Aguilar, Ruben and Valdivia, Daney (2011): Precios de exportación de gas natural para Bolivia: Modelación y pooling de pronósticos.
Preview |
PDF
MPRA_paper_35485.pdf Download (803kB) | Preview |
Abstract
The boom of commodity prices was affected by the last economic crisis. The importance of these prices - forecasting – for small and developing countries becomes an important factor in the structure of their balance sheets.
In this context, we apply a pooling of different projections methods for fuel prices which are the determinants of natural gas export prices under each contract. The first three forecast methods of these fuels are developed in a short run model where in its dynamic structure is nested the long-term relationship between WTI and fuel prices and the fourth method is a univariate model by its components. The oil path price for the first three projections are also developed under three approaches: i) a GARCH model, ii) WTI future prices and iii) a dynamic GARCH model weighted by the forecast of global oil supply and only with reference purposes we made an ARIMA projection model by components.
The pool of projections permits us to evaluate gas export prices ex post. We conclude that the pooling of projections report best statistical properties.
Item Type: | MPRA Paper |
---|---|
Original Title: | Precios de exportación de gas natural para Bolivia: Modelación y pooling de pronósticos |
English Title: | Bolivian natural gas export prices: Modeling and forecast pooling |
Language: | Spanish |
Keywords: | econometrics and statistical methods, energy and macroeconomics |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General > C01 - Econometrics Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q4 - Energy > Q43 - Energy and the Macroeconomy |
Item ID: | 35485 |
Depositing User: | Daney David Valdivia |
Date Deposited: | 21 Dec 2011 07:43 |
Last Modified: | 03 Oct 2019 02:09 |
References: | Ahumada, H. (2009):“Forecasting a monetary aggregate under conditions of instability: Argentina after 2002”, mimeo, noviembre 2009. Andrews, D. W. K. (1993): “Tests for parameter instability and structural change with unknown change point”. Econometrica, vol. 61(4). Andrews, D. W. K. and Ploberger, W. (1994):"Optimal tests when a nuisance parameter is present only under the alternative". Econometrica, vol. 62(6). Vilariño A. (2001):”Turbulencias financieras y riesgos de mercado" Pearson Educación. Armstrong, J. S. and Collopy F. (1992):”Error measures for generalizing about forecasting methods: Empirical comparisons”. International Journal of Forecasting. Barigozzi, M. “Arima Estimation: Theory and applications” (hand out). Bates, J. and Granger C.W., (1969), "The combination of forecasts" Operational Research Quarterly, Vol. 20(4). Buss, G. (2009): “Comparing forecasts of Latvia's GDP using simple seasonal ARIMA models and direct versus indirect approach”, Munich Personal REPEC Archive, Paper No. 16684. Castaño, E. and Melo L. (1998): "Métodos de combinación de pronósticos: Una aplicación a la inflación Colombiana", Borradores de Economía, No 109. Banco de la República de Colombia. Clements, M. and Hendry, D. (1999): “Forecasting non-stationary economic time series”, The MIT Press. Coulson, N. and Robins, R. (1989): “Forecast combination in a dynamic setting”. Pennsylvania State - Department of Economics, paper 8-88-4. Deutsch, M., Granger C.W. and Teräsvirta, T. (1994): “The combination of forecasts using changing weights”. International Journal of Forecasting. Vol. 10(1). Donaldson, R.G. and Kamstra, M. (1996): “Forecast combining with neural networks”. Journal of Forecasting. Vol. 15 (1). Donaldson, R.G. and Kamstra, M. (1999): ”Neural network forecast combining with interaction effects”. Journal of The Franklin Institute, Vol. 336(2). Britton E., Fisher P. and Whitley J. (1998): “The inflation report projections: understanding the fan chart”, Bank of England – quarterly bullentingh. FOBOMADE (2002): ”Relaciones energéticas Bolivia-Brasil”. Greene W. (2006): “Econometric analysis”, pp 238, 5ta. Edición. Hallman, J. and Kamstra, M. (2009): “Combining algorithms based on robust estimation techniques and co-integrating restrictions”, Journal of Forecasting. Vol. 8(3). Johnston and Di Nardo (1997): “Econometric Methods”. Manuek J. (2006): “The fan chart: The technical details of the new implementation”, Borradores de Economía No 468 – Banco de la República de Colombia. Ley de Hidrocarburos (Ley No1689), 30 de abril de 1996. Meyer A., Kenny G. y Quinn T., (1998) “Forecasting Irish inflation using ARIMA models” Central Bank and Financial Services Authority of Ireland Technical 3. Engle, R. (1992): “Autoregressive condicional heteroskedasticity with estimates of the variante of U. K. inflation”, Econometrica, Vol. 50(4) pp 987-1008. Stock, J.H. and Watson, M.W. (2003): “Combination Forecasts of Output Growth in a seven country data set", Princeton University Working Paper. Valle, H. (2002): “Inflation forecast with ARIMA and vector autoregressive models in Guatemala”. Working Paper, Banco Central de Guatemala. Vega, M.(2003): “Reportando la distribución de la proyección de inflación”, Banco Central de Reserva del Perú. Villegas, C. (2004): “Privatización de la industria petrolera en Bolivia: Trayectoria y efectos tributarios”, Plural Editores 2da Edición. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/35485 |