Quantile of
the son or
daughter

1 30,08% 23,93% 16,98% 16,20% 13,23%
2 24,40% 22,34% 19,17% 18,29% 16,20%
3 19,12% 23,54% 20,26% 21,67% 15,66%
4 15,74% 15,69% 22,64% 23,26% 22,41%
5 10,66% 14,50% 20,95% 20,58% 32,49%

Table A.3: Transition matrices of education between fathers and children

Father’s education
0 1 2 3 4 5

Child’s
education

1 34,07% 13,89% 4,85% 3,04% 0,00% 0,60%
2 34,77% 23,72% 18,12% 7,43% 8,00% 3,99%
3 17,98% 25,22% 34,30% 31,42% 36,00% 16,37%
4 1,90% 2,18% 1,94% 1,01% 12,00% 1,00%
5 11,29% 34,98% 40,78% 57,09% 44,00% 78,04%

Table A.4: Intergenerational elasticity for daughters with respect to their father’s
income

Dependent variable Full daughters sample Married daughters
Log family income 0.435 0.435

(0.030) (0.036)

Log couple’s earnings 0.561

(0.048)

Sample size 3995 1904
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Table A.5: Estimated intergenerational elasticity for sons and daughters with respect
to their father’s income

Dependent variable Full sons sample Married sons
Log family income 0.461 0.455

(0.030) (0.034)

Log couple’s earnings 0.653

(0.046)

Sample size 3520 1940

Appendix B

As we explain in Section 2.2, the TSTSLS estimation could produce an overesti-

mation of β when the variables used to impute father earnings are endogenous and

do not perfectly explain father earnings. In order to measure the potential bias of

the TSTSLS, we can use the restricted sample of father-son pairs who co-reside and

compare the estimates using OLS and TSTSLS.

The estimation results are reported in Table B.1

Table B.1: Intergenerational earnings elasticity for father-son pairs who co-reside

Sons 30–40 Sons 40–50 Sons 30–50 Sons 35–45

TSTSLS 0.21 (0.022) 0.273 (0.021) 0.23 (0.018) 0.24 (0.014)

OLS 0.20 (0.025) 0.25 (0.025) 0.22 (0.012) 0.21 (0.016)

Note: The dependant variable is the log of annual labor earnings. Father’s earnings refers to the log of father’s annual
labor earnings. Standard errors are corrected using Murphy and Topel (1985) and Inoue and Solon (2010) procedure.

We do not find evidence of a large amount of upward bias. This results are in line

with Nicoletti and Ermisch (2007) and Aaronson and Mazumder (2008).
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Österbacka, E. (2001): “Family background and economic status in Finland,” Scandina-
vian Journal of Economics, 103(3), 467–484.

Piraino, P. (2007): “Comparable Estimates of Intergenerational Income Mobility in Italy,”
The B.E. Journal of Economic Analysis & Policy), 7: Iss. 2 (Contributions), Article 1.

Ridder, G., and R. Moffit (2006): “The econometrics of data combination,” in Hand-
book of Econometrics, ed. by Heckman, and Learner, 6. Elsevier Science, North Holland,
Amsterdam.

Sanchez-Hugalde, A. (2004): “Movilidad intergeneracional de ingresos y educativa en
España (1980-90),” Discussion paper.

Solon, G. (1992): “Intergenerational income mobility in the United States,” American
Economic Review, 82(3), 393–408.

(1999): “Intergenerational mobility in the labour market,” in Handbook of Labor
Economics, ed. by O. Ashenfelder, and D. Card, vol. 3, chap. 29, pp. 1761–1800. Amster-
dam: Elsevier.

(2002): “Cross-country differences in intergenerational earnings mobility,” Journal
of Economic Perspective, 16(3), 59–66.

Zimmerman, D. (1992): “Regression toward mediocrity in economic stature,” American
Economic Review, 82, 409–429.

21


	Introduction
	Estimation method
	The econometric model
	Two sample two stage least squares estimator

	Data Sources and Sample Selection Rules
	Results
	Intergenerational earnings mobility for sons
	Intergenerational earnings and income mobility for daughters

	Final remarks

