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Abstract 

Most of the methods used by financial institutions to implement value-
at-risk models are based on the multivariate Gaussian distribution with a 
constant correlation matrix. In this paper we use VaR calculation in a 
reverse way to imply the correlation between asset price changes. The 
distribution of implied correlation under normality is also studied in 
order to take into account any bias and sampling error. Empirical results 
for US and UK equity markets show that implied correlation is not 
constant but tends to be higher for long positions than for short 
positions. This result is statistically significant and can be interpreted as 
departure from normality. Our test provides a new way – by focusing the 
tail dependence - to assess the model risk associated with quantitative 
methods based on normality in asset management and risk management 
areas. 
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1. Introduction 

Value at risk (VaR) is a risk measure that has been widely implemented by financial 

institutions. It measures the potential loss of a market position over a given time-period and for a 

given confidence level. For example, a 1-day 99% VaR of $ 1,000,000 means that over the next 

trading day, in one case over one hundred, the portfolio loss will be higher than $ 1,000,000. In 

order to compute the VaR of a portfolio, assumptions on the distribution of asset price changes 

are made (see Jorion, 2000; and Dowd, 2005; for a presentation of VaR methods).  

One issue that arises on assuming a particular distribution that does not exactly match 

the data is model risk.4  In practice, most of the methods used by financial institutions to 

implement value-at-risk models are based on the multivariate Gaussian distribution with a 

constant correlation matrix. This is the case in risk management to assess market risk of trading 

positions and also in asset management when quantitative methods are used to derive optimal 

portfolios.  This paper takes the reverse approach by inferring the correlation implied by VaR 

calculation. Financial engineers working in asset management and risk management areas have 

often used the term “implied correlation” to refer to the correlation based on VaR (by analogy 

with implied parameters used in derivatives markets). The correlation implied from VaR relates 

to the implied correlation implied from option prices (see Campa and Chang, 1998) that can be 

obtained when options are simultaneously traded on pairs of exchange rates or on a basket and 

each component for stocks. Implied correlation from options prices infer market expectation 

about the dependence structure of asset prices while implied correlation from VaR infer 

information about the dependence structure naturally contained in past data (historical VaR) or 

in a model (parametric VaR). 

The implied correlation from VaR is computed for different probability levels for long 

and short positions. If asset returns were distributed according to a Gaussian distribution, the 



 3 

VaR would not depend on the probability level and the type of position. It would remain 

constant whether ordinary market conditions (low probability level) or extraordinary market 

conditions (high level of probability) are considered, and whether bear markets (taken into 

account in the calculation of the VaR on long positions) and bull markets (short positions) are 

considered. Moreover, under the assumption of normality, implied correlation should be 

independent of any weighting scheme for the composition of asset portfolios, and of frequency 

of measurement. We examine these statements that are related to the recent literature that finds 

that correlation is not constant but tends to be higher during bear markets (especially market 

crashes) than during bull markets.5 For example, Longin and Solnik (1995) showed by using a 

GARCH methodology that the level of correlation depends on the level of volatility and on the 

market trend. To address potential bias and sample error of implied correlation from VaR 

calculations, the paper also studies the distribution of implied correlation under the hypothesis 

of normality. 

Section 2 presents the VaR calculation. Section 3 explains how the implied correlation 

from VaR is computed. Section 4 presents the empirical results for the US and UK equity 

markets. Section 5 studies the distribution of implied correlation under normality. Section 6 

summarizes the results as stylized facts and discusses applications in finance. 

2. VaR calculation 

In this section we consider a portfolio composed of two assets, asset 1 in proportion x1 

and asset 2 in proportion x2 (x1 + x2 = 100%). The frequency used to measure the asset and 

portfolio price changes, which also corresponds to the holding period used to compute the VaR, 

is denoted by f. The portfolio VaR is computed by two approaches: first, by considering the 

                                                                                                                                                      

4 See Longin (2000) and Pritsker (2005) for discussion of model risk for VaR calculations. 

5 See Lin, Engle and Ito (1994), Erb, Harvey and Viskanta (1994), Longin and Solnik (1995), Karolyi 
and Stulz (1996), Ramchmand and Susmel (1998), Longin and Solnik (2001), Ang and Bekaert (2002) 
and Das and Uppal (2004). 
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distribution of asset price changes of the whole portfolio and then compute the portfolio VaR as 

a quantile of this distribution; second, by considering the distribution of price changes of each 

asset, then compute the VaR for each asset and finally compute the portfolio VaR by using an 

aggregation formula. 

a) The portfolio approach 

In the portfolio approach, a time-series of the portfolio price changes is built from the 

time-series of each asset price: 2211 PxPxPport ∆⋅+∆⋅=∆ . The distribution of portfolio price 

changes is then built in order to compute the portfolio VaR, denoted by portVaR . In this approach 

the dependence between asset price changes is implicitly taken into account in the creation of the 

portfolio by building the time-series for portP∆ . 

b) The risk factor approach 

In the risk factor approach, the distribution of price changes of each asset (more 

generally called “risk factors”) is first estimated in order to compute the individual VaR of each 

asset, denoted by VaR1 and VaR2. The portfolio VaR is then computed by using an aggregation 

formula linking the individual VaR and the portfolio weights (more generally called “risk 

sensitivities”). A classical aggregation formula used in practice (JP Morgan, RiskMetrics, 1995) 

computes the portfolio VaR denoted by agg

portVaR  for a given f as follows: 

211221

2

2

2

2

2

1

2

1 2 VaRVaRxxVaRxVaRxVaR
agg

port ⋅⋅⋅⋅⋅+⋅+⋅= ρ     (1) 

In this approach the dependence between asset price changes is explicitly taken into 

account by the correlation coefficient between asset price changes, denoted by 12ρ . 

This approach is also theoretically justified in the case of normality (in theory meaning 

that there is no sampling error or induced statistical bias). If asset price changes are distributed 



 5 

according to a Gaussian distribution, then the two approaches to compute the VaR lead exactly 

to the same result. 

3. Implied correlation 

In this section we use the VaR calculation derived above in a reverse manner in order to 

estimate the implied correlation between asset price changes. By using the formula given in 

Equation (1) in a reverse way to compute the implied correlation, we infer the market 

information about the dependence structure contained in the portfolio VaR. 

By assuming that the portfolio approach and the risk factor approach lead to the same 

VaR results, we compute the correlation coefficient in the aggregation formula that equates the 

aggregated VaR and the portfolio VaR. The correlation implied from VaR is given by: 

( ) ( ) ( )
2 2 22 2

1 1 2 2

12

1 2 1 2

=
2

portVaR x VaR x VaR

x x VaR VaR
ρ

− ⋅ − ⋅

⋅ ⋅ ⋅ ⋅
      (2) 

  If asset price changes are distributed according to a Gaussian distribution, then the 

correlation implied from VaR should be constant and equal to Pearsons correlation. Especially, 

implied correlation should be autonomous from the following parameters: 

- The probability used to compute the VaR: p, 

- The weights used to build the portfolio: x1 and x2, 

- The type of position: long or short, 

- The frequency used to measure asset price changes: f (under the i.i.d. assumption). 

Under normality, the implied correlation does not depend on the parameters listed above 

and is simply equal to the classical Pearson correlation coefficient. Whether these propositions 

hold true is empirically tested in the next section. 
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4. Empirical results  

The correlation implied from VaR is computed for a portfolio comprising the S&P 500 

and FTSE 100 indexes. Data are closing index values over the time-period from January 1, 1995 

to December 31, 2005. Two frequencies are used to measure price changes: daily (2 871 

observations) and weekly (575 observations). Different probability levels are used to compute 

the VaR: 80%, 95.45%, 98.46%, 99,23%, 99,62% and 99,81% (for daily VaR) and 75%, 

92.31%, 96.15% and 98.08% (for weekly VaR). These probability levels correspond to average 

waiting time-periods of 1 week, 1 month, 1 quarter, 1 semester, 1 year and 2 years (for daily 

VaR) and 1 month, 1 quarter, 1 semester and 1 year (for weekly VaR).6 Two types of position 

are used: long positions and short positions in both indexes. Different weights are chosen to 

build the portfolios: (25%, 75%), (50%, 50%) and (75%, 25%). The individual and portfolio 

VaR are computed with historical distributions. 

Table 1 gives the correlation implied from daily VaR (Panel A) and from weekly VaR 

(Panel B). A graphical representation is also given in Figure 1. Results indicate that the implied 

correlation tends to depend on the type of position (long or short), on the probability level used 

to compute the VaR and on the frequency used to measure price changes. However, the same 

pattern of implied correlation is obtained when portfolio weights vary. 

Considering first results for daily VaR, implied correlation appears to be higher than the 

Pearson correlation for long positions and lower than the Pearson correlation for short positions. 

The results also indicate that the implied correlation for long and short positions tends to diverge 

as the probability level used to compute the VaR increases (that is when we look further in the  

                                                

6 The average waiting time-period for a given quantile (VaR level) represents the time we have to wait on 
average to observe a price change greater than VaR. As explained by Longin (2000), the concept of 
waiting time-period is more meaningful than a probability, especially for high levels of risk. For 
example, the difference in probability between 99.62% and 99.81% appears very small while translated 
in terms of waiting time-period, the associated daily VaR events occur on average every year and every 
two years respectively, and is easier to understand and relate to. 
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distribution tails). For example, for an equally-weighted portfolio (50%, 50%), for a probability 

level of 99.62% (corresponding to an average waiting time-period of 1 year), it is equal to 0.470 

for the VaR on a long position and 0.333 for the VaR on a short position while the Pearsons 

correlation is equal to 0.416. For a probability level of 99.81% (corresponding to an average 

waiting time-period of 2 years), it is equal to 0.555 for the VaR on a long position and 0.141 for 

the VaR on a short position. These results are in line with those obtained by Longin and Solnik 

(2001), which find that the correlation for long positions is always higher than the correlation 

for short positions. While Longin and Solnik (2001) use extreme value theory in order to 

estimate the extreme correlation, we use a more practical approach based the risk measure VaR. 

Implied correlation also depends on the frequency used to measure price changes. It is 

higher for weekly price changes than for daily price changes: 0.643 instead of 0.401 (average 

computed on the Pearsons correlation values are respectively 0.692 and 0.416). Due to the lower 

number of weekly observations (divided by 5 compared to daily observations), the pattern of 

correlation implied from weekly VaR appears more erratic but once again, for high probability 

levels (or equivalently long average waiting time-periods), implied correlation is higher for long 

positions than for short positions. For example, for the equally-weighted portfolio and for a 

probability level of 99.08% (corresponding to an average waiting time-period of 1 year), the 

implied correlation is equal to 0.624 for the VaR on a long position and to 0.486 for the VaR on 

a short position. 

A similar pattern of implied correlation is found for different portfolio weights. For 

example, for the highest probability level, implied correlation from daily and weekly VaR of 

long positions is systematically higher than those of short positions.  

The difference between the implied correlation from VaR and the classical Pearsons 

correlation has found several explanations. First, as highlighted by recent studies7, conditional 

                                                

7 See Forbes and Rigobon (1998), Boyer, Gibson and Loretan (1999) and Longin and Solnik (2001). 



 8 

correlation may be biased. Although for a Gaussian distribution the implied correlation from 

VaR is in theory equal to the Pearsons correlation for any probability level, there may still be a 

bias due to the use of the historical method and to the limited number of observations. Second, 

the difference between the implied correlation from VaR and the classical Pearsons correlation 

may not be statistically significant as the sampling error could be quite important for small 

samples. Third, it may be interpreted as a departure from normality. These issues are 

investigated in the next section as we study the statistical distribution of implied correlation 

under the null hypothesis of normality. 

5. Statistical distribution of implied correlation 

The distribution of the implied correlation from VaR is computed by Monte Carlo 

simulations. For a given frequency, we simulate a series of asset returns drawn from a bivariate 

Gaussian distribution with means, standard deviations and correlation equal to their historical 

values. Then, for given portfolio weights, we build a series of portfolio returns. Finally, for a 

given probability level, we compute VaR1, VaR2 and VaRport and then the implied correlation 

ρ12. We run this simulation procedure 100 000 times in order to get a precise estimate of the 

distribution of implied correlation. This exercise is reproduced for the different frequencies, 

portfolio weights and probability levels used to compute the VaR considered in the empirical 

study. Identical results are obtained for long and short positions due to the simulation techniques 

used (variance reduction). This simulation study will give us relevant information such as the 

bias and the dispersion representing the sampling error. 

Note that although the simulated returns are drawn from a Gaussian distribution, we still 

use the historical method to compute the VaR as done in the empirical study. This procedure 

presents two noises. First, there is a noise due to the simulation procedure of the data as for each 

simulation the Pearsons correlation obtained from simulated returns is different from the 

correlation value used to simulate the returns. Second, there is a noise due to the historical 
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method used to compute the VaR and then the implied correlation.8 Note that if the variance-

covariance method to compute VaR was used instead of the historical method, then for each 

simulation, the implied correlation from VaR would be exactly equal to the Pearsons correlation. 

As a result, our test is more conservative as it is more difficult to reject the null hypothesis that 

the implied correlation from VaR is equal to the Pearsons correlation. 

Table 2 gives some basic statistics (mean, standard deviation and the 90% centered 

confidence interval) of the distribution of implied correlation from VaR under the hypothesis of 

normality. Figure 2 gives a graphical representation of the simulated distribution for various 

average waiting time-periods (or equivalently probability levels). Simulation results show that 

there is a small bias, which tends to disappear as the number of observations increases. For an 

equally-weighted portfolio, the mean of the simulated implied correlation from weekly VaR 

(using 575 observations) lies between 0.726 and 0.743 according to the probability level used to 

compute VaR. Compared with the correlation value used to simulate the data of 0.692, this 

shows that the bias due to the VaR method and the limited number of data is around 0.04. The 

mean of the simulated implied correlation from daily VaR (using 2 871 observations, five times 

more than for the weekly VaR) lies between 0.413 and 0.422 according to the probability level 

used to compute VaR. Compared with the correlation value used to simulate the data of 0.416, 

this shows that with many more observations the bias is now very small: less than 0.006. The 

dispersion measured by the standard deviation and the 90% centered confidence interval of the 

distribution tends to increase with the probability level. For example, for a position on an 

equally-weighted portfolio and a probability level of 95.45% (waiting time-period of one 

month), the standard deviation is equal to 0.049 and the 90% centered confidence interval to 

[0.342; 0.504]. For a probability level of 99.62% (waiting time-period of one year), the standard 

deviation is equal to 0.110 (almost double) and the 90% centered confidence interval to [0.248; 

0.609] (much wider). Note that with the variance-covariance method, the mean of the simulated 

                                                

8 See Jorion (2000) and Dowd (2005) for a discussion of the efficiency of the historical method. 
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implied correlation from VaR is equal to 0.412, the standard deviation 0.016 and the 90% 

centered confidence interval [0.386; 0.437], whatever the probability used to compute the VaR. 

In this case, the bias and sampling error are attributed to the limited number of observations only 

as the implied correlation from VaR is equal to the Pearsons correlation. The difference with the 

previous results is then attributed to the use of the historical method to compute VaR. 

The simulation results can be used to test the null hypothesis of normality. More 

precisely, we test the equality between the implied correlation from VaR and the Pearsons 

correlation. For a probability level of 99.62% (waiting time-period of one year), the null 

hypothesis is rejected at the 5% confidence level if the implied correlation is below 0.248 or 

above 0.609. In Table 1 we indicate with an asterisk when the implied correlation from VaR is 

statistically different from the Pearsons correlation at the 5% confidence level. For the daily 

frequency and the highest probability level, the null hypothesis of normality is always rejected 

for the short position. For example, for a short position on an equally-weighted portfolio, the 

implied correlation is equal to 0.141 well below the Pearsons correlation of 0.416. 

These results are in contrast with those obtained by Longin and Solnik (2001) as we find 

here that the correlation for long positions is higher than but not statistically different from the 

Pearsons correlation and that the correlation for short positions is lower than and statistically 

different from the Pearsons correlation. In Longin and Solnik (2001), correlation for long 

positions is always higher than and statistically different from the correlation of extremes 

obtained under normality, and correlation for short positions is most of the time lower than but 

not statistically different from the correlation of extremes obtained under normality. This may 

be attributed to the differences in data frequency and time-period covered by the studies. 

6. Summary 

The empirical results presented in this paper can be summarized as the following stylized 

facts:  
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1) Implied correlation tends to deviate from the Pearsons correlation and to be higher 

for long positions than for short positions. From a statistical point of view this effect 

is especially significant for short positions, although the sampling error when 

estimating the correlation can be quite large. This deviation can be seen as evidence 

of departure from normality. 

2) Implied correlation tends to increase with the probability level for long positions. 

Implied correlation tends to decrease with the probability level for short positions. 

3) Implied correlation tends to decrease over all with the frequency of price changes. 

4) Implied correlation behaves in a similar way for different portfolio weights. 

Finally, by thinking of applications of this research, the framework developed in this 

paper can be used in financial institutions (asset management and risk management 

departments) to evaluate model risk. The test on the implied correlation from VaR allows one to 

know the limits of the usual techniques based on the Gaussian distribution with constant 

correlation and the need to develop a specific model for the dependence in the tails. Although 

most of the existing statistical tests look at the distribution tails, our test focuses on the tail 

dependence by considering the correlation. 

References: 

Ang A. and G. Bekaert, 2002, International Asset Allocation with Regime Shifts, Review of 
Financial Studies, 15, 1137-1187. 

Boyer B.H., M.S. Gibson and M. Loretan, 1999, Pitfalls in tests for changes in correlations. 
International Finance Discussion Paper 597, Board of Governors of the Federal Reserve System. 

Campa J.M. and K. Chang, 1998, The Forecasting Ability of Correlations Implied in Foreign 
Exchange Options, Journal of International Money and Finance, 17, 117-160. 

Das S.R. and R. Uppal, 2004, The Effect of Systemic Risk on International Portfolio Choice, 
Journal of Finance, 59, 2809-2834. 

Dowd K., 2005, Measuring market risk, 2nd Edition, (John Wiley & Sons, Chichester). 

Erb C.B., C.R. Harvey and T.E. Viskanta, 1994, Forecasting International Equity Correlations, 
Financial Analysts Journal, November/December, 32-45. 

Forbes K. and R. Rigobon, 1998, No Contagion, Only Interdependence: Measuring Stock 
Market Comovements. Working Paper, MIT. 



 12 

Jorion P., 2000, Value at Risk: The New Benchmark for Controlling Market Risk, 2nd Edition, 
(McGraw-Hill, Chicago). 

JP Morgan, 1995, RiskMetricsTM - Technical Document, 3rd Edition (see www.riskmetrics.com 
for updated research works). 

Karolyi, G.A., and R.M. Stulz, 1996, Why Do Markets Move Together? An Investigation of 
U.S.-Japan Stock Return Comovement, Journal of Finance, 51, 951-986. 

Lin W.L., R.F. Engle and T. Ito, 1994, Do Bulls and Bears Move Across Borders? International 
Transmission of Stock Returns and Volatility, The Review of Financial Studies 7, 507-538. 

Longin F.M., 2000, From Value at Risk to Stress Testing: The Extreme Value Approach. 
Journal of Banking and Finance, 24, 1097-1130. 

Longin F.M. and B.H. Solnik, 1995, Is the Correlation in International Equity Returns Constant: 
1960-1990?, Journal of International Money and Finance, 14, 3-26. 

Longin F.M. and B.H. Solnik, 2001, Extreme Correlation of International Equity Markets, 
Journal of Finance, 56, 651-678. 

Pritsker, M., 2005, The Hidden Dangers of Historical Simulation, Journal of Banking and Finance, 
Forthcoming. 

Ramchmand L. and R. Susmel, 1998, Volatility and Cross Correlation Across Major Stock 
Markets, Journal of Empirical Finance, 5, 397-416. 

 



 13 

Table 1. Implied correlation from VaR for portfolios invested in S&P 500 and FTSE 100 

indexes. 

Panel A. Correlation implied from daily VaR. 

Portfolio weights 

(25%, 75%)  (50%, 50%)  (75%, 25%) 
Probability 

(waiting period) 
Long Short  Long Short  Long Short 

80% 
(1 week) 0.305 0.380  0.308 0.388  0.308 0.415 

95.45% 
(1 month) 0.461 0.411  0.496 0.406  0.454 0.399 

98.46% 
(1 quarter) 0.455 0.566  0.425 0.520  0.441 0.505 

99.23% 
(1 semester) 0.352 0.369  0.481 0.247*  0.606* 0.194* 

99.62% 
(1 year) 0.633* 0.536  0.470 0.333  0.554 0.464 

99.81% 
(2 years) 0.542 0.140*  0.555 0.141*  0.222 0.099* 

 

Panel B. Correlation implied from weekly VaR. 

Portfolio weights 

(25%, 75%)  (50%, 50%)  (75%, 25%) 
Probability 

(waiting period) 
Long Short  Long Short  Long Short 

75% 
(1 month) 0.711 0.874  0.595 0.827  0.786 0.673 

92.31% 
(1 quarter) 0.967* 0.734  0.808 0.758  0.666 0.596 

96.15% 
(1 semester) 0.536 0.709  0.428 0.572  0.671 0.687 

98.08% 
(1 year) 0.790 0.447  0.624 0.486  0.700 0.516 

Note: this table gives the correlation implied from daily VaR (Panel A) and from weekly VaR (Panel B) 
for long and short positions on portfolios invested in the S&P 500 and FTSE 100 indexes. The VaR is 
computed by the historical method. Different probability levels (or equivalently average waiting time-
periods) are used to compute the VaR. Different weights are chosen to build the portfolios. The asterisk 
indicates that the implied correlation from VaR is statistically different from the Pearsons correlation at 
the 5% confidence level (see Table 2). The estimation period is from January 1, 1995 to December 31, 
2005. 
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Table 2. Distribution of the implied correlation from VaR under normality. 

Panel A. Correlation implied from daily VaR. 

Portfolio weights 

(50%, 50%) (25%, 75%) and (75%, 25%) Probability 
(waiting period) 

Mean 
Standard 
deviation 

90% confidence 
interval 

Mean 
Standard 
deviation 

90% confidence 
interval 

80% 
(1 week) 

0.413 0.056 [0.340; 0.524]   0.428 0.070 [0.314; 0.543] 

95.45% 
(1 month) 

0.422 0.049 [0.342; 0.504]  0.420 0.061 [0.321; 0.522] 

98.46% 
(1 quarter) 

0.420 0.061 [0.321; 0.523]  0.419 0.075 [0.297; 0.543] 

99.23% 
(1 semester) 

0.420 0.073 [0.302; 0.543]  0.419 0.089 [0.275; 0.569] 

99.62% 
(1 year) 

0.420 0.091 [0.275; 0.575]  0.419 0.111 [0.242; 0.605] 

99.81% 
(2 years) 

0.421 0.110 [0.248; 0.609]  0.420 0.132 [0.210; 0.644] 

 

Panel B. Correlation implied from weekly VaR. 

Portfolio weights 

(50%, 50%) (25%, 75%) and (75%, 25%) Probability 
(waiting period) 

Mean 
Standard 
deviation 

90% confidence 
interval 

Mean 
Standard 
deviation 

90% confidence 
interval 

75% 
(1 month) 

0.743 0.137 [0.522; 0.973]   0.745 0.159 [0.486; 0.989] 

92.31% 
(1 quarter) 

0.729 0.100 [0.567; 0.897]  0.730 0.117 [0.542; 0.924] 

96.15% 
(1 semester) 

0.727 0.106 [0.556; 0.905]  0.727 0.124 [0.527; 0.934] 

98.08% 
(1 year) 

0.726 0.119 [0.535; 0.928]  0.727 0.138 [0.505; 0.957] 

Note: this table gives some basic statistics (mean, standard deviation and the 90% centered confidence 
interval) of the distribution of implied correlation from daily VaR (Panel A) and from weekly VaR 
(Panel B) for positions on portfolios composed of the S&P 500 and FTSE 100 indexes. Different 
probability levels (or equivalently average waiting time-periods) are used to compute the VaR. The VaR 
is computed by the historical method. Different weights are chosen to build the portfolios. The 
distribution of implied correlation from VaR is computed under the hypothesis of normality for returns. 
It is obtained by Monte Carlo simulation by assuming that returns are drawn from a bivariate Gaussian 
distribution with means, standard deviations and correlation equal to their historical values. The 
estimation period is from January 1, 1995 to December 31, 2005.  
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Figure 1. Implied correlation from VaR for portfolios invested in S&P 500 and FTSE 100 

indexes. 
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Note: this figure represents the correlation implied from VaR for long and short positions on an equally-
weighted portfolio invested in the S&P 500 and FTSE 100 indexes. Different average waiting time-
periods (or equivalently probability levels) are used to compute the VaR. The VaR is computed by the 
historical method. The semi-dotted line represents the Pearsons correlation and the dotted lines the lower 
and upper bounds of the 90% centered confidence level for the implied correlation from VaR under the 
hypothesis of normality. The estimation period is from January 1, 1995 to December 31, 2005. 
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Figure 2. Distribution of implied correlation from VaR under normality. 
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Note: this figure represents the distribution of implied correlation from VaR for positions on an equally-
weighted portfolio invested in the S&P 500 and FTSE 100 indexes. Different average waiting time-
periods (or equivalently probability levels) are used to compute the VaR. The VaR is computed by the 
historical method. In each case the distribution of implied correlation from VaR is computed under the 
hypothesis of normality for returns. It is obtained by Monte Carlo simulation by assuming that returns are 
drawn from a bivariate Gaussian distribution with means, standard deviations and correlation equal to 
their historical values. The estimation period is from January 1, 1995 to December 31, 2005. 


