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Abstract

This paper proposes methods for estimation and inference in multivari-
ate, multi-quantile models. The theory can simultaneously accommodate
models with multiple random variables, multiple con�dence levels, and mul-
tiple lags of the associated quantiles. The proposed framework can be con-
veniently thought of as a vector autoregressive (VAR) extension to quantile
models. We estimate a simple version of the model using market returns
data to analyse spillovers in the values at risk (VaR) of di¤erent �nan-
cial institutions. We construct impulse-response functions for the quantile
processes of a sample of 230 �nancial institutions around the world and
study how �nancial institution-speci�c and system-wide shocks are absorbed
by the system.
Keywords: Quantile impulse-responses, spillover, codependence, CAViaR
JEL classi�cation: C13, C14, C32.

1 Introduction

The recent �nancial crisis has brought to the forefront the importance of hav-
ing sound measures of �nancial spillover. In the current debate, great emphasis
has been put on how to measure whether an institution is of systemic impor-
tance. In particular, it has been argued that since the failure of a systemically
important �nancial institutions could produce severe negative externalities on the
whole �nancial system, the supervision of �nancial institutions should, among
other things, take into account the spillover of risks within the system. The reg-
ulatory constraints imposed on �rms should therefore also re�ect their overall
systemic impact.

�We would like to thank Francesca Fabbri and Thomas Kostka for excellent research assis-
tance. The phrase "VAR for VaR" was �rst used by Andersen et al. (2003), in the title of their
section 6.4.

yDepartment of Economics, University of California, San Diego
zSchool of Economics, Yonsei University
xEuropean Central Bank, DG-Research
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A popular measure to assess the systemic importance of a �nancial institution
is to look at the sensitivity of its Value at Risk (VaR) to shocks to the whole
�nancial system (see, for instance, Adrian and Brunnermeier 2009, Acharya et al.
2009, Engle and Brownlees 2010). This paper proposes a novel method to estimate
the sensitivity of VaR of a given �nancial institution to system-wide shocks and,
vice versa, the sensitivity of the �nancial system VaR to shocks to individual
�nancial institutions. We develop the econometric framework to estimate and
make inferences in a �VAR for VaR� model, that is, a vector autoregressive (VAR)
model where the dependent variables are the VaR of �nancial institutions, which
depend on (lagged) VaR and past shocks. This allows us to study the spillover
and feedback e¤ects among the variables of the system. In addition, from the
estimated parameters, we can compute the long run VaR equilibria, as well as
impulse-response functions.
To illustrate our approach and its usefulness, consider a simple set-up with

two �nancial institutions. Let Y1t and Y2t denote the returns at time t for the two
institutions. All information available in both markets at time t is represented by
the information set Ft. As is standard, de�ne VaR as the worst monetary loss over
a relevant holding period and with a given level of con�dence � 2 (0; 1). Assuming
that the total money value of each market is $1, VaRit for market i = 1; 2 at time
t is

Pr[Yit � �VaRitjFt�1] = �: (1)

Hence, �VaRit is the �
th quantile of Yit conditional on Ft�1; we will �nd it conve-

nient to denote this as q�i;t in the analysis to follow.
A simple version of our proposed structure relates Value at Risk in two country-

wide markets according to

VaR1t = X 0
t�
�
1 + b�11VaR1t�1 + b�12VaR2t�1

VaR2t = X 0
t�
�
2 + b�21VaR1t�1 + b�22VaR2t�1;

where Xt represents predictors belonging to Ft�1: The codependence between the
two markets is measured by the o¤-diagonal coe¢cients b�12 and b

�
21; and the hy-

pothesis of no codependence can be tested by testing H0 : b
�
12 = b�21 = 0. The

direction of risk spread also can be detected by examining these two coe¢cients.
For example, if b�12 = 0 and b

�
21 6= 0; then the direction of risk spread is from coun-

try 1 to country 2, not the other way around. Our fully general model, explained
in the next sections, is much richer than the above in that, among other things:
(i) we can accommodate more than two markets; (ii) multiple lags of VaRit can
be included; and (iii) we can simultaneously consider multiple con�dence levels,
say (�1; :::; �p).
In our empirical analysis, we estimate the VAR for VaR model using returns

of individual �nancial institutions from around the world and a global �nancial
sector index. By constructing the impulse-response functions, we can rank the
banks by their resilience to shocks to the overall index and by the impact they
have on the VaR of the �nancial sector index.
The plan of the paper is as follows. In Section 2, we set forth the multivariate

multi-quantile CAViaR (MVMQ-CAViaR) framework, a generalization of White,
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Kim, and Manganelli�s (2008) MQ-CAViaR extension of Engle and Manganelli�s
original CAViaR (2004) framework. Section 3 provides conditions ensuring the
consistency and asymptotic normality of the MVMQ-CAViaR estimator, as well
as results providing a consistent asymptotic covariance matrix estimator. Section
5 contains our empirical study. Section 5 provides a summary and concluding
remarks. The appendix contains the remaining regularity conditions and the proofs
of the theorems in the text.

2 The MVMQ-CAViaR Process and Model

We consider data generated as a realization of the following stochastic process.

Assumption 1 The sequence f(Y 0
t ; X

0
t) : t = 0;�1;�2; :::; g is a stationary and

ergodic stochastic process on the complete probability space (
;F ; P0), where Yt
is a �nitely dimensioned n � 1 vector and Xt is a countably dimensioned vector
whose �rst element is one.

Let Ft�1 be the �-algebra generated by Zt�1 := fXt; (Yt�1; Xt�1); :::g; i.e.
Ft�1 := �(Zt�1). For i = 1; :::; n; we let Fit(y) := P0[Yit < y j Ft�1] de�ne
the cumulative distribution function (CDF) of Yit conditional on Ft�1.
Let 0 < �i1 < ::: < �ip < 1. For j = 1; :::; p; the �ijth quantile of Yit conditional

on Ft�1; denoted q
�
i;j;t, is

q�i;j;t := inffy : Fit(y) = �ijg; (2)

and if Fit is strictly increasing,

q�i;j;t = F�1it (�ij):

Alternatively, q�i;j;t can be represented as

Z q�i;j;t

�1

dFit(y) = E[1[Yit�q�i;j;t] j Ft�1] = �ij; (3)

where dFit(�) is the Lebesgue-Stieltjes probability density function (PDF) of Yit
conditional on Ft�1, corresponding to Fit: Note that we specify the same number
(p) of quantile indexes for each i = 1; :::; n; however, this is just for notational
simplicity. Our theory easily applies to the case in which the number of quantile
indexes di¤ers with i; i.e., p can be replaced with pi.
Our objective is to jointly estimate the conditional quantile functions q�i;j;t;

j = 1; 2; :::; p; i = 1; :::; n. For this we write q�t := (q�01;t; q
�0
2;t; :::; q

�0
n;t)

0 with q�i;t :=
(q�i;1;t; q

�
i;2;t; :::; q

�
i;p;t)

0 and impose additional appropriate structure.
First, we ensure that the conditional distributions of Yit are everywhere con-

tinuous, with positive density at each conditional quantile of interest, q�i;j;t. We
let fit denote the conditional probability density function (PDF) corresponding to
Fit. In stating our next condition (and where helpful elsewhere), we make explicit
the dependence of the conditional CDF Fit on ! 2 
 by writing Fit(!; y) in place
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of Fit(y): Similarly, we may write fi;t(!; y) in place of fi;t(y): Realized values of
the conditional quantiles are correspondingly denoted q�i;j;t(!):
Our next assumption ensures the desired continuity and imposes speci�c struc-

ture on the quantiles of interest.

Assumption 2 For i = 1; :::; n; (i) Yit is continuously distributed such that for
each ! 2 
; Fit(!; �) and fit(!; �) are continuous on R; t = 1; 2; :::; (ii) For given 0 <
�i1 < ::: < �ip < 1 and fq

�
i;j;tg as de�ned above, suppose: (a) For each i; j; t; and

!; fit(!; q
�
i;j;t(!)) > 0; and (b) For given �nite integers k and m; there exist a sta-

tionary ergodic sequence of random k�1 vectors f	tg; with 	t measurable�Ft�1;
and real vectors ��ij := (�

�
i;j;1; :::; �

�
i;j;k)

0 and �i;j;� := (
�0
i;j;� ;1; :::; 

�0
i;j;� ;n)

0; where each
�i;j;� ;k is a p� 1 vector, such that for j = 1; :::; p; i = 1; :::; n; and all t;

q�i;j;t = 	
0
t�
�
ij +

m
X

�=1

q�0t��
�
i;j;� : (4)

The structure of eq. (4) is a multivariate version of the MQ-CAViaR process of
White, Kim, and Manganelli (2008), itself a multi-quantile version of the CAViaR
process introduced by Engle and Manganelli (2004). Under suitable restrictions on
the �i;j;� �s, we obtain as special cases (1) separate MQ-CAViaR processes for each
element of Yt; (2) standard (single quantile) CAViaR processes for each element of
Yt; or (3) multivariate CAViaR processes, in which a single quantile of each element
of Yt is related dynamically to single quantiles of the (lags of) other elements of
Yt: Thus, we call processes satisfying our structure �Multivariate MQ-CAViaR�
(MVMQ-CAViaR) processes.
For MVMQ-CAViaR, the number of relevant lags can di¤er across the elements

of Yt and the conditional quantiles; this is re�ected in the possibility that for given
j, elements of �i;j;� may be zero for values of � greater than some given integer. For
notational simplicity, we do not represent m as depending on i or j: Nevertheless,
by convention, for no � � m does �i;j;� equal the zero vector for all i and j.
The �nitely dimensioned random vectors 	t may contain lagged values of Yt,

as well as measurable functions of Xt and lagged Xt or Yt: In particular, 	t may
contain Stinchcombe and White�s (1998) GCR transformations, as discussed in
White (2006).
For a particular quantile, say �ij, the coe¢cients to be estimated are �

�
ij and

�ij := (
�0
i;j;1; :::; 

�0
i;j;m)

0: Let ��0ij := (�
�0
ij; 

�0
ij), and write �

� = (��011; :::; �
�0
1p; :::; �

�0
n1; :::;

��0np)
0; an `� 1 vector, where ` := np(k + npm): We call �� the "MVMQ-CAViaR

coe¢cient vector."We estimate �� using a correctly speci�ed model of the MVMQ-
CAViaR process.
First, we specify our model.

Assumption 3 Let A be a compact subset of R`: For i = 1; :::; n; and j = 1; :::; p;
(i) the sequence of functions fqi;j;t : 
 � A ! R

pig is such that for each t and
each � 2 A; qi;j;t(�; �) is measurable�Ft�1; for each t and each ! 2 
; qi;j;t(!; �) is
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continuous on A; and for each i; j; and t;

qi;j;t(�; �) = 	
0
t�ij +

m
X

�=1

qt�� (�; �)
0i;j;� :

Next, we impose correct speci�cation and an identi�cation condition. Assump-
tion 4(i.a) delivers correct speci�cation by ensuring that the MVMQ-CAViaR
coe¢cient vector �� belongs to the parameter space, A. This ensures that ��

optimizes the estimation objective function asymptotically. Assumption 4(i.b) de-
livers identi�cation by ensuring that �� is the only such optimizer. In stating the
identi�cation condition, we de�ne �i;j;t(�; �

�) := qi;j;t(�; �)�qi;j;t(�; �
�) and use the

norm jj�jj := maxs=1;:::;` j�sj; where for convenience we also write � = (�1; :::; �`)
0:

Assumption 4 (i)(a) There exists �� 2 A such that for all i; j; t

qi;j;t(�; �
�) = q�i;j;t; (5)

(b) There is a non-empty index set I � f(1; 1); :::; (1; p); :::; (n; 1); :::; (n; p)g such
that for each � > 0 there exists �� > 0 such that for all � 2 A with jj�� ��jj > �,

P [[(i;j)2Ifj�i;j;t(�; �
�)j > ��g] > 0:

Among other things, this identi�cation condition ensures that there is su¢cient
variation in the shape of the conditional distribution to support estimation of a
su¢cient number (#I) of variation-free conditional quantiles. As in the case of
MQ-CAViaR, distributions that depend on a given �nite number of variation-free
parameters, say r, will generally be able to support r variation-free quantiles. For
example, the quantiles of the N(�; 1) distribution all depend on � alone, so there is
only one "degree of freedom" for the quantile variation. Similarly the quantiles of
scaled and shifted t�distributions depend on three parameters (location, scale, and
kurtosis), so there are only three "degrees of freedom" for the quantile variation.

3 MVMQ-CAViaR: Asymptotic Theory

We estimate �� by the method of quasi-maximum likelihood. Speci�cally, we
construct a quasi-maximum likelihood estimator (QMLE) �̂T as the solution to
the optimization problem

min
�2A

�ST (�) := T�1
T
X

t=1

f

n
X

i=1

p
X

j=1

��ij(Yit � qi;j;t(�; �))g; (6)

where ��(e) = e �(e) is the standard "check function," de�ned using the usual
quantile step function,  �(e) = � � 1[e�0]:
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We thus view

St(�) := �f

n
X

i=1

p
X

j=1

��ij(Yit � qi;j;t(�; �))g

as the quasi log-likelihood for observation t: In particular, St(�) is the log-likelihood
of a vector of np independent asymmetric double exponential random variables
(see White, 1994, ch. 5.3; Kim and White, 2003; Komunjer, 2005). Because
Yit � qi;j;t(�; �) does not need to actually have this distribution, the method is
quasi maximum likelihood.
We establish consistency and asymptotic normality for �̂T by methods anal-

ogous to those of White, Kim, and Manganelli (2008). For conciseness, we place
the remaining regularity conditions and technical discussion in the appendix.

Theorem 1 Suppose that Assumptions 1; 2(i; ii); 3(i); 4(i); and 5(i; ii) hold. Then
�̂T

a:s:
! ��.

With Q� and V � as given below, the asymptotic normality result is

Theorem 2 Suppose that Assumptions 1-6 hold. Then

T 1=2(�̂T � ��)
d
! N(0; Q��1V �Q��1):

To test restrictions on �� or to obtain con�dence intervals, we require a con-
sistent estimator of the asymptotic covariance matrix C� := Q��1V �Q��1. First,
we provide a consistent estimator V̂T for V

�; then we give a consistent estimator
Q̂T for Q

�: It follows that ĈT := Q̂�1T V̂T Q̂
�1
T is a consistent estimator for C�:

We have V � := E(��t�
�0
t ) with �

�
t :=

Pn
i=1

Pp
j=1rqi;j;t(�; �

�) �ij("i;j;t), where
 �ij("i;j;t) is a generalized residual. A straightforward plug-in estimator of V

� is

V̂T := T�1
T
X

t=1

�̂t�̂
0
t; with

�̂t :=
n
X

i=1

p
X

j=1

rqi;j;t(�; �̂T ) �ij("̂i;j;t)

"̂i;j;t := Yit � qi;j;t(�; �̂T ):

The next result establishes the consistency of V̂T for V
�:

Theorem 3 Suppose that Assumptions 1-6 hold. Then V̂T
p
! V �:
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Next, we provide a consistent estimator of

Q� :=
n
X

i=1

p
X

j=1

E[fi;j;t(0)rqi;j;t(�; �
�)r0qi;j;t(�; �

�)]:

We follow Powell�s (1984) suggestion of estimating fi;j;t(0) with 1[�ĉT�"̂i;j;t�ĉT ]=2ĉT
for a suitably chosen sequence fĉTg: This is also the approach taken in Kim and
White (2003), Engle and Manganelli (2004), and White, Kim, and Manganelli
(2008). Accordingly, our proposed estimator is

Q̂T = (2ĉTT )
�1

n
X

i=1

T
X

t=1

p
X

j=1

1[�ĉT�"̂i;j;t�ĉT ]rqi;j;t(�; �̂T )r
0qi;j;t(�; �̂T ):

Theorem 4 Suppose that Assumptions 1-7 hold. Then Q̂T
p
! Q�:

There is no guarantee that �̂T is asymptotically e¢cient. There is now a
considerable literature investigating e¢cient estimation in quantile models; see,
for example, Newey and Powell (1990), Otsu (2003), Komunjer and Vuong (2006,
2007a, 2007b). So far, this literature has only considered single quantile models.
It is not obvious how the results for single quantile models extend to multivariate
multi-quantile models. Nevertheless, Komunjer and Vuong (2007a) show that the
class of QML estimators is not large enough to include an e¢cient estimator, and
that the class of M -estimators, which strictly includes the QMLE class, yields an
estimator that attains the e¢ciency bound. Speci�cally, when p = n = 1; they
show that replacing the usual quantile check function ��ij(�) in eq.(6) with

���ij(Yit � qi;j;t(�; �)) = (�ij � 1[Yit�qi;j;t(�;�)�0])(Fit(Yit)� Fit(qi;j;t(�; �)))

will deliver an asymptotically e¢cient quantile estimator. We conjecture that
replacing ��ij with �

�
�ij
in eq.(6) will improve estimator e¢ciency for p and/or n

not equal to 1. We leave the study of the asymptotically e¢cient multivariate
multi-quantile estimator for future work.

4 Assessing the Systemic Importance of Finan-

cial Institutions

We apply the model developed in the previous sections to study spillovers in the
returns quantiles of a sample of 230 �nancial institutions from around the world.
In this section we �rst show how to compute impulse-response functions within the
multivariate, multiquantile framework. We choose a particular quantile speci�ca-
tion for our empirical analysis, linking it to the DGP of more familiar multivariate
mean-variance models. We next describe the data and the optimization strategy.
Finally, we present the results of an empirical application to market returns of
�nancial institutions.
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4.1 Impulse-response Functions for Multivariate CAViaR

Suppose data are structurally generated as:

Yt = Ltut;

where Lt := Lt(Z
t�1) is an Ft�1�measurable lower triangular matrix and the

elements of ut are mutually independent with futjFt�1g a martingale di¤erence
sequence. By convention, we let the �rst element of Yt denote the per-period
return on a �nancial sector index and the second element the per-period return on
a speci�c bank. The identi�cation assumption behind this decomposition is that
shocks to the �nancial sector index are allowed to have a direct impact on the
return of the speci�c bank, but shocks to the speci�c bank do not have a direct
impact on the �nancial sector index. Here we limit ourselves to a bivariate system,
as we are interested in the interaction between a �nancial sector index and an
individual bank. The theoretical framework of this paper can accommodate higher
dimensional models, although at the cost of a rapidly increasing computational
burden.
For suitable choices of Lt, the conditional quantiles of Yt obey (4). For our

purposes here, suppose

qi;t = c+ AjYt�1j+Bqi;t�1 (7)

where qi;t, Yt�1, and c are 2-dimensional vectors, and A, B are (2,2)-matrices. See
Appendix 1 for an example of how this representation corresponds to a bivariate
GARCH model.
Let the long run matrix L be de�ned as:

L := lim
t!1

Lt(Z
t�1)jZt�1=0:

If we set yt+n = 0 for n > 0, the system converges to �q = (I�B)
�1c. Assuming the

system is at its long run equilibrium, if we denote by �1 a one standard deviation
shock to the �rst element of the orthogonal error u at time t, such a shock implies
the following quantile response:

q1;t+1 � c+ AjL�1j+B�q

q1;t+n � c+Bq1;t+n�1 n > 1

The impulse-responses for a shock to the second element of u can be computed
analogously.
We can compute four types of impulse-responses:

1. @q1;t+n=@u1;t is the reaction of the system�s risk to a system shock;

2. @q1;t+n=@u2;t is the reaction of the system�s risk to an individual bank�s shock;

3. @q2;t+n=@u1;t is the reaction of the bank�s risk to a system shock;

4. @q2;t+n=@u2;t is the reaction of the bank�s risk to its own shock.
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4.2 Data and Optimization Strategy

The data were downloaded from Datastream. We considered three main global
sub-indices: banks, �nancial services, and insurances. The sample includes daily
closing prices from 1 January 2000 to 6 August 2010. We eliminated all the stocks
whose times series started later than 1 January 2000. At the end of this process,
we were left with 230 stocks.
Table 1 reports the breakdown of the stocks by sector and by geographic area.

There are twice as many �nancial institutions classi�ed as banks in our sample
as there are those classi�ed as �nancial services or insurances. The distribution
across geographic areas is more balanced, with a greater number of EU �nancial
institutions and slightly lower Asian representation.
To cope with asynchronicity issues due to di¤ering time zones, the data were

transformed to weekly frequency. Weekly returns were computed as the log di¤er-
ence of weekly closing prices and expressed in percentage terms. The proxy for the
overall index used in each bivariate quantile estimation is the World Financials
price index, as provided by Datastream.
We estimated 230 bivariate 1% quantile models between the index and each

of the 230 �nancial institutions in our sample. Each model is estimated using
as starting values for optimization the univariate CAViaR estimates and initial-
izing the remaining parameters at zero. We also generated 40 additional initial
conditions by adding a normally distributed noise to this vector. For each of
these 41 initial conditions, we minimized the regression quantile objective func-
tion (6) using the fminsearch optimization function in Matlab, which is based
on the Nelder-Mead simplex algorithm. Finally, among the resulting 41 vectors of
parameter estimates, we chose the vector yielding the lowest value for the function
(6). We adopt this strategy because we �nd that parameter estimates are sensitive
to the choice of initial conditions (possibly due to a very �at likelihood near the
optimum). Such an optimization strategy is more time consuming, but delivers
more reliable results. Still, for some time series, either we did not get convergence
or the parameter estimates were associated with an explosive impulse-response
function. This happened in about 20% of the sample. In this case, we restricted
to zero the coe¢cients associated with the second lagged quantile (i.e. the quantile
associated with the single �nancial institutions) in the process (7).
In calculating the standard errors, we have set the bandwidth to 1.

4.3 Results

Table 2 reports as an example the estimation results for the Sumitomo Mitsui Fi-
nancial Group, the second largest bank in Japan by market value (as of November
2009). Notice that the non-diagonal coe¢cients for the B matrix are signi�cantly
di¤erent from zero, illustrating how the multivariate quantile model can uncover
dynamics that cannot be detected by estimating univariate quantile models. In
general, we reject the joint null hypothesis that all o¤-diagonal coe¢cients of the
matrices A and B are equal to zero at the .05 level [**HW: correct level?]
for about 85% of the �rms in our sample. The resulting estimated 1% quantiles

9



for the index and the Sumitomo Mitsui Financial Group are reported in Figure
1. The quantile of the global index is generally much smaller in absolute terms
that the quantile of Sumitomo, re�ecting the portfolio diversi�cation e¤ect of the
index. Only around the Lehman bankruptcy (September 2008) is the situation
brie�y inverted, with the estimates indicating a higher risk associated with the
global index than with the Sumitomo bank.
Figures 2-5 plot the average impulse-response functions @q1;t+n=@u2;t and @q2;t+n

=@u1;t measuring the impact of a two standard deviation individual bank shock
on the index and the impact of a two standard deviation shock to the index
on the individual bank�s risk. In Figures 2 and 3, the average is taken with
respect to the geographical distribution. That is, the average impulse-response
for Europe, say, is obtained by averaging all the impulse-response functions for
European �nancial institutions. We notice two things. First, the impact of a
shock to the index is much stronger than the impact of a shock to the individual
�nancial institution. This result is partly driven by our identi�cation assumption
that shocks to the index have a contemporaneous impact on the return of the
single �nancial institutions, while the institution�s speci�c shocks have only a
lagged impact on the global �nancial index. Second, we notice that the risk of
Asian �nancial institutions appears to be on average much less sensitive to global
shocks than their European and North American counterparts.
Figures 4 and 5 plot the average impulse-response functions for the �nancial

institutions grouped by line of business, i.e. banks, �nancial services, and insur-
ances. We see that a shock to the index has a stronger initial impact on the group
of insurance companies. Regarding the impact of shocks to the individual �nancial
institutions on the risk of the global index, banks have on average a lower initial
impact, but the shock appears to be more persistent than for �nancial services
and insurance companies.
To rank the �nancial institutions according to their impact on risk, we inte-

grated out all the individual impulse-responses and sorted the �nancial institutions
according to this metric. The resulting ranking is reported in Table 3. The �rst
two columns rank the 20 �nancial institutions whose risk is most and least sensi-
tive to a shock to the index. Among the most sensitive institutions are household
names such as Barclays, Unicredit, Citigroup, and Royal Bank of Scotland. Gold-
man Sachs, on the other hand, belongs to the group of �nancial institutions that
are least a¤ected by global shocks. The last two columns contain the �nancial
institutions with the largest and smallest impact on the risk of the global index.
These lists contain smaller and less well known �nancial institutions. To get an
idea of the orders of magnitude involved, Figure 6 plots the average impulse-
responses corresponding to the four lists of 20 �nancial institutions contained in
Table 3. It is clear that the shocks to the index have an impact of an order of
magnitude greater than the shocks to the individual �nancial institutions. A two
standard deviation shock to the index produces an average initial increase in the
VaR of the most sensitive �nancial institutions of more than 20%. The shock
is also quite persistent, as it is not yet completely absorbed after 15 weeks. On
the other hand, for the least sensitive �nancial institutions, a shock to the index
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produces an average immediate increase in the VaR of less than 3%, which is then
entirely absorbed after the second week. The �gure also shows that the shocks to
the individual �nancial institutions have a signi�cantly lower impact on the risk
of the index, in line with the results shown in Figures 3 and 5.

5 Conclusion

We have developed theory ensuring the consistency and asymptotic normality of
multivariate multi-quantile models. Our theory is general enough to comprehen-
sively cover models with multiple random variables, multiple con�dence levels and
multiple lags of the quantiles.
We conduct an empirical analysis in which we estimate a VAR for VaR model

using returns of individual �nancial institutions from around the world and a
global �nancial sector index. By examining the impulse-response functions, we
can rank the banks by their resilience to shocks to the overall index and by the
impact they have on the VaR of the �nancial sector index. We �nd that the risk of
Asian �nancial institutions tends to be less sensitive to systemic shocks, whereas
insurance companies exhibit a greater sensitivity to global shocks. Ranking �nan-
cial institutions by how they react to shocks, we uncover wide di¤erences among
them. Among the top 20 �nancial institutions that appear to be more vulnera-
ble to system-wide shocks we �nd well-known names such as Barclays, Unicredit,
Citigroup, and Royal Bank of Scotland. These �ndings are quite striking, as they
are obtained without weighting the �nancial institutions by their market capital-
ization.
The methods developed in this paper can be applied to many other contexts.

For instance, many stress-test models are built from vector autoregressive models
on credit risk indicators and macroeconomic variables. Starting from the estimated
mean and adding assumptions on the multivariate distribution of the error terms,
one can deduce the impact of a macro shock on the quantile of the credit risk
variables. Our methodology provides a convenient alternative for stress testing,
by allowing researchers to estimate vector autoregressive processes directly on the
quantiles of interest, rather than on the mean.
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6 Appendix 1 - Multi-quantile representation of

a bivariate GARCH process with zero mean

Consider the following data generating process:
�

Y1t
Y2t

�

=

�

�t 0
�t t

� �

"1t
"2t

�

"t v N(0; I)

�t(Y1t) = �t

� �1t

= c1 + a11jY1t�1j+ a12jY2t�1j+ b11�1t�1 + b12�2t�1

�t(Y2t) =

q

�2t + 2t
� �2t

= c2 + a21jY1t�1j+ a22jY2t�1j+ b21�1t�1 + b22�2t�1:

The respective quantile processes are:

q1t = kc1 + ka11jY1t�1j+ ka12jY2t�1j+ b11q1t�1 + b12q2t�1

q2t = kc2 + ka21jY1t�1j+ ka22jY2t�1j+ b21q1t�1 + b22q2t�1;

where k is the �-quantile of the standard normal distribution. In this case, setting
the shocks equal to zero is equivalent to setting Yt = 0. The long-run quantiles
are:

�q =

�

1� b11 b12
b21 1� b22

��1 �
kc1
kc2

�
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7 Appendix 2 - Proofs

The proofs that follow are straightforward modi�cations of those in White, Kim,
and Manganelli (2008).
We establish the consistency of �̂T by applying results of White (1994). For

this we impose the following moment and domination conditions. In stating this
next condition and where convenient elsewhere, we exploit stationarity to omit
explicit reference to all values of t:

Assumption 5 (i) For i = 1; :::; n; EjYitj <1; (ii) letD0;t := maxi=1;:::;nmaxj=1;:::;p
sup�2A jqi;j;t(�; �)j: Then E(D0;t) <1:

Proof of Theorem 1: We verify the conditions of corollary 5.11 of White (1994),
which delivers �̂T ! ��, where

�̂T := argmax
�2A

T�1
T
X

t=1

't(Yt; qt(�; �));

and 't(Yt; qt(�; �)) := �f
Pn

i=1

Pp
j=1 ��ij(Yit � qi;j;t(�; �))g. Assumption 1 ensures

White�s Assumption 2.1. Assumption 3(i) ensures White�s Assumption 5.1. Our
choice of ��ij satis�es White�s Assumption 5.4. To verify White�s Assumption 3.1,
it su¢ces that 't(Yt; qt(�; �)) is dominated on A by an integrable function (en-
suring White�s Assumption 3.1(a,b)) and that for each � in A, f't(Yt; qt(�; �))g
is stationary and ergodic (ensuring White�s Assumption 3.1(c), the strong uni-
form law of large numbers (ULLN)). Stationarity and ergodicity is ensured by
Assumptions 1 and 3(i). To show domination, we write

j't(Yt; qt(�; �))j �
n
X

i=1

p
X

j=1

j��ij(Yit � qi;j;t(�; �))j

=

n
X

i=1

p
X

j=1

j(Yit � qi;j;t(�; �))(�ij � 1[Yit�qi;j;t(�;�)�0])j

� 2

n
X

i=1

p
X

j=1

(jYitj+ jqi;j;t(�; �)j)

� 2p
n
X

i=1

jYitj+ 2npjD0;tj;

so that

sup
�2A

j't(Yt; qt(�; �))j � 2p

n
X

i=1

jYitj+ 2npjD0;tj:

Thus, 2p
Pn

i=1 jYitj+ 2npjD0;tj dominates j't(Yt; qt(�; �))j; this has �nite expecta-
tion by Assumption 5(i,ii).
It remains to verify White�s Assumption 3.2; here this is the condition that

�� is the unique maximizer of E('t(Yt; qt(�; �)): Given Assumptions 2(ii.b) and
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4(i), it follows by argument directly parallel to that in the proof of White (1994,
corollary 5.11) that for all � 2 A;

E('t(Yt; qt(�; �)) � E('t(Yt; qt(�; �
�)):

Thus, it su¢ces to show that the above inequality is strict for � 6= ��: Consider
� 6= �� such that jj� � ��jj > � and let �(�) :=

Pn
i=1

Pp
j=1E(�i;j;t(�)) with

�i;j;t(�) := ��ij(Yit� qi;j;t(�; �))� ��ij(Yit� qi;j;t(�; �
�)): It will su¢ce to show that

�(�) > 0: First, we de�ne the "error" "i;j;t := Yit � qi;j;t(�; �
�) and let fi;j;t(�) be

the density of "i;j;t conditional on Ft�1: Noting that �i;j;t(�; �
�) := qi;j;t(�; �) �

qi;j;t(�; �
�); we next can show by some algebra and Assumption 2(ii.a) that

E(�i;j;t(�)) = E[

Z �i;j;t(�;�
�)

0

(�i;j;t(�; �
�)� s) fi;j;t(s)ds]

� E[
1

2
�2�1[j�i;j;t(�;��)j>��] +

1

2
�i;j;t(�; �

�)21[j�i;j;t(�;��)j���])]

�
1

2
�2�E[1[j�i;j;t(�;��)j>��]]:

The �rst inequality above comes from the fact that Assumption 2(ii.a) implies
that for any � > 0 su¢ciently small, we have fi;j;t(s) > � for jsj < �. Thus,

�(�) : =

n
X

i=1

p
X

j=1

E(�i;j;t(�)) �
1

2
�2�

n
X

i=1

p
X

j=1

E[1[j�i;j;t(�;��)j>��]]

=
1

2
�2�

n
X

i=1

p
X

j=1

P [j�i;j;t(�; �
�)j > ��] �

1

2
�2�
X

(i;j)2I

P [j�i;j;t(�; �
�)j > ��]

�
1

2
�2�P [[(i;j)2Ifj�i;j;t(�; �

�)j > ��g] > 0;

where the �nal inequality follows from Assumption 4(i.b). As � is arbitrary, the
result follows. �

Next, we establish the asymptotic normality of T 1=2(�̂T��
�). We use a method

originally proposed by Huber (1967) and later extended by Weiss (1991). We �rst
sketch the method before providing formal conditions and the proof.
Huber�s method applies to our estimator �̂T ; provided that �̂T satis�es the

asymptotic �rst order conditions

T�1
T
X

t=1

f

n
X

i=1

p
X

j=1

rqi;j;t(�; �̂T )  �ij(Yit � qi;j;t(�; �̂T ))g = op(T
1=2); (8)

where rqi;j;t(�; �) is the `� 1 gradient vector with elements (@=@�s)qi;j;t(�; �); s =
1; :::; `; and  �ij(Yit � qi;j;t(�; �̂T )) is a generalized residual. Our �rst task is thus
to ensure that eq. (8) holds.
Next, we de�ne

�(�) :=
n
X

i=1

p
X

j=1

E[rqi;j;t(�; �) �ij(Yit � qi;j;t(�; �))]:
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With �(�) continuously di¤erentiable at �� interior to A, we can apply the mean
value theorem to obtain

�(�) = �(��) +Q0(�� ��); (9)

where Q0 is an `�` matrix with (1�`) rows Q0;s = r
0�(��(s)), where ��(s) is a mean

value (di¤erent for each s) lying on the segment connecting � and ��; s = 1; :::; `.
It is straightforward to show that correct speci�cation ensures that �(��) is zero.
We will also show that

Q0 = �Q
� +O(jj�� ��jj); (10)

where Q� :=
Pn

i=1

Pp
j=1E[fi;j;t(0)rqi;j;t(�; �

�)r0qi;j;t(�; �
�)] with fi;j;t(0) the value

at zero of the density fi;j;t of "i;j;t := Yit � qi;j;t(�; �
�); conditional on Ft�1: Com-

bining eqs. (9) and (10) and putting �(��) = 0, we obtain

�(�) = �Q�(�� ��) +O(jj�� ��jj2): (11)

The next step is to show that

T 1=2�(�̂T ) +HT = op(1); (12)

where HT := T�1=2
PT

t=1 �
�
t ; with �

�
t :=

Pn
i=1

Pp
j=1rqi;j;t(�; �

�) �ij("i;j;t). Eqs.
(11) and (12) then yield the following asymptotic representation of our estimator
�̂T :

T 1=2(�̂T � ��) = Q��1T�1=2
T
X

t=1

��t + op(1): (13)

As we impose conditions su¢cient to ensure that f��t ;Ftg is a martingale dif-
ference sequence (MDS), a suitable central limit theorem (e.g., theorem 5.24 in
White, 2001) applies to eq. (13) to yield the desired asymptotic normality of �̂T :

T 1=2(�̂T � ��)
d
! N(0; Q��1V �Q��1); (14)

where V � := E(��t�
�0
t ).

We now strengthen the conditions above to ensure that each step of the above
argument is valid.

Assumption 2 (iii) (a) There exists a �nite positive constant f0 such that for
each i and t; each ! 2 
; and each y 2 R, fit(!; y) � f0 <1; (b) There exists a
�nite positive constant L0 such that for each i and t; each ! 2 
; and each y1; y2 2
R, jfit(!; y1)� fit(!; y2)j � L0jy1 � y2j.

Next we impose su¢cient di¤erentiability of qt with respect to �.

Assumption 3 (ii) For each t and each ! 2 
; qt(!; �) is continuously di¤er-
entiable on A; (iii) For each t and each ! 2 
; qt(!; �) is twice continuously
di¤erentiable on A;
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To exploit the mean value theorem, we require that �� belongs to int(A), the
interior of A.

Assumption 4 (ii) �� 2 int(A):

Next, we place domination conditions on the derivatives of qt:

Assumption 5 (iii) Let D1;t := maxi=1;:::;nmaxj=1;:::;pmaxs=1;:::;` sup�2A j(@=@�s)
qi;j;t(�; �)j. Then (a) E(D1;t) < 1; (b) E(D2

1;t) < 1; (iv) Let D2;t :=
maxi=1;:::;nmaxj=1;:::;pmaxs=1;:::;`maxh=1;:::;` sup�2A j(@

2=@�s@�h)qi;j;t(�; �)j. Then
(a) E(D2;t) <1; (b) E(D

2
2;t) <1:

Assumption 6 (i)Q� :=
Pn

i=1

Pp
j=1E[fi;j;t(0)rqi;j;t(�; �

�)r0qi;j;t(�; �
�)] is positive

de�nite; (ii) V � := E(��t�
�0
t ) is positive de�nite.

Assumptions 3(ii) and 5(iii.a) are additional assumptions helping to ensure that eq.
(8) holds. Further imposing Assumptions 2(iii), 3(iii.a), 4(ii), and 5(iv.a) su¢ces
to ensure that eq. (11) holds. The additional regularity provided by Assumptions
5(iii.b), 5(iv.b), and 6(i) ensures that eq. (12) holds. Assumptions 5(iii.b) and
6(ii) help ensure the availability of the MDS central limit theorem.
We now have conditions su¢cient to prove asymptotic normality of our MVMQ-

CAViaR estimator.

Proof of Theorem 2: As outlined above, we �rst prove

T�1
T
X

t=1

f
n
X

i=1

p
X

j=1

rqi;j;t(�; �̂T )  �ij(Yit � qi;j;t(�; �̂T ))g = op(1): (15)

The existence of rqi;j;t is ensured by Assumption 3(ii). Let ei be the ` � 1 unit
vector with ith element equal to one and the rest zero, and let

Gs(c) := T�1=2
T
X

t=1

n
X

i=1

p
X

j=1

��ij(Yit � qi;j;t(�; �̂T + ces));

for any real number c. Then by the de�nition of �̂T , Gs(c) is minimized at c = 0.
Let Hs(c) be the derivative of Gs(c) with respect to c from the right. Then

Hs(c) = �T
�1=2

T
X

t=1

n
X

i=1

p
X

j=1

rsqi;j;t(�; �̂T + ces)  �ij(Yit � qi;j;t(�; �̂T + ces));

where rsqi;j;t(�; �̂T + ces) is the s
th element of rqi;j;t(�; �̂T + ces). Using the facts

that (i) Hs(c) is non-decreasing in c and (ii) for any � > 0, Hs(��) � 0 and
Hs(�) � 0, we have

jHs(0)j � Hs(�)�Hs(��)

� T�1=2
T
X

t=1

n
X

i=1

p
X

j=1

jrsqi;j;t(�; �̂T )j1[Yit�qi;j;t(�;�̂T )=0]

� T�1=2 max
1�t�T

D1;t

T
X

t=1

n
X

i=1

p
X

j=1

1[Yit�qi;j;t(�;�̂T )=0];
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where the last inequality follows by the domination condition imposed in Assump-
tion 5(iii.a). Because D1;t is stationary, T

�1=2max1�t�T D1;t = op(1). The second

term is bounded in probability:
PT

t=1

Pn
i=1

Pp
j=1 1[Yit�qi;j;t(�;�̂T )=0] = Op(1) given

Assumption 2(i,ii.a) (see Koenker and Bassett, 1978, for details). Since Hs(0) is
the sth element of T�1=2

PT
t=1

Pn
i=1

Pp
j=1rqi;j;t(�; �̂T )  �ij(Yit � qi;j;t(�; �̂T )), the

claim in (15) is proved.
Next, for each � 2 A, Assumptions 3(ii) and 5(iii.a) ensure the existence and

�niteness of the `� 1 vector

�(�) : =

n
X

i=1

p
X

j=1

E[rqi;j;t(�; �) �ij(Yit � qi;j;t(�; �))]

=

n
X

i=1

p
X

j=1

E[rqi;j;t(�; �)

Z 0

�i;j;t(�;��)

fi;j;t(s)ds];

where �i;j;t(�; �
�) := qi;j;t(�; �)� qi;j;t(�; �

�) and fi;j;t(s) = (d=ds)Fit(s+ qi;j;t(�; �
�))

represents the conditional density of "i;j;t := Yit � qi;j;t(�; �
�) with respect to

Lebesgue measure: The di¤erentiability and domination conditions provided by
Assumptions 3(iii) and 5(iv.a) ensure (e.g., by Bartle, 1966, corollary 5.9) the
continuous di¤erentiability of �(�) on A, with

r�(�) =

n
X

i=1

p
X

j=1

E[rfr0qi;j;t(�; �)

Z 0

�i;j;t(�;��)

fi;j;t(s)dsg]:

Since �� is interior to A by Assumption 4(ii), the mean value theorem applies to
each element of �(�) to yield

�(�) = �(��) +Q0(�� ��); (16)

for � in a convex compact neighborhood of �� where Q0 is an ` � ` matrix with
(1 � `) rows Qs(��(s)) = r

0�(��(s)), where ��(s) is a mean value (di¤erent for each
s) lying on the segment connecting � and �� with s = 1; :::; `. The chain rule and

an application of the Leibniz rule to
R 0

�i;j;t(�;��)
fi;j;t(s)ds then give

Qs(�) = As(�)�Bs(�);

where

As(�) :=

n
X

i=1

p
X

j=1

E[rsr
0qi;j;t(�; �)

Z 0

�i;j;t(�;��)

fi;j;t(s)ds]

Bs(�) :=

n
X

i=1

p
X

j=1

E[fi;j;t(�i;j;t(�; �
�))rsqi;j;t(�; �)r

0qi;j;t(�; �)]:

Assumption 2(iii) and the other domination conditions (those of Assumption 5)
then ensure that

As(��(s)) = O(jj�� ��jj)

Bs(��(s)) = Q�s +O(jj�� ��jj);

18



whereQ�s :=
Pn

i=1

Pp
j=1E[fi;j;t(0)rsqi;j;t(�; �

�)r0qi;j;t(�; �
�)]: LettingQ� :=

Pn
i=1

Pp
j=1

E[fi;j;t(0)rqi;j;t(�; �
�)r0qi;j;t(�; �

�)], we obtain

Q0 = �Q
� +O(jj�� ��jj): (17)

Next, we have that �(��) = 0: To show this, we write

�(��) =

n
X

i=1

p
X

j=1

E[rqi;j;t(�; �
�) �ij(Yit � qi;j;t(�; �

�))]

=
n
X

i=1

p
X

j=1

E(E[rqi;j;t(�; �
�) �ij(Yit � qi;j;t(�; �

�)) j Ft�1])

=
n
X

i=1

p
X

j=1

E(rqi;j;t(�; �
�)E[ �ij(Yit � qi;j;t(�; �

�)) j Ft�1])

=

n
X

i=1

p
X

j=1

E(rqi;j;t(�; �
�)E[ �ij("i;j;t) j Ft�1])

= 0;

as E[ �ij("i;j;t) j Ft�1] = �ij � E[1[Yit�q�i;j;t] j Ft�1] = 0; by de�nition of q�i;j;t for

i = 1; :::; n and j = 1; :::; p (see eq. (3)). Combining �(��) = 0 with eqs. (16) and
(17), we obtain

�(�) = �Q�(�� ��) +O(jj�� ��jj2): (18)

The next step is to show that

T 1=2�(�̂T ) +HT = op(1) (19)

whereHT := T�1=2
PT

t=1 �
�
t ; with �

�
t := �t(�

�) and �t(�) :=
Pn

i=1

Pp
j=1rqi;j;t(�; �)

 �ij(Yit� qi;j;t(�; �)). Let ut(�; d) := supf� :jj���jj�dg jj�t(�)� �t(�)jj. By the results
of Huber (1967) andWeiss (1991), to prove (19) it su¢ces to show the following: (i)
there exist a > 0 and d0 > 0 such that jj�(�)jj � ajj����jj for jj����jj � d0; (ii)
there exist b > 0; d0 > 0; and d � 0 such thatE[ut(�; d)] � bd for jj����jj+d � d0;
and (iii) there exist c > 0; d0 > 0; and d � 0 such that E[ut(�; d)

2] � cd for
jj�� ��jj+ d � d0.
The condition that Q� is positive-de�nite in Assumption 6(i) is su¢cient for
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(i). For (ii), we have that for given (small) d > 0

ut(�; d)

� sup
f� :jj���jj�dg

n
X

i=1

p
X

j=1

jjrqi;j;t(�; �) �ij(Yit�qi;j;t(�; �))�rqi;j;t(�; �) �ij(Yit�qi;j;t(�; �))jj

�

n
X

i=1

p
X

j=1

sup
f� :jj���jj�dg

jj �ij(Yit�qi;j;t(�; �))jj � sup
f� :jj���jj�dg

jjrqi;j;t(�; �)�rqi;j;t(�; �)jj

+
n
X

i=1

p
X

j=1

sup
f� :jj���jj�dg

jj �ij(Yit � qi;j;t(�; �))�  �ij(Yit � qi;j;t(�; �))jj

� sup
f� :jj���jj�dg

jjrqi;j;t(�; �)jj

� npD2;td+D1;t

n
X

i=1

p
X

j=1

1[jYit�qi;j;t(�;�)j<D1;td]

using the following: (i) jj �ij(Yit � qi;j;t(�; �))jj � 1; (ii) jj �ij(Yit � qi;j;t(�; �)) �
 �ij(Yit � qi;j;t(�; �))jj � 1[jYit�qi;j;t(�;�)j<jqi;j;t(�;�)�qi;j;t(�;�)j]; and (iii) the mean value
theorem applied to rqi;j;t(�; �) and qi;j;t(�; �). Hence, we have

E[ut(�; d)] � npC0d+ 2npC1f0d

for some constants C0 and C1; given Assumptions 2(iii.a), 5(iii.a), and 5(iv.a).
Hence, (ii) holds for b = npC0 + 2npC1f0 and d0 = 2d: The last condition (iii)
can be similarly veri�ed by applying the cr�inequality to eq. (??) with d < 1 (so
that d2 < d) and using Assumptions 2(iii.a), 5(iii.b), and 5(iv.b). Thus, eq. (19)
is veri�ed.
Combining eqs. (18) and (19) thus yields

Q�T 1=2(�̂T � ��) = T�1=2
T
X

t=1

��t + op(1):

But f��t ;Ftg is a stationary ergodic martingale di¤erence sequence (MDS). In par-
ticular, ��t is measurable�Ft, andE(�

�
t jFt�1) = E(

Pn
i=1

Pp
j=1rqi;j;t(�; �

�) �ij("i;j;t)
j Ft�1) =

Pn
i=1

Pp
j=1rqi;j;t(�; �

�)E( �ij("i;j;t) j Ft�1) = 0, as E[ �ij("i;j;t) j
Ft�1] = 0 for all i = 1; :::; n and j = 1; :::; p: Assumption 5(iii.b) ensures that
V � := E(��t�

�0
t ) is �nite. The MDS central limit theorem (e.g., theorem 5.24 of

White, 2001) applies, provided V � is positive de�nite (as ensured by Assump-
tion 6(ii)) and that T�1

PT
t=1 �

�
t�
�0
t = V � + op(1), which is ensured by the ergodic

theorem. The standard argument now gives

V ��1=2Q�T 1=2(�̂T � ��)
d
! N(0; I);

which completes the proof. �

20



Proof of Theorem 3: We have

V̂T � V � = (T�1
T
X

t=1

�̂t�̂
0
t � T�1

T
X

t=1

��t�
�0
t ) + (T

�1

T
X

t=1

��t�
�0
t � E[��t�

�0
t ]);

where �̂t :=
Pn

i=1

Pp
j=1rq̂i;j;t ̂i;j;t and �

�
t :=

Pn
i=1

Pp
j=1rq

�
i;j;t 

�
i;j;t; withrq̂i;j;t :=

rqi;j;t(�; �̂T );  ̂i;j;t :=  �ij(Yit � qi;j;t(�; �̂T ));rq
�
i;j;t := rqi;j;t(�; �

�), and  �i;j;t :=
 �ij(Yit� qi;j;t(�; �

�)): Assumptions 1 and 2(i,ii) ensure that f��t�
�0
t g is a stationary

ergodic sequence. Assumptions 3(i,ii), 4(i.a), and 5(iii) ensure that E[��t�
�0
t ] <1:

It follows by the ergodic theorem that T�1
PT

t=1 �
�
t�
�0
t �E[�

�
t�
�0
t ] = op(1): Thus, it

su¢ces to prove T�1
PT

t=1 �̂t�̂
0
t � T�1

PT
t=1 �

�
t�
�0
t = op(1):

The (h; s) element of T�1
PT

t=1 �̂t�̂
0
t � T�1

PT
t=1 �

�
t�
�0
t is

T�1
T
X

t=1

f
n
X

i=1

p
X

j=1

n
X

l=1

p
X

k=1

( ̂i;j;t ̂l;k;trhq̂i;j;trsq̂l;k;t �  �i;j;t 
�
l;k;trhq

�
i;j;trsq

�
l;k;t)g:

Thus, it will su¢ce to show that for each (h; s) and (i; j; l; k),

T�1
T
X

t=1

f ̂i;j;t ̂l;k;trhq̂i;j;trsq̂l;k;t �  �i;j;t 
�
l;k;trhq

�
i;j;trsq

�
l;k;tg = op(1):

By the triangle inequality,

jT�1
T
X

t=1

f ̂i;j;t ̂l;k;trhq̂i;j;trsq̂l;k;t �  �i;j;t 
�
l;k;trhq

�
i;j;trsq

�
l;k;tgj � AT +BT ;

where

AT = T�1
T
X

t=1

j ̂i;j;t ̂l;k;trhq̂i;j;trsq̂l;k;t �  �i;j;t 
�
l;k;trhq̂i;j;trsq̂l;k;tj

BT = T�1
T
X

t=1

j �i;j;t 
�
l;k;trhq

�
i;j;trsq

�
l;k;t �  �i;j;t 

�
l;k;trhq̂i;j;trsq̂l;k;tj:

We now show that AT = op(1) and BT = op(1), delivering the desired result.
For AT ; the triangle inequality gives

AT � A1T + A2T + A3T ;

where

A1T = T�1
T
X

t=1

�ijj1["i;j;t�0] � 1["̂i;j;t�0]jjrhq̂i;j;trsq̂l;k;tj

A2T = T�1
T
X

t=1

�lkj1["l;k;t�0] � 1["̂l;k;t�0]jjrhq̂i;j;trsq̂l;k;tj

A3T = T�1
T
X

t=1

j1["i;j;t�0]1["l;k;t�0] � 1["̂i;j;t�0]1["̂l;k;t�0]jjrhq̂i;j;trsq̂l;k;tj:
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Theorem 2, ensured by Assumptions 1� 6, implies that T 1=2jj�̂T � ��jj = Op(1):
This, together with Assumptions 2(iii,iv) and 5(iii.b), enables us to apply the same
techniques used in Kim and White (2003) to show A1T = op(1), A2T = op(1); and
A3T = op(1), implying AT = op(1):
It remains to show BT = op(1). By the triangle inequality,

BT � B1T +B2T ;

where

B1T = T�1
T
X

t=1

j �i;j;t 
�
l;k;trhq

�
i;j;trsq

�
l;k;t � E[ �i;j;t 

�
l;k;trhq

�
i;j;trsq

�
l;k;t]j

B2T = T�1
T
X

t=1

j �i;j;t 
�
l;k;trhq̂i;j;trsq̂l;k;t � E[ �i;j;t 

�
l;k;trhq

�
i;j;trsq

�
l;k;t]j:

Assumptions 1, 2(i,ii), 3(i,ii), 4(i.a), and 5(iii) ensure that the ergodic theorem
applies to f �i;j;t 

�
l;k;trhq

�
i;j;trsq

�
l;k;tg; so B1T = op(1): Next, Assumptions 1, 3(i,ii),

and 5(iii) ensure that the stationary ergodic ULLN applies to f �i;j;t 
�
l;k;trhqi;j;t(�; �)

rsql;k;t(�; �)g: This and the result of Theorem 1 (�̂T � �� = op(1)) ensure that
B2T = op(1) by e.g., White (1994, corollary 3.8), and the proof is complete. �

To establish consistency of Q̂T ; we strengthen the domination condition on
rqi;j;t and impose conditions on fĉTg.

Assumption 5 (iii.c) E(D3
1;t) <1:

Assumption 7 fĉTg is a stochastic sequence and fcTg is a non-stochastic sequence

such that (i) ĉT=cT
p
! 1; (ii) cT = o(1); and (iii) c�1T = o(T 1=2).

Proof of Theorem 4: We begin by sketching the proof. We �rst de�ne

QT := (2cTT )
�1

T
X

t=1

n
X

i=1

p
X

j=1

1[�cT�"i;j;t�cT ]rq
�
i;j;tr

0q�i;j;t;

and then we will show the following:

Q� � E(QT )
p
! 0; (20)

E(QT )�QT
p
! 0; (21)

QT � Q̂T
p
! 0: (22)

Combining the results above will deliver the desired outcome: Q̂T �Q�
p
! 0.

For (20), one can show by applying the mean value theorem to Fi;j;t(cT ) �
Fi;j;t(�cT ), where Fi;j;t(c) :=

R

1fs�cgfi;j;t(s)ds, that

E(QT ) = T�1
T
X

t=1

n
X

i=1

p
X

j=1

E[fi;j;t(�i;j;T )rq
�
i;j;tr

0q�i;j;t] =

n
X

i=1

p
X

j=1

E[fi;j;t(�i;j;T )rq
�
i;j;tr

0q�i;j;t];
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where �i;j;T is a mean value lying between �cT and cT ; and the second equality
follows by stationarity. Therefore, the (h; s) element of jE(QT )�Q�j satis�es

j

n
X

i=1

p
X

j=1

Effi;j;t(�i;j;T )� fi;j;t(0)rhq
�
i;j;trsq

�
i;j;tgj

�

n
X

i=1

p
X

j=1

Efjfi;j;t(�i;j;T )� fi;j;t(0)jjrhq
�
i;j;trsq

�
i;j;tjg

�

n
X

i=1

p
X

j=1

L0Efj�i;j;T jjrhq
�
i;j;trsq

�
i;j;tjg

� npL0cTE[D
2
1;t];

which converges to zero as cT ! 0. The second inequality follows by Assumption
2(iii.b), and the last inequality follows by Assumption 5(iii.b). Therefore, we have
the result in eq.(20).
To show (21), it su¢ces simply to apply a LLN for double arrays, e.g. theorem

2 in Andrews (1988).
Finally, for (22), we consider the (h; s) element of jQ̂T �QT j, given by

j
1

2ĉTT

T
X

t=1

n
X

i=1

p
X

j=1

1[�ĉT�"̂i;j;t�ĉT ]rhq̂i;j;trsq̂i;j;t

�
1

2cTT

T
X

t=1

n
X

i=1

p
X

j=1

1[�cT�"i;j;t�cT ]rhq
�
i;j;trsq

�
i;j;tj

=
cT
ĉT
� j

1

2cTT

T
X

t=1

n
X

i=1

p
X

j=1

(1[�ĉT�"̂i;j;t�ĉT ] � 1[�cT�"i;j;t�cT ])rhq̂i;j;trsq̂i;j;t

+
1

2cTT

T
X

t=1

n
X

i=1

p
X

j=1

1[�cT�"i;j;t�cT ](rhq̂i;j;t �rhq
�
i;j;t)rsq̂i;j;t

+
1

2cTT

T
X

t=1

n
X

i=1

p
X

j=1

1[�cT�"i;j;t�cT ]rhq
�
i;j;t(rsq̂i;j;t �rsq

�
i;j;t)

+
1

2cTT
(1�

ĉT
cT
)

T
X

t=1

n
X

i=1

p
X

j=1

1[�cT�"i;j;t�cT ]rhq
�
i;j;trsq

�
i;j;tj

�
cT
ĉT
[A1T + A2T + A3T + (1�

ĉT
cT
)A4T ];
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where

A1T :=
1

2cTT

T
X

t=1

n
X

i=1

p
X

j=1

j1[�ĉT�"̂i;j;t�ĉT ] � 1[�cT�"i;j;t�cT ]j � jrhq̂i;j;trsq̂i;j;tj

A2T :=
1

2cTT

T
X

t=1

n
X

i=1

p
X

j=1

1[�cT�"i;j;t�cT ]jrhq̂i;j;t �rhq
�
i;j;tj � jrsq̂i;j;tj

A3T :=
1

2cTT

T
X

t=1

n
X

i=1

p
X

j=1

1[�cT�"i;j;t�cT ]jrhq
�
i;j;tj � jrsq̂i;j;t �rsq

�
i;j;tj

A4T :=
1

2cTT

T
X

t=1

n
X

i=1

p
X

j=1

1[�cT�"i;j;t�cT ]jrhq
�
i;j;trsq

�
i;j;tj:

It will su¢ce to show that A1T = op(1); A2T = op(1); A3T = op(1); and A4T =

Op(1): Then, because ĉT=cT
p
! 1, we obtain the desired result: Q̂T �Q�

p
! 0.

We �rst show A1T = op(1). It will su¢ce to show that for each i and j,

1

2cTT

T
X

t=1

j1[�ĉT�"̂i;j;t�ĉT ] � 1[�cT�"i;j;t�cT ]j � jrhq̂i;j;trsq̂i;j;tj = op(1):

Let �T lie between �̂T and �
�; and put di;j;t;T := jjrqi;j;t(�; �T )jj � jj�̂T � ��jj +

jĉT � cT j: Then

(2cTT )
�1

T
X

t=1

j1[�ĉT�"̂i;j;t�ĉT ] � 1[�cT�"i;j;t�cT ]j � jrhq̂i;j;trsq̂i;j;tj � UT + VT ;

where

UT := (2cTT )
�1

T
X

t=1

1[j"i;j;t�cT j<di;j;t;T ]jrhq̂i;j;trsq̂i;j;tj

VT := (2cTT )
�1

T
X

t=1

1[j"i;j;t+cT j<di;j;t;T ]jrhq̂i;j;trsq̂i;j;tj:

It will su¢ce to show that UT
p
! 0 and VT

p
! 0: Let � > 0 and let z be an arbitrary

positive number. Then, using reasoning similar to that of Kim and White (2003,
lemma 5), one can show that for any � > 0;

P (UT > �) � P ((2cTT )
�1

T
X

t=1

1[j"i;j;t�cT j<(jjrqi;j;t(�;�T )jj+1)zcT ])jrhq̂i;j;trsq̂i;j;tj > �)

�
zf0
�T

T
X

t=1

E f(jjrqi;j;t(�; �T )jj+ 1)jrhq̂j;trsq̂j;tjg

� zf0fEjD
3
1;tj+ EjD2

1;tjg=�;

24



where the second inequality is due to the Markov inequality and Assumption
2(iii.a), and the third is due to Assumption 5(iii.c). As z can be chosen arbitrarily

small and the remaining terms are �nite by assumption, we have UT
p
! 0. The

same argument is used to show VT
p
! 0: Hence, A1T = op(1) is proved.

Next, we show A2T = op(1). For this, it su¢ces to show A2T;i;j :=
1

2cTT

PT
t=1

1[�cT�"i;j;t�cT ]jrhq̂i;j;t �rhq
�
i;j;tj � jrsq̂i;j;tj = op(1) for each i and j. Note that

A2T;i;j �
1

2cTT

T
X

t=1

jrhq̂i;j;t �rhq
�
i;j;tj � jrsq̂i;j;tj

�
1

2cTT

T
X

t=1

jjr2
hqi;j;t(�; ~�)jj � jj�̂T � ��jj � jrsq̂i;j;tj

�
1

2cT
jj�̂T � ��jj

1

T

T
X

t=1

D2;tD1;t

=
1

2cTT 1=2
T 1=2jj�̂T � ��jj

1

T

T
X

t=1

D2;tD1;t;

where ~� is between �̂T and �
�, and r2

hqj;t(�; ~�) is the �rst derivative of rhq̂j;t
with respect to �; which is evaluated at ~�. The last expression above is op(1)

because: (i) T 1=2jj�̂T ��
�jj = Op(1) by Theorem 2; (ii) T

�1
PT

t=1D2;tD1;t = Op(1)
by the ergodic theorem; and (iii) 1=(cTT

1=2) = op(1) by Assumption 7(iii). Hence,
A2T = op(1). The other claims A3T = op(1) and A4T = Op(1) can be analogously
and more easily proven. Hence, they are omitted. Therefore, we �nally have
QT � Q̂T

p
! 0; which, together with (20) and (21), implies that Q̂T � Q�

p
! 0.

The proof is complete. �

25



Table 1 – Breakdown of financial institutions by sector and by geographic area 

 Banks Financial Services Insurances  

EU 47 22 27 96 

North America 25 17 28 70 

Asia 47 14 3 64 

 119 53 58 230 

Note: Classification as provided by Datastream. Swiss and Norwegian financial 

institutions have been classified as EU. Asia includes Australian financial institutions. 

 

 

 

Table 2 – Estimates and standard errors for the Sumitomo Mitsui Financial Group 

 
1c  11a  12a  11b  12b  

 -2.71 -0.89 -0.13 0.61 -0.11 
s.e. 1.48 0.37 0.13 0.12 0.06 

 
2c  21a  22a  21b  22b  

 -1.05 0.07 -0.12 -0.08 0.93 
s.e. 0.48 0.10 0.05 0.04 0.03 

Note: Coefficients significant at the 5% level formatted in bold. 

 

 

 



Table 3 – Ranking of financial institutions according to impulse responses 

 

Financial institutions

most sensitive to 

index’s shocks 

Financial institutions 

least sensitive to 

index’s shocks 

Financial institutions 

with greatest impact on

index VaR 

Financial institutions 

with lowest impact on 

index’s risk 

1 ING GROEP 
WESTPAC 

BANKING 

WESTPAC 

BANKING 
SWISS RE 'R' 

2 BARCLAYS 
CHINA 

EVERBRIGHT 
SLM UNICREDIT 

3 UNICREDIT 
CREDITO 

VALTELLINES 

CREDITO 

VALTELLINES 
ING GROEP 

4 STATE STREET 

BANCA 

PPO.EMILIA 

ROMAGNA 

BANCA 

PPO.EMILIA 

ROMAGNA 

SUMITOMO TRUST 

& BANKING 

5 CITIGROUP 
PROVIDENT 

FINANCIAL 

SUNCORP-

METWAY 

SUMITOMO MITSUI 

FINL.GP. 

6 KBC GROUP 
HIROSHIMA 

BANK 

NATIONAL 

AUS.BANK 
HYAKUJUSHI BANK

7 XL GROUP 
BANCO ESPIRITO 

SANTO 
DAISHI BANK 

DBS GROUP 

HOLDINGS 

8 
BANK OF 

AMERICA 

SUMITOMO 

MITSUI FINL.GP. 

AGEAS (EX-

FORTIS) 
SURUGA BANK 

9 
ROYAL BANK OF 

SCTL.GP. 
AWA BANK 

BANCO POPULAR 

ESPANOL 
BBV.ARGENTARIA

10 SWISS RE 'R' 
NATIONAL 

AUS.BANK 

MACQUARIE 

GROUP 
COMPUTERSHARE

11 
HARTFORD 

FINL.SVS.GP. 
DAISHI BANK ICAP 

MIZUHO TST.& 

BKG. 

12 
AGEAS (EX-

FORTIS) 
HYAKUGO BANK

AUS.AND 

NZ.BANKING GP. 
NANTO BANK 

13 SLM 
FAIRFAX 

FINL.HDG. 

BANCO ESPIRITO 

SANTO 
MEDIOBANCA 

14 
COMMERZBANK 

(XET) 

CLOSE BROTHERS 

GROUP 
AMP 

BALOISE-HOLDING 

AG 

15 
ABERDEEN 

ASSET MAN. 
AMLIN 

CHINA 

EVERBRIGHT 
INVESTOR 'B' 

16 ORIX ALPHA BANK MAN GROUP BANK OF KYOTO 

17 
BANK OF 

IRELAND 

GOLDMAN SACHS 

GP. 

FIFTH THIRD 

BANCORP 

ABERDEEN ASSET 

MAN. 

18 LINCOLN NAT. HACHIJUNI BANK BANK OF IRELAND
UNITED OVERSEAS 

BANK 

19 AEGON 
RENAISSANCERE 

HDG. 
BANKINTER 'R' IYO BANK 

20 KEYCORP VALIANT 'R' SAMPO 'A' KINNEVIK 'B' 

Note: The ranking is obtained by first integrating out the impulse response functions 

and then sorting the financial institutions by the resulting number. The first and second 

columns report the top 20 financial institutions whose VaR reacts most and least 

strongly to a shock to the index. The third and fourth columns contain the 20 financial 

institutions whose shocks have the largest and smallest impact on the index VaR. 



Figure 1 – 1% quantile for the overall index and Sumitomo Mitsui Financial Group 

-45

-40

-35

-30

-25

-20

-15

-10

-5

0
J
a

n
-0

0

M
a

y
-0

0

S
e

p
-0

0

J
a

n
-0

1

M
a

y
-0

1

S
e

p
-0

1

J
a

n
-0

2

M
a

y
-0

2

S
e

p
-0

2

J
a

n
-0

3

M
a

y
-0

3

S
e

p
-0

3

J
a

n
-0

4

M
a

y
-0

4

S
e

p
-0

4

J
a

n
-0

5

M
a

y
-0

5

S
e

p
-0

5

J
a

n
-0

6

M
a

y
-0

6

S
e

p
-0

6

J
a

n
-0

7

M
a

y
-0

7

S
e

p
-0

7

J
a

n
-0

8

M
a

y
-0

8

S
e

p
-0

8

J
a

n
-0

9

M
a

y
-0

9

S
e

p
-0

9

J
a

n
-1

0

M
a

y
-1

0

Index Sumitomo
 

 

 

 

Figure 2 – Geographical breakdown of VaR impulse-responses: shock to the index 
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Note: The figure reports the average impulse-response function of European, North 

American and Asian financial institutions to a shock to the index.



Figure 3 – Geographical breakdown of VaR impulse-responses: shock to the financial 

institution 
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Note: The figure reports the average impulse-response function of the index to a shock 

to European, North American and Asian financial institutions. 

 

 

 

Figure 4 – Breakdown by institution of VaR impulse-responses: shock to the index 
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Note: The figure reports the average impulse-response function by sector to a shock to 

the index. 



Figure 5 – Breakdown by institution of VaR impulse-responses: shock to the bank  
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Note: The figure reports the average impulse-response function of the index to a shock 

to the financial institutions classified by sector. 

 

 

Figure 6 – Strongest and weakest VaR impulse-responses 
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Note: The figure reports the average impulse-response function of the 20 financial 

institutions with the strongest and weakest impact. 

 


