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ABSTRACT 

One of the greatest concerns of this age is finding definitive ways to curb the loss of 

biodiversity. Although there have been growing calls on biodiversity protection and 

conservation by governments and institutions, the challenge lies on fitting models that best 

explain the trends of target species over space and time.  

The objective of this project was to determine the probability of detection of four species and 

how it changes with time during the season. Also, the occupancy of each species and its 

relationship with abundance was obtained.   

Site�occupancy models were fitted to the data, with each model having four components; 

occupancy, colonization, extinction and detection probability.  Model selection was done on 

the basis of the AIC criterion.  

The results show different trends for each species over time. The occupancies of each species 

do reflect the abundances in the various stages of their life cycles. The colonization, 

extinction and detection probability estimates were also obtained at each time point.  
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1.� I�TRODUCTIO� 

Since time immemorial, the earth has been endowed with millions of species of plants as well 

as animals. Biodiversity has been used to describe the variation of these life forms. The 

balance of these species in the planet is essential for our survival. Nazeri et al (2010) suggests 

that one of the greatest threats the planet now faces is that of species going into extinction. 

The World Wide Fund for Nature (WWF) uses biodiversity to express the desire for us to 

save the planet. The fund estimates that biodiversity has decreased by more than a quarter in 

the past 35 years. 

Stork and Samways (1995) defines biodiversity as the variability among living organisms 

from all sources, including inter alia, terrestrial, marine and other aquatic ecosystems, and the 

ecological complexes of which they are a part. 

The challenge today for conservation and biodiversity organisations is to develop strategies to 

monitor species. This is important for organisations, governments, NGOs and individuals 

involved in decision making. The World Resource Institute (WRI) explains how scientists 

were startled in 1980 by the discovery of a tremendous diversity of insects in tropical forests. 

A stunning discovery in the Panama of 80% of unknown beetle species out of 1200 found on 

a small area shows how much species richness could be present in an ecosystem. At least 6 

million to 9 million species of arthropods and possibly more than 30 million are now thought 

to dwell in the tropics with only a small fraction currently described.   

A report, commissioned by the European Union in 2008 estimated that 50 billion Euros worth 

of biodiversity�related services is lost every year. Also, the cumulative annual loss in 

ecosystem services will be worth 14 trillion Euros by the year 2050. This amount is will 

constitute about 7% the global GDP.  

Many assessments of biodiversity abound. Conservation International and other organisations 

have underscored the importance of biodiversity conservation. By any measure, the 

conservation of biodiversity provides substantial benefits to meet immediate human needs, 

such as those for clean and consistent water supplies, protection from floods and storms and 

a stable climate.  

Despite advances made in biodiversity conservation, the commitment of world leaders remain 

limited and the greatest question we now face is how to ensure that the benefits of 

biodiversity conservation remain available for future generations, whether or not we will be 

able to find new ways to benefit from nature and whether biodiversity continues to provide 

solutions to our most pressing problems, even as these problems change over time.  

Many organisations, governments and institutions have made it a priority to reduce 

significantly the loss of biodiversity. In the year 2002, world leaders met during the 

Convention of Biological Diversity (CBD) and made a commitment to reduce the loss of 

biodiversity by 2010. However, they have failed to achieve this goal and today the rate of 

biodiversity loss is even higher. The vision of the EU commission is the halting of 

biodiversity loss and ecosystem degradation in the EU by 2020, making sure that resources 
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are used in a sustainable way by enhancing the positive contribution of agriculture and 

forestry as well as increasing contribution to global biodiversity. 

One way of addressing this situation is by improving the monitoring of biodiversity which 

involves developing a strategic framework for policy making. Niemela (2000) suggests that 

modelling biodiversity constitutes an integral part of monitoring and hence a means to an end 

even though not an end in itself. The advantage of modelling biodiversity is that it determines 

the status of species at one or more ecological levels. In this respect, researchers are 

increasingly looking at modelling strategies for the relative abundance of species. The first 

challenge here is finding an effective way to measure biodiversity. Most ecologists and 

researchers identify 2 aspects of biodiversity that are important in quantification. These are 

species richness and relative abundance. Species richness refers to the number of species in 

an area. This is often the only information available. 
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2.� OBJECTIVES 

The objectives of the project include the determination of detection histories for each species 

and in each site, then using this information to obtain detection probabilities. The interest is 

to determine how species detection varies with time during the seasons. Another objective 

was to obtain the occupancies of each species as a determinant of abundance using site 

occupancy models.  

 

3.� PRESE�CE � O�LY DATA 

In biodiversity monitoring, it has become increasingly important to use presence�only data 

due to the high cost of collecting count data with a strict protocol. In many monitoring 

programs involving modelling species of animals, one of the most difficult steps to overcome 

is obtaining the data. Most of the data obtained in biodiversity monitoring are provided by 

volunteers who may either have taken prior engagement in the process or accidentally come 

across and observe a species of interest. Therefore the time and location of the species 

observed in this manner is hardly consistent. Also these volunteers are most often amateurs, 

but the data they provide is very informative and this is the only realistic way of obtaining 

information about species’ presence. 

Data in this form is sometimes referred to by many as presence�absence data. More 

appropriately, Kery et al. (2009) describes it as detection�nondetection data. Dorazio et al. 

(2011) shows that it involves the recording of the presence or apparent absence of species of 

interest. Here, counts of individuals can be used to estimate the abundance of the species. 

Also important in presence�only data are samples of locations with known presences and 

samples of locations with unknown presences.  

Many studies have used presence�only and presence�absence data to analyse abundance of 

species. Royle and Nichols (2003) used repeated observations of presence�absence data in the 

estimation of detection probability. In Nazeri et al (2010), the distribution of some tropical 

endangered species was analysed geospatially. In studies where the communities involve 

highly mobile species, Dorazio, Gotelli and Ellison (2011) recommends using presence�

absence data rather than abundance surveys.  

Many organisations support this kind of data collection through online data�portals such as  

the United States National Science Association (NEON), the Long Term Ecological Network 

(LTER), the US National Phenology Network, The Galaxy Zoo, the REEF Environmental 

Education Foundation, eBird program and many others. In Europe more specifically, several 

projects have been launched for collecting observations of birds and other species of interest. 

These include Natuurpunt in Belgium with the portal Waarneming.be  in Belgium, the 

Stichting Natuurinformatie with Waarneming.nl in the Netherlands , and a world version 

(observado.org), as the country portal in Portugal  and Spain, BirdTrack in UK, and the 

Ornitho group of dataportals in Switzerland, Italy and Germany, among others.  

  



7 

 

3.1. REASONS FOR USING PRESENCE�ONLY DATA 

There are many reasons for using this type of data. Firstly, presence�only data constitutes the 

vast majority of data that is currently available on species occurrence (Zaniewski et al, 2002). 

Furthermore, Reliable information on absence data is not easily obtained leading to 

ambiguity. Also, Ottaviani et al, (2004) underscores that most available data obtained and 

used were collected without any specific design and without information of species absent 

hence more cost efficient.  

3.2. INHERENT PROBLEMS OF USING PRESENCE�ONLY DATA  

Even though presence�only data is widely available, there are many inherent problems 

involved in its interpretation. Perhaps the most obvious is the lack of absence data which is 

reliable and accurate. Most statistical models require both presence and absence information. 

Another problem as shown in Zaniewski et al, (2002) is the presence of bias. 

 Since there is no consistency in the design or collection methods, there is bound to be 

differential methods of obtaining data due to type of environment and accessibility, the 

distance to the cover and the amount of time volunteers are willing to commit. Another 

drawback, pointed out by Kery et al. (2009) is the lack of information about detection 

probability when presence�only data is obtained.   

Perhaps one of the most important issues that researchers face when dealing with this data is 

the fact that non�detections are not synonymous to absences, in which case conventional 

binomial modelling can be used to obtain probabilities. If a species is not detected by the 

observer, it does not imply absence. Therefore, different methodologies are needed to model 

presence�only data. 

3.3. STRATEGIES FOR ANALYSIS 

Many authors and researchers have applied special technique to study species distributions. 

In the past, simple models were used. The simplest approaches proposed by Chakraborty et al 

(2011) involve summarizing the environmental attributes of the site of species occurrence and 

extrapolating the presence information to other areas with similar attributes. In this scenario, 

the spatial aspect of the data is not taken into account.  

Another strategy involves the modelling of the probability of presence given the 

environmental conditions instead of just counts given the environmental conditions. Since it 

is not possible to obtain probabilities from presence data alone, the data is upgraded to 

presence�absence data. Pearce and Boyce (2006) and many other researchers have shown that 

data from background environment can be used to obtain the pseudo�absence data. These 

pseudo�absences are therefore assumed to be absence data. This methodology leads to the 

calculation of presence probabilities.  

A review of some approaches is described in Peace and Boyce (2006). These include 

describing distribution of species using presence�only data, making use of presence�only as 
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well as pseudo�absence data, contrasting presence data and available locations and modelling 

abundance.  

Depending on the research question, many different models have been used to analyse 

presence�only data. The number of different statistical methods is growing. Multiple 

regression models, neural networks, logistic regression models, classification trees have all 

been used in literature as in Guisan and Zimmermann (2000) with the application of each 

dependent on the trade�off between accuracy and bias. David and Shepherd (2010) show 

some weaknesses associated with logistic models such as model specifications and hence 

propose poisson point processes models instead. Gelfand et al. (2003) have used Bayesian 

hierarchical modelling to model presence�only data and obtain estimates for the parameters. 

Hierachical models have also been used in by Chakraborty et al (2011), whereby the 

presence�only data are treated as realisations of a spatial process.  

 

3.4. HIERACHICAL MODELS FOR ANALYSING PRESENCE�ONLY DATA 

Different methodologies have been used in order to model presence�only data. An elaborate 

study carried out by Elith et al. (2006) shows comparisons of many models. In the study, 16 

models were fitted over 226 species from 6 regions of the world. The central idea in these 

models is to obtain the probability of the true presence at a location y given the covariates 

�(� = �1��) whereby the presence�only data are obtained from the conditional probability of 

observed presences. A widely used method to model this conditional probability is the 

Logistic regression model. However, Keating and Cherry (2004) highlights the somewhat 

misinterpretations associated with use of logistic regression models by wildlife ecologists.  

More generally Elith et al. (2006) distinguishes two broad categories based on the type of 

data involved. These include models that use presence�only records and those that 

characterise the background. Those that use presence�only records are known as envelop 

style methods and involve sites (locations) within an environmental hyper�space in which the 

species are located. Those that characterise the background are regression models such as 

Generalised Linear Models (GLMs) and Generalised additive models (GAMs).  

Kery et al (2005) applied Poisson and negative binomial mixture distributions to model 

abundance. These models are used to model both abundance and detection. Since count data 

are biased due to heterogeneity, these mixture models have been applied because of their 

ability to estimate unbiased abundance.   

Another formulation of models is shown in McKenzie and Kendall (2002), McKenzie et al 

(2003) and McKenzie (2005). These are unbiased methods of estimating proportion of area 

occupied by the species. Parameter estimates are estimated by maximizing the likelihood. 

Also, Bayesian methods have been applied to estimate parameters by sampling from the 

posterior distribution.  
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4.� DATA  

 

4.1. STUDY AREA AND SPECIES 

The study area was divided into kilometre�squares (1km x 1km). There are four species of 

interest in this study. These include two butterfly species and two bird species. The butterfly 

species are Swallowtail (Papilio machaon) and Speckled wood (Pararge aegeria). ). The bird 

species are Buzzard (Buteo buteo) and the Black woodpecker (Dryoscopus martius). 

The datasets are of two types. The presence�only data are the roving records available on the 

online portal www.waarnemingen.be. Benchmarking data (also known as Reference data) is 

obtained from counting programs in which strict protocols for recording are respected.  

Roving records (presence only) were obtained from the portal www.waarnemingen.be for the 

year 2009 and 2010. Here, missing data implies no records of the species of interest, which 

means true absence or not recorded (apparent absence). Swallowtail is widespread but sparse 

and hence well reported while Speckled wood is commonly widespread and therefore 

underreported in the presence only dataset from www.waarnemingen.be. .  

 

Figure 1: Swallowtail (Papilio machaon) 
 

Figure 2: Speckled wood (Pararge aegeria). 

Courtesy of Words and Pictures  

 

The Woodpecker is local, sparse and well reported whereas the Buzard, which is common 

and widespread is underreported in the presence�only data. 
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Figure 3: Buzzard (Buteo buteo) 

 
Figure 4: Black woodpecker (Dryoscopus martius) 

 

Benchmarking count data for the bird species was obtained from the Common Bird Census in 

Flanders. This is a standardized count program in which birds are counted in a selection of 

km�squares. For each visit, the birds are counted during 5 minutes at six fixed points within 

the km�square. The counting procedure is then repeated 3 times between March and July.  

Benchmarking data for the butterfly species involve count of butterflies during 1hour search 

in a km�square. Absence data at this point implies no butterflies of the species of interest 

were encountered (apparent absence). 

 

4.2. DATA STRUCTURE 

Of particular importance is the fact that not all animals present are detected in any field study. 

Hence each species is therefore “recordable” or “not recordable” during a field study. In the 

roving records, the km�squares that corresponded to those in the count survey were selected. 

In this situation, data was combined for each species to obtain a “proven present” set of km�

squares.  

The dataset for the Common Buzzards and Black Woodpeckers consists of 119017 visits 

(observations), most of which are repeated observations of the same km�squares on different 

dates. These dates span over the year 2009 and 2010. For the Speckled Wood and 

Swallowtail, there are 887 observations and were done in one year (2009). For each km�

square, the observations for each species are recorded for the date observed. This results in a 

series of profiles (dataset strings) for each species.  

4.3. SELECTION BIAS  

Since the data is obtained without a statistical sampling design, there is a degree of bias 

involved. One way of limiting selection bias, was the introduction of the 1km�squares. Each 

square is then considered as the potential breeding range of the species of interest, on which 

the analysis was conditioned.  
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4.4. SAMPLING SCHEME 

The design of the study is a fairly simple one. For each species, a number of sites are selected 

(s sites) and a single species occupancy model for multiple seasons is built. This can be 

represented schematically as shown in figure 5 below.  

 

 

 

 

                       

 

 

 

 

 

 

 

Figure 5: Sampling scheme of the study 

The square box represents a km�square of the study area. The changes that occur within the 

km�square over time are represented as season 1, 2 … T. In each season, there could be up to 

K surveys. In the study, there were multiple surveys within a week in some km�squares than 

others. In order to achieve the hierarchical design with an eye on reducing bias of detections, 

each month (season) was divided into 4 weeks. If the species was seen during the week, it 

was considered as detected. MacKenzie et al (2006) makes an important assumption in the 

derivation of the occupancy of the species. 

 The assumption here is that each site is closed to changes in occupancy within seasons, but 

changes may occur between seasons through the processes of local extinction and 

colonization.  

The hierarchical sampling scheme is evident as there design shows two levels.  

1.� The primary sampling periods or seasons which are in this case the months.  

2.�  The secondary sampling periods consist of short time periods within each primary 

sampling period. These are the weeks in this case.  

 The design is therefore a series of single species single�seasons put together. For each site, 

the detection of the species is recorded across all surveys within each season. This gives the 

detection history of the species in the sites.  

It is possible, from any given survey, to calculate detectability and model the occupancy of a 

species. However, this cannot be reliable since it only gives a snapshot of the population at a 

single point in time. To reliably observe and detect species distributions, the process has to be 

repeated many times. Therefore, looking at data from many seasons to estimate occupancy 

 

 

 

1  

 

 

 

 

2 T SEASON 

SURVEYS 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4 

LOCAL EXTINCTION 

COLONIZATION 
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and detectability would give more stable results. The constraint of using this sampling 

scheme is that it costs more since more than one sampling occasion is required.  

 

5.� STATISTICAL METHODS 

To analyse the data, it is imperative to understand the characteristics of the data type 

involved. Field surveys and counts result in recorded and not recorded data. In the instance 

where a species is seen by the observer, it is recorded as present hence considered as “proven 

present”. When the observer fails to find the species of interest, it is not recorded. This 

however does not imply the species is absent. The presence (proven presence) of a species 

gives the impression that it occupies that place at that moment (Occupancy). The subject of 

Occupancy has been explored by many researchers, but one of the most recent methodologies 

by McKenzie, (2005) describes it as the proportion of area, patches or sample units that is 

occupied by the species. This however does not stay constant as they move from place to 

place and migrate from season to season. Therefore, field surveys only result in “apparent 

occupancy”.  

Apparent occupancy has many drawbacks which make it not a valid method. These include 

different detection probabilities for each species. Since birds may migrate with changing 

seasons, and butterflies fly in short generations, the probability to find them during a visit 

changes with time. 

Also, the survey method used can affect the outcomes. Most people find it difficult to 

consecrate enough time in their search effort.  

Another drawback is that some species may be difficult to find due to difficulty in accessing 

the habitat. These involve dense forests and rugged terrain. Species found on more open 

places are easier to find.  

Since not all observations are recorded, the reported rate is < 100%.  

True occupancy results from apparent occupancy whereby the latter is repeated a number of 

times to overcome the difficulties mentioned.  

5.1. ABUNDANCE 

Abundance is used to describe the number of species of interest present across the occupied 

areas. Estimation of abundance is much more difficult and expensive than occupancy. 

Species are most often detected imperfectly with detection probabilities less than 1. When 

this occurs, Royle et al (2005) has shown that observed counts are biased estimates of true 

abundance. In many recent studies, occupancy has been used to replace abundance.  
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5.2. SITE OCCUPANCY MODELS 

In most surveys, observation of occurrence doesn’t occur without errors due to non detection 

of species that may otherwise be present. Kéry and Schmid (2006) highlighted the problem. 

Recent studies have attempted to solve the problem of non detection, occurrence probability, 

and site occupancy by widely adopting site occupancy models. 

MacKenzie et al. (2002) proposed that by repeated surveying of the sites, the probability of 

detecting the species can by estimated which then enables unbiased estimation of proportion 

of area occupied and the probability a site is occupied by a species. Site occupancy takes into 

account two aspects: 

1.� A single point in time which involves surveys of the geographic locations, in this case 

the km�squares. Also, habitat relationships and incidence functions (a popular 

approach of estimating extinction and colonization probabilities) are taken into 

account. 

2.�  Another aspect is change over time. This involves migrations, colonisation and 

extinction, and monitoring change over time.  

The motivation for using site occupancy models is that the within�season (weeks, months) 

replications allows modelling of true species distribution corrected for detection probability. 

These models are hierarchical and well described by Royle and Kéry (2007) and Kéry et al, 

(2009).  

This hierarchical nature is highlighted in the nested structure. Here, surveys are repeated 

several times both within the breathing season of the species and over several years. Another 

terminology applied by many authors is the “state�space” dynamic model. Site occupancy 

models are able to estimate true (rather than apparent) species distribution. They also do 

differentiate between species distribution and species detectability. Hence they are best 

suitable in this study.  

5.3. SITE OCCUPANCY MODELLING FRAMEWORK 

The modelling framework is based on the dynamic model of MacKenzie et al. (2002). Royle 

and Kéry (2007) employs the term dynamic because these models explicitly incorporate the 

meta�population’s dynamic processes of colonization and extinction.  

The model for the observed detection/non�detection data can be expressed as a product of two 

component models. These include a model for the data conditioned on the unobserved (or 

partially observed) process and also a model for the occupancy process. 

In developing the model takes into account three assumptions.  

1.� The detection process is independent at each site 

2.� Heterogeneity is accounted for by covariates if present 
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3.� There are no changes in the occupancy of the sites between sampling occasions. This 

is possible within a short time such as a year, but MacKenzie et al. (2003) warns that 

it may not hold in the long term such as many years. 

The models of MacKenzie et al. (2002) allow the estimation of site occupancy, colonization 

and local extinction probabilities. This model works only when the species is not detected 

with absolute certainty, hence when species detection probability is less than 1. These models 

have been further extended in MacKenzie et al. (2003) to directly permit the estimation of the 

parameters.  

The data obtained from the surveys consists of repeated presence/absence of four species 

under study. In each case, the spatial units (km�squares) involved can be represented as i 

where 
 = 1, 2, 3, … , �. Each spatial unit is surveyed j times where � = 1, 2, 3, … , � within 

each season or primary sample period t where � = 1, 2, … , �.  

The occupancy status of site i and survey j for season t can be expressed as ��(
, �). Royle 

and Kéry (2007) assumed occupancy status to be independent and identically distributed over 

the different survey times �. The true occupancy is given by �(
, �) where �(
, �) = 1 implies 

that the unit (i) at season (t) is occupied by the species and �(
, �) = 0 implies that the unit (i) 

at season (t) is not occupied by the species. This can be used as the basis of developing the 

concept of detectability.  

5.4. PROBABILITY OF OBSERVATION (DETECTION)  

MacKenzie et al. (2002) uses straight forward probabilistic arguments. The probability of 

occurrence for any defined time period t is given as 

                                                 �� = Pr ( �(
, �) = 1) 

This is also the probability that the site remains occupied. In order to understand what 

happens over time, the parameterization can be obtained by extending �� so that colonization 

and extinction or the species can be taken into account. Considering time � + 1 given time �, 

we have that 

                                        �� = Pr( �(
, � + 1) = 1/ �(
, �) = 1) 

From probability theory, we deduce that the local extinction probability is �� = 1 − ��. This 

parameterization can be extended to involve other time points and hence the detection 

history. 

Generally, the probability of observing a full detection history is given by the expression 

                                            Pr( !) = "# $ %(&'.�))*+�,+ "�&',)  

Where "� is a 2x2 matrix of probabilities between occupancy states when t goes to � + 1 at 

primary sample period � = 1 to � − 1. Here, rows of  "� is the occupancy status at of the site 

at � and the columns represent occupancy state at � + 1. In matrix notation, it is represented 

as follows 
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                                                 "- = .1 − �� ��
γ0 1 − γ0

1      

"# is a a vector "# = 23+      1 − 3+4 where 3+ is the probability that the site is occupied in 

the first primary period.  

&'.� is a column vector whereby the elements denote the probability of observing the 

detection history  -,� in primary period t given occupancy state.  

%(&'.�) is a diagonal matrix containing the elements of &',�  

The probability of observing the seasonal detection history is given by the relationship 

                                       3� = 3�*+(1 − ��*+) + (1 − 3�*+) γ0*+  

To obtain the parameter values 3+, �, 5 and 9  Betts et al (2008) proposed maximizing the 

likelihood. 

                                    :(3+, ;, <, =/ + ,  > , … ,  ? ) = $ Pr( !)?-,+   

Where 3 is the occupancy, < is the colonization, and � is the local extinction 

The maximum likelihood modelling procedure relies on data from detection histories in order 

to estimate occupancy. 

A crucial assumption here in the estimation of the model parameters is all parameters are 

constant across sites and at any given time. This implies that all sites are assumed to be 

homogeneous. If this assumption is neglected, the implications would be far reaching and 

parameter estimates would be biased. In that case, parameter estimates would be conditioned 

on the site.  

The representation of the model components is shown in figure 6 below. Occupancy, 

colonization and extinction probabilities are of interest. The figure shows that a species is 

detected with a probability equal to 3+ and if it’s not detected, the probability of 1 − 3+ is 

associated to it. If a km�square is occupied (shaded squares), two things can happen as time 

goes on. Local extinction represented by �+ hence making the km�square to become empty. 

On the other hand, if the species does not become locally extinct, it’s occupancy is      

3+(1 − �+) and also (1 − 3+)5+. Hence generally sites that will be occupied in the next 

season is a combination of two things: sites occupies this season where species doesn’t 

become locally extinct (3�(1 − ��) and sites which are not occupied now but become 

colonized 

                                    3�@+ = 3�(1 − ��) + (1 − 3�)5�  
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Figure 6: Schematic representation of occupancy state. courtesy of Mackenzie et al (2006) 

 

5.5. DETECTION HISTORIES OF BUTTERFLIES 

Detection histories are obtained from the detection/non�detection data of the species. In each 

survey, a species can be detected or not detected when it is present at the site. However, a 

species cannot be detected if it is not present at the site. The detection history can be 

represented by a vector of values representing presence and absence. If the target species is 

detected at least once, then the presence information is given the value “1” and if the species 

is not detected, it is given the value “0”. When the site was not surveyed, it was given “−” 

The resulting detection histories for site i in season t is denoted ht,i  while that of site i across 

all seasons is hi .  

The full detection histories and associated probabilities are given as follows; 

For the speckled wood butterfly, the full detection history for the first km�square (DS7261) is 

given as   0110   101–   – –10    – – 1–    – – –1   – 0 – –. There are altogether 24 weeks (6 

months). Each represents the detection or non detection of the species in the km�square 

DS7261 at a particular time (week). We can interpret the history as follows: 

 In the first month (April) the speckled wood butterfly was detected during the second and 

third weeks. There were no detections in the first as well as the fourth week.  

In May, there were detections in the first and third weeks but no detection in the second 

week. There was no survey in the fourth week 

Interpretation of the detection histories of the rest of the months can be done likewise. For the 

second km�square, the detection history is given as –1– –    0010   – – – –   010 –   0 – 0 –   –

1– – 

 X DS7261 = 0110   101–   – –10    – – 1–    – – –1   – 0 – – 

SEASON 1 SEASON 2 SEASON 3 

1 − �+ 1 − �> 

1 − 5+ 1 − 5> 

�+ 

5+ 

�> 

5> 

3+ 

1 − 3+ 

      SITE 
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XDS7360   = –1– –    0010   – – – –   010 –   0 – 0 –   –1– – 

The corresponding probabilities of observing the full detection histories for the first two km�

squares are given as follows. The seasonal occupancy probabilities are also shown in table 1. 

Table 1: Seasonal occupancy detection histories and associated probabilities of butterflies 

 ! Pr( !) = "# $ %(&'.�))*+�,+ "�&',)   

X DS7261= 0110   101–   – –10    – – 1–    – – –1   – 0 – –  

April (Season 1) = 0010 

 

3+(1 − 9+,+)(1 − 9+,>)9+,A(1 − 9+,B)  

May (Season 2) = 101– 

 

3>9>,+(1 − 9>,>)9>,A   

June (Season 3) = – – 1–     3A9A,A  

 

July (Season 4) = – –10     

 

3B9B,A(1 − 9B,B)  

Aug (Season 5) = – – –1    

 
3C9C,C  

Sept (Season 6) = – 0 – – 

 
3D(1 − 9D,>)  

XDS7360 = –1– –    0010   – – – –   010 –   0 – 0 –   –1– – 

 

 

April (Season 1) = –1– –     3+9+,>  

 

May (Season 2) = 0010 3>(1 − 9>,+)(1 − 9>,>)9>,A(1 − 9>,B)  

 

June (Season 3) = – – – – 3A  
 

July (Season 4) = 010 –    3B(1 − 9B,+)9B,> (1 − 9B,A)  

 

Aug (Season 5) = 0 – 0 –    3C(1 − 9C,+)(1 − 9C,A)  

 

Sept (Season 6)= –1– – 

 

3D9D,>  

 

The same procedure was repeated for all the km�squares in the two butterfly species as well 

as the two bird species.   
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5.6. DETECTION HISTORY OF BIRDS 

The data for the birds was divided into two parts; the detection of the two species in 2009 and 

2010. The same hierarchical design as for the butterfly species was implemented. However, 

the number of months (seasons) in this case is 5 (March, April, May, June and July) with 

each season having 4 surveys (weeks). Again, the point was to find out whether or not the 

species was detected in that any given week. Since the precise dates of detection were not 

consistent over the km�squares, it was necessary to revise the survey period from a day to a 

week. In this design, only three outcomes are possible. If the species was seen in a given 

week, it was coded as detected (“1”) for the km�square in which it was seen. If the species 

was not seen, it was coded as not detected or present (“0”). If the km�square was not 

surveyed in a given week, it was coded not surveyed (“�“). Also important to note is the fact 

that non detection is not equivalent to absent because the species may be present but not seen 

by the observer.  For the first two km�squares of the year 2009 the probabilities of observing 

the detection histories are shown in table 2. 

Table 2: Seasonal occupancy detection histories and associated probabilities of birds 

 ! Pr( !) = "# $ %(&'.�))*+�,+ "�&',)   

X DS6858= – – – 0   – 0 – –   – – – 0   – 0 – –    0 – 

– – 
 

March (Season 1) = – – – 0    

 

3+(1 − 9+,B)  

April (Season 2) = – 0 – –    

 

3>(1 − 9>,>)   

May (Season 3) = – – – 0    3A(1 − 9A,A)   

 

June (Season 4) = – 0 – –     

 

3B(1 − 9B,>)  

July (Season 5) = 0 – – – 

 
3C(1 − 9C,+)   

XDS6859 = – – 0 –  010 –  1000   000 –  00 – – 

 

 

March (Season 1) = – – 0 –   3+(1 − 9+,A)  

 

April (Season 2) = 010 –   3>(1 − 9>,+)9>,>(1 − 9>,A)  

 

May (Season 3) = 1000 3A9A,+(1 − 9A,>)(1 − 9A,A)(1 − 9A,B)  

 

June (Season 4) = 000 –   3B(1 − 9B,+)(1 − 9B,>)(1 − 9B,A)  

 

July (Season 5) = 00 – – 3C(1 − 9C,+)(1 − 9C,>)  
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5.7. NAÏVE OCCUPANCY AND MAXIMUM LIKELIHOOD 

The naïve occupancy is the proportion of sites out of the total number of sites where the 

species is detected. This is given as 

           EFFG9HIF� = ?JKLMN OP Q-�MQ RSMNM QTMU-MQ -Q VM�MU�MV
)O�WX YJKLMN OP Q-�MQ QJNZM[MV   

This estimate is biased and therefore the survey needs to be repeated several times.  

To obtain unbiased estimates of occupancy and other parameters, we proceed by maximum 

likelihood. If there was a single season involved, we would divide the frequencies of each 

detection history by the total number of sites to obtain the detection probability of that 

history. These probabilities correspond to the maximum likelihood estimates of the data. The 

log likelihood is obtained by multiplying the likelihood by the natural log and summed across 

all histories. When this is multiplied by �2, it becomes �2LogL.  

In the case of the multiple seasons, we follow another approach. Here, there are 4 important 

players (Occupancy, colonization, extinction and detection probability). Here, we make use 

of a multinomial likelihood function of the parameters.  

In theory, each detection history occurs a certain number of times (frequency). The objective 

is to derive estimates of the parameters that maximize the likelihood of observing the 

frequencies of individual sites. 

Given a detection history, we can multiply the number of times it occurs by the natural log of 

the probability of observing the history. The estimates are then obtained after maximization 

of the log likelihood. 

The advantage of maximizing likelihood is that the estimates are asymptotically unbiased, 

normally distributed and the estimators do not vary much with one another.   

 

5.8. MODEL SELECTION 

The parameters of the models are the occupancy probability (3), the extinction probability 

(��) which is also given as �\(H]^_IF_ H� �
`_ � + 1 9\_^_IF_ H� �
`_ �)a , the 

colonization probability (5�) which is also given as 

�\(9\_^_IF_ H� �
`_ � + 1 H]^_IF_ H� �
`_ �)a  and the detection probability at a location 

or km�square �-.  

From the parameters just described, many models can be conceived. A period is used to 

represent a time�constant function. 

1.� 3(. )�(. )5(. )9(. ). This is a model where occupancy, extinction, colonization and 

detection probabilities are all constant over time. 
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2.� 3(. )�(. )5(. )9(�). In this model, only occupancy, extinction and colonization are 

constant. Detection probabilities are allowed to change over time.  

3.� 3(. )�(. )5(�)9(. ). Here, all parameters are constant except for colonization which 

can change over time. 

4.� 3(. )�(�)5(. )9(. ). In this case, only the extinction is allowed to change over time. 

The other parameters are kept constant.  

5.� 3(�)�(. )5(. )9(. ). Occupancy depends on time while extinction, colonization and 

detection probability are constant.  

6.� 3(�)�(�)5(�)9(�). In this model, all parameters are a function of time. Hence they 

can all change with time. 

7.� 3(. )�(�)5(�)9(�). Only Occupancy is time independent. All other parameters depend 

on time. 

Each of the models listed above can be parameterized in four different ways. These however 

do not have an effect on the fit of the model or the parameter estimates. It is therefore at the 

discretion of the researcher to apply the desired parameterization. These are as follows 

1.� Initial occupation (3+), local colonization (5�), extinction (��) and detection. Hence 

3+, 5� and �� are estimated and then used to derive 3> , 3A … as shown in the 

expression  

                          3�@+ = 3�(1 − ��) + (1 − 3�)5�   

Thus we have that 

                          3> = 3+(1 − �+) + (1 − 3+)5+  

Since Occupancy is determined by the state of the first primary period, 3>, 3A … do 

not need to be estimated. 

 

2.� Seasonal occupancy (3�) and colonization (5�). In this option, 3� is estimated directly 

and we derive �� as follows 

                            3�@+ = 3�(1 − ��) + (1 − 3�)5�  

                                 �� = 1 − bcde*(+*bc)fc
bc

  

  

3.� Seasonal occupancy (3�) and local extinction (��). In this option, 3� and �� are 

estimated directly and then 5�is derived. This is done as follows 

                             3�@+ = 3�(1 − ��) + (1 − 3�)5�  

                                         5� = bcde*(+*gc)
(+*bc)   

 

4.� Season occupancy whereby only 3� is modelled and local detection is forced to be                          

                                              �� = 1 − 5� 

In this study we used the first parameterization scheme. 
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These models are fitted in PRESENCE 2.0 and the best model selected.  

 

Model selection is an integral part of this study. The objective of this exercise is to find a 

model that best fits the data. The models are fitted based on the species in question. An 

increasingly applied approach also presented in MacKenzie and Bailey (2004) for analysing 

models in ecological studies is to fit a range of competing models and then selecting the best 

fitting model(s) using a suitable technique such as the Akaike’s information criterion (AIC). 

However, it is important to note that the best fitting model does not imply a good model. 

Importantly, the method is flexible enough to incorporate potential model covariates that may 

vary across sites. Models will be developed for each species and then compared for best fit 

using their AICs.  

 

 

6.� APPLICATIO� TO THE DATA 

 

6.1. BUTTERFLY SPECIES 

 

I.� SPECKLED WOOD BUTTERFLY 

The analysis was done on 149 sites during 24 sampling occasions (weeks). There were 2814 

missing observations (missing in terms of not surveyed). There were no site covariates. The 

link function used to fit the model is the logistic link function.  

The naïve occupancy estimate is 0.8435. This is the proportion of sites where the species 

(Speckledwood) was detected at least once.  

 

Table 3: Fit statistics of competing occupancy models for Speckled wood Butterfly 

Model AIC ∆ AIC L #Par �2Log L 

3, 5 (. )�(. )9(�) 910.07 0.00 1.0000 27 856.07 

3, 5 (. )�(�)9(�) 913.44 3.37 0.1854 31 851.44 

3, 5 (�)�(�)9(. ) 917.89 7.82 0.0163 31 855.89 

3, 5 (�)�(. )9(�) 917.89 7.82 0.0163 31 855.89 

3, 5 (�)�(�)9(�) 921.45 11.38 0.0034 35 851.45 

3, 5 (. )�(�)9(�) 940.38 30.31 0.0000 8 924.38 

3, 5 (. )�(. )9(. ) 952.29 42.22 0.0000 4 944.29 

3, 5 (�)�(. )9(. ) 960.29 50.22 0.0000 8 944.29 

 

The best fitting model is the 3, 5 (. )�(. )9(�)  whereby the probability of detection is allowed 

to change over time. This model has 6 primary and 27 sampling periods and 27 sampling 

parameters.  
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The colonization remains constant from one season to the next. The extinction rate also 

stayed constant at 1.72% throughout all seasons. Detection probability depended on the time.  

 

The parameter estimates and standard errors are shown in table 3 below.  

Table 4: Parameter estimates and standard errors of the model h, < (. );(. )=(i)   

PARAMETER  ESTIMATE SE(ESTIMATE) 95% CI 

3(1) 0.9638 0.0368 0.8105 � 0.9940 

3(2) 0.9472 0.0287 0.8910 � 1.0034 

3(3) 0.9309 0.03 0.8720 � 0.9897 

3(4) 0.9148 0.0356 0.8451 � 0.9846 

3(5) 0.8991 0.0434 0.8140 � 0.9842 

3(6) 0.8836 0.0523 0.7811 � 0.9861 

5(.) 0 � � 

�(. )  0.0172 0.013 0.0039 � 0.0730 

P[wk1] 0.0909 0.0614 0.0228 � 0.2996 
P[wk2] 0.2227 0.0746 0.1098 � 0.3994 
P[wk3] 0.5467 0.0925 0.3696 � 0.7128 
P[wk4] 0.7445 0.0848 0.5495 � 0.8744 
P[wk5] 0.5868 0.1002 0.3881 � 0.7607 
P[wk6] 0.4378 0.0866 0.2821 � 0.6067 
P[wk7] 0.3901 0.0722 0.2615 � 0.5360 
P[wk8] 0.4121 0.0678 0.2894 � 0.5468 
P[wk9] 0.1044 0.099 0.0144 � 0.4816 
P[wk10] 0.377 0.152 0.1454 � 0.6827 
P[wk11] 0.1129 0.0755 0.0282 � 0.3579 
P[wk12] 0.0769 0.0523 0.0193 � 0.2610 
P[wk13] 0.4057 0.0847 0.2556 � 0.5757 
P[wk14] 0.4103 0.0977 0.2407 � 0.6044 
P[wk15] 0.4541 0.0835 0.3014 � 0.6159 
P[wk16] 0.582 0.0777 0.4276 � 0.7219 
P[wk17] 0.7161 0.0789 0.5446 � 0.8417 
P[wk18] 0.445 0.1014 0.2641 � 0.6418 
P[wk19] 0.3027 0.1153 0.1303 � 0.5572 
P[wk20] 0.3835 0.0934 0.2239 � 0.5730 
P[wk21] 0.1634 0.1068 0.0406 � 0.4744 
P[wk22] 0.567 0.1579 0.2721 � 0.8211 
P[wk23] 0.3362 0.1156 0.1551 � 0.5828 
P[wk24] 0.2826 0.1218 0.1085 � 0.5603 

 

 



23 

 

The derived parameters represent the probability that a site is occupied given its detection 

history. The derived parameters are shown in the table below 

Since there were no covariates in the model or under investigation, all sites have a 3(1) 

estimate of 0.9638. Likewise all sites have a 3(2) estimate of 0.9472 and 3(3) equal to 

0.9309.  

The detection probabilities across the sampling periods vary as shown in the figure below. 

We see that the first week has a very low detection probability (0.09). This rapidly increases 

to 0.74 at the end of the month (April). The month of May experiences a steady decline and 

the probabilities remain low in the month of June. Another peak season is July where the 

detection probabilities increase before falling again in August.  

 

 

Figure 7: Probability of detecting Speckled wood butterfly (April-August 2009) 

 

This relates closely to the two generations of butterfly this species has: a first generation 

emerges from the pupae early April, lays eggs and dies off in May. The eggs hatch, 

caterpillars grow and the second generation of butterflies emerges primarily in July. There is 

also a partial third generation late August – September.  

 

II.� SWALLOWTAIL BUTTERFLY 

The analysis was done on 150 sites each with 24 sampling occasions (weeks) and 6 seasons 

with each season having 4 sampling occasions. 3863 observations were missing (missing 

because no survey was carried out). The naïve occupancy estimate is 0.2400.  
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Table 5: Fit statistics of competing occupancy models for Swallow tail butterfly 

Model AIC ∆ AIC L # Par �2Log L 

3, 5 (�)�(. )9(. ) 367.43 0.00 1.0000 8 351.43 

h, < (. );(i)=(. ) 367.99 0.56 0.7558 8 351.99 

3, 5 (. )�(. )9(. ) 368.52 1.09 0.5798 4 360.52 

3, 5 (�)�(�)9(. ) 370.63 3.20 0.2019 12 346.63 

3, 5 (. )�(. )9(�) 380.97 13.54 0.0011 27 326.97 

3, 5 (. )�(�)9(�) 385.24 17.81 0.0001 31 323.24 

3, 5 (�)�(. )9(�) 386.59 19.16 0.0001 31 324.59 

3, 5 (�)�(�)9(�) 390.84 23.41 0.0000 35 320.84 

 

Even though the first model has the least AIC (367.43), it was not selected as the best model 

because the parameter estimates are very unstable with very large standard errors. The second 

model has approximately the same AIC as the first with much lower standard errors. Hence 

the model with the best fit for the swallowtail butterfly is 3, 5 (. )�(�)9(. ).  The colonization 

rate and the detection rate are constant while the extinction rate was depended on time.  

Table 6: Parameter estimates of the model ψ γ (.)ε(t)p(.). 

Parameter  Estimate SE(estimate) 95% CI 

3(1) 0.2564 0.1188 0.0923 � 0.5390 

3(2) 0.3180 0.1034 0.1152 � 0.5207 

3(3) 0.3596 0.1295 0.1057 � 0.6136 

3(4) 0.4500 0.1201 0.2146 � 0.6853 

3(5) 0.3910 0.1443 0.1082 � 0.6738 

3(6) 0.0859 0.0449 �0.0022 � 0.1740 

5(. )  0.1411 0.0768 0.0455 � 0.3612 

�(1)  0.169 0.2716 0.0053 � 0.8858 

�(2)  0.1715 0.4161 0.0007 � 0.9844 

�(3)  0 � � 

�(4)  0.3035 0.2761 0.0346 � 0.8413 

�(5)  1 0.0557 0.0000 � 1.0000 

P[wk1�wk24] 0.203 0.0524 0.1197 � 0.3230 

 

The occupancy rates change over the seasons. Instead of a naïve and constant rate of 24%, we 

see that the occupancy ranges from 25.64% in the first season (April) to 8.59% in the last 

season (August). The derived parameters 3(2) � 3(6) are given in table 6 above 
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6.2. BIRD SPECIES 

 

I.� COMMON BUZARDS 

For the year 2009, the following models were fitted.  

Table 7: Fit statistics of plausible models in 2009 

Model AIC ∆ AIC L # Par �2LogL 

h, < (. );(. )=(i) 20628.35 0.00 1.0000 23 20582.35 

3, 5 (. )�(�)9(�) 20630.22 1.87 0.7558 26 20578.22 

3, 5 (�)�(. )9(�) 20631.87 3.52 0.5798 26 20579.87 

3, 5 (�)�(�)9(�) 20632.13 3.78 0.2019 29 20574.13 

3, 5 (. )�(. )9(. ) 20659.71 31.36 0.0011 4 20651.71 

3, 5 (�)�(. )9(. ) 20661.66 33.31 0.0001 7 20647.66 

3, 5 (. )�(�)9(. ) 20662.35 34.00 0.0001 7 20648.35 

3, 5 (�)�(�)9(. ) 20713.34 84.99 0.0000 10 20693.34 

 

The best model from the table above is 3, 5 (. )�(. )9(�). In this model, the colonization 

probability and probability of detection depends on the time point. Extinction probability is 

constant.  

There were 8274 sites involved with each having 20 sampling occasions. There were 5 

seasons each with 4 sapling periods. The naïve occupancy was 0.2244.  

Table 8: Parameter estimates of the model  h, < (. );(. )=(i). 

Parameter Estimate SE 95% CI 

3(1)  0.4332 0.0206 0.3934 � 0.4739 

3(2)  0.3665 0.0121 0.3428 � 0.3902 

3(3)  0.3246 0.0121 0.3009 � 0.3484 

3(4)  0.2984 0.0143 0.2703 � 0.3265 

3(5)  0.282 0.0162 0.2502 � 0.3138 

5(. )  0.0948 0.0101 0.0769 � 0.1165 

�(. )  0.2781 0.0211 0.2386 � 0.3214 

P(wk1) 1 � � 

P(wk2) 0.2943 0.0252 0.2474 � 0.3461 

P(wk3) 0.3504 0.0209 0.3107 � 0.3924 

P(wk4) 0.3399 0.0208 0.3005 � 0.3817 

P(wk5) 0.3214 0.0172 0.2887 � 0.3560 

P(wk6) 0.315 0.0171 0.2826 � 0.3493 

P(wk7) 0.2625 0.0165 0.2315 � 0.2962 

P(wk8) 0.2474 0.0155 0.2183 � 0.2790 
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Table 8 Cont. 

Parameter Estimate SE 95% CI 

P(wk9) 0.2321 0.0166 0.2012 � 0.2662 

P(wk10) 0.2397 0.0173 0.2074 � 0.2752 

P(wk11) 0.2521 0.0181 0.2182 � 0.2892 

P(wk12) 0.2656 0.0178 0.2322 � 0.3019 

P(wk13) 0.2694 0.0221 0.2284 � 0.3147 

P(wk14) 0.2728 0.0236 0.2290 � 0.3215 

P(wk15) 0.2469 0.022 0.2063 � 0.2925 

P(wk16) 0.2065 0.0192 0.1713 � 0.2468 

P(wk17) 0.2096 0.0242 0.1661 � 0.2608 

P(wk18) 0.3153 0.03 0.2597 � 0.3768 

P(wk19) 0.5 7905694150 0.0000 � 1.0000 

P(wk20) 0.5 7905694150 0.0000 � 1.0000 

 

 

For the year 2010, the following models were fitted  

Table 9: Fit statistics of plausible models in 2010 

Model AIC ∆ AIC L # Par �2LogL 

h, < (. );(. )=(i) 26659.79 0.00 1.0000 23 26613.79 

3, 5 (�)�(. )9(�) 26662.00 2.21 0.3312 26 26610.00 

3, 5 (. )�(�)9(�) 26662.21 2.42 0.2982 26 26610.21 

3, 5 (�)�(�)9(�) 26665.90 6.11 0.0471 29 26607.90 

3, 5 (�)�(�)9(. ) 26728.35 68.56 0.0000 10 26708.35 

3, 5 (. )�(�)9(. ) 27124.57 464.78 0.0000 7 27110.57 

3, 5 (. )�(. )9(. ) 27174.67 514.88 0.0000 4 27166.67 

3, 5 (�)�(. )9(. ) 27252.25 592.46 0.0000 7 27238.25 

 

The best model for the common buzzards in 2010 was the 3, 5 (. )�(. )9(�) whereby only the 

detection probability depended on time. The total number sites included is 9164 and the naïve 

occupancy estimate is 0.2548 
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Table 90: Parameter estimates of the model h, < (. );(. )=(i) 

Parameter Estimate SE 95% CI 

3(1)  0.4883 0.0202 0.4489 � 0.5279 

3(2)  0.4167 0.0120 0.3932 � 0.4402 

3(3)  0.3694 0.0114 0.3471 � 0.3917 

3(4)  0.3382 0.0135 0.3116 � 0.3647 

3(5)  0.3176 0.0157 0.2867 � 0.3484 

5(. )  0.0943 0.0103 0.0760 � 0.1164 

 �(. )  0.2455 0.0171 0.2135 � 0.2805 

P(wk1) 0 0.0001 0.0000 � 1.0000 

P(wk2) 0.2526 0.0251 0.2066 � 0.3049 

P(wk3) 0.3158 0.0168 0.2839 � 0.3495 

P(wk4) 0.2889 0.0154 0.2597 � 0.3201 

P(wk5) 0.2968 0.0142 0.2696 � 0.3254 

P(wk6) 0.293 0.0144 0.2656 � 0.3219 

P(wk7) 0.2534 0.0135 0.2278 � 0.2809 

P(wk8) 0.2174 0.0121 0.1947 � 0.2420 

P(wk9) 0.2032 0.0136 0.1778 � 0.2311 

P(wk10) 0.2214 0.0143 0.1947 � 0.2507 

P(wk11) 0.2705 0.0152 0.2418 � 0.3012 

P(wk12) 0.2708 0.0148 0.2429 � 0.3007 

P(wk13) 0.2605 0.0176 0.2276 � 0.2964 

P(wk14) 0.2117 0.0172 0.1800 � 0.2474 

P(wk15) 0.2366 0.0183 0.2027 � 0.2742 

P(wk16) 0.2472 0.0179 0.2139 � 0.2838 

P(wk17) 0.2692 0.0224 0.2276 � 0.3153 

P(wk18) 0.2599 0.0234 0.2168 � 0.3083 

P(wk19) 0.5 7905694150 0.0000 � 1.0000 

P(wk20) 0.5 7905694150  0.0000 � 1.0000 

 

The plot below shows that the occupancy estimates in 2009 are consistently lover than those 

in 2010. Here, Occupancy probabilities in during each year are highest in the first seasons 

and least at the last seasons. 
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Figure 9: Occupancy probabilities of Common Buzzards in 2009 and 2010 

 

 

Figure 10: Detection probabilities of Common Buzzards in 2009 and 2010 

The difference between the years is an artefact of roving records. More and more people are 

realising the value of the portal data and more and more enter more records of common 

species (Herremans 2009), while initially they would only report rare observations. This also 

applies to raptors like Common buzzard (Herremans 2010). 
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The seasonal fluctuation refers primarily to behavioural changes: in early spring buzzards 

defend territories and have a conspicuous aerial display. Later, during breeding they become 

more silent and retiring and they hide more efficiently because the deciduous trees are in leaf.  

When the young leave the nest they loudly beg for food easily drawing attention of observers. 

And at the end of the season migration starts, with more birds becoming more obvious in the 

sky. 

 

 

II.� BLACK WOOD PECKERS 

The models fitted for the 2009 data are shown in table 11 below 

Table 11: Fit statistics of plausible models of Black woodpeckers in 2009 

Model AIC ∆ AIC L # Par �2Log L 

h, < (i);(i)=(. ) 5814.45 0.00 1.0000 10 5794.45 

3, 5 (�)�(. )9(�) 5817.80 3.35 0.1873 26 5765.80 

3, 5 (�)�(�)9(�) 5819.10 4.65 0.0978 29 5761.10 

3, 5 (. )�(. )9(�) 5820.72 6.27 0.0435 23 5774.72 

3, 5 (. )�(�)9(�) 5820.75 6.30 0.0429 26 5768.75 

3, 5 (�)�(. )9(. ) 5822.55 8.10 0.0174 7 5808.55 

3, 5 (. )�(�)9(. ) 5841.81 27.36 0.0000 7 5827.81 

3, 5 (. )�(. )9(. ) 5844.17 29.72 0.0000 4 5836.17 

 

The best fitting model is 3, 5 (�)�(�)9(. ). There are 8274 sites in total involved. Also there 

are 5 primary periods with 4 sampling periods in each. The model estimates 10 parameters. In 

the table below, we see that there are 14 parameters. This is because 3(2) � 3(5) are derived 

parameters. The naïve occupancy estimate is 0.0518  
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Table 12: Parameter estimates of the model ψ,γ (t)ε(t)p(.) 

Parameter Estimate SE(estimate) 95% CI 

3(1)  0.1291 0.0115 0.1082�0.1534 

3(2)  0.1139 0.0104 0.0935 � 0.1344 

3(3)  0.1021 0.0098 0.0828 � 0.1213 

3(4)  0.0609 0.0079 0.0453 � 0.0765 

3(5)  0.0601 0.0117 0.0371 � 0.0831 

5(1)  0 � �    

5(2)  0.0411 0.0089 0.0268 � 0.0624 

5(3)  0.0048 0.0079 0.0002 � 0.1096 

5(4)  0.0285 0.0116 0.0127 � 0.0625 

�(1)  0.1177 0.0726 0.0328 � 0.3443 

�(2)  0.4234 0.0681 0.2988 � 0.5586 

�(3)  0.4454 0.0827 0.2944 � 0.6073 

�(4)  0.4523 0.1766 0.1696 � 0.7695 

P[Wk1] � P[Wk20] 0.187 0.0134 0.1628 � 0.2138 

 

 

The following models were fitted for the Black Woodpeckers in 2010  

Table 13: Fit statistics of plausible models for Black woodpeckers in 2010 

   Model AIC ∆ AIC L # Par �2Log L 

h, < (i);(i)=(i) 6962.94 0.00 1.0000 29 6904.94 

3, 5 (. )�(�)9(�) 6966.28 3.34 0.1882 26 6914.28 

3, 5 (�)�(�)9(. ) 6968.30 5.36 0.0686 10 6948.30 

3, 5 (. )�(. )9(. ) 6974.52 11.58 0.0031 4 6966.52 

3, 5 (. )�(�)9(. ) 6998.29 35.35 0.0000 7 6984.29 

3, 5 (. )�(. )9(�) 700838 45.44 0.0000 23 6962.38 

3, 5 (�)�(. )9(�) 7481.35 518.41 0.0000 26 7429.35 

3, 5 (�)�(. )9(. ) 7889.18 928.24 0.0000 7 7875.18 

 

The best model is the 3, 5 (�)�(�)9(�). The models estimates 29 parameters and is not over 

parameterized because the number of possible histories is much bigger than 29. Again, 3(2) 

� 3(5) are derived parameters. There are 9164 sites involved, each of which has 20 sampling 

occasions. 143311 observations were recorded as missing (not surveyed) and the naïve 

occupancy estimate is 0.0512 
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Table 14: Parameter estimates of the model h, < (i);(i)=(i). 

Parameter Estimate SE 95% CI 

3(1)  0.0932 0.0079 0.0788 � 0.1098 

3(2)  0.0761 0.0068 0.0628 � 0.0894 

3(3)  0.0954 0.0093 0.0772 � 0.1136 

3(4)  0.0882 0.0146 0.0597 � 0.1168 

3(5)  0.0547 0.0259 0.0039 � 0.1055 

5(1)  0.0000 0.0000 0.0000 � 1.0000 

5(2)  0.0347 0.0076 0.0225 � 0.0531 

5(3)  0.0189 0.0084 0.0079 � 0.0448 

5(4)  0.0008 0.0072 0.0000 � 1.0000 

�(1)  0.1831 0.0656 0.0866 � 0.3463 

�(2)  0.1676 0.0771 0.0638 � 0.3731 

�(3)  0.2544 0.1262 0.0847 � 0.5570 

�(4)  0.388 0.2994 0.0508 � 0.8824 

P(1)wk1 1 0 0.0000 � 1.0000 

P(2)wk2 0.0935 0.0373 0.0418 � 0.1963 

P(3)wk3 0.2633 0.0322 0.2051 � 0.3311 

P(4)wk4 0.2393 0.0287 0.1876 � 0.2999 

P(5)wk5 0.2586 0.0337 0.1981 � 0.3299 

P(6)wk6 0.2092 0.0298 0.1567 � 0.2736 

P(7)wk7 0.2292 0.0308 0.1744 � 0.2950 

P(8)wk8 0.2738 0.0335 0.2133 � 0.3440 

P(9)wk9 0.2376 0.0334 0.1784 � 0.3090 

P(10)wk10 0.2207 0.0315 0.1651 � 0.2885 

P(11)wk11 0.2302 0.0309 0.1753 � 0.2961 

P(12)wk12 0.2021 0.0283 0.1523 � 0.2631 

P(13)wk13 0.2059 0.0395 0.1390 � 0.2939 

P(14)wk14 0.1393 0.0327 0.0866 � 0.2166 

P(15)wk15 0.1005 0.0266 0.0590 � 0.1658 

P(16)wk16 0.1487 0.0331 0.0947 � 0.2258 

P(17)wk17 0.2831 0.136 0.0960 � 0.5950 

P(18)wk18 0.1698 0.0873 0.0573 � 0.4078 

P(19)wk19 0.5 7905694150 0.0000 � 1.0000 

P(20)wk20 0.5 7905694150 0.0000 � 1.0000 

 

In order to understand the occupancy trends in 2009 and 2010, the probabilities have been 

plotted against the occupancy status. Occupancy in 2009 from 3(1) to 3(3) appears higher 

than in 2010. Then the trend reverses. Generally, we observe a reduction in both years of the 

occupancy estimates over the seasons.  
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Figure 11: Occupancy probabilities of Black woodpeckers in 2009 and 2010 

 

The species is somewhat sensitive to severe winters, which may explain the lower numbers 

early 2010. Based on the number of records relative to search effort, Herremans (2009) 

indicated a decline of some 15% from 2009 to 2010. 

 

Figure 12: Detection probabilities of Black woodpeckers in 2010 

 

Black woodpeckers defend territories with far�carrying vocalisations, particularly in early 

spring. They have fairly long breeding seasons, but the vocalisations gradually decline. In 

midsummer the species is quieter. The detecting probabilities follow this pattern.   
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7.� DISCUSSIO� 

The problems we face nowadays are growing and concern in also mounting about the rate of 

loss of biodiversity if nothing is done. The realisation of this rapid decline and loss of 

biodiversity has prompted policy makers to commit to different measures to reduce or stop 

the trend. This commitment is translated into strategies for quantifying the amount of 

biodiversity and modelling the life cycles of species.  

One of the major hurdles in estimating of the number of species is that data is more available 

as presence�only data. This involves only information about the species that are seen or 

detected by the observer. Species that are not detected could be genuinely absent or present 

but not detected. Detectability is therefore imperfect and detection probabilities are most 

often less than 1.  

A natural strategy would be to estimate the abundance of each species and over time. 

However, this is too costly and difficult to perform. Recent methodologies of MacKenzie et 

al. (200), MacKenzie et al. (2003), MacKenzie et al. (2004), Royle et al (2005), Royle et al 

(2007) use occupancy as a measure of true abundance. Abundance –occupancy relationships 

are usually positive. Species declining in abundance also, in most cases, show declines in the 

number of sites they occupy. This relationship is well explored in Gaston et al (2000).  

Each species was monitored for detected/non�detected information. Each site was visited 

repeatedly and the number of the target species recorded. For the butterfly species (Speckled 

wood and Swallowtail) the period of observation ranged from April to September 2009 while 

for the two bird species (Common Buzzards and Black Woodpeckers) the period was 

between March and July of 2009 and 2010. This trend is seen in also reflected in the statistics 

of these species waarneming.be.  

As a bias reducing measure, a hierarchical statistical design was used. This involved grouping 

the data by weeks as primary sampling units and then by months (also used as seasons) as 

secondary sampling units. This method is very efficient the imposed hierarchy reduces 

variance and increases precision of parameter estimates. This is the multi�seasonal 

representation.  

Site occupancy models were fitted for each species taking into account the four dynamic 

processes of occupancy, colonization, extinction and detectability. For each species, the best 

fitting model was selected from a variety of competing models using the AIC criterion.  

For the Speckled wood butterfly, best model was 3, 5 (. )�(. )9(�). This means that the 

detection probability depends on time, meanwhile colonization and extinction are time 

constant.  For the Swallowtail butterfly, the best model was 3, 5 (. )�(�)9(. ) in which only 

the extinction probability depended on time. The occupancy of Speckled wood starts out high 

in the first season and stays high throughout the seasons. That of Swallow tail is lower 

comparatively. This is probably due to the fact that the swallow tail species is rare.  

In the case of the Common Buzzards, the models were fitted based on the year. The best 

model for 2009 was is 3, 5 (. )�(. )9(�) and that for 2010 was 3, 5 (. )�(. )9(�). We observe, 
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in both cases, that probability of detection varies with time. There is therefore a slight 

increase in detection probability for both years. The occupancy increased from 2009 to 2010. 

The observation shows that more detection cases are being reported.  

For the Black woodpeckers, the best model was 3, 5 (�)�(�)9(. ) while for 2010, the best 

model was 3, 5 (�)�(�)9(�). We see that in 2010, colonization, extinction and detectability 

all depended on time whereas in 2009, only colonization and extinction were time 

independent. Detectability was time constant.  
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8.� CO�CLUSIO� 

For the speckled wood butterfly, the proportion of sites occupied reduces slightly from 0.96 

in the first season to 0.88 in the last season. This corresponds to an 8% decrease in number of 

sites occupied. For the swallow tail butterfly, there is first of all an increase of 28% of the 

number of sites occupied, then decreases rapidly from July to September. There is an overall 

decrease of 18% in occupancy. At any given month, the occupancy of speckled wood is 

significantly greater than that of swallow tail. For the common buzzards 43% of sites were 

occupied in March of 2009. By July of the same year, this proportion dropped to 28% hence a 

reduction of 15%. In the following year, the proportion ranges from 49% in March to 32% in 

July hence an overall reduction of 17%. At any given month, the occupancy of common 

buzzards is higher in 2010 than in 2009. For the black woodpeckers, occupancy ranges from 

13% in March to 6% in July in 2009 and from 9% in March to 5% in July of 2010. These 

correspond to a decrease of 7% in 2009 and 4% in 2010.  

Considering colonization, virtually no sites were colonized by the speckled wood species. On 

the contrary, 14% of the sites were colonized by swallowtail species every month. About 9% 

of the sites were colonized by the common buzzards every month from March to July in 2009 

and 2010. The proportion of sites occupied by black woodpeckers depended on the month in 

both 2009 and 2010. It ranges from 0% to 3% in 2009 and from 0% to 0.08% in 2010. 

In terms of extinction, the proportion of sites in which the speckled wood species became 

locally extinct was 0.017. This value was constant from April to September. The swallow tail 

species was locally extinct in 17% of the sites between April and May. The extinction spread 

to almost all the sites between August and September. In 28% of the sites, the common 

buzzards became locally extinct and this remained constant throughout March to July of 

2009. This reduced to 25 % in 2010. Black woodpeckers showed in different trend from 

common buzzards. In 2009, extinction increased from 12% at the beginning of the season to 

45% at the end. In the year 2010, the range was between 18% at the beginning and 39% at the 

end.  

The detectability of speckled wood increased from 9% at the beginning of April to 74% by 

the end of the month. It then reduced to 9% at the end of June. Another steady increase leads 

to 72% detectability in August. Another small peak appears in September. For the swallow 

tail species, there was a constant detectability of 20%. For the common buzzards, the 

detectability was most of the time around 30% in 2009 as well as 2010. For the black 

woodpeckers, the detectability was constant in 2009 at 19%. In 2010, the detectability varied 

slightly but most of the time was around 20% but increased to 50% in September.  
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9.� RECOMME�DATIO�S 

In this study, we have been able to understand occupancy, colonization, extinction and 

detection probabilities of four species common to the European fauna. In order to get a full 

scale understanding of these factors, it would be necessary to extend the time frame and by 

implication more data over many years.  

Also, this study assumes homogeneity of sites to reduce the bias of the estimates. Even 

though models have been developed to account for heterogeneity of sites, application remains 

a major challenge. Future studies on the subject should be able to include estimation of these 

parameters under heterogeneity.   
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de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt 

door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de 

Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de 

eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen 

wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze 

overeenkomst.

Voor akkoord,

Jingwa Awungnjia, Brian  

Datum: 12/09/2011


