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Abstract

The main conclusion of the FM study relies on the fact that the average of the slopes of

402 regressions of the monthly returns on 20 portfolios on theirs beta coefficients is pos-

itive. Considering this set of 402 slopes as a random sample drawn from the same nor-

mally distributed population, FM performed a t-test on the mean and conclude that the

true mean significantly differs from zero. Then they took this result as a proof in favour of

the theory that there is in the real world a perfect linear relationship between the expected

return and the true beta of securities and portfolios or, in other terms, in favour of the

theory that the market portfolio is efficient. In this article, we present several tests and ar-

guments that put some shadow on these conclusions. In fact, several tests lead us to the

conclusion that the 402 random observations above mentioned are not drawn from a

normal (or symmetric stable) distribution, neither are they independent or identically dis-

tributed. Indeed, the most disturbing fact is that those observations are likely not inde-

pendent. 
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■ 1. Introduction

Treynor (1961), Sharpe (1964), Lintner (1965), Mossin (1966), Black (1972) and

several other authors developed equilibrium models for the financial market according

to which the expected return on securities can be expressed as a function of their true

beta in the following manner:

Ei = E0 + [EM - E0] biM (1)

where Ei is the expected return on security i ,�EM is the expected return on the true

market portfolio M ,�E0 is the expected return on a security that is riskless in the port-

folio M�, and biM is the true beta of security �i , that is the slope of the regression of

the return on security i on the return on the true market portfolio M. 

Those models, that we can name Capital Asset Pricing Models or CAPMs, are the

basis of theories that claim that there exist, or should exist, in the real world a perfect

linear relationship between the true beta of an asset and its expected return. We will

name those theories Capital Asset Pricing Theories or CAPTs.

To justify their contentions the CAPTs refer to other theories, like the efficient markets

theory, as well as to other models like the random walk model. Moreover, CAPTs use

plenty of arguments based on statistical analysis of empirical data. Then, in a general

manner, CAPTs try to prove in one way or another that in the real world things hap-

pen, or should happen, as if the basic hypotheses of one CAPM or another were true. 

The article of Fama and MacBeth (1973) lies within the scope of those financial mar-

ket equilibrium theories. On one hand FM present theoretical arguments to justify

the hypothesis of the existence of a relationship between the true beta of an asset and

its expected return. On the other hand they try to show, using empirical data, the re-

ality of such a relationship in the real world.

The objective of this article is to examine the results of the FM research to see if they

really constitute a strong set of elements in favour of the theory they want to establish.

All along our analyses we will adopt a pragmatic attitude. So, we will not discuss in

detail or in a theoretical manner the pros and cons of the choices made by FM re-

garding the set of securities to be included in the study, the length of periods for the

calculation of returns, the number of portfolios to be formed, the rules for the for-

mation of those portfolios, the use of an equally weighted portfolio of NYSE stocks

rather than the value-weighted market portfolio for the calculation of beta coeffi-

cients. We will focus all our attention on the statistical quality of the empirical proofs

that led FM to the following conclusion: there is on average a positive tradeoff between risk

A E S T I M AT I O



50 A E S T I M AT I O

  

1 Cf. Fama et MacBeth (1973), p. 624.

2 Cf. Fama et MacBeth (1973), p. 624.

3 Fama and French (1992) use the term “FM regressions” to refer to regressions of returns on betas. Following their example, we

will use the term “FM-betas” to refer to betas calculated the FM way. So, we won’t confuse them with the “true betas”.

4 The one-proportion z-test can be found in all basic statistics textbooks. The three other tests were popularized by Siegel (1956).

5 FM used the Fisher’s Arithmetic Index, an equally weighted average of the returns on all stocks listed on the NYSE, to calculate the

betas of the portfolios. But, from a theoretical point of view they should have used the return on the true market portfolio. In Roll

(1977) there is a full discussion of this choice.

and return1. Obviously, this is the most important point in their article. In fact, one

can say that all theoretical discussion in the FM article is for naught2 if the empirical

proofs presented by them do not lead to this conclusion.

This article is organised as follows: In section 2 we present the empirical proof on

which the main conclusion of the FM study is based. This proof is based in turn on

an analysis of several averages of very many g1t�. coefficients obtained from cross-sec-

tional regressions of returns on 20 portfolios on theirs FM-betas3. In section 3 we

present a few objections that can be raised against FM’s empirical proof. We raise

the question as whether we may reasonably assume that the 402 g1t coefficients cal-

culated by FM are independent realizations of identically distributed normal (or sym-

metric stable) random variables. Then, in section 4, we detail our objections using

the results of a few non-parametric statistical tests that were well known at the time

FM published their article. These tests are: the Kolmogorov-Smirnov test, the one-

proportion z-test, the Kruskal-Wallis one-way analysis of variance by ranks and the

one-sample runs test4. The results of these tests allow us to reject one by one the hy-

potheses of normality, symmetry, identical distribution and randomness of the values

of the g1t coefficients calculated by FM. Given the importance of these results, we de-

cided to go a little further in our analyses. So, in section 5 we examine the empirical

distribution and the time series of the g1t coefficients. In the same section, we look at

the correlogram and at the power spectral density of the series of g1t values. We also

present the results of the following tests: the Jarque-Bera normality test and the BDS

i.i.d. test. All these analyses converge toward the same conclusion as the non para-

metric tests in the previous section, that is, the 402 g1t values calculated by FM are

likely not realisations of normal (or symmetric stable) i.i.d. random variables. Finally

in section 6 we make a summary of our findings and a conclusion.

■ 2. Presentation of the FM empirical proof

Following a quite elaborate methodology – that we won’t discuss here for the sake of

clarity –, FM calculated month after month the monthly return and the FM-betas of

20 portfolios composed of NYSE securities5. Those calculations where performed for

402 periods of one month from January 1935 (t�=1) to June 1968 (t�= 402).
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6 Cf. FM equation (10), p. 616.

7 There are two statistical problems in this regression: heteroscedasticity and cross-sectional correlation of error terms. Joint effects of

those two phenomena are studied in Salazar (1986) and Salazar and Iglesias (2003). With the help of Monte-Carlo simulations,

these authors proved that one can very often find “significant” and surprisingly linear relationships between observed returns and

betas when in fact they do not exist.

8 These values were not published in the FM article. We found them in Fama (1976).

9 This is perceptible at page 624 of FM and at page 361of Fama (1976).

10 Cf. Fama (1976), p. 361.
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Then, FM used the results of those calculations as input for 402 regressions. For each

month t� of the 1935-6/1968 period, FM ran the following cross-sectional regression6:

Rpt=g0t+g1t bpm,t-1+hpt, p =1, 2, ..., 20, (2)

where Rpt is the return on portfolio p at month t ,�g0t and�g1t are the intercept and the

slope of the regression line at month t ,�bpm,t-1 is the FM-beta of portfolio p at the begining

of month t, and hpt is a random disturbance term that is assumed to have zero mean.7

Table A-1 in the appendix shows the month-by-month record of the least squares val-

ues of g1t in equation (2)8.

As we can see from Table A-1, g1t values are quite variable through time and even neg-

ative in a large fraction of months. For the FM’s theory, this was indeed an unexpected

and disappointing fact9. 

Actually, there are 185 months out of 402 for which g1t is negative. So, one can say,

that for these months there is a negative relationship between return and FM-risk.

Furthermore, the proportion of positive g1t scores is not significantly different from

0.5. It is 0.5398 (=217/402) and its z-value is only 1.60. In reality, with such results,

everything could stop right there.

But FM were quite resilient and perseverant. They then launch an unorthodox and

creative methodology (that we will introduce shortly below) to provide evidence in

favour of their theory. Unfortunately, no reference, no introductory explanation can

be found in the FM’s article about their unusual methodology.

Some clues can however be grasped in Fama (1976). According to Fama (1976), the

hypothesis that there is a positive relationship between expected return and risk would

nevertheless uphold as long as E(g1t)>0 , that is, as long as “on average” there is a

positive relationship between return and FM-risk10.

Let’s suppose, for practical purposes, that the preceding assertion lies on solid

grounds and let’s continue.
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11 Cf. FM (1973), p. 624.

So, in the objective of finding that there is “on average” a positive relationship be-

tween return and FM-risk, FM proceeded to calculate averages and standard devia-

tions of the  g1t  coefficients for several sub-periods of different lengths. Then, in order

to go along their strange methodology, they calculate t-statistics for these sub-periods

to test the hypothesis that g-1 = 0. These t-statistics are 

t (g-1) =
s (g-1)/√n  

(3)

where n is the number of months in the sub-period, which is also the number of es-

timates g1t used to compute g-1 and  s (g1). Results of those calculations are presented

in the table below.

● Table 1. Average of g1t coefficients

PERIOD n� ����� g-1 s (g1) s (g1) t (g-1)

1935-40 72 .0109 .1161 .01368 .79

1941-45 60 .0229 .0693 .00895 2.55

1946-50 60 .0029 .0474 .00611 .49

1951-55 60 .0024 .0348 .00449 .53

1956-60 60 -.0059 .0335 .00432 -1.37

1961-6/68 90 .0143 .0483 .00509 2.81

1935-45 132 .0163 .0975 .00849 1.92

1946-55 120 .0027 .0414 .00378 .71

1956-6/68 150 .0062 .0440 .00359 1.73

1935-6/68 402 .0085 .0661 .00329 2.57

As one can see, as the length n�of sub-periods increases, t-statistics becomes positive

and, then, when = 402 , the only t-statistic one can calculate is equal to 2.57.

According to FM, “The small t-statistics for sub-periods reflect the substantial month-

to-month variability of the parameters (sic) of the risk-return regressions ...[and] … It

takes the statistical power of the large sample for the overall period before values of
-
g1 that are large in practical terms also yield large t-values. But at least with the sample

of the overall period t(g-1)�achieves values supportive of the conclusion that on average

there is a statistically observable positive relationship between return and risk” 11.

ˇ
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The value 2.57 for the t-statistic, which is calculated on the average of the 402 g1t values

constitutes the essential element of the empirical proof presented by FM. In other words,

it is this t-value which is the basis to state that “on average there seem to be a positive

trade-off between return and risk, with risk measured from the portfolio viewpoint”12.

■ 3. Objections

But is the result of the t-test performed by FM as convincing as those authors seem to

believe? We have doubts. The period under study is so long that is hard to believe that

all necessary conditions to interpret t-statistics in the usual way are present altogether.

In a general manner, the t-test for an average requires that observed values could be

considered as independent realizations of the same random variable; it may also re-

quire that this variable be normal. Now, with the exception of the normality assump-

tion, the other conditions are not expressed in the FM article. In this section we will

then review those conditions to see if they could be taken for granted.

3.1. About the normality condition

Let’s say it right away, if we have 402 independent realizations of the same random

variable, the shape of the underlying distribution does not matter when we want to

estimate the mean or perform statistical tests on the mean of this distribution. Ac-

cording to the central limit theorem, the sampling distribution of the average of 402

independent and identically distributed (i.i.d.) observations is normal. 

Now, FM put emphasis on the fact that the distribution of g1t coefficients as well as

the distributions of returns on securities and portfolios should be normal or symmetric

stable. For example in the very first page of their article, they state that “the two-pa-

rameter portfolio model […] distributions of one-period percentage returns on all as-

sets and portfolios are assumed to be normal or to conform to some other

two-parameter member of the symmetric stable class”13. A few pages further, they

12 Cf. FM (1973), p.633.

13 Except the normal distribution, all other distributions of the symmetric stable class have an infinite variance. For a brief review of the

properties of symmetric stable distributions, see Fama (1971). However, it is also worthwhile to consider that Markowitz (1976)

wrote concerning these distributions at page xi of his book: “Regarding the Mandelbrot-Fama contention that variance is infinite: (a) I

am willing to assume that all my subjective distributions of return are bounded – e.g. between 100 percent loss and a trillion percent

gain – and therefore have all their moments. (b) the strange conclusion that variance is infinite is derived by starting with the

assumption that the probability distribution of hour-to-hour fluctuations in security prices has the “same form” as, say, the probability

distribution of month-to-month fluctuations, which in turn has the same form as, say, the probability distribution of year-to-year

fluctuations. This assumption seems less than certain when we contrast the business determinants of the year-to-year fortunes of an

enterprise with the market determinants of hour-to-hour fluctuations in its stock. The assumption becomes even more questionable

when we learn that the assumption implies a priori that either the distribution is normal or it has infinite variance – excluding not

only the bounded distributions, but also most of the familiar unbounded distributions such as χ2 and Student. Having assumed this

much, the next step is to infer empirically that since the distribution is not precisely normal, it must have infinite variance”.

A E S T I M AT I O
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14 Cf. FM, pp. 611-612.

15 Sceptical readers can look up FM, from page 619 to page 624.

16 This article is cited by FM, at page 613.

17 Interested readers can read Fama (1971).
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claim that “If all portfolio return distributions are to be normal (or symmetric stable),

then the variables h̃it , g̃0t , g̃1t, g̃2t and g̃zt must have a multivariate normal (or sym-

metric stable) distribution” 14. 

Finally, FM dedicate several paragraphs to discus of (insignificant) problems related

to symmetric stable distributions in the interpretation of t-tests on the mean15.

What makes the normality issue more mysterious is the fact that several well known

authors wrote, shortly before the publication of the FM article, articles that assume

that the distribution of observed returns would be asymmetric. For example, Arditti

(1967) took a look at the relationship between the skewness of the distribution of re-

turns on a security and its expected return. On their side, Miller and Scholes (1972)16

put forward the asymmetry of the distributions of returns on securities to try to explain

some results they considered abnormal in the context of their CAPT.

Therefore, on one hand, FM say that distribution of g1t coefficients as well as those

of returns on securities and portfolios should be normal or symmetric stable. On the

other hand, there are authors who assume in their work that these distributions could

be asymmetric. 

This leads us to the two following questions: 

1) For what reason did FM attach so much importance to the shape of the dis-

tributions of returns on securities and portfolios as well as to the shape of the

distribution of g1t values? 

2) Is the distribution of g1t values really normal or at least symmetric stable?

The first question is surrounded by mystery. Therefore we will just emit a simple hy-

pothesis. It is likely that the shape of distributions has a role to play in the chain of

reasoning that led FM from their own version of the CAPM toward their own CAPT17.

Regarding the second question, we believe that the answer must be based on actual

facts and not on purely theoretical considerations. So, in order to answer this ques-

tion, we will perform a normality test and a symmetry test for the distribution of the

g1t values, in section 4.
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3. 2. About the i.i.d. condition

As previously mentioned, the t-test on the average requires that observed values be

considered as independent realizations of the same random variable. Now, the ques-

tion is whether we can consider the 402g1t values as being i.i.d..

A simple look at Table 1 brings doubts. For the period 1956-1960, the average of the

g1t coefficients is -0.0059 with a t-value -1.37 and for the following period the average

is +0.0143 with a t-value +2.81. It is a very astonishing shift in t-value.

Then, doubts increase if we take into account that the actual value of a g1t coefficient

is influenced by the following factors: 

1. the returns on the 20 portfolios formed by FM, 

2. the returns on individual securities included in those portfolios, 

3. the rules used by FM for the formation and periodical adjustment of the 20

portfolios, and 

4. the rules FM gave themselves for the calculation of betas and portfolios returns.

Let’s at this point ask two questions. How would the g1t coefficients be i.i.d. if the re-

turns on each portfolio formed by FM were not i.i.d.? How would the return on those

portfolios be i.i.d. if the returns on each security were not i.i.d.?

Considering now the returns on individual securities, it is difficult to believe that their

level and volatility remained constant between 1935 and 1968. Let’s think of the im-

pact that a rise or a fall of inflation rates or interest rates could have on the expected

rate of return of each individual security. Let’s also think of the impact of demo-

graphic, economic, psychological and sociological changes that occur during this

long period of 33 and a half years. Clearly, the returns on each individual security are

not identically distributed.

Considering next the returns on the 20 portfolios formed by FM, let’s think of the im-

pact of the number of securities retained for the study on the volatility of those re-

turns. The number of securities retained for the study went from 435 in January 1935

to 845 in January 1967; hence the number of securities included in each portfolio in-

creased and we can therefore expect a decrease in return volatility merely because the

number of securities included in each portfolio has increased.

Considering also the rules used for the calculations, let’s ask ourselves a few questions.

Why does the number of monthly observations used to calculate the FM-betas change

in a cyclical manner every four years? This can affect randomness of g1t values. Why
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is the return of a delisted security excluded from the calculation of the mean return

on the portfolio the delisted security belonged to? This can introduce biases in favour

of the FM theory. Finally, is the number of delisted securities the same every month

and the same for each portfolio? 

Hence, it is clear that, at the time FM made their study, there was a bunch of reasons,

good and less good, that forbade to consider the 402 g1t values as identically distrib-

uted random variables.

Later on, some studies put in evidence recurrent phenomena in financial markets. For

example French (1980) detected a “Weekend effect” and Tinic and West (1984) de-

tected a “January effect”. These studies reawaken doubts concerning the randomness

of returns and consequently our doubts concerning the independence of g1t coefficients. 

But let’s stop here and be pragmatic. Why not perform a few tests to answer the ques-

tion? The central question is: can we consider the g1t coefficients calculated by FM as

being i.i.d. random variables?

■ 4. Hypothesis testing

In this section, we use several techniques to test hypothesis concerning the g1t coeffi-

cients calculated by FM. We want to know if we can reasonably consider that these

coefficients: 

1. have been drawn from a normal distribution, 

2. have been drawn from a symmetric distribution, 

3. have been drawn from identical distributions, and 

4. have been drawn at random.

4.1. Testing normality: the Kolmogorov-Smirnov test

The Kolmogorov-Smirnov one-sample test is a test of goodness of fit. That is, it is

concerned with the degree of agreement between the distribution of a set of sample

values (observed scores) and some specified theoretical distribution. It determines

whether the scores in the sample can reasonably be thought to have come from a

population having the specified distribution.

We use it to test the following hypotheses:

H0 : g1t scores have been drawn from a normal distribution.

H1 : g1t scores have not been drawn from a normal distribution. 
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18 We performed our calculations with EXCEL but the Lilliefors test of EViews gives the exact same value for D.

19 According to tables of Siegel (1956) and Massey (1951), when N >30, one must do the following calculations: 1.36/ 402 =

0.0678 and 1.63/ 402 = 0.0813, for a = 0.05 and a = 0.01 respectively. However, Lilliefors (1967) finds those values very

conservative and proposes the following calculations: 0.886/ 402 = 0.0442 and 1.031/ 402 = 0.0514, for a = 0.05 and a = 0.01

respectively.

A E S T I M AT I O

Let SN(X) be the observed cumulative frequency distribution of a random sample of

N observations. And let F0(X) be the proportion of cases expected to have scores

equal to or less than X, when X� is assumed to have a normal distribution. Under the

null hypothesis we would expect the differences between F0(X) and SN(X) to be small

and within the limits of random errors. The Kolmogorof-Smirnof test focuses on the

largest of these deviations. The largest absolute value of F0(X)–SN(X) is called the max-

imum deviation D:

D = maximum|F0(X)–SN(X )| (4)

According to our calculations18, D�= 0.1077. This value corresponds to the 113th obser-

vation (May 1944) whose rank is 300 when we rank observations in increasing order. 

The sample distribution of D under H0 is known. Table E in Siegel (1956) and Table

1 in Massey (1951) give certain critical values from that sampling distribution. We

report some of them in the table below19. 

● Table 2. Normality test

N
� Critical value for D

D Probability Decision

a = 0.05 �a = 0.01

402 0.0678 0.0813 0.1077 0.0000 H0 Rejected

As we can see, the null hypothesis is easily rejected, provided that the set of 402 g1t

values calculated by FM be considered as 402 i.i.d. realizations of a random variable.

With this reserve, we can say that the distribution of the g1t coefficients is not normal.

Would it then be symmetric stable?

4.2. Testing symmetry: the one-proportion z-test

We propose here a quite simple way to test the symmetry of a distribution. It is based

on a characteristic common to all symmetric distributions, whether they are symmetric

stable or not. The characteristic in question is that the probability that a value is

below the mean is equal to the probability that it is above the mean, and that is exactly

0.5 for a symmetric distribution.



The one proportion z-test determines whether a sample can reasonably be thought

to have come from a population having the theoretical proportion. It replaces the bi-

nomial test when the sample size n is large enough and the proportion p�is not too

small or too large20.

We use this test for the following hypotheses:

H0 : g1t scores have been drawn from a symmetric distribution.

H1 : g1t scores have not been drawn from a symmetric distribution. 

Let p� be the expected proportion of g1t scores that are smaller than the sample mean.

Under the null hypothesis, p��= 0.5 and it is expected that the observed proportion

p̂�should be fairly close to 0.5, the expected proportion in the population.

For testing the hypothesis that p̂ =�p, the z-statistic is calculated as follows:

z (̂p) =   
p̂-p

(5)

where n� is the number of scores in the sample. Then, if the sample is taken at random,

we refer to standard normal distribution to obtain the significance of the test.

Looking at the data, we found that 225 g1t coefficients had a value below the sample

mean which is 0.008474. The proportion p̂�is therefore equal to 225/402 =0.5597 and

z(̂p)�is equal to 2.394. Table 3 shows the critical values for z(̂p) at a=0.05 and a=0.01

for a two sided test. 

● Table 3. Symmetry test

n� p̂
Critical value for z( p̂)

z( p̂) Probability Decision
a = 0.05 �a = 0.01

402 0.5597 1.960 2.576 2.394 0.0166 H0 Rejected

As one can see, we can reject quite easily the null hypothesis, under the condition, of

course, that the set of 402 g1t values calculated by FM be considered as realizations

of 402 i.i.d. random variables. With this reserve we can assert that the distribution

of g1t coefficients is neither symmetric, nor symmetric stable.
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20 Conditions are usually the following: n>20, np>5, n(1−p)>5.
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p(1- p)
n



But could we at least consider those g1t values as realizations of 402 i.i.d. random

variables?

4.3. Testing identical distributions: 

the Kruskal-Wallis one-way analysis of variance by ranks

To test the hypothesis that all g1t coefficients really come from identically distributed

populations, we chose the Kruskal-Wallis non parametric one–way analysis of variance

by ranks rather than the corresponding parametric F test, in order to avoid making the

assumptions concerning normality and homogeneity of variance associated with the

parametric F test and to increase the generality of our findings. 

Now, if the 402 g1t coefficients were issued from identically distributed populations, their

distribution should be the same every year, so this distribution should be the same in

1935, 1936, ..., 1968. Also, it should be the same in January and in the other months

of the year. In all cases, if distributions were identical they should have the same shape,

the same mean, the same median, the same variance.

The Kruskal-Wallis one-way analysis of variance on ranks concentrates on the me-

dian of the distribution and tests the null hypothesis that k independent samples

come from the same population or from identical populations with respect to their

average. The test assumes that the variable under study has an underlying continu-

ous distribution.

Let N be the total number of independent observations in the k samples. In the compu-

tation of the Kruskal-Wallis test, each of the N observations is replaced by its rank. That

is, all scores from all of the k samples combined are ranked in a single series. The smallest

score is replaced by 1, the next by 2, and the largest by N . 

It can be shown that if the k samples actually come from the same population or from

identical populations, then the H-statistic, defined below, is distributed as chi square

with k−1 degrees of freedom, provided that the sizes of the various k samples are not

too small (nj > 5).

H =   
12

N (N+1)
∑
j=1

k

nj

R
2
j
–3(N +1) (6)

where k is the number of samples nj is the number of observations in the jth sample,

N=∑nj is the total number of observations in all samples combined, and Rj is the sum

of ranks in jth sample.
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First test: 34 samples, one each year

In order to apply the Kruskal-Wallis test, we divided first the global sample of 402 ob-

servations into 34 samples and we tested the following hypotheses:

H0 : g1t values are realizations from distributions with the same median.

H1 : g1t values are realizations from distributions with different medians across years.

Results of the calculations appear in the table below.

● Table 4. i.i.d. test for 34 samples

N k� �d.f. H˜χ2
33 a����� Probability Decision

402 34 33 53.728 0.05 0.0128 H0 Rejected

Second test: 2 samples, one for January, the other for the others months

Then we divided the global sample of 402 observations into two samples and tested

the hypotheses formulated below:

H0 : g1t values are realizations from distributions with the same median.

H1 : g1t values are realizations from distributions with different medians in

January and the rest of the year.

Results of the calculations appear in the table below.

● Table 5. i.i.d. test for 2 samples

�N �k d.f. H˜χ2
1 a Probability Decision

402 2 1 13.492 0.05 0.0002 H0 Rejected

As we can see in both cases (k =34 and k =2) we can reject the null hypotheses under

the condition, of course, that the 402 g1t values calculated by FM can be considered

as realizations of independent random variables. With this reserve, we can claim that

g1t coefficients are not issued from populations with the same median.

But could we at least consider those 402 g1t values as realizations of 402 independent

random variables?
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4.4. Testing randomness: the one-sample runs test

If one wishes to arrive at some conclusion about a population by using the informa-

tion contained in a sample from that population, then this sample must be drawn 

at random.

The Wald-Wolfowitz runs test checks a randomness hypothesis for a two valued

data sequence. More precisely, it checks the randomness of a distribution by taking

the data in the given order and marking with + the data greater than the median,

and with – the data less than the median (numbers equaling the median are omit-

ted). The technique is based in the number of runs r which a sample exhibits. A run

is defined as a succession of identical symbols which are followed and preceded by

different symbols or by no symbols at all.

Let n1 be the number of + and nz the number of −. If either n1 or nz is larger than 20,

a good approximation to the sampling distribution of r is the normal distribution,

with mean

mr =  
2n1n2
n2 + n2

+1 (7)

and standard deviation

sr =      
2n1n2

(2n1n2-n1-n2
)

(8)

Therefore, when either n1 or  n2 is larger than 20, one can test if the order of pluses

and minuses occur in random order by

z=  
r - mr

sr
(9)

The significance of any observed value of z computed from this formula may be 

determined by reference to the normal curve table.

We now use the one-sample runs test to test the following hypotheses:

H0 : g1t values are drawn at random.

H1 : g1t values are not drawn at random.

Table A-2 in the appendix shows the signs of deviations of g1t coefficients from their me-

dian. Examining this table, we see that there are 175 runs. We then proceed to make the

necessary calculations and obtain the following results in the Table 6 below21.
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21 With MATLAB, one gets somewhat different results: z =−2.6467 and Prob.=0.0080. The difference is due to the fact that

MATLAB uses a continuity correction which is explained in Siegel (1956), on page 140. 
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● Table 6. Randomness test

N n1 n2 r mr sr z Probability Decision

402 201 201 175 202 10.0125 -2.697 0.0070 H0 Rejected

As one can see, we can easily reject the null hypothesis22. Consequently, we can say

that it is quite unlikely that the 402 g1t coefficients would come from the realization

of 402 independent random variables.

■ 5. Examination of the distribution of g1t values

In the previous section, we applied four classical non parametric tests and we re-

jected one by one the hypotheses of normality, symmetry, identical distribution and

randomness of the g1t values calculated by FM. Now, in this section, we make some

comments and perform brief analyses in the objective of get a better understanding

of the results previously obtained. We not intend to give here additional or com-

plementary elements against the validity of FM research. We merely want to show

that there are alternative ways to reach the same results as in section 4.

5.1. Signs of deviations from the median

Let’s consider again the table A-2. Let’s note that in the row corresponding to the

year 1960 all the signs are negative. This simple fact helps to explain the results of

the one-sample runs test and the Kruskal-Wallis test for the case of 34 samples. On

one hand it is unlikely to observe a run of 12 times the same sign in a random sam-

ple of size 402. On the other hand, this long run extends exactly over a whole year

making this year very particular. Therefore, the one-sample runs test says that the

sample is probably not random and the Kruskal-Wallis test says that the g1t coeffi-

cients are not identically distributed every year.

Let’s note also that there are 26 positive signs in the January column. This confirms

somehow the result of the Kruskal-Wallis test for the two samples case23. The dis-

tribution of g1t coefficients in January is in all probability different from that of the

other months. So, the Kruskal-Wallis test says that coefficients g1t are not identically

distributed.
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22 Salazar (1986) used this test with the signs of the g1t coefficients and obtained similar results: z = -2.20 with an associated

probability of 0.0278. We preferred using the signs of deviations from the median to avoid ambiguities regarding the observation

of February 1939 and to conform to the example given by Siegel (1956) on page 54.

23 The proportion of positive signs p̂=2634=0.7647 is significantly different from 0.5. Following the one-proportion z-test

procedure, we obtain a z-value equal to 3.09, whose associated probability is 0.0020.
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Finally, note that the January effect detected in Table A-2 can be taken as a proof of

lack of randomness. Nevertheless it does not help to explain the result of the one-sample

runs-test. That is to say that the runs-test can’t detect all types of lack of randomness.

5.2. Histogram

Figure 1 shows the histogram of g1t values. Taking a look at this histogram allows us

to accept more easily the results on the non-normality and asymmetry presented in

the previous section.

■ Figure 1. Histogram of g1t

The distribution does not look normal at all. It is asymmetric, irregular, with holes

and peaks, and it contains very extreme values. In the table below we give the list of

g1t coefficients that are further than 2.58 standard deviations from the mean. Each

g1t coefficient is shown with its corresponding g0t coefficient.

● Table 7. Extreme values of g1t

MONTH �g1t Z (g1t) �g0t �Z (g0t)

1939-03 -0.1880 -2.97 0.0152 0.24

1943-01 0.1840 2.66 -0.0064 -0.33

1938-10 0.2235 3.26 -0.0869 -2.47

1943-02 0.2402 3.51 -0.0967 -2.73

1942-01 0.2445 3.57 -0.0768 -2.20

1938-06 0.2677 3.92 0.0405 0.91

1939-09 0.6295 9.40* -0.2040 -5.57
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In this list there is only one extreme negative observation and there are six extreme

positive observations. Among these, one is 9 standard deviations away from the

mean! It is the one of September 193924. By coincidence, during the same month, it

was registered the lowest value of the coefficient g0t for the whole period of 402

months. 

5.3. Descriptive Statistics

In the table below, one finds elements that can help reach in a different way the result

of the Kolmogorov–Smirnov test concerning the non-normality of the g1t coefficients.

As we can see, unlike normal distribution, the empirical distribution of g1t values has

a skewness coefficient somewhat different from zero and a kurtosis coefficient much

higher than 3.

● Table 8. Descriptive statistics

STATISTIC VALUE STANDARD ERROR

Mean 0.008474 0.003295

Median 0.003650 0.002014**

Standard deviation 0.066055 n.a.

Kurtosis – EViews * 22.86759 n.a.

Skewness – EViews * 2.472025 n.a.

*    Based on the biased estimator for the variance

**  Based on bootstrapping. We followed the procedure proposed by Racicot and Théoret (2001)

Therefore it is not surprising that the Jarque-Bera normality test25, which is constructed

on those two measures, strongly rejects the normality hypothesis (JB=7021.007; 

Prob.= 0.0000). 

5.4. The Time Series

Figure 2 shows the evolution of g1t coefficient in function of time. This diagram does-

n’t help to check for randomness. However, it confirms the existence of extreme and

asymmetrical values and makes us suspicious that g1t values are not identically dis-

tributed (i.d.), this time, because of differences in variances. 
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24 One considers that 2nd World War stated on September 1939. On September 1st 1939 Germany invaded Poland. A few days

later the United Kingdom, Australia, New Zealand, France, South Africa and Canada declared war on Germany.

25 This test is available in EViews. The original ideas are in Jarque and Bera (1987).

A E S T I M AT I O

THE  I E B



■ Figure 2. g1t time series

We did not think it was necessary to perform a test on variances. But we decided to

use the non parametric two-dimensions BDS test26 to corroborate the fact that g1t

values are probably not i.i.d.. This is a broad test. It can detect the presence of non

linear and even chaotic-deterministic dependence in time series. For the g1t series, this

test gives a value z�= 4.18 that we can evaluate referring to the standard normal table.

The associated probability is 0.0000 and allows us to reject the null hypothesis that

g1t values are i.i.d..

But the trouble with the BDS test, as well as with other tests, is that the null hy-

pothesis can be rejected either because the variables are not i.d., either because

they are not independent, or for both reasons. However, looking at Figure 2 and

considering the result of the one-sample runs test as well as the one of the Kruskal-

Wallis test for the January effect, we believe that the BDS test rejects the null hy-

pothesis for both reasons. 

5.5. Correlogram

Figure 3 shows the correlogram of g1t values. The correlogram is a commonly-used

tool for checking randomness in a data set. This randomness is ascertained by com-

puting autocorrelations for data values at varying time lags. If data is random, such

correlations should be near zero. If an autocorrelation is within ± 2
402

=̃�±0.10 it is not

significantly different from zero at (approximately) 5% significance level.
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26 This test is available in EViews. It was developed by Brock, Dechert and Scheinkmann (1986). 
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■ Figure 3. Correlogram

Now, as we can see from the diagram, both correlations and partial autocorrela-

tions significantly differ from zero for lags 8, 10 and 15. But what is more trouble-

some is that the highest autocorrelation (corresponding to lag 15) has a value 

z=0.157√402=3.15 with an associated probability of only 0.0016.

These results raise many questions. Would the detected autocorrelations be due to

cyclical phenomena on the financial market? Or, would they be due to the FM’s

methodology to calculate betas and returns? Hard to tell. But whatever the reason

is, it raises doubts on the randomness of the data. 

5.6. Power Spectral Density Estimate

Figure 4 shows the Yule-Walker Power Spectral Density Estimate27 of the time series

of g1t values. We can detect cycles of 3, 4, 6, 12, 15, 18 and 30 months length28 and

two others of 10 and 12 weeks length. Most cycles are not extremely strong in the

sense that in a time series of 402 i.i.d. values, one could see by pure chance similar

cycles. But the trouble here is that several of those cycles converge towards a one year

time length. This feeds our doubts concerning the randomness of the series of 

402 g1t values29.
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27 We used MATLAB with the following commands : >> load FMg1.txt; h=spectrum.yulear(60); x=zscore(FMg1,1); psd(h,x,'Fs',0.12).

28 With 120 delays the peak corresponding to 15 months becomes more and more obvious. With 240 delays, it becomes the most

important.

29 Important works in spectral analysis of economics series includes Granger (1966), Granger and Morgenstern (1963), Granger

and Hatanaka (1964), Harvey (1975) and Wang (2003).
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1 0.022 0.022 0.1960 0.658

2 0.080 0.080 2.8053 0.246

3 -0.040 -0.044 3.4589 0.326

4 0.038 0.033 4.0364 0.401

5 -0.039 0.034 4.6576 0.459

6 -0.059 -0.066 6.1004 0.412

7 -0.028 0.017 6.4268 0.491

8 -0.126 -0.122 13.008 0.112

9 -0.066 0.062 14.834 0.096

10 -0.123 -0.104 21.098 0.020

11 0.092 0.094 24.606 0.010

12 0.042 0.056 25.342 0.013

13 0.038 0.008 25.938 0.017

14 -0.024 -0.035 26.172 0.025

15 0.157 0.138 36.459 0.002

AUTOCORRELATION PARTIAL CORRELATION AC PAC Q-stat. Prob.



■ Figure 4. Yule-Walker Power Spectral Density Estimate 

■ 6. Conclusion 

Based on the tests and analysis we have carried out, we believe that the results the

FM study can’t be safely taken at face value. These authors did not pay attention

to the validity conditions of the t-test they performed. They simply take these con-

ditions for granted. This laxity constitutes a serious shortcoming in their study.

Concerning the shape of the distribution of the g1t regression coefficients calculated

by FM we believe that this issue is now closed. Those coefficients are neither normal,

nor symmetric stable. But, as we have mentioned, this is not the main issue in the

FM article.

Most standard statistical tests depend on randomness. For the t-test used by FM,

the validity of the conclusion is directly linked to the validity of the randomness as-

sumption. If the researchers do not check for randomness, then the validity of their

statistical conclusions becomes suspect. If the data are not random, the estimates

for the parameters (such as the mean) become nonsensical and invalid.

Hence, the most important issue concerns data randomness. And we believe that

we have presented enough elements that forbade us to consider the g1t regression

coefficients calculated by FM as i.i.d. random variables. These coefficients are nei-

ther identically distributed, nor random. 

All this is not to say that a relationship between risk and return does not exist. This

means that the results of the FM research cannot be accepted in the canon of well

established empirical findings. Therefore, there is no reliable evidence of a positive

relationship between average returns and betas for the 1935-1968 time period.
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Finally, twenty years later, Fama and French (1992) found no significant relationship

between average stock returns and betas for the 1963 to 1990 time period. As Fama

et French said: “The FM regressions show that market b does not help explain average

stock returns for 1963-1990. In a shot straight at the heart of the SLB model, the av-

erage slope from the regressions of returns on b alone in Table III is 0.15% per month 

and only 0.46 standard errors from 0”30. 
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● Table A1. The g1t coefficient from January 1935 to June 1968

Year
Month 

Jan Feb Mar Apr May Jun Jul Ago Sep Oct Nov Dec 

1935 -0,0413 -0,0997 -0,0126 0,1040 -0,0889 0,0105 0,1370 0,0973 0,0945 0,0869 0,0060 0,0021

1936 0,1342 0,0047 -0,0219 -0,1398 -0,0433 -0,0096 0,0292 0,0098 0,0113 0,0458 0,1763 0,0905

1937 0,1400 0,0572 0,0898 -0,1279 -0,0295 -0,0220 0,1531 -0,0449 -0,1197 -0,0333 -0,0659 -0,1122

1938 0,0144 0,0365 -0,1357 0,0786 -0,1338 0,2677 0,0746 -0,0053 0,0085 0,2235 -0,0520 -0,0380

1939 -0,0946 0,0000 -0,1880 0,0072 0,0147 -0,1213 0,1202 -0,0827 0,6295 -0,0899 -0,1312 -0,0433

1940 -0,0543 0,0069 -0,0076 0,0038 -0,0898 0,0333 -0,0010 0,0226 0,0365 0,0692 -0,0206 -0,0438

1941 0,0118 -0,0010 0,0165 -0,0609 0,0432 0,0518 0,0987 -0,0163 -0,0624 -0,0386 -0,0258 -0,0623

1942 0,2445 0,0240 0,0266 -0,0226 -0,0633 -0,0126 0,0274 0,0083 0,0859 0,1036 -0,0865 0,0001

1943 0,1840 0,2402 0,0746 0,0631 0,0759 -0,0357 -0,0950 -0,0222 0,0222 -0,0133 -0,1024 0,0720

1944 0,0495 0,0125 0,0335 -0,0348 0,0319 0,1177 -0,0355 0,0259 -0,0019 -0,0233 0,0138 0,0778

1945 0,0269 0,0770 -0,0551 0,0577 0,0174 0,0877 -0,0290 0,0037 0,0272 0,0023 0,0720 0,0633

1946 0,1036 -0,0518 -0,0303 -0,0029 0,0318 -0,0070 -0,0427 -0,0477 -0,0839 0,0104 -0,0190 -0,0116

1947 0,0543 0,0026 -0,0311 -0,0584 -0,0494 0,0173 0,0538 -0,0082 0,0188 0,0189 -0,0284 0,0132

1948 0,0249 -0,0507 0,0684 0,0272 0,0614 0,0064 -0,0256 -0,0089 -0,0350 0,0240 -0,0903 -0,0160

1949 -0,0046 -0,0582 0,0448 -0,0594 -0,0735 -0,0230 0,0190 -0,0051 0,0236 0,0312 -0,0118 0,0470

1950 0,0603 -0,0009 -0,0105 0,0646 0,0201 -0,0399 0,1501 0,0044 0,0037 -0,0001 0,0397 0,1200

1951 0,0382 -0,0239 -0,0544 0,0420 -0,0413 -0,0727 0,0498 0,0366 0,0317 -0,0126 0,0018 -0,0206

1952 0,0013 -0,0095 0,0111 -0,0267 0,0036 0,0296 -0,0075 -0,0248 -0,0199 -0,0053 0,0228 0,0054

1953 0,0291 0,0027 -0,0261 -0,0070 0,0175 -0,0353 -0,0128 -0,0993 -0,0375 0,0261 -0,0067 -0,0618

1954 0,0743 -0,0004 0,0016 -0,0026 0,0388 -0,0065 0,0359 -0,0032 0,0035 -0,0026 0,0491 0,1222

1955 0,0162 0,0463 0,0053 -0,0230 0,0059 0,0102 -0,0005 -0,0057 0,0187 -0,0164 0,0139 0,0188

1956 -0,0152 0,0056 0,0039 0,0088 -0,0207 -0,0022 0,0019 -0,0130 0,0001 -0,0062 0,0042 0,0002

1957 0,0060 -0,0346 0,0120 0,0010 0,0082 -0,0044 -0,0118 -0,0506 -0,0646 -0,1023 -0,0119 -0,0876

1958 0,1024 -0,0518 -0,0017 0,0111 0,0404 0,0317 0,0547 0,0216 0,0607 0,0361 -0,0002 -0,0096

1959 0,0260 0,0120 0,0038 0,0125 0,0054 0,0177 -0,0057 -0,0483 -0,0203 0,0145 -0,0069 0,0133

1960 -0,0205 -0,0110 -0,0520 -0,0548 -0,0030 -0,0354 -0,0262 -0,0059 -0,0440 -0,0362 -0,0019 -0,0110

1961 0,0547 0,0343 0,0291 -0,0106 0,0398 -0,0452 -0,0072 -0,0385 -0,0463 -0,0381 -0,0171 0,0295

1962 0,0538 -0,0079 -0,0087 -0,0411 -0,0226 -0,0277 0,0090 0,0151 -0,0392 0,0032 0,1051 -0,0402

1963 0,0615 0,0061 0,0274 0,0174 0,0695 -0,0041 -0,0220 0,0603 -0,0344 0,0219 0,0230 0,0313

1964 0,0558 0,0728 0,0815 -0,0394 0,0309 0,0076 -0,0049 -0,0236 0,0914 0,0122 -0,0543 -0,0276

1965 0,0231 0,0373 0,0060 0,0578 -0,0066 -0,0627 0,0773 0,0599 0,0487 0,0978 0,0718 0,0903

1966 0,0720 0,0637 -0,0139 0,0933 -0,0991 0,0317 -0,0252 -0,0486 -0,0638 -0,0500 0,0611 0,0141

1967 0,1371 -0,0027 0,0373 0,0060 0,0154 0,0640 0,0398 0,0102 0,0093 -0,0125 -0,0132 0,0445

1968 -0,0561 -0,0577 0,0146 0,1127 0,0378 -0,0809

source: table 9.3 of fama (1976), FOUNDATIONS OF FINANCE, where they are labeled g1t. 
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● Table A2. The g1t coefficient: signs of deviations from the median

Year
Month Sign

Jan Feb Mar Apr May Jun Jul Ago Sep Oct Nov Dec + -

1935 - - - + - + + + + + + - 7 5

1936 + + - - - - + + + + + + 8 4

1937 + + + - - - + - - - - - 4 8

1938 + + - + - + + - + + - - 7 5

1939 - - - + + - + - + - - - 4 8

1940 - + - + - + - + + + - - 6 6

1941 + - + - + + + - - - - - 5 7

1942 + + + - - - + + + + - - 7 5

1943 + + + + + - - - + - - + 7 5

1944 + + + - + + - + - - + + 8 4

1945 + + - + + + - + + - + + 9 3

1946 + - - - + - - - - + - - 3 9

1947 + - - - - + + - + + - + 6 6

1948 + - + + + + - - - + - - 6 6

1949 - - + - - - + - + + - + 5 7

1950 + - - + + - + + + - + + 8 4

1951 + - - + - - + + + - - - 5 7

1952 - - + - - + - - - - + + 4 8

1953 + - - - + - - - - + - - 3 9

1954 + - - - + - + - - - + + 5 7

1955 + + + - + + - - + - + + 8 4

1956 - + + + - - - - - - + - 4 8

1957 + - + - + - - - - - - - 3 9

1958 + - - + + + + + + + - - 8 4

1959 + + + + + + - - - + - + 8 4

1960 - - - - - - - - - - - - 0 12

1961 + + + - + - - - - - - + 5 7

1962 + - - - - - + + - - + - 4 8

1963 + + + + + - - + - + + + 9 3

1964 + + + - + + - - + + - - 7 5

1965 + + + + - - + + + + + + 10 2

1966 + + - + - + - - - - + + 6 6

1967 + - + + + + + + + - - + 9 3

1968 - - + + + - 3 3

+ 26 16 18 17 19 15 16 13 17 15 13 16 201

- 8 18 16 17 15 19 17 20 16 18 20 17 201


