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A Behavioral Model of Bubbles and Crashes 

 

Taisei Kaizoji1 

 

Abstract 

 

The aim of this paper is to propose a new model of bubbles and crashes to elucidate a mechanism of 

bubbles and subsequent crashes. We consider an asset market in which the risky assets into two 

classes, the risky asset, and the risk-free asset are traded. Investors are divided into two groups of 

investors who have the different rationality on decision-making respectively. One is arbitragers who 

maximize their expected utility of their wealth in the next period following their rational assessment of 

the fundamental values of risky assets. Another is noise traders who maximize their random utility of 

binary choice: buying the bubble asset and holding the risk-free asst.  The noise trader’s behavior is 

modeled in a framework of the theory of discrete choice with social interaction (Brock and Durlauf 

(1999, 2001)), which can be considered as a model of Keynse’s beauty contest metaphor. We 

demonstrate that (i) if noise-traders’ conformity effect (the extent that each noise-trader is influenced 

by the decisions of other noise-traders) is weak, then the market price converges to the fundamental 

price, so that the efficient market hypothesis holds, but that (ii) if noise-traders’ conformity effect is 

strong, then noise-traders’ herd behavior gives cause to a bubble, and their positive-feedback trading 

prolongs bubble, but a bubble is necessarily ended up with a crash. Furthermore, we describe that 

cycles of bubbles and crashes are repeated.  
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1. Introduction  

 

In the last few decades, the asset markets have been frequently visited by bubbles and the 

subsequent crashes. The increasingly frequent market crashes have attracted the attention 

of the general public. Although many academics, practitioners and policy makers have 

studied questions related to collapsing asset price bubbles, the questions, how asset 

bubbles come about, why it persists, and what causes a crash, have been the greatest 

myths.  What is the origin of bubbles? Why are asset prices deviated away from 

fundamental value? 

One recent growing body of empirical literature on stock price run-up is also 

devoted to the existence of the momentum trading (also referred to as positive-feedback 

trading). Many empirical studies documents that the momentum in stock prices is 

positive in the short term, but eventually reversed in the long term. Among many 

literatures, the coexistence of the short-run momentum and the long-run reversal in stock 

prices is documented in detail by Jegadeesh and Titman (1993), and DeBondt and Thaler 

(1985). Many researchers believe that the empirical evidences on the momentum trading 

(positive feedback trading) prove the existence of the noise-traders’ herd behavior, and 

their herding have potential to explain speculative bubbles (see for example, DeLong et al. 

(1990)).  

These empirical findings are also consistent with results of experiments in 

laboratory asset markets. Smith, Suchanek, and Williams (1988) find that (a) bubbles and 

crashes occur regularly in laboratory asset markets when market participants are 

inexperienced, but (b) price gradually approach fundamentals when the participants, who 

have experienced bubbles and crashes in prior trading sessions, interact repeatedly in 

similar markets. Haruvy, Lahav, and Noussair (2009) finds that the investors’ 

expectations of prices are adaptive, and primarily based on past trends in the previous and 

current laboratory asset markets in which they have participated. Most traders do not 

anticipate market downturns the first time they participate in a laboratory market, and are 

more prone to the optimism that fuels the bubble. In the opposite direction, when 

experienced, they typically exercise caution about market bubbles and crashes. In 

summary, the studies mentioned above indicate that the bubble is caused by the non-
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rational investors who attempt to surf bubble. Greenwood and Nagel (2008) empirically 

study the portfolio decisions of experienced mutual fund managers, who have 

experienced market bubbles and the subsequent crashes, and inexperienced mutual fund 

managers, who have not yet directly experienced the consequences of a stock market 

downturn, during the internet bubble2. They found that increase their technology holdings 

during the run-up, and decrease them during the downturn. Furthermore, inexperienced 

managers, but not experienced managers, exhibit trend-chasing behavior in their 

technology stock investments 3 . Their results are in lines with Haruvy, Lahav, and 

Noussair (2009).  

The recent theoretical literature on bubbles and crashes has evolved to increasingly 

recognize the evidence of bubbles which is defined as deviations from fundamental value. 

One important class of finance theories is devoted to the concept of noise-trader (also 

referred to as positive-feedback investors) which is introduced first by Kyle (1985) and 

Black (1986) to describe irrational investors, and is developed first by De Long, Shleifer, 

Summers and Waldmann (1990a, 1990b).)  Their view of noise-traders has been 

motivated in part by George Soros' (1987) description of his own investment strategy. 

Soros has apparently been successful over the past two decades by betting not on 

fundamentals but, he claims, on future crowd behavior. Brunnermeier and Nagel (2004) 

extracted hedge fund holdings from Form 13F, including those of well-known managers 

such as Soros, Tiger, Tudor, and others in the period of the internet bubble. They found 

that, over the period of the DotCom bubble, many hedge fund managers tried to ride 

rather than attak bubbles, suggesting the existence of mechanisms that non-rational 

investors to surf bubbles rather than attempt to arbitrage. Abreu and Brunnermeier (2003) 

propose a different mechanism justifying why rational traders ride rather than arbitrage 

bubbles. These literatures agree in the point that the stock price is kept above its 

fundamental value by irrationally exuberant behavioral traders such as noise-traders.  

Another extensive body of literature shows that there can be large movements in 

asset prices due to the combined effects of heterogeneous beliefs and short sales 

                                                 
2 It is widely believed that the internet stocks were in the midst of stock price bubble in the period of the 
internet bubble from 1998 to 2000. The internet bubble is investigated by Ofek and Richardson (2003), and 
Battalio and Schultz (2006). 
3 Brennan (2004) insists that increased stock market participation by individuals with little investment 
experience may have been the driving factor of the internet bubbles. 
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constraints. The basic idea finds its root back to the Lintner (1969)’s CAPM model of 

asset prices with investors having heterogeneous beliefs. (See, for example, Miller (1977), 

Harrison and Kreps (1978), Hommes and Brock (1997, 1998), Chen, Hong and Stein 

(2000), Hong and Stein (1999, 2003) and Hong, Scheinkman and Xiong (2006)).  

Independently of the recent these studies, Keynes (1936 Chap. 12) proposes the 

completely different concept, that is, “beauty contest” to explain price fluctuations in 

stock markets. Keynes thought that similar behavior to his beauty contest metaphor was 

at work within the stock market. Investors evaluate shares not based on what they think 

their fundamental value is, but rather on what they think everyone else thinks their value 

is. More recently, the models of the stock market in terms of Keynes’s beauty contest are 

proposed by Biais and Bossaerts, (1998), Allen, Morris, and Shin (2006), and Angeletos, 

Lorenzoni, and Pavan (2010).  

In this paper we propose a new model to explore a mechanism of a bubble and 

its subsequent collapse. We consider a stock market that the two contrary types of 

investors coexist. One is arbitragers who invest based on their fundamental value they 

predict, whereas another is noise-traders whose investment is driven by expectations 

about what other investors predict, rather than expectations on their fundamentals. The 

arbitragers are corresponded to experienced managers who have a capability to predict 

accurately the fundamental price of the risky assets while noise traders are investors who 

have capability to understand the investors’ crowd psychology which is considered in the 

Keynesian beauty contest metaphor. Our model shows that coexistence of the two 

contrary types of investors in the asset market is the key to understand a mechanism of 

stock market bubble and its subsequent crash. More concretely, we consider an asset 

market in which two assets: the risky asset, and the risk-free asset are traded. In 

accordance with a standard asst-pricing models proposed by Lintner (1969)), and 

developed by Brock and Hommes (1997, 1998)), the arbitragers chooses that the portfolio 

of two assets, the risky asset, and the risk-free asset which will maximize his expected 

utility of end-of-period wealth. On the other hand, noise traders maximize their random 

utility4 of the discrete choice, that is, buying the risky stock or selling the risky asset. We 

                                                 
4 The qualitative choice models based on maximization of the agent’s random utility has been  developed 
by McFadden (1974) .  
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assume that a noise trader’s decision-making is influenced by (i) his expectation on the 

other noise-traders’ decisions, and (ii) his expected price momentum on the risky asset. 

That is, the noise-traders adapt a positive feed-back strategy (or a momentum strategy) on 

the bubble asset. To model the interaction among noise-traders, the theory of discrete 

choice with social interactions proposed by Brock and Durlauf (1999, 2001) is applied. In 

our model, the market price of the risky asset is determined by the noise-traders’ 

sentiment, which is defined as the difference of bullish noise-traders and the bearish 

noise-traders. Firstly, we demonstrate that as the conformity effect among noise traders 

(the extent that each noise-trader is influenced by the decisions of other noise-traders) is 

sufficiently weak, the arbitragers can stabilize the risky asset price, even if the risky asset 

price deviates temporally from the fundamental price by the noise-traders’ trading. As the 

noise-traders’ conformity effect is weak, the risky asset price converges to the 

fundamental price in a short run. Therefore, under the condition, the efficient market 

hypothesis holds. Secondly, however, as the conformity effect among noise traders is 

strengthened, noise traders begin to follow the herd, and the noise-traders’ herding 

behavior destabilize the risky-asset price, and the deviation of the risky asset price from 

the fundamental price has been enlarging in a long run. Enhancing the noise-traders’ 

bullish sentiment gives cause to a bubble, and their positive feedback trading prolongs 

bubble. In the second half of bubble, run up of risky asset price come to an end as the 

noise-traders’ sentiment approaches to a limit of the bullish sentiment, that is, almost all 

the noise-trader ’s demand for the risky asset are buyers of the risky asset. For the noise-

traders’ excess demand for the risky asset price is little or nothing. Thirdly, we 

demonstrate that decreasing the expected price momentum leads necessarily to market 

crash. Finally, we demonstrate that after a crash, the noise-trader’s sentiment approaches 

to a limit of the bearish sentiment, the process of generating a bubble begins again.  

The paper proceeds as follows. The model is described in Section 2. In Section 3, 

we give a theoretical explanation on a mechanism of bubble and crash. We give 

concluding remarks in Section 4.  

 

2. Model  
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Consider a market on which a risky assets and a risk-free asset are traded. We divide into 

two groups of investors with different decision making. The first group of investors is a 

group of arbitragers who maximize their expected utility of wealth in the next period. The 

second group of investors is the group of the noise-traders who maximize the random 

utility of the binary choice: buying the risky asset or selling the risky asset.   

 

2.1 Arbitragers 

 

Let us consider the behavior of the arbitragers. We assume that there is a number M of 

arbitragers. There are two assets available, a risky and a riskless asset. The risk-free asset 

is in perfectly elastic supply and pays a constant return r . The risky asset pays am 

uncertain dividend 
t

Y  in each period. The price of the risky asset in period t  is denoted 

by 
t

p . The excess gain of the risky asset is defined as5  

1 1 1 (1 ) .
t t t t

R p d r p       

An arbitrager’s wealth is written as  

    1 1 1(1 ) ( (1 ) )
t t t t t t

W r W p d r p x         

Where 
t

X  denotes the number of shares of the risky asset purchased at period t. Let 
t

E  

and 
t

V  denote conditional expectation and conditional variance.  The object of the 

arbitragers is to maximize the expected utility 1( )tEU W  of their wealth 1tW  in the next 

period, t+1. We assume that the arbitrager’s preferences are characterized by the 

constant-absolute risk aversion (CARA) utility with the coefficient of risk aversion,  . 

The maximization problem which the arbitragers solve is equivalent to the mean-variance 

model  

,
1

,

1 1 1

( ) ( ) ( )
2

. . (1 ) ( (1 ) )

t f t

t t t
x x

t t t t t t

Max EU W Max E W V W

s t W r W p d r p x




  

   
 

      .

                               (1) 

                                                 
5 The CAPM, which is utilized in this paper, is proposed by Brock and Hommes (1997, 1998).  
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That is, in his choice among all the possible portfolios, the arbitrager is satisfied to be 

guided by its expected yields ( )tE W and its variance ( )tV W . The demand 
t

x  for risky 

asset by arbitrager is then  

 
   1 1

1 12
1 1

(1 ) 1
(1 )

(1 )

t t t t

t t t t t

t t t t

E p d r p
x E p d r p

V p d r p  
 

 
 

  
        

                      (2) 

 

where the conditional variance 2
t

V   is assumed to be constant. The term 

 1 1t t t
E p d   denotes a next period payoff of the risky asset which the arbitrager expects, 

and the term,   (1 ) tr p  denotes the cost of holding the risky asset for a period. 

rbitrager’s investment decision is as follows. If the expected pay-off  1 1t t t
E p d   is 

greater than the cost (1 ) tr p , arbitrager buys the risky asset. In the opposite direction, If 

the expected pay-off  1 1t t t
E p d   is less than the cost (1 ) tr p , arbitrager sells the 

risky asset. 

       When we assume that the arbitragers are assumed to be identical, the aggregated 

demands for the risky assets by arbitragers are obtained by multiplying the number M  of 

arbitragers:     

     
 
    1 1

1 12
1 1

(1 )
(1 )

(1 )

t t t t

t t t t t

t t t t

E p d r p M
M x E p d r p

V p d r p  
 

 
 

  
    

  
 .           (3) 

We assume that the arbitrager calculates the fundamental price 
tf  using the dividend 

discount model.  

                                                                                                                            (4) 

 

 

where r  denotes the discount rate. Using the formula of the fundamental price, the term  

The aggregated demands for the risky assets by arbitragers are obtained by multiplying 

the number M  of arbitragers:     

     
 
    1 1

1 12
1 1

(1 )
(1 )

(1 )

t t t t

t t t t t

t t t t

E p d r p M
M x E p d r p

V p d r p  
 

 
 

  
    

  
 .           (5) 

   

 

1 1 1 2 3 4
2 3 4

1

[ ] [ ] [ ] [ ] [ ]

1 1 (1 ) (1 ) (1 )

[ ]

(1 )

t t t t t t
t

t i

i
i

E p d E D E D E D E D
f

r r r r r

E D

r

     







      

    



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2.2. Noise traders 

 

Let us consider the problem of a noise trader’s decision on investment. a noise trader’s 

choice is influenced from the other noise-traders’ choice, especially his choice has a 

tendency to be in favor of the majority decision as Keynes’s beauty contest metaphor. To 

formalize the behavior of a noise-trader, we utilize that the theory of discrete choice with 

social interactions proposed by Brock and Durlauf (1999, 2001). We assume that there is 

a number N of noise traders. Individual noise-trader is indexed by i. We assume the 

noise-traders’ decision is to choose buying the risky asset or buying the risky asset for 

each period. The noise-trader i’s choice at time t is ,i t
s  with associated support { 1,1} . If 

noise-trader i buys the risky asset, then , 1
i t

s  , and if noise-trader i sells the risky asset, 

then , 1
i t

s   .  

The individual noise-trader maximizes the random utility a noise trader receives 

form holding of an asset6.  

 ,
,

1, 1
max ( )

i t

i t
s

U s
  

                                                                               (6).  

We assume that the noise-trader’s random utility function U is decomposed into three 

components7  

, , , , 1 ,( ) ( ) ( )e

i t i t i t i t i tU s s s H s      .                                                  (7) 

where , , / ( 1)e e

i t i j tj i
s s N


  .denotes the subjective expectation of  ,

e

i j t
s denotes the 

subjective expected value from the noise-trader i’s anticipation of noise-trader j ‘s choice 

at time t, so that ,
e

i t
s denotes the mean value of all noise traders’ behavior perceived by 

noise-trader i. other than noise-trader i’s behavior. The parameter  measures the degree 

of dependence across noise-traders. It indicates the so-called conformity effect. Given is 

a positive, an increase in ,
e

i t
s raises his utility of holding the risky asset, and lowers his 

                                                 
6 The qualitative choice models based on maximization of the agent’s random utility function were 
developed by McFadden (1974).  
7 The utility function (9) is in line with the general model of discrete choice in the presence of social 
interactions proposed by Brock and Durlauf (1999, 2000). See also Lux (1995) and Kaizoji (2000).  
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utility of holding the risk-free asset. The second term
tH

8denotes the momentum of the 

risky asset price which is anticipated by noise-traders. The noise-traders’ expectation on 

the expected price momentum is assumed to be adaptive,   

       1 1 0 0(1 ) ( ),t t t t tH H p p H H                                                   (8) 

where 0 1  .  As the expected price momentum 
tH  of the risky asset is higher, his 

utility of holding the risky asset is higher, and the utility of holding the risk-free asset is 

lower. The equation (8) means that the noise-traders adapt a momentum strategy which is 

a strategy that buys risky assets with high capital gains and sells risky assets with poor 

capital gains over the previous periods9.  

Finally, the term ,( )i ts denotes the random term that there are unobserved 

characteristics of the individual noise-trader’s trading strategies and unobserved attributes 

of the assets perceived by individual noise-trader independently. The random term may 

let noise-trader i to make different choice with that of the noise-traders who has the same  

deterministic utility term as him/her. According to the standard assumption (see 

MacFadden (1974)), the term ( )is is assumed to be independently and identically 

distributed across noise-traders with the Gumbell distribution
10, 

Pr[ ( ) ] exp[ exp[ ]]is      .                                                          (9) 

We introduce new variables, U  and U   where U  denotes the utility U  when noise-

trader i buys the risky asset ( , 1
i t

s   ), and U  the utility when noise-trader i sells the 

risky asset ( , 1
i t

s   ). The deterministic utility of noise-trader i is defined as  

, 1

, 1( )

e

i t t

e

i t t

U s H

U s H











  


  
                                                                            (10) 

 (12) 

                                                 
8 ,i tH corresponds to the private utility in the words of Brock and Durlauf (2001).  
9 The fact that momentum strategies yield significant profits  have been well investigated. Jegadeesh and 
Titman (1993) examines a variety of momentum strategies and documents that momentum strategies earn 
profits.  
10 For simplicity of analysis, we set the scale factor for a Gumbel probability distribution of the random 
utility error to unity and reduce the distribution to simplest form (11).  
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The optimal probability that a noise trader chooses buying the risky asset or selling the 

risky asset is given respectively as11:  

exp[ ]

exp[ ] exp[ ]

exp[ ]

exp[ ] exp[ ]

t
t

t t

t
t

t t

U
P

U U

U
P

U U




 




 


 


  

                                                                  (11) 

where 1P P   . The effects of  and
tH on the probabilities can be described as 

follows:  

i) As the positive parameter   pulls up, the noise-traders’ conformity effect is 

enforced.  

ii) As the variable 
tH  which denotes the noise-trader’s expectation of the 

momentum of the risky asset, increases (decreases), the probability that a noise 

trader holds the risky asset rises (falls), and the probability of holding the risk-

free asset falls (rises), and vice versa for 
tH .  

 

2.2.1. The self-consistent equilibrium 

 

The expectation of noise-trader i’s choice, conditional on his belief concerning the 

behavior of all noise-traders other than him, can be written as  

,

,

exp[ ] exp[ ]
( ) 1 1

exp exp exp exp

tanh /

t t
i t

t t t t

e

t i j tj i

U U
E s

U U U U

H s N

 

   



    
               

   
                          (12) 

Following Brock and Durlauf (1999, 2001), we assume rational expectations, that is,  

, ,( )e

i j t j t
s E s                                                                   (13) 

for all i and j.  Then, one can prove that there exists a self-consistent equilibrium *
s such 

that  

tanh( ) ( | , )
t t

s H s F s H    .                                   (14) 

                                                 
11 For mathematical  derivations of (13),  see, for example, MacFadden (1974) and Ben-Akiva, and Lerman 
(1985).  
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At the self-consistent equilibrium, it is held that , ,( ) ( ) ,
i t j t

E s E s i j   . That is, at a self-

consistent equilibrium, the common noise-trader’s expected value equals the expected 

value of the average choice for the other noise-traders. The self-consistent equilibrium 

can be interpreted as a solution of Keynes’s beauty-contest metaphor (Keynes (1936)). 

An implication of his metaphor is that an understanding of financial markets requires an 

understanding not just of market participants’ beliefs, but also an understanding of 

market participants’ beliefs about other market participants’ beliefs.  

 

2.2.3． Properties of the self-consistent equilibria 

 

We summarize the properties of the self-consistent equiribria as solutions to equation 

(17). The self-consistent equilibrium depends on   and 1tH  . For simplicity of analysis, 

let us assume that the expected price momentum 1tH   is a parameter H . The properties 

of the self-consistent equilibrium, *( , )s H   with respect to   and H  as follows:  

 

i) The case of 0 1   and arbitrary H :  

There is only one possible self-consistent equilibrium **( , )s H  .  For 0H 

and 0 1  , the only one possible solution is zero. In the case which the 

noise-traders’ conformity effect is weak, herding among noise-traders dose not 

function. In Figure 1 the graphical solution to (14) is plotted for 1  and the 

different values of H . An increase in ( 0)
A

H   shifts the curve which draw the 

transcendental equation (14) upward.  Therefore, the self-consistent equilibrium 

**( , )s H   moves from the origin to point **
As  . In contrast, a decrease in 

( 0)
B

H   shifts the curve which draw the transcendental equation (14) 

downward. The self-consistent equilibrium **( , )s H   moves from the origin to 

from the origin to **
Bs .  
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Figure 1: The solutions of the equation (14) for 1  and the three values of H .  

        There exists a unique self-consistent equilibrium. The straight line is 45 degree line.  

 

ii) The case of 1   and H H : 

H is determined by the equation 2cosh [ ( 1)]H      . Under the 

conditions, there are three self-consistent equilibria * ** ***
s s s  .  The 

equilibrium *
s and ***

s are called the bear-market equilibrium and the bull-

market equilibrium respectively. As the parameter    increases and exceeds 

unity, the equilibrium **
s  is unstable, and appears the bear-market equilibrium

*( 0)s  and bull-market equilibrium ***( 0)s   anew. This bifurcation is called as 

the second-order phase transition that we consider as the origin of a bubble. In 

Figure 2 the graphical solution to (14) is plotted for 1   and 0H  .  
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Figure 2: The solutions of the equation (14) for 1  and 0H  . The straight line is 45 

degree line. There are the three self-consistent equilibria, *
s , **

s , and ***
s .  

 

iii) The case of 1  and H H :  

 Two of the tree solutions * ** ***
s s s  coincide at ( 1) /

c
s     .  

Given that   is constant, an increase (a decrease) in H  causes the curve which 

indicates the transcendental equation (14) to shift up (down), so that the 

solutions rise (fall). Figure 3 shows the states that two of the tree solutions 

coincide.  

 

 

Figure 3: The solutions of the equation (14) for 1  and H H  . The straight  

line is 45 degree line.  

 

iv) There case of 1   and H H :  

There is one self-consistent equilibrium. When 1  , and H  is negative and 

decreasing continuously, the equilibrium jumps down from ***
s to *

s  at the 

moment that H  falls below H . Inversely, the self-consistent equilibrium 

jumps up from *
s to ***

s at the moment that H  exceeds H . This bifurcation is 

called as the first-order phase transition that is related to market crash in Section 

3.  
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2.2.2. Dynamics of the noise-trader’s sentiment 

 

We consider the mean 
ts  of the noise-traders’ choice is adjusted by the error correction 

model,  

1 1 [ tanh( ) ]t t t t t ts s s s H s                                                (15) 

where the right hand side of (15) is the error adjustment term and the parameter   

describes the adjustment speed and is between 0 and 1.  

We can rewrite the average of noise-traders’ choices 
ts

 
using the arithmetic average,       

            
,1 ( )

N

i ti t t
t

s n n
s

N N

 
 

 
                                                                (16) 

where 
tn
 denotes the number of noise traders who buy the risky asset at the time t, and 

tn
  denotes the number of noise traders who sell the risk free asset at time t. The variable 

ts  is the proportion of the number of the bullish noise-traders to the number of the 

bearish noise-traders. Thus, the variable 
ts  

can be interpreted as a measurement of the 

noise-traders’ sentiment.  Hereafter we simply call the variable 
ts the noise-traders’ 

sentiment.   

Using 
tn  in period t , the aggregate demand ( )tD s for the risky asset over the noise 

traders is defined as  

( )t tD s QNs                                                                                    (17) 

 where the parameter Q denotes the number of shares of the risky asset which is 

exchanged in any transaction by a noise trader, and is assumed to be constant. The 

equation (17) is utilized when the market prices of the risky assets are calculated under 

the market clearing conditions in section 2.3.  

 

2.3. Market-clearing prices  

 

The market clearing condition requires that the aggregated demand (supply) for each 

asset by rational investors is equal to the aggregated supply (demand) by noise traders 

from the period t. That is, if one noise-trader changes from a holder of the risk-free asset 
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to a holder of the bubble stocks, then the prices are adjusted such that rational investors 

supply the corresponding number of the risky assets. The temporal market-clearing 

condition is described as 

1 1
2

( )(1 )
0

(1 )
t t t

t t t t

E p dr M
Mx QNs p QNs

r
  

      
                   (18) 

Solving the equations (18), we can obtain the price of the risky assets which satisfy the 

market-clearing conditions,  

2
1 1( )

1 (1 )
t t t

t t

E p d QN
p s

r r M

 
 

 
                                                        (19) 

and the noise-traders’ sentiment 
ts is described as,  

1 1( )1

(1 )
t t t

t t

E p d
s p

r
  

   
                                                              (20)  

where 
2

(1 )

QN

r M

 


. Substituting (20) into the dynamic equation of the noise-traders’ 

sentiment 
ts , the equilibrium dynamics of stock markets can be described as:  

          

 1 1 1

1 1

[tanh( ) ] , (21)

(( ) ) (22)

t t t t t t t

t t t t t

p p p H p F p H

H H p p H






  

 

     

    

                            

where 1 1( )

1
t t

t t

E p d
p p

r

 
 


. Let us consider that arbitragers calculate the fundamental 

price using the dividend discount model, the market price, 
tp is equal to the fundamental 

price,  

      

1 1 1 2 3 4
2 3 4

1

[ ] [ ] [ ] [ ] [ ]

1 1 (1 ) (1 ) (1 )

[ ]

(1 )

t t t t t t
t

t i

i
i

E p d E D E D E D E D
f

r r r r r

E D

r

     







      

    




              (23) 

where r  denotes the discount rate which is equal to the risk-free rate. Using the 

fundamental price, we can rewrite 
tp  as the derivation of the price of the risky asset from 

the fundamental price, that is, ( )t t tp p f  . Hereafter, we simply call the variable 
tp

the deviation. The dynamics of 
tp  (21) is essentially equivalent to the dynamics (15) on 
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the imbalance 
ts  of noise-traders’ trading. Thus, we can investigate the properties of 

tp

by using the same method as the method in which we investigated the properties of the 

self-consistent equilibrium of 
ts  in section 2.2.1.  

      It is clear that a solution of the above dynamics is given at 1( , ) (0,0)t tp H   . In the 

equilibrium, 1( , ) (0,0)t tp H   , the market price, 
tp is equal to the fundamental price 

tf , 

that is, the equality, 1 1( )

1
t t

t

E p d
p

r

 



 is satisfied. For simplicity of analysis, we 

consider the case that the dividend of the risky asset is constant at d . In the simple case, 

the fundamental price, which arbitrager expects, is constant at the value, 

1 1( )

1
t tE p d d

f
r r

 
 


. Then, we can obtain the stability condition of the equilibrium,

1( , ) (0,0)t tp H   . (See Figure 4).  

 

Proposition 1: Stability of the fundamental price  

If 
pF

   where
2

(1 )

QN

r M

 


and
0

p

p

F
F

p 



 , there is a unique equilibrium, 

( , ) (0,0)t tp H  , and the unique equilibrium is stable.  

 

A proof of the stability is provided in Appendix 1.  
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Figure 4: Stability of the equilibrium 1( , ) (0,0)t tp H   .   and 1 1( )

1
t tE p d d

f
r r

 
 


. 

 

The proposition 1 demonstrates that when the degree of the noise-trader’s conformity 

effect,   is sufficiently weak, the risky asset prices 
tp  

converge the fundamental price 

tf . As Friedman (1953) thought, even if noise-traders attempt to destabilize the risky 

asset price by buying when price is overvalued and selling when price is undervalued, 

arbitragers can stabilize the risky-asset price when they counter the deviations of the 

risky asset prices from fundamentals. In brief, when the stability condition demonstrated 

in Proposition 1 is satisfied, the efficient market hypothesis is justified.  

 

3. Bubbles and crashes 

 

3.1. How does a bubble come about? 

  

When the noise-trader’s conformity effect is strong ( /
p

F  ), a bifurcation of the 

equilibrium *
1( , ) 0

t
p H  

 
in the dynamic system (21) is caused by strengthening of 

noise-traders’ conformity effect  , and the equilibrium, *
1( , ) 0

t
p H    becomes 

unstable. As discussed in subsection 2.3., when the parameter   is large, the two 

temporal equilibria, the bull-market equilibrium ** 0p  and the bear-market equilibrium 

*** 0p  , are generated anew when 0tH  . It is apparent that in the bull-market 

equilibrium ** 0p  , the risky-asset price 
tp  is overvalued against the fundamental price 

tf . In contrast, in the bear-market equilibrium *** 0p  , the risky-asset price 
tp  

is 

undervalued against the fundamental price 
tf . 

 

Let us consider the mechanism by which the risky asset prices are derived from the 

fundamental values, and a bubble is caused. Let us start from a small and positive value 

0s  at the initial time near the unstable equilibrium **( 0)s  . According to the dynamic 
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equation of the noise-traders’ sentiment (15), the number of the bullish noise-traders 

increases and the number of the bearish noise-trader decreases, and so the noise-traders’ 

excess demand ( )tQNs for the risky asset increases. Since the deviation 
tp  reflects the 

noise-traders’ sentiment 
ts , the deviation 

tp  raises proportionally with respect to 

increases in 
ts . The deviation

tp  raises toward the bull market equilibrium ***( 0)p  .  

Run-up in the deviation 
tp  increases the expected price momentum 1tH   perceived by 

noise traders.  Since an increase in 1tH   shifts the curve of hyperbolic tangent function 

(21) upward, the bull-market equilibrium ***( 0)p   moves to point A to point B in Figure 

5. The noise-traders’ sentiment 
ts , and the noise-traders’ demand for the risky asset 

( )tQNs  is increased further by an increase in the expected price momentum 1tH  . The 

increase in the noise-traders’ sentiment 
ts  generates an increase in the deviation 

tp , and 

an increase in the expected price momentum 1tH  .  This inflationary spiral gives cause to 

a bubble of the risky-asset price. As demonstrated in section 2.3, the bear-market 

equilibrium *( 0)p   disappears for 1t
H H  , and the bull-market equilibrium ***

p  only 

remains. (See point C in Figure 5.) The bubble persists as long as the noise traders’ 

bullish sentiment is enhanced, and the bull-market equilibrium ***( 0)p   moves upward 

by continuous rises in the expected price momentum 1tH  .  
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Figure 5: A mechanism of bubble of the risky asset price from the asset price dynamics of 

(21) for   and 1 1( )

1
t tE p d d

f
r r

 
 


. 1t t t

p p p     

 

3.2. Why does a bubble burst?  

 

In the first half of bubbles, the noise-traders’ excess demand for the risky asset is sharply 

increasing, so that the price of the risky asset is also sharply increasing, but in the second 

half of bubbles, as the noise-traders’ sentiment 
ts  is necessarily approaching approaches 

the upper limit of the unity. Then, almost all noise traders are buyer. Therefore, the noise-

traders’ excess demand for the risky asset is little or nothing. The risky-asset price almost 

never rises. The end of price run-up lowers the expected price momentum 1tH  . In 

contrast to the process of the bubble, decreasing the expected price momentum 1tH 

move the bull-market equilibrium ***
p  downward bit by bit, so that the noise traders’ 

bullish sentiment starts declining. A decrease in the noise-traders’ sentiment gives cause 

to a decrease in the risky asset. A decrease in the risky asset price then decreases the 

expected price momentum 1tH   again. In this way, the turning from the bullish sentiment 

to the bearish sentiment necessarily begins to decrease as a reaction of the bubble. This 

deflationary spiral continues until the expected price momentum 1tH  declines by the 

critical value, H at which the bull-market equilibrium ***
p disappears. In the next 

instant when 1tH   
falls below H , the bear-market equilibrium *

s  become a unique 

equilibrium and a market crash can be suddenly caused12. In our model, the noise-traders’ 

panic selling of the bubble asset is caused by that the utility of the noise trader’s selling 

the risky asset is progressively higher than that of the noise trader’s buying the risky asset. 

(See Figure 6.) After a crash, the arbitragers buy the risky asset, which they sell and/or go 

short in the period of a bubble, back at a price which is lower than the fundamental price 

tf .  

                                                 
12 The market crash in our model is considered as the first-order phase transition which is a kind of 
transformation of a thermodynamic system from one phase to another. 
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Figure 6: A mechanism of burst of bubble of the risky asset price from the asset price 

dynamics of (21) for    and 1 1( )

1
t tE p d d

f
r r

 
 


. 1t t t

p p p    . 

 

3.4. Cycles of bubble and crash 

 

Once a market crash occurs, the market downturn continues until the noise-traders’ 

sentiment 
ts  approaches to the bear-market equilibrium *

p . When the noise-traders’ 

sentiment ts  approaches to the lower-limitation, minus one, the noise-traders’ excess 

supply for the risky asset is approaching gradually zero. A fall in the risky-asset price 

comes to an end. This enhances the value of the expected price momentum 1tH   though 

the value of 1tH   is negative. An increase in the expected price momentum 1tH   
moves 

the bear-market equilibrium *
p  upward, and the noise traders’ sentiment improves so 

that the deviation 
tp  rises. Next, a rise in the deviation 

tp  increases the expected price 

momentum 1tH  . The risky-asset price necessarily begins to rise as a reaction of the 

bubble, again after the noise-traders’ sentiment starts improving. When the expected 

price momentum 1tH   
rises by the critical value, H , the bear-market equilibrium ***

p

disappears. When 1tH   exceeds H , the bull-market equilibrium *
p  become a unique 

equilibrium, and the risky-asset prices enter a bubble phase. In this way, the above 
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process of the bubble and the burst phase of the bubble are repeated. Figure 7 shows the 

cycle on bubble and crash. The dynamic process which is described above is summarized 

in the following.  

The dynamics of the risky asset prices (21) is globally unstable given that the parameter 

 , which describes the noise-traders’ conformity effect, is greater than unity, the 

dynamics of the risky asset prices are globally unstable, and the bubble and crash cycles 

of risky assets, which are described above, are continually repeated.  

 

Figure 7: A cycle of bubble and crash appears from the asset price dynamics of (21) for 

   and 1 1( )

1
t tE p d d

f
r r

 
 


.  

 

 

6. Concluding Remarks  

 

This paper provides a new model that gives one potential theoretical explanation for asset 

bubble followed by crash. We consider the two groups of investors, which have the 

different sort of rationality regarding their decision making respectively. One is a group 

of arbitragers who employ the CAPM which their demands for shares depend on their 

assessment of fundamental value, and maximize their expected utility of wealth. Another 

is a group of noise-traders whose demand for bubble asset depend on their expectations 

on the average value of other noise-traders’ investment, and the price momentum they 
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expected. The noise trader’s behavior is modeled in a framework of the self-consistent 

equilibrium which can be considered as a modeling of Keynes’s beauty contest metaphor. 

We elucidate a mechanism that (i) noise-traders’ herd behavior gives cause to a bubble, 

and that (ii) their positive feedback trading prolongs bubble, and that (iii) a bubble is 

necessarily ended up with a crash, and that (iv) the cycles of bubble and crash are 

repeated.  
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Appendix 1 

 

To demonstrate Proposition 1, we liberalize the nonlinear equation  (23) using Taylor 

expansion around the equilibrium 1( , ) (0,0)t tp H   .  

The linearized dynamic equation is the following homogenous equation,  

1 1 2 1 0t t tp a p a p     ,  

where (1 )A       ,  1 1
H

a A F       ,  2 (1 )
H

a A F    .  

 

The set of necessary and sufficient conditions for the root of the characteristic equation to 

be less than unity in absolute value are the following inequalities (See Chapter 5 in 

Gandolfo (1980)):   

      1 21 1 (1 ) (1 ) (1 ) 0,
H H

a a A F A F A                       (A-1) 

     21 1 (1 ) 0,Ha A F                                                                      (A-2) 

     1 21 (2 )(1 ) 2 0,Ha a A F                                                           (A-3) 
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When the above inequalities are satisfied, the oscillation is damped to the equilibrium 

0tp  . It is clear that the inequalities (A-1), (A-2) , and (A-3) holds when 1A  and

0 1  . Rewriting the inequality 1A , we obtain    .  

The function F  is defined as 1 1[ , ] tanh( )t t t tF p H p H

   . The derivative,  

0

H

H

F
F

H 





are greater than zero and less than unity. Note that at the equilibrium 0tp  ,  

the derivative 
0

p

p

F
F

p 





is equal to unity, Therefore, if the parameter   is sufficiently 

small, the inequality    holds given that the function,   is defined as 

2

0
(1 )

QN

r M

  


.  
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