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Abstract

In this paper, we aim at forecasting the stochastic volatility of key financial market

variables with the Kalman filter using stochastic models developed by Taylor (1986,

1994) and Nelson (1990). First, we compare a stochastic volatility model relying on

the Kalman filter to the conditional volatility estimated with the GARCH model. We

apply our models to Canadian short-term interest rates. When comparing the profile

of the interest rate stochastic volatility to the conditional one, we find that the omis-

sion of a constant term in the stochastic volatility model might have a perverse effect

leading to a scaling problem, a problem often overlooked in the literature. Stochastic

volatility seems to be a better forecasting tool than GARCH(1,1) since it is less con-

ditioned by autoregressive past information. Second, we filter the S&P500 price-earn-

ings (P/E) ratio in order to forecast its value. To make this forecast, we postulate a

rational expectations process but our method may accommodate other data gener-

ating processes. We find that our forecast is close to a GARCH(1,1) profile.  
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■ 1. Introduction

Kalman filter is increasingly used in financial applications (Racicot and Théoret, 2006,

2007a; Andersen and Benzoni, 2010; Racicot and Théoret, 2009, 2010). In this

paper, we show how to combine Kalman filter and stochastic models to forecast two

key financial variables: stochastic volatility and price/earnings (P/E ratio). 

In their seminal paper published in 1973, Black and Scholes assume that stock price

volatility, which is the underlying security volatility of a call option, is constant. They thus

rely on unconditional volatility to formulate their equation. As usually done at this time,

they thus choose the stock return standard deviation as an empirical measure of volatility1.

But thereafter, researchers found that the return volatility was not constant but condi-

tional to the information set available at the computation time. However, there are many

ways to compute and forecast conditional volatility. In this paper, Canadian Treasury

bills monthly yield and the S&P/TSX return volatilities are estimated using the Kalman fil-

ter. In order to show the flexibility of this filtering method, we also use it to forecast the

S&P500 P/E ratio. This article focuses on stochastic volatility2, which we compare to the

standard GARCH(1,1). We find that these two measures provide similar results but that

there may be some differences in a short-term horizon. We also show that the empirical

specification of the stochastic volatility is very important and that the omission of some

parameters, as often done in theoretical models, may give raise to biased results. 

This paper is organized as follows. In section 2, we present the Kalman filter procedure

in details. Section 3 provides the forecasting method of stochastic volatility. Section 4

presents the P/E forecasting application before concluding in section 5. 

■ 2. The Kalman filter

The Kalman filter is increasingly used in financial applications. In their famous equa-

tion, Black and Scholes (1973) assume that the volatility of the call underlying stock

is constant. They thus use the concept of unconditional volatility to formulate their

equation. The historical standard deviation of stock returns was then the usual

method to measure the volatility empirically. 

But thereafter researchers realized that the variance of returns was not constant but

conditional to the sample of information available at the moment of its computation.

However, there are several methods to make this computation or to forecast conditional
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1 Nowadays, the practitioner use what is now called the practitioner Black and Scholes (PBS) model, which uses the fitted implied
volatility as the stock return standard deviation resulting from a linear regression of the computed implied volatility on a
polynomial of the strike price and maturity. For more details, see Rouah and Vainberg (2007) and Racicot and Théoret (2001,
2006, 2007b, 2010). 

2 On the concept of stochastic volatility, see Taylor (1986, 1994), Nelson (1990) and Mills (1999). 



volatility. In the next sections, we give an application of the Kalman filter for estimating

a stochastic volatility model which we compare to the GARCH(1,1) model.

We observe that these two measures provide long-term similar results but these results

might differ in a short horizon. We show that the choice of the stochastic volatility

model specification is very important and that the omission of some parameters, as

often done in theoretical models, could lead to spurious results. As an application of

the procedure of the Kalman filter, we estimate the stochastic volatility of the monthly

returns of Canadian Treasury bills and of the daily return on the SP/TSX Canadian

index. Our simulations are initiated over a monthly sample running from 1941 to

2005, more than sufficient to proceed in our objective which is to compare two mod-

elling techniques of the stochastic and GARCH volatilities. We did not aim here at

describing the effect of the 2007-2009 subprime crisis. That is why we selected this

period of time for running our simulations. 

2.1. An introduction to the Kalman filter procedure3

Assume an observable time series yt represented as a vector (y0 , y1 , ... , yn ). This vari-

able may be for instance a financial asset return. It depends on the variable ht which

is unobservable or latent. This variable could be the stochastic volatility of yt. Since

we cannot observe ht, we have to simulate it. The variance of ht , denoted by wt, is

also unobservable. The model can be represented as follows:

yt=θ1+θ2ht+et (1)

ht+1=θ3+θ4ht+ht (2)

where θi are the parameters to estimate, et stands for a Gaussian noise whose variance

is n1t and ht is a Gaussian noise with variance n2t . Equation (1) is the measurement or

observation equation whereas equation (2) is the state or transition equation. 

Let us now consider the case of time-variable coefficients. At time (t-1), estimations of

ht-1 and of its variance wt-1 as well as coefficients θi,t-1 are predetermined. At time 0, we

must have a preliminary estimation of h0 and of w0 . But because these values are un-

known, the software EViews, used in this study, put a zero value to h0 and a high value

to w0 in order to account for the uncertainty related to the estimation of h0.

Let us set back to time (t-1) of the simulation or of the filtering and give the three

steps of the procedure followed by the Kalman filter: forecasting, updating and pa-

rameter estimation. 
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3 This section is based on James and Webber (2000). A classical reference on Kalman filter is Harvey (1989). For an introduction of
the Kalman filter in finance, see Wang (2003), Racicot and Théoret (2006, 2007a, 2008, 2010) and Gregoriou (2009). 



In the first step, we make the following two forecasts: ht lt-1 , that is the forecast of ht

conditional to the information set at time (t-1), i.e. the expectation of ht conditional

to the available information at time (t-1); wt lt-1 , that is the forecast wt conditional to

the information set at time (t-1), i.e. the expectation of wt conditional to the available

information at time (t-1). These forecasts, which are unbiased conditional estimations,

are computed as follows: 

htlt-1=θ3, t-1+θ4, t-1ht-1 (3)

wtlt-1=θ2
4, t-1wt-1+n2, t-1 (4)

The second step is the updating one. At time t, we have a new observation of y , i.e.

yt . We can thus compute the prediction error ut :

ut = y
t–θ1, t-1–θ2, t-1htlt-1 (5)

The variance of ut , denoted by yt , is given by:

yt=θ2
2, t-1wtlt-1+n1, t-1 (6)

We use ut and yt to update ht and its variance wt as follows

ht=htlt-1+
θ2, t-1wtlt-1 ut (7)

yt

wt=wtlt-1+
θ

2

2, t-1w
2

tlt-1 (8)

yt

Equation (7) and (8) are conditionally unbiased and efficient estimators. The Kalman

filter is thus optimal because it is the best estimator in the class of linear estimators4. 

The third step deals with parameter estimation. To estimate the parameter θi, we use the

maximum likelihood method. The log-likelihood function can be written as follows:

ℓ=–
1
–
2 
∑
t

log(yt)–
1
–
2 
∑
t

u2

t–yt
(9)

To complete the procedure, we go to time (t+1) and repeat the three-step procedure

up to period n. 
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4 Note that the Kalman filter is not restricted to linear processes. 



■ 3. Estimating stochastic volatility using the Kalman filter5

3.1. The model

Assume the following differential equation for the logarithm of the stock price (P): 

d(log(P ))=
dP
P

=mdt+s (t)dz
1t (10)

Its discretization is the following product process:

xt=m+stUt (11) 

where xt=Dlog(Pt) and Ut is a standardized variable
6 such as: E(Ut)=0 and V(Ut)=1.

The conditional variance of xt, is equal to:

V(xt|st)=V(m+stUt)=st
2 (12)

st is thus the conditional standard deviation of xt .

The distribution of the conditional volatility st must be specified. According to Mills

(1999), a lognormal distribution seems appropriate, i.e.

ht=log(s2
t )=g0+ g1ht-1+xt (13)

where xt~N(0, s2
x
). We can thus rewrite the equation (13) for xt as follows:

xt =m+Ut e (14)

Mills (1999) assumes that m is equal to 0 because the daily mean return and the intra-

day returns of stocks and currencies is zero on average. In order to linearize equation

(14), we square xt and then we transform it in a logarithmic form. We thus obtain:

x 2
t=U 2

t e (15)

log(x 2
t )=log(U 2

t )+ht (16)

We can elaborate further on the last result since we know that Ut~N(0,1). The distri-

bution of log(U 2
t ) is therefore known, which is a logarithmic c2 distribution with an

expectation of -1.27 and a variance of 0.5p2, which is approximately 4.93.

fo
re

ca
st

in
g 

st
oc

ha
st

ic
 V

ol
at

ili
ty

 u
si

ng
 t

he
 K

al
m

an
 f

ilt
er

: a
n 

a
pp

lic
at

io
n 

to
 c

an
ad

ia
n 

in
te

re
st

 r
at

es
 a

nd
 P

ri
ce

-e
ar

ni
ng

s 
ra

tio
.  

Ra
cic

ot
, F

.É
. a

nd
 T

hé
or

et
, R

.

32 A E S T I M AT I O

5 This section is based on Mills (1999). For a good reference on the existing models of volatility, see Andersen et al. (2005). 
6 Note that Ut = (xt – m)/st .  

ht
2

ht



We make a small digression here about the distribution of log(U2
t ). To establish the prop-

erties of this distribution, we have generated ten thousands random numbers: U~N(0,1).

Then we have generated the distribution of U2and of log(U2), which appears at Figure 1.

■ Figure 1. Distributions of U2 and of log(U2), U~N(0,1)

Since U~N(0,1), the distribution of U2 corresponds to a centered c2 as shown7 in Figure

I. Furthermore, the distribution of log(U2) is truncated. It is very similar to the distribution

of the payoffs of a short position in a put option. To illustrate that point, we have sim-

ulated the payoffs of a short position in an European put option with the following

characteristics. The price of the underlying stock is 100$; the strike price is 95$; the op-

tion maturity is three months;  the risk-free rate is 0%; the volatility is 50%. The resulting

price of this put is 7.40$. We have simulated ten thousands payoffs of this put whose

distribution is shown at Figure 2. We observe that the distribution of these payoffs is

very close to the distribution of log(U2). This profile of payoffs might be found very fre-

quently in hedge fund returns which have a fat left tail. Incidentally, the payoffs of a

short put option are a very good indicator of risk related to adverse rare events. The dis-

tribution of log(U2) seems thus very relevant to capture stock market crashes.
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7 A centered c2 is obtained using Gaussian standard random variables. An uncentered c2 distribution obtains when the expectation
of the normal random variables used to build this distribution is different from zero.  
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■ Figure 2. Payoffs distribution of a short put whose price is 7.40$

source: racicot and théoret (2006)

Our distribution of log(U2) has a mean of -1.24 compared to -1.27 for the theoretical

mean and a variance of 4.74 compared to 4.93 for the theoretical variance. Even with

10,000 iterations, we cannot replicate perfectly the theoretical moments. This indi-

cates that that the sample must be very large to do so. Furthermore, the simulated

distribution has a leptokurtic coefficient equal to 3.62 compared to 3 for the normal

distribution and an asymmetry coefficient equal to -1.48 compared to 0 for the nor-

mal distribution. These are two adverse risks for the investor who prefers investments

having returns whose kurtosis is close to 3 and whose asymmetry is positive. But these

two risks can be found in a large number of financial instruments and are thus relevant

for the distribution of log(U2). 

To take into account these results, we add and subtract E [log(U2
t )] in equation (16)

log(x 2
t )=E [log(U2

t)]+ht+[log(U2
t )–E [log(U2

t )]] (17)

For estimation purpose, we can rewrite equation (17) as follows

log(x 2
t )=h0–1.27+ht+Vt (18)

where Vt= [log(U2
t )–E [log(U2

t )]] and h0 is a constant used to account for the fact

that E log(U2
t ) is equal to -1.27 only in very large samples as shown when simulating

the distribution of log(U2). By doing so, we resort to a procedure which differs from

the one used by the researchers who rely on the Kalman filter to estimate the stochas-

tic volatility. As shown later, adding this constant will give more satisfying results when

comparing stochastic volatility to GARCH(1,1) volatility.  fo
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V is an error term that follows a logarithmic c2. Its expectation is given by

E(Vt)=E[log(U2
t )–E [log(U2

t )]]=E [log(U2
t )]–E [log(U2

t )]=0 (19)

and its variance is 

V(Vt)=E(V2
t )= E[log(U2

t )– E [log(U2
t )]]

2
=0.5p 2 =4.93 (20)

Finally, the equation system that we want to estimate is the following

log(x2
t )=h0–1.27+ht+V (21)

ht=g0+g1ht-1+ xt (22)

Equations (21) and (22) are in an appropriate form to use the Kalman filter presented

earlier. Equation (21) is the measurement equation since the variable xt is observed.

Equation (22) is the state equation or the transition equation since ht, the state vari-

able, is not observed. This equation is simulated with the Kalman filter. 

We aim at estimating these two equations using the return on the Canadian Treasury

bill. We resort to a time series of monthly returns from 1941 to 2005. This sample seems

appropriate to attain our objective, which is to compare two modelling techniques which

are stochastic volatility and the GARCH one. This dataset contains sufficient information

to proceed with our simulations. We use the EViews software to estimate the parameters

of these equations. In the Workfile windows of EViews, we click on Object, then on New

Object and then we choose in the menu the specification SSpace. Then in the window

that appears, we can write the following EViews code which is displayed in Table 1.  

● Table 1. EViews specification of a stochastic volatility model*.

@signal Inr2=-1.27+H TT+c(1)+[VAR=s2]

@state HTT=c(4)+ c(2)*H TT(-1)+[ename=e1,VAR=exp(c(3))]

@param c(1) 0.01 c(2) 0.9 c(3) 0.1

* We added a constant to the measurement equation in order to scale data. We also expressed the data in
deviation from the mean because assuming a zero mean is a strong hypothesis for some financial time series. 

In a state model, the measurement equation begins by @signal in the EViews software

and in the state equation, by @state. The first command indicates that the dependent

variable is observed whereas the second means that the dependent variable is unob-
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served and must thus be simulated. In Table 1, the variable lnr2 is equal to log(x2
t ),

where xt is yield of the Canadian Treasury bill. Since we cannot assume that the mean

of the Treasury bill yield is zero, we have expressed these yields in deviation from the

mean in order to implement the equation of xt . 

The variances are expressed in brackets in the EViews command: VAR, as shown in

Table 1. In the first equation of this table, s2 is the variance of the innovation. Previ-

ously, we have created a scalar s2 equal to: 0.5*@acos(-1)*@acos(-1) = 4.93, which is

the variance associated with the c2 distribution of log(U2). In the equation of the sto-

chastic variance which is the equation of HTT, the variance of the innovation is ex-

pressed as an exponential form, more precisely: VAR= exp(c(3)), c(3) being a coefficient

to be estimated. We have also given seed values to the three coefficients: c(1), c(2),

and c(3). The results of the estimation are reported in Table 2. 

● Table 2. Estimation of the stochastic volatility model 

of the yield of the Canadian Treasury Bill.

Sspace: SS01

Method: Maximum likelihood (Marquardt)

Date: 09/13/10   Time: 17:31

Sample: 1941M01 2005M12

Included observations: 780

Convergence achieved after 169 iterations

Coefficient Std. Error z-Statistic Prob.

C(1) 19.46189 20793.93 0.000936 0.9993

C(2) 0.998575 0.009191 108.6420 0.0000

C(3) -4.329276 1.714602 -2.524946 0.0116

C(4) -0.037478 29.74276 -0.001260 0.9990

Final State Root MSE z-Statistic Prob. 

HTT -25.43278 0.504542 -50.40764 0.0000

Log likelihood -1383.653 Akaike info criterion 3.558085

Parameters 4 Schwarz criterion 3.581979

Diffuse priors 0 Hannan-Quinn criter. 3.567275

source: eViews

As shown in Table 2, the coefficients c(1) and c(4) are insignificant at the 95% confi-

dence level. The dynamic behaviour of the observed and filtered values of the variablefo
re

ca
st

in
g 

st
oc

ha
st

ic
 V

ol
at

ili
ty

 u
si

ng
 t

he
 K

al
m

an
 f

ilt
er

: a
n 

a
pp

lic
at

io
n 

to
 c

an
ad

ia
n 

in
te

re
st

 r
at

es
 a

nd
 P

ri
ce

-e
ar

ni
ng

s 
ra

tio
.  

Ra
cic

ot
, F

.É
. a

nd
 T

hé
or

et
, R

.

36 A E S T I M AT I O



y might be found in Figure 3. On the other hand, consistent with equation (22), the

yield stochastic volatility is equal to

st = e
ht
2 (23)

To annualize this standard deviation, we multiply it by √12. Figure 4 shows that the

yield volatility has achieved its maximum value at the beginning of the 1980s (500th

observation) and then had a tendency to decrease progressively.

■ Figure 3. Observed and estimated values of log(r2t) .

source: racicot and théoret (2006)
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■ Figure 4. Stochastic volatility of the Canadian T-bill yield.
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Practitioners often compare their stochastic volatility models with a standard condi-

tional model like the GARCH(1,1). We have thus applied this basic model to the

Canadian T-bill yield:  

yt =c+xt (24)

ht=b0+b1ht-1+b2x 2
t-1 (25)

where c is a constant, xt=et ht with e�N(0,1) and ht is the conditional variance. Nel-

son (1990) has shown that when the step (dt) tends to 0, the equation of ht converges

to a particular form of stochastic volatility: 

dh=[w-jh] dt+yhdz (26)

Therefore, the GARCH(1,1) model corresponds to a mean-reverting process. More

precisely, equation (26) can be rewritten as follows

dh=j [w-j -h] dt+yhdz (27)

According to this last equation, the conditional variance reverts to its long-term level
w-j at speed j . 

To establish the equivalence between the parameters of equations (25) and (27), we

can rewrite equation (25) as follows

ht+1–ht=b0+ [1–b2E(e2)–b1] ht+b2ht [e
2
t–E(e2)] (28)

We can thus state the following equivalence between the coefficients of a GARCH(1,1)

process (the equation of ht) and those of an equivalent diffusion process (the equation

of dh): 

lim(dt)-1b0=w (29) lim(dt)-1b1=j  (30) lim h
- -1
2√2b2=y (31)

dt→0 dt→0 dt →0

After having estimated the equation of ht, we can compute the parameters of the

equation of dh:

ĵ =
1–b̂1 –b̂2

(32) =
dt    

(33) ŷ =
√dt

(34)
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dt

1– b̂1– b̂2ŵ
ĵ

√2

b̂2

b̂2



Note that we assume that the coefficient of kurtosis is equal to 3 when computing ŷ ,

which means that we assume that the distribution of the innovation is normal. Oth-

erwise, ŷ can be rewritten as:

ŷ =  
√dt

(35)

whereιis the coefficient of kurtosis8. 

According to Fornari and Mele (2006), the sequence (V)∞
n=1≡[e2

n–E(e2)]∞

n=1

which appears in equation (28), is an iid sequence of centered chi-square variables of

one degree of freedom and represents the discretization of the Brownian increments dW.

Furthermore, the √2 which appears in the ŷequation can be explained by the fact that

V=e2 –E(e2)=e2 –1 is a chi-square variable with one degree of freedom and with variance

equal to 2. Furthermore, the normality hypothesis is not required to obtain convergence. 

Using another approach, Nelson and Foster (1994) show that the ARCH models con-

verge to a continuous diffusion processes. To show this, we use again the previous

GARCH(1,1) model

yt=c+xt (36)

ht=b0+b1ht-1+b2x 2
t-1 (37)

The following recursive equation is a generator for ht, which holds for the whole set

of ARCH models 

ẑt+dt=ẑt+[dtx k̂ (yt ,ẑ ,t,dt)]+√dt [g(xy,t+dt , yt, ẑ ,t,dt)] (38)

xˆ is a residual that can be obtained using ĉ as an estimate of c. We know that the

GARCH(1,1) process converges to the continuous one

dh= [w-jh] dt+yhdz (39)

If we compare the equations (38) and (39), we realize that the GARCH(1,1) process makes

a mapping between z and h, the conditional variance. Furthermore, it also establishes the

following mapping between the discrete and continuous processes of z and dh.

k=w-jh (40)                              g= (ˆx 2-ĥ
2) (41)

The recursion given by the z equation is general enough to encompass more general

ARCH models as, for instance, the Nelson’s EGARCH (1990). 
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8 On this matter, see Engle and Lee, in: Rossi (1996), chap.11. 
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In Figure 5, we compare the conditional volatility associated with the GARCH(1,1)

model to the stochastic volatility model computed previously. We note that the dy-

namics of the two categories of volatilities are related, although the stochastic volatil-

ity is generally higher than the conditional volatility associated to the GARCH(1,1)

model. We also notice that the stochastic volatility is less erratic than the GARCH(1,1)

model. We can note further that the conditional volatility related to the GARCH(1,1)

model has jumped more in the inflationary surge at the end of the 1970s and at the

beginnings of the 1980s. Note that the GARCH-procedure seems more sensitive to

noise or unexpected shocks compared to the stochastic volatility model which uses

the Kalman filter as an estimation procedure. By analogy with the Hodrick-Prescott

filter, the Kalman filter which smooths recent past is more able to capture business

cycles than a GARCH(1,1) which is conditioned by recent unexpected information.  

■ Figure 5. Annualized, stochastic volatility and GARCH(1,1) volatility, 

Canadian T-Bill yield, 1941-2005.

As noticed earlier, the omission of the constant h0 in the equation of log(x2
t) might

have some perverse effects. In Figure 6, we have modified Figure 5 by omitting the

constant. There is an obvious scaling problem. The stochastic volatility is much too

high compared to the GARCH(1,1) volatility. The estimated values related to the sto-

chastic volatility are no longer relevant. They are overestimated compared to the an-

nualized historical volatility of the T-bill yield which is about 0.14. Adding up a

constant to the equation of log(x2
t) thus deals with this problem.fo
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We have repeated the same exercise for the S&P/TSX return for a period ranging from

1992 to 2000. The results can be found in Figure 7. Once again, the dynamics of the

two volatilities which are annualized are similar and show that the volatility of the

TSX has a tendency to increase for this period but in this case, the GARCH(1,1) has

a much more erratic behaviour compared to stochastic volatility. 

■ Figure 6. Annualized stochastic volatility and GARCH(1,1) volatility, 

Canadian T-Bill yield, 1941-2005 (without a constant in the log(x2
t) equation).

■ Figure 7. Annualized stochastic volatility and GARCH(1,1) volatility, 

S&P/TSX return, 1992-2000.
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3.2. Forecasting stochastic volatility

Based on our previous developments, we can now make a stochastic volatility forecast

based on our stochastic volatility model, because it is strictly recursive. We use again

our example of the Canadian Treasury bill yield. We start the forecasting exercise at

period 834, the last observation being 833,  and then we make the forecast up to pe-

riod 850. The results of the forecast are shown in Figure 8. We note that the stochastic

volatility model forecasts a decrease in volatility compared to the GARCH(1,1) which

forecasts an increase in volatility.  But we must bear in mind that the stochastic volatil-

ity was at the beginning much higher than the one resulting from the GARCH(1,1)

model. Consequently, the two volatilities have a tendency to converge to each other. 

■ Figure 8. Volatility forecast, stochastic model and the GARCH(1,1) model,

Canadian Treasury bill yield.

These results show that when we forecast volatility, it would be incorrect to give a point

forecast. As shown by our example, the volatility forecast can vary a lot from one model

to another. Thus it is relevant to define a confidence interval of the forecast to give a

better idea of the risk to the users of this method. But, according to our experiments, it

seems more appropriate to give more weight to stochastic volatility in our forecast since

it is based on a sophisticated smoothing algorithm that by nature provide optimal pro-

jections based on new information arrival but put less emphasis on incoming information

than the GARCH(1,1) procedure which relies on a maximum-likelihood based technique. 
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■ 4. Forecasting the Price-Earnings Ratio (P/E)

Using the Kalman Filter

Assume that the (P/E) ratio is modeled by a rational expectations model: 

= b (42)

t+1 t t t

The forecast error, which is the spread between the observed and forecasted (P/E)

values at time t entails an update in the expectations. In order to filter this ratio, we

rewrite this equation as follows9: 

P = c(1) P +(1-c(1)) SV1 (43)
E   t E  t-1

where SV1 stands for the(P/E) long-term forecast. If t = t-1, we have:

P =SV1 (44)
E 

The last estimation of SV1 is thus particularly important since it represents the value

to which the (P/E) converges. However, SV1, being a forecasted value, is unknown.

We assume that this state variable follows a random walk, as usually assumed in this

kind of setting: 

SV1=SV1(-1)+e (45)

Table 3 provides the EViews code used to filter the (P/E) ratio. We assume that the

two equations, which are respectively the observation equation and the state equa-

tion, embed an innovation term and a variance, and that there exists a covariance

between the two equations errors terms. 

● Table 3. EViews Kalman filtering of the (P/E) ratio

pe=c(1)*pe(-1)+(1-c(1))*sv1+[ename=e1,var=exp(c(2))]

@state sv1=sv1(-1)+[ename=e2,var=exp(c(6))]

@evar cov(e1,e2)=c(4)

@param c(1) 0.90 c(2) 0.2

Using equations shown at Table 3, we filter the monthly S&P500 (P/E) ratio for the pe-

riod running from January 1881 to May 200510. Table 4 provides the estimation result.
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9 We overlook the stationarity of (P/E) here. 
10 This series is built using : Robert J. Shiller : http://www.econ.yale.edu/~shiller/.
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● Table 4. (P/E) ratio Kalman filtering, January 1881- May 2005

SSspace: SS04 
Method: Maximum likelihood (BHHH)
Sample: 1 1500
Included observations: 1500
Valid observations: 1490
Failure to improve Likelihood after 239 iterations

Coefficient Std. Error z-Statistic Prob.

C(1) 0.971980 0.008887 109.3744 0.0000

C(2) -0.130224 1878.492 -6.93E-05 0.9999

C(4) -3.052600 58852.88 -5.19E-05 1.0000

C(6) -2.683399 0.910691 -2.946551 0.0032

Final State Root MSE z-Statistic Prob.

SV1 24.94194 10.89715 2.288851 0.0221

Log likelihood -1724.737 Akaike info criterion 2.320452

Parameters 4 Schwarz criterion 2.334698

Diffuse priors 1 Hannan-Quinn criterion 2.325761

As shown in Table 4, the autoregressive coefficient (C(1)), at 0.97, is close to 1, as ex-

pected, since the denominator of the (P/E) ratio is a moving average computed on

earnings per share. According to the SV1 estimation, the (P/E) ratio long-term value

is equal to 24.94. Moreover, in May 2005, which is the series last observation, this

ratio quoted 26.48. A downturn of the US stock market was thus expected. Figure 9

provides a plot of the convergence of the (P/E) towards its long-term value starting in

May 2005. 

■ Figure 9. (P/E) simulation from its value in May 2005 

to its steady-state value

source: racicot and théoret (2006)fo
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■ 5. Conclusion

Whatever the model used, forecasting return volatility is a complicated process. Since

we have to rely on stochastic models, model risk is important. We must bear in mind

this issue when performing a volatility forecast. Analysts must also rely on a priori in-

formation and educated guesses to formulate their forecasts. 

However, we show in this article that Kalman filter is a valuable tool to forecast sto-

chastic volatility. It must therefore be added to the forecaster toolbox whose work is

rendered increasingly difficult by the exploding number of exotic contingent claims.

Statistical distributions used to forecast stochastic volatility are very close to the pay-

offs of short positions on plain vanilla put options. In that respect, these payoffs are

similar to the ones of many financial instruments, and particularly the shares issued

by Hedge funds. Integrating options theories and stochastic volatility modelling in a

forecasting framework is a challenge for future financial research. 

In other respects, we found that a misspecification of a stochastic volatility model could

generate a biased volatility forecast. Indeed, the specification of a model in the Kalman

filter setting is very sensitive to the initial assumptions. Model building requires specific

assumptions but these assumptions must respect the parsimony principle.

Finally, we have presented a simple forecasting application of the Kalman Filter to the

S&P 500 P/E. To do so, we used a basic rational expectations model. Obviously, we

could elaborate this model which might prove useful to forecast stock market data.
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