
Munich Personal RePEc Archive

Estimation of a System of National

Accounts: Implementation with

Mathematica

Temel, Tugrul

Development Research Institute (IVO), Tilburg University

8 December 2011

Online at https://mpra.ub.uni-muenchen.de/35446/

MPRA Paper No. 35446, posted 17 Dec 2011 03:48 UTC



Estimation of a System of National Accounts:

Implementation with Mathematica

Tugrul Temel
Development Research Institute (IVO)

Tilburg University, Tilburg
The Netherlands
t.temel@uvt.nl

December 15, 2011

Abstract

This study implements Mathematica to estimate a system of national accounts. The esti-
mation methods applied are portrayed in Danilov and Magnus (2008), including the Bayesian
estimation, restricted and unrestricted least-squares estimation and best linear unbiased esti-
mation. Operationalizing these methods in the Mathematica environment is the main contri-
bution of the current study. In light of the United Nations’ efforts aimed to standardize across
countries the compilation of national accounts, the Mathematica codes developed here should
provide an important tool both for the estimation of unrealized or unavailable national accounts
data and for conducting cross-country and within-country macroeconomic policy analysis.
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1 Introduction

This study implements Mathematica to estimate a system of national accounts (SNA). The es-
timation methods applied are portrayed in Danilov and Magnus (2008), including the Bayesian
estimation, restricted and unrestricted least-squares estimation and best linear unbiased estima-
tion. Operationalizing these methods in the Mathematica environment is the main contribution
of the current study. In light of the United Nations’ efforts aimed to standardize across countries
the compilation of national accounts, the Mathematica codes developed here should provide an
important tool both for the estimation of unrealized or unavailable national accounts data and
for conducting cross-country and within-country macroeconomic policy analysis. The Mathematica
codes should benefit the most statistics organizations responsible for the compilation and updating
of national accounts and policy-making bodies drawing on national accounts data.
The study is organized into five sections. Following the Introduction, Section 2 formulates a

data estimation problem drawing on an example system of national accounts. Section 3 describes
four estimation methods. Section 4 describes the implementation of the computational algorithm
developed and presents the estimations concerning the example SNA. Finally, Section 5 concludes
the paper with some remarks on the efficiency of Mathematica for solving large linear systems.

2 An example system of national accounts1

2.1 Set-up

Consider an example SNA illustrated in Figure 1. The SNA consists of two sub-accounts: supply
and use accounts (SUA) and integrated economic accounts (IEA), and is fully characterized by
10 variables. Given a benchmark (or reference) SNA at period t = 0 and 4 variables known with
precision at period t = 1 (see Figure 2), the goal is to estimate the remaining 6 variables for
t = 1. To do that, we utilize two additional pieces of information. First, five indicator ratios are
constructed drawing on expert knowledge about the long-run behavior of the economy concerned.
Second, six linear restrictions (or identities) are introduced using macro-accounting relations among
the variables in the SNA (see Figure 3).
Below, we describe the set-up using mathematical notations.

• Notations

x̃ti denotes time t value of the i
th variable with i = 1, 2, ..., ñ and t = 0, 1.

x̃t = (x̃t1, x̃
t
2, ..., x̃

t
ñ)
′ is a column vector of ñ variables at time t.

fk(x̃
t) = 0 defines the kth identity as a function of x̃t.

• Assumptions

1) x̃ti ∼ N(µ
t
i, σ

2
i ) for all i.

2) R0ij = R
1
ij for m̃1 prior indicator ratios where R

0
ij =

(
x̃0i
x̃0
j

)
is a prior indicator ratio evaluated

using benchmark data. Reliability levels and reliability coefficients for p̃ data observations
made at t = 1 and for m̃1 indicator ratios are set using prior information about the quality of
available data: {Fixed = 0, Strong = 0.01, High = 0.03, Medium = 0.06, Low = 0.12, Poor
= 0.24}.

1 I would like to thank Jan van Tongeren for letting me use this example system of national accounts.
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• Available data, priors and restrictions

1) At t = 0, benchmark data are available on ñ variables: x̃0 = (x̃01, x̃
0
2, ..., x̃

0
ñ)
′.

2) At t = 1, data are available on p̃ variables: (x̃11, x̃
1
2, ..., x̃

1
p̃)
′ with p̃ < ñ.

3) At t = 1, m̃1 indicator ratios are available

4) At t = 0, 1, linear restrictions fk(x̃
t) = 0 hold for all k = 1, 2, ..., m̃2

Technically speaking, the objective is to estimate the posterior mean and variance of variables
in vector x̃1, on some of which data are available with precisions (p̃), on some prior indicator ratios
are available with precisions (m̃1), and on some prior information is available with precisions (m̃2).

2.2 Data and prior information

In what follows, we translate the data and information given in Figures 1-3 into mathematical
format so that one can link the example SNA to the estimation methods formally presented in the
following sections. Suppose that at time t = 0 a benchmark (or reference) data set is available for
a vector of ñ = 10 latent variables, denoted by:

x̃0 ≡ (x̃01, x̃
0
2, x̃

0
3, x̃

0
4, x̃

0
5, x̃

0
6, x̃

0
7, x̃

0
8, x̃

0
9, x̃

0
10)

′

= (P 0,M0, I0,K0, X0, C0, Y 0, R0, S0, B0)′

= (100, 90, 40, 30, 70, 50, 60, 60, 10, 20)′.

At time t = 1, data are available only for 4 variables (p̃ = 4):

(x̃11, x̃
1
2, x̃

1
4, x̃

1
5)
′ ≡ (P 1,M1,K1, X1)′

= (107.12, 93.64, 32.14, 74.98)′

Furthermore, the benckmark values of the following 5 prior indicator ratios (m̃1 = 5) are assumed
to remain the same over the period from t = 0 to t = 1, implying that the economy has been in the
state of equilibrium during that period.

(
I0

P 0
) =

40

100
= 0.4

(
K0

P 0 +M0
) =

30

190
= 0.158

(
M0

P 0
) =

90

100
= 0.9

(
C0

R0
) =

50

60
= 0.833

(
X0

P 0
) =

70

100
= 0.7
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As a last piece of information, we assume that the following 6 linear restrictions (m̃2 = 6) hold
across all t, reflecting the basic macro-accounting relations among the ñ variables:

Y t − P t + It ≡ 0

St −Rt + Ct ≡ 0

Bt −M t +Xt ≡ 0

Y t −Rt ≡ 0

Kt − St −Bt ≡ 0

P t +M t − It − Ct −Kt −Xt ≡ 0.

2.3 The system of linear equations

Data available (p̃ = 4) at t = 1 are expressed as:

D̃1x̃
1 = d̃1 where

D̃1 =






1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0






x̃1 = (P 1,M1, I1,K1, X1, C1, Y 1, R1, S1, B1)′

d̃1 = (107.12, 93.64, 32.14, 74.98)′

The "linearized" indicator ratios (m̃1 = 5) assumed to hold for all t are expressed as

Ã1x̃
t ≡ h̃1 where

Ã1 =






−0.4 0 1 0 0 0 0 0 0 0
−0.158 −0.158 0 1 0 0 0 0 0 0
−0.9 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −0.833 0 0

−0.7 0 0 0 1 0 0 0 0 0






x̃t = (P t,M t, It,Kt, Xt, Ct, Y t, Rt, St, Bt)′

h̃1 = (0, 0, 0, 0, 0)′

The linear restrictions (m̃2 = 6) are:

Ã2x̃
t ≡ h̃2 for all t, where

Ã2 =






−1 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 −1 1 0
0 −1 0 0 1 0 0 0 0 1
0 0 0 0 0 0 1 −1 0 0
0 0 0 1 0 0 0 0 −1 −1
1 1 −1 −1 −1 −1 0 0 0 0






x̃t = (P t,M t, It,Kt, Xt, Ct, Y t, Rt, St, Bt)′

h̃2 = (0, 0, 0, 0, 0, 0)′
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2.4 The modified system of linear equations

Owing to the numerator (P t+M t) of the 2nd indicator ratio above, we define a composite variable
Zt ≡ (P t +M t) where Z0 = 190 and Z1 = 200.76. The introduction of this composite variable
requires some modifications in the linear system described in section (2.2). The first modification
takes place in D̃1x̃

1 = d̃1 as follows:

D1x
1 = d1 where

D1 =






1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1






x1 = (P 1,M1, I1,K1, X1, C1, Y 1, R1, S1, B1, Z1)′

d1 = (107.12, 93.64, 32.14, 74.98, 200.76)′

The second modification takes place in Ã1x̃
t ≡ h̃1 as follows:

A1x
t ≡ h1 where

A1 =






−0.4 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 −0.158

−0.9 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −0.833 0 0 0

−0.7 0 0 0 1 0 0 0 0 0 0






xt = (P t,M t, It,Kt, Xt, Ct, Y t, Rt, St, Bt, Zt)′

h1 = (0, 0, 0, 0, 0)′

The third modification takes place in Ã2x̃
t ≡ h̃2 by introducing the new identity Z

t ≡ (P t +M t) :

A2x
t ≡ h2 where

A2 =






−1 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 −1 1 0 0
0 −1 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 1 −1 0 0 0
0 0 0 1 0 0 0 0 −1 −1 0
1 1 −1 −1 −1 −1 0 0 0 0 0
−1 −1 0 0 0 0 0 0 0 0 1






xt ≡ (P t,M t, It,Kt, Xt, Ct, Y t, Rt, St, Bt, Zt)′

h2 = (0, 0, 0, 0, 0, 0, 0)′
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Our goal is to solve the following system of equations using the estimation methods introduced in
Section 3.

D1x
1 = d1 with d1 | x

t ∼ Np(D1x
t,Σ1)

A1x
1 ≡ h1 with A1 ∼ Nm1

(h1, H1)

A2x
1 = h2 with A2 ∼ Nm2

(h2, H2) (asy.)

where p = (p̃+ 1) = 5

n = (ñ+ 1) = 11

m1 = m̃1 = 5

m2 = (m̃2 + 1) = 7

m = (m1 +m2) = 12

3 Estimation Methods

The reader is referred to Danilov and Magnus (2008) for a detailed description of the estimation
problems stated below. Although they are equivalent and all yield the same estimations, the
performance of their computerized solution algorithms differ substantially depending on the size
and sparsitiy of the linear system concerned.

3.1 Bayesian estimation

Assume (i) d1|x
1 ∼ Np(D1x

1,Σ1) where D1,(p,n) has full row-rank and Σ1 is positive definite (hence
non-singular); (ii) Ax1 ∼ Nm(h,H) where A = (A1 : A2), a column vector h = (h1, h2), a block
diagonal matrix H = (H1, H2) with H1 associated with A1 and H2 with A2; (iii) A has full row-
rank and H may be singular. If m < n, let L be a semi-orthogonal (n, n −m) matrix such that
LTL = In−m and AL = 0, and assume that the identifiability condition r(A) + r(D1L) = n is
satisfied. Then the posterior distribution of x1 is given by x1|d1 ∼ Nn(µ, V ) with

V = A+HA+
′

−A+HA+
′

D
′

1Σ
−1
0 D1A

+HA+
′

+ CKC ′

µ = A+h− (A+HA+
′

+ CK)D
′

1Σ
−1
0 (D1A

+h− d1)

where A+ = A
′

(AA
′

)−1 "the Moore-Penrose inverse"

Σ0 = Σ1 +D1A
+HA+

′

D
′

1

C = In −A
+HA+

′

D
′

1Σ
−1
0 D1

K =

{
L(L

′

D
′

1Σ
−1
0 D1L)

−1L
′

if m < n (Lemma A2)
0 if m = n (Lemma A1)

}

(see Theorem 1 in Magnus, Tongeren and Vos (2000)). A+ denotes the Moore-Penrose (MP) inverse
of A. All the variables with superscript (+) stand for the MP inverse.
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3.2 Restricted least-squares estimation

For estimations in large systems, the least-squares method works better compared to the Bayesian
estimation method (Theorem 1). The Bayesian problem above can be equivalently formulated as a
restricted least-squares problem:

Minimize
x

(d−Dx)′Σ−1(d−Dx) subject to A2x = h2

where d = Dx+ ε

d | x ∼ Np+m1
(Dx,Σ)

ε ∼ Np+m1
(0,Σ) and

d =

(
d1
h1

)
; D =

(
D1
A1

)
; Σ =

(
Σ1 0
0 H1

)
.

From Theorem 36 in Magnus and Neudecker (1999) (p.233), the general solution, x, to this mini-
mization problem is:

x = x0 +N
+A

′

2(A2N
+A

′

2)
+(h2 −A2x0) + (In −NN

+)q

where x0 = N+D
′

Σ−1d

N = D
′

Σ−1D +A
′

2A2

q = an arbirary vector

Compute x by using:

d =






107.12
93.64
32.14
74.98
190
0
0
0
0
0






, D =






1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1

−0.4 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 −0.16

−0.9 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −0.8 0 0 0

−0.7 0 0 0 1 0 0 0 0 0 0






Σ =






41.3 0 0 0 0 0 0 0 0 0
0 7.9 0 0 0 0 0 0 0 0
0 0 14.9 0 0 0 0 0 0 0
0 0 0 5.1 0 0 0 0 0 0
0 0 0 0 64.5 0 0 0 0 0
0 0 0 0 0 1.4 0 0 0 0
0 0 0 0 0 0 0.8 0 0 0
0 0 0 0 0 0 0 29.2 0 0
0 0 0 0 0 0 0 0 35.8 0
0 0 0 0 0 0 0 0 0 17.6
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A2 =






−1 0 1 0 0 0 1 0 0 0 0
0 −1 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 1 −1 0 0 0
0 0 0 1 0 0 0 0 −1 −1 0
1 1 −1 −1 −1 −1 0 0 0 0 0
−1 −1 0 0 0 0 0 0 0 0 1






3.3 Unrestricted least-squares estimation

Alternatively, the solution of the following unrestricted minimization problem is also identical to
that of the Bayesian estimation of x :

Minimize

(
d−Dx

h2 −A2x

)′
(
Σ+DD

′

A2D
′

DA
′

2

A2A
′

2

)(
d−Dx

h2 −A2x

)

where d =

(
d1
h1

)
, D =

(
D1
A1

)
, Σ =

(
Σ1 0
0 H1

)

3.4 Best linear unbiased estimation

Best linear unbiased estimation (BLUE) is an alternative method that leads to the same results as
restricted least-squares method. Consider the regression model:

Minimize (d−Dx)
′

Σ−1(d−Dx) subject to: A2x = h2

where x is a vector of parameters to be estimated. The BLUE estimator of x is given by:

x = G−1D
′

Σ−1d+G−1A
′

2(A2G
−1A′2)

−1(h2 −A2G
−1D

′

Σ−1d)

with variance V = G−1 −G−1A
′

2(A2G
−1A′2)

−1A2G
−1

where G = D
′

Σ−1D +A
′

2A2

d =

(
d1
h1

)
, D =

(
D1
A1

)
, Σ =

(
Σ1 0
0 H1

)

4 Implementation

4.1 Algorithm

Mathematica codes for each one of the estimation problems above have been developed using
Mathematica 8.0. The implementation algorithm applies the following steps.

• STEP 1: Testing the rank condition: r(A) + r(D1L) = n.

This condition is necessary and sufficient for the existence of a solution. In our example,
the rank of A is 11, which is also equal to the number of variables in the system; that is,
r(A) = n = 11. This shows that the identifiability condition is satisfied but there is one
redundant equation in A because (m − n) = (12 − 11) = 1. The task is to find out that
redundant equation and eliminate it from the system.
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• STEP 2: Creating a system of linearly independent equations

Having applied the Gram-Schmidt method to the set of 7 identities, we find out that 6
identities (excluding Zt ≡ P t +M t) are linearly dependent. Hence, dropping any one of the
6 identities from A leads to a system of 11 equations, which then implies that the system at
hand is fully identified with rank 11. Here is a sketch of how to perform this task.

(1) Determine the rank of A with dimension of (m,n) = (12, 11) where m = the number of
rows, n = the number of columns.

(2) rk(A) = 11 implies that one of the equations is redundant, which needs to be eliminated
from A for the unique solution to exist.

(3) Apply Gram-Schmidt process to identify the linearly dependent equation. The process
would generate a zero row for the dependent equation. Since dependency is a property of
a group of equations, not a property of a single equation, Gram-Schmidt process results
in a different dependent equation every time we change the order of rows in A. Thus,
we obtain 6 alternative systems, each of which has 11 equations and has a non-zero
determinant. (Note that a non-zero determinant implies that the system of equations
concerned comprises a linearly independent set.)

(4) There are 6 non-zero determinants. This implies that the final Bayesian estimation
should be performed for each one of 6 systems separately and the one that minimizes
posterior standard deviation should be used in the final analysis.

• STEP 3: Constructing a variance-covariance matrix

Due to the elimination of the dependent equation(s) from A, necessary adjustments are made
in the vector h and the variance-covariance matrix H.

• STEP 4: Introducing reliability levels and reliability parameters to create an adjusted variance-
covariance matrix

The Bayesian data estimation approach allows for the deviation from the "true" values of the
benchmark values of the indicator ratios and the data observations. Reliability levels assigned
to each ratio and each one of the 4 observations imply that the "true" values are most likely to
lie within the confidence intervals implied by the reliability levels. The concept of reliability
bridges the gap between the "true" and "observed" values of a variable. We set reliability
levels as: {Fixed (F), Strong (S), High (H), Medium (M), Low (L), Poor (P)}, with arbitrary
reliability coefficients of {0, 0.01, 0.03, 0.06, 0.12, 0.24}, respectively. Coefficient of variation,
defined by the ratio of standard error to mean, represents reliability coefficient. Given the
reliability coefficient and the mean value at t = 0 of the variable of interest (see Table 1),
we calculate prior standard error of that variable. In the rest of the paper, matrix notation
is used for convenience. Estimate the variance-covariance matrices (Σ1, H) for time t = 1
observations and for the indicator ratios, respectively. In the estimation of Σ1 associated with
d1, the following reliability levels and coefficients are assumed:
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Table 1

V ariable R− coeff Mean Prior s.e. Prior var.

P 1 M=0.06 107.12 6.43 41.3
M1 H=0.03 93.64 2.81 7.9
K1 L=0.12 32.14 3.86 14.9
X1 H=0.03 74.98 2.25 5.1
Z1 MH=0.04 200.76 8.03 64.5

Consider, for example, P 1, which is assumed to be observed at the Medium level, with a
corresponding reliability coefficient of 0.06. Applying the definition of coefficient of variation
=

se
P1

Mean of P 1 would then yield prior standard error seP 1 = 0.06 ∗ 107.12 = 6. 427 2. Thus,
the prior variance is 41.3. This operation yields

Σ1 =






41.31 0 0 0 0
0 7.89 0 0 0
0 0 14.87 0 0
0 0 0 5.06 0
0 0 0 0 64.49





.

The estimation of H associated with A is a bit complex. H1 corresponding to the indicator
ratios is a (5,5) diagonal matrix, elements of which are σ2ijB

2
ij , whereas H2 corresponding to

the identities is a (6,6) zero matrix. Table 2 shows how to derive H1 :

Table 2

Indicator

Ratios

R−
coeff

E(
xti
xt
j

)

= rij

Prior

s.e.

Prior

var (σ2ij) B2ij σ2ijB
2
ij

xt
3

xt
1

= It

P t H=0.03 0.4 0.012 0.00014 10000 1.4
xt
4

xt
11

= Kt

Zt
H=0.03 0.16 0.005 0.00002 36076 0.8

xt
2

xt
1

= Mt

P t M=0.06 0.9 0.05 0.0029 10000 29
xt
6

xt
8

= Ct

Rt L=0.12 0.83 0.1 0.0099 3612 36
xt
5

xt
1

= Xt

P t M=0.06 0.7 0.04 0.0018 10000 18

The ratios are assumed to be distributed as (
xti
xt
j

) ∼ Nm2
(rij , σ

2
ij), while the linearized ratios

as (xti − rijx
t
j) ∼ Nm2

(0, σ2ijB
2
ij). The benchmark data x

0 are used to calculate:

Bij =






r2ij
(1+r2

ij
)rij
xi +

1
(1+r2

ij
)
xj if both xi and xj are available

xi
rij

if only xi is available

xj if only xj is available






• Sincem = n, Lemma A1 of Theorem 1 applies. The full system is characterized by (D1, d1,Σ1, A, h,H),
where

D1 =






1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
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d1 =






107.12
93.64
32.14
74.98
190





, Σ1 =






41.3 0 0 0 0
0 7.9 0 0 0
0 0 14.9 0 0
0 0 0 5.1 0
0 0 0 0 64.5






A =






−0.4 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 −0.16

−0.9 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −0.83 0 0 0

−0.7 0 0 0 1 0 0 0 0 0 0
−1 0 1 0 0 0 1 0 0 0 0
0 −1 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 1 −1 0 0 0
0 0 0 1 0 0 0 0 −1 −1 0
1 1 −1 −1 −1 −1 0 0 0 0 0
−1 −1 0 0 0 0 0 0 0 0 1






h =






0
0
0
0
0
0
0
0
0
0
0






, H =






1.4 0 0 0 0 0 0 0 0 0 0
0 0.8 0 0 0 0 0 0 0 0 0
0 0 29.2 0 0 0 0 0 0 0 0
0 0 0 35.8 0 0 0 0 0 0 0
0 0 0 0 17.6 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0






4.2 Estimation of the example SNA

The estimation results and the Mathematica codes generating these results are given in Table 3.

5 Concluding remarks

Four estimation methods have been operationalized using Mathematica 8.0. An example system of
national accounts has been used for illustrative purposes. We have developed a genericMathematica
code (translated to C++) for each one of the 4 estimation problems. The codes are applied to very
large systems. The power ofMathematica (C++) remains to be compared with the SNAER program
of Danilov and Magnus (2008).
With the Mathematica codes we have developed, national statistics offices responsible for pro-

ducing quarterly or annual estimations of the SNA would be able to make the estimations with
much higher precision relative to the currently practised conventional national accounts estima-
tions. Timely delivery of high precision estimations and the availability of such estimations across
countries would pave the way for the policy analysis of cross-country interactions.
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Figure 1: An example system of national accounts

Figure 2: Benchmark and current period data
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Figure 3: Indicator ratios and identities (or linear restrictions)
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�∗

Table 3: Estimation Outputs

∗�

Bayesian Estimation

Variable Post−mean Post−se

P 106.181 3.332
M 94.310 2.281
I 42.462 1.791
K 32.047 1.100
X 74.662 1.953
C 51.320 3.168
Y 63.719 2.333
R 63.719 2.333
S 12.400 2.748
B 19.648 2.807
Z 200.491 4.284

Least − squares Estimation

Variable Est. w�scaling Est. w�o scaling

P 106.239 107.120
M 94.307 93.640
I 42.494 42.848
K 31.681 32.140
X 74.696 74.980
C 51.681 67.239
Y 63.745 64.272
R 63.658 80.719
S 12.008 13.480
B 19.642 18.660
Z 200.548 200.760

BLUE Estimation

Variable Post−mean Post−se

P 106.181 3.331
M 94.309 2.280
I 42.461 1.791
K 32.047 1.100
X 74.662 1.953
C 51.319 3.168
Y 63.719 2.333
R 63.719 2.333
S 12.399 2.748
B 19.647 2.807
Z 200.491 4.282


