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Abstract

The problem of optimizing a real valued function over an efficient
set of the Multiple Objective Linear Fractional Programming problem
(MOLFP) is an important field of research and has not received as
much attention as did the problem of optimizing a linear function over
an efficient set of the Multiple Objective Linear Programming problem
(MOLP).In this work an algorithm is developed that optimizes an arbi-
trary linear function over an integer efficient set of problem (MOLFP)
without explicitly having to enumerate all the efficient solutions.The
proposed method is based on a simple selection technique that improves
the linear objective value at each iteration.A numerical illustration is
included to explain the proposed method.

Mathematics Subject Classification: 90C10; 90C26; 90C32; 90C29

Keywords: Integer programming, Optimization over the efficient set, Mul-
tiple objective linear fractional programming, Global optimization

1 Introduction

The Multiobjective Linear Fractional Programming problem (MOLFP) with
continuous variables is an important class of problems arising in multicriteria
decision making and has been studied extensively in the literature [8,11,12,18]
and the references therein.
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However, Integer Linear Fractional Programming problem with Multiple
Objective (MOILFP) has not received as much attention as did the multiple
objective linear fractional programming (MOLFP).To our knowledge there are
very few algorithms [1,10,23] for (MOILFP) taking into account the integrity
of the variables.Affine fractional functions as widely used as performance mea-
sures in some management situations, production planning and the analysis of
financial enterpries.Thus the multicriteria programming problems with affine
fractional criterion functions are important and have wide applications in var-
ious fields as financial planning [3], transportation problem [12], manpower
planning models[19].

Mathematically, (MOILFP) is described as the problem of finding all effi-
cient solutions of the problem

maximize{Z1(x) =
p1x + α1

q1x + β1
}

maximize{Z2(x) =
p2x + α2

q2x + β2
} (P )

...

maximize{Zr(x) =
prx + αr

qrx + βr
}

subject to x ∈ S,
where αi,βi are scalars; pi, qi ∈ Rn for each i ∈ {1, 2, ..., r};S = D ∩ Zn;r ≥ 2;
D = {x ∈ Rn/Ax ≤ b, x ≥ 0}; b ∈ Rm; A ∈ Rm×n; Z is the set of integers.
It is assumed that S is not empty and D is a bounded convex polyhedron in
Rn and qix + βi > 0 over D for all i ∈ {1, 2, ..., r}.
The set of all integer efficient solutions of (P ) is denoted by E(P ).

As in multiple objective linear programming see [24,25], the solution to
the problem (P) is to find all solutions that are efficient in the sense of the
following definition.

Definition 1.1 A point x0 ∈ S is said to be efficient of (P) if and only if
there does not exist another point x1 ∈ S such that Zi(x

1) ≥ Zi(x
0) for all

i ∈ {1, 2, ..., r} and Zi(x
1) > Zi(x

0) for at least one i ∈ {1, 2, ..., r}.

Otherwise, x0 is called a dominated solution and the vector
(Z1(x

0), Z2(x
0), ..., Zr(x

0)) is said a dominated r−tuple.

In practical application of multiple criteria decision making,the decision
makers often have to choose some preferred point from the efficient set E(P ).

This involves the problem of finding efficient solutions and describing the
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structure of E(P ).Since in many cases the criteria are in conflict,the decision
maker try to optimize a linear function representing his preferences over the
efficient set E(P ).The problem of finding a most preferred (with respect to ϕ)
efficient point can be stated as a mathematical programming problem

⎧

⎪

⎨

⎪

⎩

maximize ϕ = d.x
s.t. x ∈ E(P ) (PE)

where dx is a linear function (d ∈ Rn).
Mathematically, the problem (PE) can be classified as a global optimiza-

tion problem.The main difficulty of this problem arises from the fact that its
feasible domain, in general, is nonconvex and not given explicitly.

In the continuous case, the problem of optimizing a real valued function
over an efficient set of the Multiple Objective Linear Programming problem
(MOLP) have attracted much attention because of their important applica-
tions in decision making. This problem was first considered by Philip [22] in
which an algorithm based on moving to adjacent efficient vertices is outlined.In
Isermann and Steuer [16] the main idea of the algorithm is based on the use of
a cutting plane procedure.Benson [4,5] has given two relaxation algorithms for
solving this problem.The survey of Yamamoto [28] proposes a classification of
the existing algorithms for optimization over the efficient set.Thi, Pham and
Thoai [26] propose a branch and bound procedure based on some properties in
Lagrange duality.Yamada, Tanino, Inuiguchi [27] propose a method for approx-
imate minimization of a convex function over the weakly efficient set.Benson
[6] suggested a more simple linear programming procedure for detecting and
solving the problem in four special cases and many others references.

Although the discrete case has by no means seen a similar development.Linear
functions optimization on an integer efficient set of (MOLP) is considered only
by Nguyen [21] which gives an upper bound for the optimal objective value
of the function ϕ.Abbas and Chaabane [2] where different types of cuts are
imposed in such a way that the improvement of the objective value is guaran-
teed at each iteration.Chaabane and Pirlot [9]; Jesus M. Jorge [17] propose an
algorithm which defines a sequence of progressively more constrained single-
objective integer problems that successively eliminates undesirable points from
further consideration.

Problem (PE) of optimizing a linear function over a set of a vector affine
fractional program with integer variables (MOILFP) has received no attention
and we do not known any reference of numerical method specially designed for
this kind of problem what justified our interest to study this problem.
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The central problem of interest in this paper is the problem of optimizing
a linear function ϕ over the efficient set E(P ) of problem (MOILFP).This
problem is formulated as

⎧

⎪

⎨

⎪

⎩

Maximize w = d.x
s.t. x ∈ E(P ) (PE)

The problem (Pi(S)), i ∈ {1, 2, ..., r} is the following integer linear frac-
tional programming problem

⎧

⎪

⎪

⎨

⎪

⎪

⎩

maximize Zi(x) = pix+αi

qix+βi

s.t . x ∈ S = D ∩ Zn (Pi(S))

The outline of the paper is as follows:In this section we have presented
the motivation for developing the approach.Section 2 compiles the notation
and definitions used throughout the manuscript.In section 3, some preliminary
results are given to justify the methodology.The detailed presentation of the
algorithm is given in section 4.In section 5, a numerical illustration is included
to explain the proposed method.

2 Notation and definitions

Along the present paper, the following notations will be used.

- D1 = {x ∈ Rn1 : A1x ≤ b1; A1 ∈ Rm1×n1 ; b1 ∈ Rm1 ; x ≥ 0}. D1 is a current
truncated region of D obtained by successive Gomory cuts introduced
when optimizing problem (P1(S)). Note that S1 = S = D1∩Zn, because
Gomory cuts do not eliminate integer solutions from D.

- (Z1
1 , Z

1
2 , ..., Z

1
r ) is the first non-dominated r−tuple corresponding to the op-

timal integer solution x1
1 obtained in D1, where Z1

i = pix+αi

qix+βi

for i = 1, 2, ..., r.

For k ≥ 2 ,we have:

- Dk = {x ∈ Rnk : Akx ≤ bk; Ak ∈ Rmk×nk ; bk ∈ Rmk ; x ≥ 0}. Dk is the
current truncated region obtained after having applied the cut
∑

j∈Nk−1\{jk−1} xj ≥ 1 where jk−1 ∈ Γk−1 (see below) and successive Go-
mory cuts eventually.

- x1
k = (x1

k,j) the kth optimal integer solution of problem P1(S) obtained on
Dk at step k. ( Note that in place of (P1(S)), one can similarly consider
the problem (Pi(S)), i ∈ {2, ..., r})
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- B1
k is a basis associated with solution x1

k.

- a1
k,j ∈ Rmk×1 is the activity vector of x1

k,j with respect to Dk.

- y1
k,j = (y1

k,ij) = (B1
k)

−1 × a1
k,j where y1

k,j ∈ Rmk×1

- Ik = {i/a1
k,i ∈ B1

k} (indices of basic variables)

- Nk = {j/a1
k,j /∈ B1

k} (indices of non-basic variables)

- p1
j = the jth component of vector p1

- q1
j = the jth component of vector q1

- p1
k,j =

∑

i∈Ik
p1

i · y
1
k,ij

- q1
k,j =

∑

i∈Ik
q1
i · y

1
k,ij

- Z1(x
1
k) =

Z1

k,1

Z1

k,2

=
p1x1

k
+α1

q1x1

k
+β1

- γ1
k,j = Z1

k,2(p
1
j−p1

k,j)−Z1
k,1(q

1
j −q1

k,j) , the updated value of the jth component
of the reduce gradient vector γ1

k.

- xu
k = (xu

k,j) are the (tk − 1) alternate integer solutions to x1
k, if they exist,

where tk is an integer number and u ∈ {2, ..., tk}.

- Γk = {j ∈ Nk / γ1
k,j ≤ 0 and ϕk

j − dk
j ≤ 0}, where ϕk

j = dB1

k
.y1

k,j with

dB1

k
the vector of cost-coefficients of basic variables associated with B1

k

in vector dk.

Theorem 2.1 [20] The point x1
k of S is an optimal solution of problem

(P1(S)) if and only if the reduce gradient vector γ1
k is such that γ1

k,j ≤ 0 for all
j ∈ Nk.

Remark 2.2 Recall that a sufficient condition for the uniqueness of the
optimal solution x1

k of (P1(S)) is that the set Jk = {j ∈ Nk/γ
1
k,j = 0} is empty.

In this case, there does not exist any other integer feasible solution x in S
such that Z1(x) = Z1(x

1
k). We refer to x as an alternate optimal solution to

x1
k.

We recall a well known result[22].

Corollary 2.3 A point x0 that is unique solution of the integer linear frac-
tional programming problem (P1(S)) is efficient of (P ).
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3 Theoretical results

Since the problem MOILFP is to determine the set of integer efficient solutions,
we scan all integer points of the feasible region S by a cutting plane technique
which is described in the present section.

Definition 3.1 Assume that jk ∈ Nk. An edge Ejk
incident to a solution

x1
k is defined as the set

Ejk
=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x = (xi) ∈ Dk :

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

xi = x1
k,i − θjk

.y1
k,ijk

for i ∈ Ik

xjk
= θjk

xv = 0 for all v ∈ Nk\{jk}

(1)

where 0 < θjk
≤ mini∈Ik

{
x1

k,i

y1

k,ijk

/y1
k,ijk

> 0}, θjk
is a positive integer and θjk

.y1
k,ijk

are integers for all i ∈ Ik if such integer values exist.

Remark 3.2 Note that equation (1) enables us to compute the integer fea-
sible alternate solutions when the optimal solution obtained by solving (P1(S))
is not unique (Jk �= ∅).

The following theorem addresses the case in which the optimal solution of
(P1(S)) is not unique.

Theorem 3.3 [1] All integer feasible solutions xu
k, u ∈ {2, ..., tk} of problem

(P1(S)) alternate to x1
k on an edge Ejk

of region D (or truncated region Dk)
emanating from it, in the direction of a vector a1

k,jk
, jk ∈ Jk, exist in the open

half space.
∑

j∈Nk\{jk}

xj < 1 (2)

The following theorem suggests a cut that can be viewed as a generalization
of Dantzig’s cut.

Theorem 3.4 [1] An integer feasible solution of problem (P1(S)) that is
distinct from x1

k and not on an edge Ejk
, jk ∈ Jk of the truncated region

Dk (or D) through an integer feasible point x1
k of problem (P1(S)) exists in the

closed half space
∑

j∈Nk\{jk}

xj ≥ 1 (3)
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1- We calculate the value ϕ′
k of the linear function ϕ at any solution

xu
k = (xu

1 , x
u
2 , ..., x

u
n) lying on the edge Ejk

.

ϕ′
k =

n
∑

j=1

dk
j .x

u
j =

∑

i∈Ik

dk
i (xk,i − θjk

.yk,ijk
) + dk

jk
.θjk

ϕ′
k = (dk

jk
−

∑

i∈Ik

dk
i .yk,ijk

).θjk
+

∑

i∈Ik

dk
i .xk,i

where θjk
is an integer verifying 0 < θjk

≤ θ0
jk

and θ0
jk

is the integer part
of mini∈Ik

{
xk,i

yk,ijk

/yk,ijk
> 0}.

We put :

υk = (dk
jk
−

∑

i∈Ik

dk
i .yk,ijk

) (4)

Then along an edge Ejk
, jk ∈ Γk, we have υk ≥ 0. Therefore, the values

of ϕ′
k are increasing and ϕ′

k reaches its maximum for θjk
= θ0

jk
.

Definition 3.5 Let f : S ⊂ Rn −→ R and x ∈ S. Then
L≥f(x) = {x ∈ S : f (x) ≥ f (x)} is called the level set of x for f .
L=f(x) = {x ∈ S : f (x) = f (x)} is called the level curve of x for f .

2- The following theorem is used in various steps of our algorithm to test the
efficiency of a given integer feasible solution of Multiobjective Integer
Linear Fractional Programming problem (P).

Theorem 3.6 [14]Characterization of Pareto optimal solutions

x ∈ S is Pareto optimal of (P) if and only if
i=r
⋂

i=1

L≥Zi(x) =
i=r
⋂

i=1

L=Zi(x).

Proof: x is Pareto optimal of (P)
⇐⇒ There does not exist x ∈ S such that [Zi(x) ≥ Zi(x) ∀ i = 1...r
and Zj(x) > Zj(x) for some j]

⇐⇒ There does not exist x ∈ S such that [x ∈
i=r
⋂

i=1

L≥Zi(x) and

∃ j : x ∈ L>Zj(x)]

⇐⇒
i=r
⋂

i=1

L≥Zi(x) =
i=r
⋂

i=1

L=Zi(x)

3- Before starting the description of the algorithm we introduce the following
inequality (dx ≥ ϕopt) which eliminate only solutions that are strictly
worse than the current optimal solution.
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4 Development of the algorithm

The algorithm that we propose here is proved to provide an optimal solution
of (PE) without having to compute the set of all efficient solutions of the
underlying problem (P ).

Step 0: Initialization let ϕopt = −∞

Solve the relaxed problem (PR) : max{dx / x ∈ S}

- If (PR) is unfeasible ⇒ STOP, (PE) is unfeasible.

- Otherwise, let x0 be an optimal solution of (PR).

Step 1: This solution is tested for efficiency by applying the Theorem 3.6

- If x0 ∈ E(P ) ⇒ STOP, x0 is an optimal solution of (PE).

- Otherwise, go to step 2.

Step 2: Solve the problem (P1(S)) [one may similarly consider any of the
problems (Pi(S)) i = 2, 3, ..., r instead of (P1(S))].

2.1 If J1 = {j ∈ N1/γ
1
1,j = 0} = ∅ then the optimal solution found x1

1 is
unique and it is efficient (corollary 2.3). Set (xopt = x1

1, ϕopt = dx1
1) and

go to step 3.

2.2 If J1 �= ∅ then x1
1 may not be unique, test the efficiency of x1

1.

- If it is not efficient go to step 3.

- Otherwise, set (xopt = x1
1, ϕopt = dx1

1) and go to step 3.

Step 3: Let k = 1 and perform the following sub-steps:

3.1 Construct the set Γk = {j ∈ Nk/γ
k
k,j ≤ 0 and ϕk

j − dk
j ≤ 0}.

− If Γk = ∅, then go to step 3.3 and apply the Dantzig cut
∑

j∈Nk
xj ≥ 1.

− Otherwise, let γ = Γk. go to (a).

a - If γ = ∅, then let jk ∈ Γk and go to 3.3.

- Else, select jk ∈ γ and calculate θ0
jk

the integer part of

mini∈Ik
{

x1

k,i

y1

k,ijk

/y1
k,ijk

> 0}

- If θ0
jk

= 0 then there is no integer feasible solution on the
edge Ejk

, put γ = γ\{jk} and go to (a).

- Else, if θ0
jk
≥ 1, then go to (b).
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b - If x1
k is efficient and dx1

k ≥ ϕopt, then calculate the value
of the parameter υk defined in equation (4).

- If υk �= 0, then go to (c).

- If υk = 0, put γ = γ\{jk} and go to (a).

- If x1
k is not efficient or dx1

k < ϕopt, then go to (c).

c- Explore the edge Ejk
, searching for a feasible integer so-

lutions of (P1(S)) corresponding to θjk
(θjk

is an integer
verifying 0 < θjk

≤ θ0
jk

) and test for efficiency starting from
θjk

= θ0
jk

until θjk
= 1.

Once a first integer efficient solution is found, say xu
k such

that dxu
k > ϕopt, set (xopt = xu

k , ϕopt = dxu
k), and go to

sub-step 3.2.
If there is no integer efficient solution on this edge, then
put γ = γ\{jk} and go to (a).

3.2 Let k = k + 1. Define the new truncated region Dk as the subset of Dk−1

obtained by applying the cut (dx ≥ dxu
k−1) and using the dual simplex

method and gomory cuts, if necessary, to find a new optimal solution
x1

k.Set (xopt = x1
k, ϕopt = dx1

k) and go to (3.1).

3.3 Let k = k + 1. The new truncated region Dk is obtained as a subset of
Dk−1 by applying the specified cut (Dantzig cut

∑

j∈Nk
xj ≥ 1 or cut

∑

j∈Nk\{jk} xj ≥ 1) and using the dual simplex method and Gomory cuts,
if necessary, to find a new optimal solution x1

k.

- If the solution x1
k is efficient and dx1

k > ϕopt, set (xopt = x1
k, ϕopt = dx1

k)
and go to (3.1)

- Else, go to (3.1).

Terminal step: The process terminates when infeasibility of pivot operations
appears indicating that the current region contains no integer feasible point x1

k

such that dx1
k > ϕopt. The optimal solution of problem (PE) is then xopt and

its value on criterion ϕ is ϕopt.

Proposition 4.1 Under the hypothesis that S is not empty and D bounded,
the algorithm ends up with an efficient solution of problem (P ).

Proof: Since D is bounded, S is non-empty and finite. Each cut of Dantzig
∑

j∈Nk
xj ≥ 1 or a cut of type

∑

j∈Nk\{Jk} xj ≥ 1 reduces strictly the domain.
Hence the procedure terminales with an efficient solution of (P ) because at
least one such solution exists in S.
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Theorem 4.2 If S is non-empty and D is bounded, then

1. The algorithm terminates in a finite number of iterations.

2. The solution xopt is an optimal solution of problem (PE).

Proof: Proposition (4.1) guarantees that we can obtain an initial efficient
solution of (P ), at iteration p, p ≥ 1. We see also from the description of the
algorithm that, during iteration k, either a cut of Dantzig

∑

j∈Nk
xj ≥ 1 or a

cut of type
∑

j∈Nk\{Jk} xj ≥ 1 is applied which strictly reduces the domain or a
new efficient solution is found that improves ϕopt. Obviously, since the domain
S is finite, it may not be strictly reduced an infinite number of times. For the
same reason, only a finite number of improvements of ϕ = dx may be observed
when x moves in the finite set S. This proves that the algorithm stops after a
finite number of iterations.

Provided S is non-empty and D is bounded, the algorithm stops at iteration
k > p if and only if the problem (P1(Sk)) is unfeasible, this is seen from the fact
that, the dual simplex algorithm, at some stage, possibly after the adjunction
of Gomory cuts, can not perform any pivot operation. The current value of
ϕopt at that iteration is optimal and xopt is an optimal solution of problem
(PE).

5 Numerical illustration

To illustrate the use of this algorithm, we consider the following integer linear
fractional program with three objectives [18].

Maximize
{

Z1(x) =
−x1 + 4

x2 + 1
; Z2(x) =

x1 − 4

−x2 + 3
; Z3(x) = −x1 + x2

}

(P )

subject to x ∈ S where

S =
{

x ∈ R2 : −x1 + 4x2 ≤ 0; x1 −
1

2
x2 ≤ 4; x1, x2 ≥ 0 and integers

}

Let the main problem be

⎧

⎪

⎨

⎪

⎩

max ϕ = 2x1 − 3x2 (PE)
s.t. x1, x2 ∈ E(P )
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Step 0: Initialization Let ϕopt = −∞

We solve the relaxed problem (PR)

⎧

⎪

⎨

⎪

⎩

max(2x1 − 3x2)
x ∈ S

The optimal solution is x0 = (4, 0)′ and ϕ0 = 8.

Step 1: This solution x0 is tested for efficiency ( theorem 3.6) and we obtain:

3
⋂

i=1

L≥fi(4, 0) = {(4, 0)′; (4, 1)′} �=
3

⋂

i=1

L=fi(4, 0) = {(4, 0)′}

Thus x0 is not efficient go to step 2.

Step 2: We solve the problem (P1(S))

⎧

⎪

⎨

⎪

⎩

max(−x1+4

x2+1
)

x ∈ S

The results of solving problem (P1(S)) using the procedure developed in [7] or
[15] are summarized in table I.

B xB x1 x2

x3 0 -1 4
x4 4 1 −1

2

-p1 -4 -1 0
-q1 -1 0 1
γ1

1,j -1 -4
ϕ1

j − d1
j 0 -2 3
table I

The optimal solution x1
1 = (0, 0)′ is unique, thus it is efficient. Let it be a first

efficient solution that corresponds to ϕ1 = 0. We have dx1
1 = 0 > −∞ then

ϕopt = 0 and xopt = (0, 0)′.

Step 3:

3.1 k = 1
I1 = {3, 4}; N1 = {1, 2}, Γ1 = {j ∈ N1/γ

1
1,j ≤ 0 and ϕ1

j − d1
j ≤ 0} =

{1} �= ∅. We put γ = Γ1 = {1}.
Let j1 = 1 ∈ γ. Since x1

1 is efficient and dx1
1 = 0 > ϕopt = −∞ then we

calculate the value of υ1.
υ1 = d1

1−d1
3.y1,31−d1

3.y1,41 = 2−0.(−1)−0(1) = 2 > 0, we start exploring
the edge E1; we calculate θ0

1 = min{4

1
} = 4 ; for θ1 = 4 , x2

1(4) = (4, 0)′

which is not efficient.
For θ1 = 3 (the best value of θ1 yielding a great increase in ϕ), the
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corresponding solution an the edge E1 is x3
1(3) = (3, 0)′.

The solution x3
1(3) is being tested for efficiency and we obtain:

3
⋂

i=1

L≥fi(3, 0) =
3

⋂

i=1

L=fi(3, 0) = {(3, 0)′}

Thus x3
1(3) is efficient. We calculate ϕ1

1 = d.x3
1(3) = 6.

As ϕ1
1 > ϕopt = 0, then ϕopt = 6 and xopt = (3, 0)′.

3.2 k = k + 1 = 2
We cut by 2x1 − 3x2 ≥ 6
After adjusting the table I for the reduced feasible region and applying
the dual simplex method.The optimal feasible solution is x1

2 = (3, 0)′

which is efficient. It corresponds to ϕ2 = 6; ϕopt = 6 and xopt = (3, 0)′

(see table II)

B xB x2 x5

x3 3 5

2
−1

2

x4 1 1 1

2

x1 3 −3

2
−1

2

-p2 -1 −3

2
−1

2

-q2 -1 1 0
γ1

2,j −5

2
−1

2

ϕ2
j − d2

j 6 0 -1
table II

I2 = {1, 3, 4}, N2 = {2, 5}, Γ2 = {2, 5} �= ∅
Let γ = Γ2. Let j2 = 2. Since x1

2 is efficient and dx1
2 = ϕopt = 6, then

we calculate the value of υ2; υ2 = −3 − (2(−3

2
) + 0 + 0) = 0.We do not

explore the edge E2.
Let γ = γ\{2} and consider the second index j2 = 5 ∈ γ ,θ0

5 = min{ 1
1

2

}

= 2 .Since x1
2 is efficient and dx2 = ϕopt = 6, then we calculate the value

of υ2; υ2 = 0 − (2 × (−1

2
)) = 1 > 0 we explore the Edge Ej2 = E5.

The corresponding solution on the edge E5 is x2
2(2) = (4, 0) which is not

efficient and x3
2(1) = (7

2
, 0) which is not integer.

We have γ = γ\{5} = ∅.

3.3 Let k = k + 1 = 3
and we cut the current feasible region by

∑

j∈N2\{5} xj ≥ 1 ⇔ x2 ≥ 1.
We add this constraint at the bottom of table II and apply the dual
simplex method and Gomory method to obtain table III
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B xB x6 x7

x3 1 3 -1
x4 −1

2

1

2
1

x1 5 -1 -1
x2 1 -1 0
x5 1 1 -2
-p3 1 -1 -1
-q3 -2 1 0
γ1

3,j -1 -2
ϕ3

j − d3
j 7 1 -2
table III

The dual is not feasible then the algorithm terminates.
The optimal solution of problem (PE) is then xopt = (3, 0)′ and ϕopt = 6.

This example was first presented in [18] to find the set of integer efficient
solutions : E(P ) = {(4, 1)′; (3, 0)′; (2, 0)′; (1, 0)′; (0, 0)′}.
However, our algorithm optimizes the linear function ϕ = 2x1 − 3x2

without having to determine all these solutions but only {(0, 0)′, (3, 0)′}.

6 Conclusion

In this work we have presented a new algorithm for optimizing a linear func-
tion over an efficient set of the Multiple Objective Integer Linear Fractional
Programming problem (MOILFP).
The proposed algorithm solves problem (PE) by using classical linear program-
ming procedures without having to enumerate all the efficient solutions. The
algorithm may generate several dominated solutions but it provides a shorter
way to the optimal one.
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