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Abstract

Firm-level productivity dispersion is countercyclical. I incorporate �rms� technology

adoption decision into �rm dynamics model with business cycle features to explain these

empirical �ndings both qualitatively and quantitatively. The option of endogenous exiting

and credit constraint jointly play an important role in motivating �rms� risk taking behavior.

The model predicts that relatively small sized �rms are more likely to take risk, and that the

dispersion measured as the variance/standard deviation of �rm-level pro�tability is larger in

recessions.
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1 Introduction

Cross-sectional productivity dispersion rises in bad times. Recently, this phenomenon attracts

growing attention of economists, with numerous new evidences from individual level data sets1.

However, this signi�cantly negative correlation between uncertainty and aggregate economic con-

dition is often treated as a calibration discipline, while not many works have been done to explain

it.

In this paper, I provide a possible mechanism through which the worsened aggregate economic

condition leads to an increase in the measured dispersion in individual level productivity. The

model at work stands close to the standard industry dynamics model with �rm entry and exit

built in the seminal work Hopenhayn (1992), with aggregate �uctuations in terms of "technology

shocks" as the driving force of model dynamics, which is also a standard approach in real business

cycles literature. Meanwhile, it di¤ers from the standard in that in each period, after observing

the aggregate "technology realization", a staying �rm has the option to adopt a risky technology,

in addition to the standard safe technology whose productivity realization is determined by the

aggregate state. Given the same capital input, the output and productivity associated to the

risky technology is a mean-preserving spread of the safe one�s output and productivity. Although

�rms are risk neutral and the risky technology does not give higher �ow payo¤, there is a positive

fraction of �rms that strictly prefer to take the risk. This is because the option of exit provides

a lower bound to a �rm�s continuation value as a function of working capital and creates a local

convexity in it. Therefore, �rms in this region have the incentive to randomize over their future

values by choosing the risky technology, and when the uncertain productivity realizes, dispersion

arises. This setup resembles Vereshchagina and Hopenhayn (2009) on occupational choice. In bad

times, this risky region gets larger and the fraction of risky �rms then gets larger. Consequently,

the average or aggregate riskiness in �rms� production increases, so does the realized productivity

dispersion. Despite the model is only a standard one with a little twist, it is capable of generating

productivity dispersion negatively correlated to aggregate state, with the correlation coe¢cient in

line with data.

This model�s mechanism is also strongly motivated by empirical �ndings. It has features and

implications that mirror the following observations: (1) new �rms are relatively small and small

�rms have low survival rate; (2) small and/or young �rms tend to bear more risk and/or show larger

productivity dispersion; (3) business cycles indicators lead the change in productivity dispersion;

and (4) in recessions, more �rms become risky and the exit rate is therefore countercyclical.

1Examples are Higson, Holly and Kattuman (2002), Higson, Holly, Kattuman and Platis (2004), Bloom (2009),

Bloom, Floetotto and Jaimovich (2010), Bachmann and Bayer (2011), Arellano, Bai and Kehoe (2009), Bachmann,

Elstner and Sims (2011), Chugh (2010), Kehrig (2011), to name a few.
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The �rst two points are closely related, as the exit hazard is a special form of �rm level

risk. The relation between �rm size and dynamics is well established and can be dated back

to, for example, Dunne, Roberts, and Samuelson (1988). This is further discussed in Section

2. The �ndings on �rm size and riskiness mainly come from two directions. Firstly, it is well

established in the entrepreneurship literature that entrepreneurs, especially poorer ones, bear

substantial amount of risk and tend to hold largely undiversi�ed assets by investing heavily in

their own �rms, despite no or little premium in doing so. The risk here is interpreted as either

the dispersion in small �rm owners� personal income, or dispersion in return to private equity.

At the same time, privately owned businesses are on average smaller in scale, measured in either

capital stock, number of employees, or output2. The second stream of empirical �ndings, more

relevant to my work, regards the productivity and �rm size di¤erential. Gertler and Gilchrist

(1991), using the Quarterly Financial Report for Manufacturing Corporations, �nd that smaller

�rms exhibit higher standard deviation in sales growth rates than larger ones do. Dhawan (2001)

looks at publicly traded �rms in COMPUSTAT and �nd that small �rms have higher failure

rate and larger standard deviation in pro�t rate, while conditional on surviving, small �rms show

higher average pro�t rate. The superior pro�tability in small �rms reduces if adjusted according

to the failure rates. Here, Dhawan de�nes the pro�t rate as operating income per unit of capital,

and he de�nes the �rm-level riskiness or volatility as the variance in the random realizations of

production. Using his de�nitions, my model generates the same pattern of pro�t rate and riskiness

di¤erential in size. There is also evidence from outside U.S.. For example, utilizing German data

set USTAN, Bachmann and Bayer (2011) �nd decreasing productivity risk in �rm size, where the

risk is measured as average cross-sectional standard deviation in log-di¤erences in �rm-level Solow

residuals.

The latter two points are on the cyclical change. Increase in measured cross-sectional dispersion

lags the worsened business cycles indicator, for example, GDP growth rate, as shown in Bachmann,

Elstner and Sims (2011) and Kehrig (2011) among others. Similar response is observed on the

stock market. The last point relates to the key feature of the model. Although unfortunately I do

not have direct observation from the data, there are indirect evidences that imply a larger fraction

of risky �rms in recessions, consisting of mainly small �rms. Exit rate raises in bad times. The

�ndings on the relation between �rm size and exit rate show that small �rms and establishments

drive the negative correlation between exit rate and business cycles. This indicates that small

�rms are more sensitive to the cyclical change, as the model predicts. The increased exit rate in

bad times is shown in papers such as Campbell (1998) and Jaimovich and Floetotto (2008), and

2Examples for works dedicated in this direction are Barton H. Hamilton (2000), Moskowitz and Vissing-Jorgensen

(2002), and Herranz, Krasa and Villamil (2009). See Quadrini (2009) for a detailed review.
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is discussed in Section 2. A maybe more direct evidence is on cyclical pattern of price dispersion

recently documented in Bachmann and Moscarini (2011) and Berger and Vavra (2011). Cross-

sectional dispersion in price changes is countercyclical, both within and across sectors. Meanwhile,

the dispersion is positively correlated to the frequency of adjustments, which is also countercyclical.

The higher adjustment frequency in bad times is interpreted as result of �rms doing more frequent

risky pricing experiments due to lower experimentation cost in Bachmann and Moscarini (2011).

The goal of this paper is to complement existing theories. It is true that, if measured uncer-

tainty and aggregate economic condition are correlated, the causal direction can be either. The

real option literature that aims at explaining such countercyclicality suggests the opposite direc-

tion of causal relationship, from increased uncertainty to decline in aggregate economic activity.

An in�uential paper dedicated in this direction is Bloom (2009), which is later generalized by

Bloom et. al. (2009). Bloom shows that increased uncertainty, through the channel of adjustment

costs to capital and labor, leads to larger option value of waiting and a pause in investment and

employment. A sizable drop in aggregate economic activity occurs because of this "wait-and-see"

e¤ect. The time varying uncertainty is twofold in his model: (1) time series standard deviation of

productivity can be either high or low, evolving as a Markov process, and (2) the one-step-ahead

conditional variance of this Markov process depends on current realization. However, Bachmann

and Bayer (2011) and Bachmann, Elstner and Sims (2011) show that there is little evidence of

sizeable "wait-and-see" e¤ects in data. In addition, the process of entry and exit is neglected.

Arellano, Bai and Kehoe (2009) do consider the entry and exit dynamics that interact with �nan-

cial constraints, but, again, the causal direction is from time series uncertainty shock to a sizeable

response in aggregate variable.

It is important to notice that the importance of uncertainty shock is not denied in this paper,

and the inverted causality may still be true, but there is an issue regarding measuring uncertainty,

which relates to the lead-lag relationship between uncertainty and cycles. Time series variances

of major business condition indicators are often interpreted as uncertainty. In addition, a parallel

family of uncertainty measures regards the realized cross-sectional dispersion in individual level

performances, which include, among others, cross-sectional variance in measured �rm-level total

factor productivities, levels or growth rates, and sales growth rates. However, realized cross-

sectional dispersion is only a proxy of uncertainty. Besides, increased micro-level cross-sectional

dispersion tends to lag the recessions. This suggests a possible causality from aggregate economic

state to measured uncertainty, in particular, cross-sectional dispersion in productivities. This

paper then tries to look at this interesting issue from an alternative angle to the one adopted by

the aforementioned literature.

The other paper that entertains the same causal direction as mine is Bachmann and Moscarini
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(2011). They build a model in which �rms need to run costly experimentation and hence learn

about their own market powers. As a result of lower experimentation costs, the dispersion of

productivity measured in sales is larger during recessions due to more experimentations conducted.

My model shares a similar feature with theirs, in that the option of exiting promotes the risky

performance of �rms, while the rest of the mechanism is very di¤erent. At the same time, my

model di¤ers from theirs by predicting that smaller �rms are the major contributor of productivity

dispersion and entry/exit dynamics.

The rest of the paper is organized as follows. Section 2 describes the stylized facts on cyclical

dispersion of productivity, �rm size distribution and dynamics. Section 3 contains a simple three-

period model that illustrates the mechanism and shows preliminary results. Section 4 takes the

simple model into in�nite horizon. Section 5 concludes.

2 Empirical Facts

Cyclical Productivity Dispersion. Eisfeldt and Rampini (2006) use data from COMPUS-

TAT and �nd countercyclical movement of dispersion in Tobin�s q. At the same time, they show a

similar pattern for dispersion of total factor productivity growth rates at four digit SIC level, with

correlation being �0:465. Bloom (2009) shows that the US stock market volatility measured as

VXO index is positively correlated to the cross-sectional standard deviations of �rm pro�t growth,

�rm stock return, and industrial TFP growth at four digit SIC level, but its correlation with indus-

trial production is signi�cantly negative. Moreover, Bloom, Floetotto and Jaimovich (2010) take

an even closer look at this issue and examine the Census of Manufactures, and �nd that various

measures of uncertainty are signi�cantly countercyclical at all of establishment, �rm, industry, and

aggregate levels. Bachmann and Bayer (2011) take a long panel of German �rm-level micro-data

that covers all single digit industries, and show that the correlation between dispersion in growth

rates of �rm-level TFP, sale, and value added and economic performance is signi�cantly negative.

This pattern preserves in subsamples divided by sector and by size. Although a di¤erent economy,

their USTAN data set has the clear advantage in coverage. Moreover, by looking at di¤erent

size quantiles, they document that time series averaged productivity dispersion in smaller �rms

tend to be larger than bigger �rms. Chugh (2010) explores the pro�tability series constructed by

Cooper and Haltiwanger (2006) from Longitudinal Research Database and calculates the cyclical

correlation between average productivity and the dispersion of pro�tability to be �0:97. How-

ever, the sample is of relatively short length as annual data and covers only 1977-1988, which

exhibits unusually large degree of opposite movement. Kehrig (2011) focuses more on the disper-

sion of productivity levels rather than pro�t rates. He looks at the establishment-level data of
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Figure 1: Cyclical Indicators and Variances in TFP. Upper panel plots di¤erent cyclical indica-

tors, Real GDP (dotted line), Real total manufacturing output (solid line), Average TFP across

industries at SIC 4 Digit level (dashed line). Lower panel shows cyclical behavior of TFP disper-

sion measured as variance (solid line with dots), together with Average TFP (dashed line). All

series are HP-�ltered. The shaded bars illustrate o¢cial NBER recessions. Real GDP data is

from FRED; TFP series are from MIPD, and so is Manufacturing output measured as Real Total

Shipment.

the US manufacturing sector that consists of the Annual Survey of Manufactures, Census of Man-

ufactures, Plant Capacity Utilization Survey, and Longitudinal Business Database. Though the

manufacturing sector as a whole shows countercyclical dispersion in establishment-level TFP, the

durable industries show stronger cyclicality and it is the �rms at bottom quantile of productivity

distribution that drive the dispersion dynamics.

In this paper, I study how the aggregate economic state a¤ects the dispersion in individual-level

productivity. To link my model to data, ideally, the aggregate state is the average productivity

measured as the cross-sectional average of plant-level TFP, and the dispersion is then the variance

or inter-quantile range of plant-level TFP. Lacking the plant-level data, I use industry data at

four-digit SIC level to approximate the desired measures. The paper is silent on the validity of

this approximation, but Bloom et. al (2010) show that the countercyclical patterns of productivity

dispersion are similar at the plant-, �rm-, and industry-levels.

The upper panel of Figure (1) shows the co-movement of di¤erent business cycle indicators. In
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particular, I claim that the average TFP is a valid aggregate state indicator for the manufacturing

sector. The correlation coe¢cient between average TFP (HP �ltered) and sectoral output (HP

�ltered) is 0:86 with p-value of scale 10�9. The average TFP corresponds to the cyclical indicator

used through out the model, and the �uctuation in it represents technology or productivity shock,

which drives the dynamics of model economy. Following Eisfeldt and Rampini (2006) and Bloom

(2009), I use dispersion in cross-sectional TFP growth rate distribution at four digit SIC level to

approximate that at the individual level, without arguing the validity of the approximation. Note

that, the desired distribution is that of the levels of TFP instead of growth rates. The result is the

lower panel of Figure (1), illustrating countercyclical movement of variance in TFP.3 The precise

correlation coe¢cients for the US manufacturing sector are documented in detail in both Bloom,

Floetotto and Jaimovich (2010) and Kehrig (2011), and are summarized in Table 1 together with

my own calculation.

Table 1. Correlations between Dispersion and Cyclical Indicator4

For US Manufacturing Sector GDP Growth GDP HP Res. Avg. �TFP

Kehrig (2011)

(1) Estab. TFP, Std. Dev. -0.420 -0.528 �

(Durables, HP Residual)

(2) Estab. TFP, Std. Dev. -0.172 � �

(Non-durables, HP Residual)

Bloom et. al. (2010)

(3) Estab. Output Growth, IQR -0.364 � �

(4) Estab. TFP Growth, Std. Dev. -0.273 � �

(5) Firm Sales Growth, IQR -0.265 � �

(6) Firm Stock Returns, IQR -0.339 � �

Calculated from NBER-CES MIPD

(7) Ind. TFP Growth, IQR -0.502 (0.000) -0.298 (0.021) -0.184 (0.108)

(8) Ind. TFP Growth, Std. Dev. -0.262 (0.038) -0.241 (0.051) -0.129 (0.194)

(9) Ind. TFP Growth, Var. -0.249 (0.046) -0.245 (0.048) -0.123 (0.206)

3I obtain data from the same sources as the aforementioned two papers, yet with more recent data up until

2005. I get the same signa�cantly negative correlations as in these two papers if I only use the same range of data

as they do. However, if I include the newly update data as shown in the �gure, I can only a negative correlation

that is not signi�cant and is much smaller in absolue scale, which is less than 0.11.
4 The �rst column of results show correlation coe¢cients (p-value) with Real GDP growth rate, the second with

residuals of HP-�ltered Real GDP, and the last with weighted average TFP growth rate in manufacturing sector.
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Due to the limitation of data, I use dispersion measures at TFP growth rate instead of TFP

level. The corresponding cyclical indicators are then GDP growth rate, sectoral output growth

rate, and average TFP growth rate. To be comparable to other works, I only include GDP growth

rate and GDP HP residuals in Table 1.

Firm Dynamics. One important cyclical feature of �rm dynamics that motivates this paper

is that exit rate moves countercyclically. This phenomenon is well documented in Campbell

(1998) exploring ASM data between the second quarter of 1972 and the last quarter of 1988. In

addition, Jaimovich and Floetotto (2008) assemble a new annual data set from 1956 to 1996 at the

�rm level across a broader range of industries and �nd that despite the di¤erence in numbers, exit

rates of all examined industries are countercyclical. To illustrate �rm dynamics over time, I obtain

annual data from 1977 to 2009 in Business Dynamics Statistics (BDS) at CES, a data set that

recently became publicly accessible. To be consistent with micro-level evidence on countercyclical

dispersion, I only look at the establishments in manufacturing sector. 5

Table 2 summarizes the property of establishment entry and exit rates by �rm size6. A �rm

is classi�ed to be small if it has less than 50 registered employees. This is again not ideal, but

Row (1) and (2) are taken from Table 3 and 4 in Kehrig (2011), in which the microlevel data sources are mainly

ASM/CM/LBD continuously covering period of 1972-2005 at annual frequency. Row (3) to (6) are from Table

1 in Bloom, Floetotto and Jaimovich (2010). Establishment-level data are also from ASM/CM/LBD, 1972-2006,

while the �rm-level infomation is from Compustat at quarterly frequency, 1967:II-2008:III for sales growth and

1969:I-2010:III for stock returns. Row (7) to (9) are TFP dispersions cross industries at four digit SIC level and

NBER-CES Manufacturing Industry Productivity Database is the source, covering annually 1959-2005. Except

for IQR, all other moments of industrial TFP growth are weighted by real value of total shipment. Numbers in

parentheses are one-sided p-values under the null of non-negative correlation.
5A noteworthy issue here is how to de�ne an entrant and an exiting establishment. According to the o¢cial

overview of BDS dataset, "An establishment opening or entrant is an establishment with positive employment in

the current year and zero employment in the prior year. An establishment closing or exit is an establishment with

zero employment in the current year and positive employment in the prior year. The vast majority of establishment

openings are true green�eld entrants. Similarly, the vast majority of establishment closings are true establishment

exits (i.e., operations ceased at this physical location). However, there are a small number of establishments that

temporarily shutdown (i.e., have a year with zero employment) and these are counted in the establishment openings

and closings." Therefore, an inevitable caveat is that, although of relatively small number, an "idling" establishment

can show up in the data as exit �rst, and then as entrant, for potentially many times. However, one clear advantage

especially over �rm-level data is that merging and acquisition are not reasons for disappearing units. Therefore, I

can safely assume that exiting establishments su¤er from low realizations of productivity.
6The entry and exit rates are indeed calculated utilizing the numbers of new born establishments, closed es-

tablishments, and existing establishments. However, the size is classi�ed using the number of employees in a �rm,

instead of an establishment. One can only argue that large �rms tend to own large establishments, and therefore

large establishments exhibit similar dynamics to the ones owned by large �rms. Otherwise, it is not clear whether

this is a valid approximation.
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subject to data availability. The preferred size classi�cation is by capital stock. A more detailed

illustration of entry and exit rates by year and by establishment size can be found in the Appendix.

Table 2. Entry and Exit Rates in Manufactures7

For US Manufacturing Sector 1977-2009

Total Large Small

(1) Avg. Entry Rate (%) 9.36 5.18 31.18

(2) Avg. Exit Rate (%) 9.28 6.00 30.06

(3) Std. Dev. (EntryHP ) (%) 0.52 0.64 1.85

(4) Std. Dev. (ExitHP ) (%) 0.67 0.90 1.56

(5) Corr(EntryHP , (Avg. TFP)HP ) 0.20 (0.29) 0.19 (0.33) 0.21 (0.29)

(6) Corr(ExitHP , (Avg. TFP)HP ) -0.26 (0.17) -0.17 (0.37) -0.23 (0.24)

(5�) Corr(�Entry, Avg. �TFP ) 0.22 (0.26) 0.13 (0.51) 0.31 (0.11)

(6�) Corr(�Exit, Avg. �TFP) -0.10 (0.62) 0.06 (0.76) -0.06 (0.73)

Comparing establishment dynamics in small �rms to that of large ones, they are of much larger

scales, more volatile, and more cyclical. Therefore, in the quantitative model, I only focus on the

dynamics in small �rms, and treat the entry and exit of large �rms mainly as exogenous, and they

happen only with small probability.

The model I build in the following sections tries to explain the negative correlation between

average productivity and cross-sectional productivity dispersion. The main mechanism emphasizes

the di¤erent behavior between small and large �rms, which leads to observed di¤erence in their

entry and exit dynamics.

3 A Simple Model

To highlight the mechanism, I start from a simpli�ed and tractable three period version of the

full model. I remove some features of the working model that is not as crucial, and focus only

on the incumbents� problem. The main idea is that the option to exit promotes risk taking of

7 The data source is still BDS. The binary grouping rule in size can be found in caption of Figure (2). In Row

(1) and (2), the numbers are simple time series averages. Row (3) and (4) are time series standard deviations for

HP residuals. Row (5) to (6) are correlations for HP residuals, (7) and (8) are for changes. Numbers in parenthesis

are p-values. I choose to compute correlation coe¢cient this way instead of using original entry/exit rates because

there is a declining trend in both series. This is an interesting observation on its own sake, but this paper is silent

on it.

8



Figure 2: Cyclical behavior of entry and exit in manufacturing sector by size. A small �rm is

classi�ed as one with less than 50 registered employees, and a large one with at least 50. This

�gure shows original series of entry (solid lines) and exit (dashed lines) rates by size. The two

thinner lines at the bottom are for large �rms, and the two thicker ones are for small �rms. Data

on entry and exit rates are from BDS of CES.

small �rms by creating a local non-concavity in a �rm�s continuation value function, which in turn

generates a non-degenerate dispersion in productivity. Moreover, as is shown in the comparative

statics analysis, such dispersion becomes larger in bad time, due to a larger fraction of risk taking

�rms. The same mechanism drives the in�nite horizon model as well.

3.1 Setup

There are 3 periods, t = 0; 1; 2. There are a continuum of risk neutral �rm owners, each of

whom owns a �rm with di¤erent level of initial resource w0 2 [0; �w]. Assume that each �rm has

only one plant or plant that produces one kind of product. The c.d.f. of owners� initial endowment

of the single good is given as G (w0). At period 0, initial wealth w0 can be divided into investment

k0 for future payo¤ and immediate consumption w0 � k0. If an owner decides to invest k0, then

she will get w1 = F (Z; k) as period 1 wealth, where

F (Z; k) = Zk�; 0 < � < 1;

and Z represents the realized productivity of the technology the �rm owner chooses after invest-

ment decision. A production project is associated with a technology. Assume that production

requires full attention of the �rm owner and utilizes the full capacity of the plant, hence a �rm

cannot undertake multiple production projects simultaneously. An owner can choose one and only

one out of two available technologies: a safe one and a risky one, di¤ering in the riskiness and

realizations of productivity. For the safe technology, Z = A for sure, while for a risky one, with
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Figure 3: Timing of the Simple Model

probability p 2 (0; 1), Z = �z > A, and with probability 1� p, Z = z = 0. Both technologies give

the same expected value of Z, that is, p�z+(1� p) 0 = A.8 The risky technology has a variance in

productivity as a function of p and �z, �2 (p; �z) = p (1� p) �z2. As a result of linearity of F (Z; k)

in Z, the expected �ow output of the risky technology is the same as the safe one. Under this

setup, A corresponds to the average establishment-level productivity measured as TFP in data,

and plays the role of economic condition indicator (or cyclical indicator in the full model); the

riskiness of the risky technology represents the risk at the establishment level, while its aggregated

counterpart measures the dispersion in productivity.

3.2 Analysis

At period 1, after the uncertainty in Z realizes, the agent can decide whether to close her �rm,

exit the industry and get outside option value V 0, or stay. Conditional on staying, she makes the

investment choice k1 and technology adoption choice again based on period 1 wealth w1. In the

last period, she simply consumes her �nal wealth w2. The objective of an agent with initial wealth

w0 is to maximize her discounted consumption, with discount factor �:

V0 (w0) = max
0�k0�w0

f(w0 � k0) + �max fV1 (Ak
�
0 ) ; (1� p)V1 (0) + pV1 (�zk

�
0 )gg

where Vt (wt) is the time t value for an agent with wealth wt.

It is convenient to work backwards. At time t = 2;

V2 (w2) = w2:

8For tractability, I assume only one type of risky technology and binary possible realization of it. In fact, a risky

technology can be represented by a random variable Z with any distribution that is a mean preserving spread of

A.
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At time t = 1, an agent with k1 > 0 will be indi¤erent between operating a safe project and a

risky one. Assume that all agents will perform safely in this case, which is consistent with their

choice if they were risk averse. For simplicity, I do not allow borrowing in the short model, and

the period 1 value for a staying �rm will be:

V 1
1 (w1) = max

0�k1�w1
f(w1 � k1) + �Ak�1 g :

Let k� be the optimal capital choice without borrowing constraint. The value of a �rm with wealth

level w1 at the beginning of period 1 will be given by

V1 (w1) = max
�
V 0; V 1

1 (w1)
	
:

Let w�1 be such that V
0 = V 1

1 (w
�
1) : Note that there is a kink at w

�
1 and V1 (w1) is convex in a

neighborhood of w�1: This gives a �rm with relatively low wealth level an incentive to take a risky

project before it enters period 1. At t = 0, a �rm makes the investment decision and chooses a

technology:

V0 (w0) = max
0�k0�w0

f(w0 � k0) + �max fV1 (Ak
�
0 ) ; (1� p)V1 (0) + pV1 (�zk

�
0 )gg

= max
0�k0�w0

�
(w0 � k0) + �max

�
V 0; V 1

1 (Ak
�
0 ) ; pV

1
1 (�zk

�
0 ) + (1� p)V 0

		
:

To explicitly characterize a �rm�s technology choice, it is useful to introduce the following

condition on parameters.

Condition 1. 0 < V 0 < �
2�
2

1��2 �
1+�

2

1��2 �z
1

1��p
2�
2

1��2 (p1+� � p2) = (1� p) :

The risky and safe continuation values intersect at most once in the region where they are

both greater than V 0. This condition ensures the existence of intersection, and makes the analysis

tractable as shown in Proposition 1. The intuition is that given (�z; p), the option value V 0 of

exiting cannot be too high, otherwise exit becomes very appealing, so does the risky technology.

If it is violated, then all staying �rms strictly prefer the risky technology. In particular, if V 0 is

given, this happens when A is low enough.

Proposition 1. At t = 0, if Condition 1 holds, then the continuation value functions associated

with risky and safe technologies intersect only once, and 9kI0 and k
II
0 such that 0 < kI0 < kII0 < k�,

and the decision rule of a �rm owner with initial wealth w0 will be one of the following:

1. If 0 < w0 � kI0, she consumes all w0 in period 0 and exits in period 1 for sure;

11



Figure 4: Continuation value as a functions of control variable, k0. The horizontal axis is k0,

and the vertical axis is the continuation value for each level of k0. The solid curve is the safe

continuation value V1 (Ak
�
0 ), and the dashed curve is the risky continuation value (1� p)V1 (0) +

pV1 (�zk
�
0 ). The horizontal line is V

0.

2. If kI0 < w0 < kII0 , she invests all w0 in a risky project in period 0, then with probability p,

w1 = �zk
�
0 , she in turn invests all w1 in period 1; with probability 1� p, w1 = 0, she exits in

period 1;

3. If kII0 � w0 � kA0 , she invests all w0 in a safe project in period 0, then invests all w1 = Ak�0
in period 1;

4. If kA0 < w0 � k�, she invests all w0 in a safe project in period 0, then invests k
� and consumes

the rest in period 1;

5. If w0 > k�, she invests k� and consumes the rest in both periods.

The interesting region, or the "risky region", is the interval
�
kI0; k

II
0

�
. The exiting option

forms a lower bound in value function that is higher than in the case without exiting. This new

lower bound alters the shape of continuation value function, in particular, the continuation value

function has a local convexity if safe technology is chosen. This non-concavity region is roughly

the same as the interval
�
kI0; k

II
0

�
, in which �rms have limited amount of capital stock. Firms

12



that fall into this region have incentive to smooth out such convexity by entering a lottery and

randomizing over possible outcomes, which is exactly the role that risky technology plays in this

model. The fraction of risk taking �rms will then be determined given the initial distribution

G (w0), and each of these �rms bear the same risk in terms of the randomness of productivity
9.

As can be seen below, a change in A drives the changes in the risky region and the the fraction of

risk taking �rms, and leads to a di¤erent productivity dispersion.

Suppose that with probability p the risky technology realizes as high productivity. The cross-

sectional variance in realized productivity in period 0, denoted as � (p; �z), is a function of p, the

probability of good realization of risky technology, and �z, the good realization of productivity.

� (p; �z) = Ew0;Z
�
Z2
�
� [Ew0;Z (Z)]

2

= �2 (p; �z) � (p; �z) ;

where Z represents the technology a �rm chooses, and � (p; �z) :=
G(kII0 )�G(kI0)

1�G(kI0)
in which kI0 and

kII0 are functions of p and �z as well. �2 (p; �z) is simply the variance of the Bernoulli distributed

productivity of risky technology, while � (p; �z) represents the measure of �rms in the risky region.

� (p; �z) is ex ante variance, and coincides with realized dispersion in productivity, assumed a form

of Law of Large Numbers. At the same time, the aggregate or average output in period 0, O (p; �z),

is:

O (p; �z) = Ew0;Z (F (Z; k0))

= p�z

Z k�

kI
0

w�0 dG (w0jk0 > 0) + p�z (k
�)�

1�G (k�)

1�G (kI0)
:

3.3 Comparative Statics

The nature of the simple model does not permit cyclical features. Therefore, I will instead

analyze the comparative statics mimicking di¤erent times of business cycles. In particular, I use

A, the average productivity, as the economic condition indicator, which corresponds to the average

TFP in data. In the model, a change in A can result from either a change in p, or in �z, or in

both. Provided that the bad outcome of the risky technology is normalized to be zero, �z then

determines the range, the variance of the Bernoulli productivity �2 (p; �z), and the measure of risky

9Once again, the same risk results from the assumption that only one way of randomization is permitted in

the model for simplicity. To relax this restriction, one can assume that each �rm can choose any distribution on

productivity so long as the expection remains A, which results in a risky region larger than
�
kI0 ; k

III
0

�
. However,

while making the model much more complicated, this will not alter the result qualitatively, neither will it provide

more insight into the model.
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region � (p; �z). At the same time, �2 (p; �z) and � (p; �z) are also nontrivial functions of p. When

A, p, and/or �z changes, the resulting change in riskiness of a risky technology, that is, variance

�2 (p; �z) or range �z, is called the "riskiness e¤ect", as such change directly a¤ects the riskiness of

available technology; and the change in the measure of �rms in the risky region, � (p; �z), is the

"mean e¤ect", as the change in mean A determines the slope of continuation functions which in

turn a¤ects the width of risky region. The interesting one is the mean e¤ect which highlights the

novel mechanism of the model, therefore, I consider a particular change in A, such that �z is held

unchanged and p is also controlled to fully eliminate the riskiness e¤ect, and examine the resulting

mean e¤ect.

Proposition 2. Let V 0 and �z remain unchanged and assume Condition 1 always holds. Let

A 2
�
AH ; AL

	
=
�
pH �z; pL�z

	
, pH and pL be such that pH > pL > 0. Suppose the distribution of

initial wealth G (�) is Pareto or uniform and the lower bound of its support is below kI0 when risky

technology is pH . Then:

1. O
�
pH ; �z

�
> O

�
pL; �z

�
;

2. �
�
pH ; �z

�
< �

�
pL; �z

�
:

To control the riskiness e¤ect, assume pH + pL = 1, then:

3. �2
�
pH ; �z

�
= �2

�
pL; �z

�
= �z2pHpL;

4. �
�
pH ; �z

�
< �

�
pL; �z

�
:

According to this proposition, given �z �xed, A (or p) summarizes the aggregate state, higher

A then means good times. When the aggregate state is good, the total output is high, and this

is always the case whether the riskiness e¤ect is controlled or not. Meanwhile, the risky region

is smaller in good times, which in turn leads to smaller fraction of risk taking �rms, regardless

of the riskiness e¤ect. The assumption on Pareto or uniform distribution is not very restrictive.

In fact, it can be any distribution that results in the same pattern of change in fraction of risky

�rms. I choose Pareto distribution to mimic the actually observed size distribution of �rms, which

is only a su¢cient but not necessary condition for the desired change in risky fraction. When

the riskiness e¤ect is controlled, the riskiness of a risky technology remains unchanged, therefore

it is the change in fraction of risk taking �rms that drives the change in resulting productivity

dispersion, or average riskiness that �rms choose to take, measured as variance in productivity.

14



Figure 5: Comparative Statistics.

If �z is not �xed or p is not controlled in such a way, then it is impossible to disentangle mean

e¤ect from riskiness e¤ect, and these two e¤ects jointly determine the resulting change in cross-

sectional dispersion in productivity. In fact, in the calibrated quantitative model, it turns out that

the riskiness e¤ect is too small to generate signi�cant di¤erence in simulated results.

Figure (5) illustrates what happens to the model if A decreases, as described in Proposition 2.

When A is low, the exiting threshold increases and more �rms exit. At the same time, low A also

leads to a larger risky region and a greater fraction of risk taking �rms, so now there are more �rms

that strictly prefer to the risky technology. As a result, if the change in A is controlled as speci�ed

before, the average risk that �rms choose to take is also larger, so is the realized productivity

dispersion. To summarize, the key step for the model to generate countercyclical productivity

dispersion is the change in the risky region as aggregate state changes. And it is mainly because of

an enlarged fraction of risk taking �rms that causes a larger productivity dispersion in bad times.

This mechanism remains in the quantitative model with in�nite horizon. In fact, if the aggregate

state follows a Markov process with only two possible outcomes of AH and AL controlled in a

similar way, then without introducing other features, the negative correlation between aggregate

state and productivity dispersion is still almost perfect.
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4 Quantitative Model

The simple three period model illustrates the main mechanism in a tractable setting. However,

it is only feasible to look at the comparative statics in an essentially static model with three stages.

Therefore, a richer model with in�nite horizon is built in this section to include more realistic

business cycle features and to examine the quantitative performance of the mechanism.

4.1 Setup

Time is discrete, with in�nite horizon. The �rms that have survived at least one period are

called incumbents. There is a constant massM > 0 of potential entrant �rms every period, each of

whom draws their initial capital k0 from a distribution G
0 (k0). G

0 (�) determines the number and

size distribution of newly born �rms. Once entering, an entrant acts as an incumbent thereafter as

long as this �rm stays. The production function is the same as in the simple model, F (Z; k) = Zk�,

with 0 < � < 1 and Z being the realized productivity depending on technology choice.10 At the

beginning of each period, all �rms observe average productivity A. An incumbent �rm owner

makes the choice between staying and exiting, meanwhile, all �rms also face an exogenous exiting

probability � > 0. I allow additional exogenous exiting to generate the death of large �rms, which

always choose the safe technology, as in the simple model. If an incumbent exits, the owner closes

her �rm and sells all capital stock. Once exiting, the �rm cannot come back to business again in

the future. A staying �rm then decides the amount of next period�s working capital k0 and whether

to adopt the safe technology or the risky one. Again, assume full attention of a �rm owner and

complete utilization of plant capacity as a prerequisite of production. After production, capital

10In fact, F (Z; k) = Zk� can be interpreted as a �rm�s pro�t function, that is, the revenue net of the cost for

variable factors, for example labor and materials. Speci�cally, assume a plant faces an inverse demand function

P (y) = By�b, and therefore its revenue becomes R (y) = By1�b. Suppose the actual production function is

y = ~Ak~�l
~�, and the price for other factors is !, then after optimization of l, the revenue function becomes

R =
�
B ~A1�b

�1=(~�(1�b)) h
~� (1� b) =!

i~�(1�b)=(~�(1�b)�1)
k~�(1�b)=(

~�(1�b)�1);

and pro�t function

� =
�
1� ~� (1� b)

�
R:

Rede�ning variables gives the form of Zk�. Therefore, Z in the model is more appropriately interpreted as measured

revenue total factor productivity that includes information from the demand side, instead of actual production

technology. For the same reason, parameter A shown later in the model shall also be interpreted as aggregate state

of the model economy, and change in A is more than just "technology shock". Under this speci�cation, it is easier

to link the model to data because only TFPR (TFP calculated using revenue data) is required for this model, but

not TFPQ (actual TFP). Admittedly, TFPR is much easier to compute.
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depreciates at rate �.

Under these settings, �rms in this economy are heterogeneous in realized productivity, capital

stock, and depreciation rate in each period. Provided a realization of aggregate state, technology

choice, investment, and depreciation jointly determine the incumbent�s next period disposable

resource.

The aggregate state for the model economyA evolves as a Markov chain withA 2 A = fA1; :::; ANAg,

and transition probability �ij = Pr (AjjAi). In particular, this Markov chain is a discretized

AR(1) process, such that lnAt = �A lnAt�1+ �uut, where �A 2 (0; 1) is the serial correlation, and

ut � N (0; 1) is white noise. Following conventional real business cycles models, I assume time in-

variant volatility in A, in terms of constant �u. This implies that the driving force of this modelled

economy is the traditional "technology shocks", that is, the change in "�rst moment". This is dif-

ferent from Bloom (2009) and Bloom et. al. (2010), who use time varying higher moments as the

pure source of aggregate �uctuation. Meanwhile, this also distinct from, for example, Bechmann

and Bayer (2009a,b) and Chugh (2010), who allow time varying higher moments in addition to the

usual �rst moment movement to account for the countercyclical dispersion observed in data. I do

not allow �u to change over time is based on the following considerations that (1) �u is time series

volatility, which is not the same as observed cross-sectional dispersion, (2) this model emphasizes

a mechanism through which time varying A generates realized productivity dispersion, and it is

of no need to introduce additional variation, and (3) �xed �u implies �xed unconditional mean of

A.

Production is costly. In each period, a staying and active �rm needs to pay a �xed operating

cost, and, if the �rm needs increase or decrease its capital stock, it pays a capital adjustment

cost as well. Mainly following Cooper and Haltiwanger (2006) and Bloom (2009), I assume the

capital adjustment cost consists of two parts: (1) a non-convex cost, and (2) a transaction cost.

The non-convex cost represents the opportunity cost when a �rm is under capital adjustment.

Speci�cally, this �rm foregoes a fraction ck of its production if there is capital adjustment in a

given period. The transaction cost represents the partial irreversibility. When a �rm needs to

increase capital, the price paid for every unit of new capital is normalized to be one, where the

price is interpreted as how many units of output needed to get one unit of capital. However, if a

�rm wants to reduce capital, the selling price for each unit of capital is � < 1.

Each time period has several stages, which resembles period 1 in the simple three period model.

� Stage 1: Observation of state variables. Aggregate state A realizes, so does the capital

depreciation. An incumbent �rm observes A, and enters this period with remaining capital,

(1� �) k, and together with period�s production F (Z�1; k), where Z�1 is the realization of

last period�s productivity of this �rm. A potential entrant draws k0 and observes A.
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Figure 6: Timing of the Quantitative Model

� Stage 2: Entry and exit. An entrant with (k0; A) enters if there is positive expected pro�t.

An incumbent exits either voluntarily based on continuation values, or exogenously with

probability �.

� Stage 3: Investment and technology decision. Both staying incumbents and new born �rms

decide how much to invest, and then choose between safe and risky technologies. At the

same time, the operating cost and capital adjustment cost are paid.

� Stage 4: Production. Production takes place in the form F (Z; k0), where k0 is the new

working capital, and Z is the productivity. If a �rm chooses safe technology, then the

productivity is deterministic, Z = A. Otherwise, with probability p (A), the risky technology

turns out to be a success, Z = �z, and with probability 1� p (A), it fails, and Z = 0.

4.2 Individual Decision

An Incumbent�s Problem. At the beginning of each period, an incumbent �rm is characterized

by (Z�1; k; A), where Z�1 2 fA�1; 0; �zg is the realized productivity of last period for a speci�c �rm,

which can be either of the safe productivity A�1, the bad realization 0, or the good realization

�z, k is the total amount of capital that was used in last period, and A represents the economic

condition of current period.11

The �rst choice an incumbent �rm owner makes is between keeping operating and closing the

�rm and leaving.

V (Z�1; k; A) = max (1� �)V 1 (Z�1; k; A) + �V 0 (Z�1; k; A) ;

11The distribution of �rms is not a state variable in this model, because it has an essentially partial equilibrium

setup, and agents do not need to forecast future prices using information on distribution.
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where � 2 f�; 1g is the exiting choice, and � is the exogenous exiting hazard. If a �rm with

(Z�1; k; A) chooses to exit, the value is:

V 0 (Z�1; k; A) = � (A) (Z�1k
� + (1� �) k) ;

where � (A) < 1 is the fraction of resource a �rm owner can take away when exiting, which is

actually a resale price and is potentially a function of A. If this �rm chooses to stay, the owner

must then decide on investment, i, and technology choice, safe or risky. The capital stock evolves

as follows

k0 = (1� �) k + i;

such that k0 � kmin > 0, where kmin is a very small positive number providing a lower bound of

capital stock. The operating cost C (i;Z�1; k; A) of a �rm consists of a �xed cost cf and a capital

adjustment cost:

C (i;Z�1; k; A) = cf + ckF (Z�1; k) 1fi6=0g + (1� � (A)) (�i) 1fi<0g:

Apart from the �xed operating cost, there are two forms of capital adjustment costs: a non-convex

adjustment cost and partial irreversibility. Actively adjusting capital stock and choosing i 6= 0,

costs a �rm ck fraction of its revenue from last period�s production. In addition, if a �rm reduces

its scale, it can only sell its current capital possession at price � (A) < 1. The �xed operating

cost is to generate endogenous exiting behavior and therefore it creates a non-concave portion in

the lower end of a �rm�s value function. The adjustment cost plays double role: one is to capture

the observed inaction in investment and slow down the change in �rm size, and the other is to

dampen �rms� reaction to change in aggregate states so that the correlation between productivity

dispersion and aggregate state is not too close to -1. Combining these pieces gives the �ow pro�t

of this �rm D (k0;Z�1; k; A) ; and

P (i;Z�1; k; A) = F (Z�1; k)� i� C (i;Z�1; k; A) � 0:

I enforce non-negative pro�t as a constraint. The �rm also has to choose between safe and risky

technology. A safe technology produces F (A; k0) for sure; while a risky technology results in

productivity at �z with probability p (A) and 0 with 1 � p (A). If the safe one is chosen, the �rm

gets:

V 1
safe (i; k;A) = EA0;�0 [V (A; k

0; A0) jA] ;

and likewise,

V 1
risky (i; k;A) = p (A)EA0 [V (�z; k

0; A0) jA] + (1� p (A))EA0 [V (0; k
0; A0) jA] :
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Therefore, conditional on staying, an incumbent �rm solves the following maximization problem:

V 1 (Z�1; k; A) = max
i

�
P (i;Z�1; k; A) + �max

�
V 1
safe (k

0;Z�1; k; A) ; V
1
risky (k

0;Z�1; k; A)
		

:

Denote the state variables of an incumbent as  = (Z�1; k; A) 2 	, with 	 being the set of all

possible states. Solution to an incumbent�s question with state  is a list of policy functions

f� ( ) ; � ( ) ; � ( )g such that (1) � ( ) is the exiting choice, � : 	 ! f�; 1g; and conditional on

surviving, (2) � ( ) is the technology choice, � : f 2 	 : � ( ) = �g ! f0; 1g, where 0 represents

the safe technology and 1 the risky one, and (3) � ( ) is the investment level, � : f 2 	 : � ( ) = �g

! R.

A Potential Entrant�s Problem. A potential entrant draws initial capital holding k0 from a

invariant Pareto distribution G0 (k0) with parameter �. The value of staying outside the market is

V 0
0 (k0; A) = � (A) k0:

To start up a business, one must pay a setup cost ce from initial capital, and thereafter acts as

an incumbent with state (Z�1; k; A) being  0 = (0; (k0 � ce) = (1� �) ; A). Hence, the payo¤ of

opening a �rm will be:

V 1
0 (k0; A) = V 1 (0; (k0 � ce) = (1� �) ; A) :

A new �rm will be born if

V 1
0 (k0; A) > V 0

0 (k0; A) :

Solution to this problem is a binomial entry choice " : 	0 � 	 ! f0; 1g, where 	0 contains all

possible  0, and " ( 0) = 1 if an entrant enters and 0 otherwise.

4.3 Aggregate Dynamics

Given the solutions to the individual problems described before, f� (�) ; � (�) ; � (�) ; " (�)g, it is

straightforward to write down the transition dynamics for the distribution over  = (Z�1; k; A) :

For an arbitrary  2 	, it is either  2 	0 or  can only be the state of an incumbent. I

denote � ( ) as the measure or density of point  = (Z�1; k; A) at Stage 1 of a typical period

with aggregate state A, before entry and exit takes place. If � ( ) = 1, then a �rm with this

state exits for sure, and no other transition can happen. If � ( ) = �, then with probability � this

�rm exogenously exits, and with a complementary probability, it stays. Conditional on staying, if

the �rm chooses the safe technology, � ( ) = 0, then its individual state becomes (A; (k + � ( ))).

On the other hand, if the �rm chooses the risky technology, � ( ) = 1, then with probability

p (A) its individual state becomes (�z; (k + � ( ))), and with probability (1� p (A)) it becomes
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(0; (k + � ( ))). Now turn to the new borns. Denote g0 ( 0) the entrant�s measure or density at

point  0 determined by G
0 (�). A new born with  0 enters if " ( 0) = 1. After entering, this

�rm acts exactly the same as a surviving incumbent with  =  0. Finally, the aggregate states

becomes A0 with probability Pr (A0jA), A0 2 A. Formally, suppose the aggregate state at Stage 1

of a period is A0 = Aj, and that of last period is A = Ai, meaning the realized productivity Z is

one of fAi; �z; 0g. Every state not on the realization path has zero measure, or

�0 (A; k0; A0) = 0 if A 6= Ai or A
0 6= Aj;

where primed variables are ones realized at the same period as A0. The rest of the states can then

be divided into three groups by realization of Z, all of which come from both incumbents and new

borns. For Z = Ai,

�0 (Ai; k
0; Aj) =

Z
(1� � ( )) (1� � ( ))1f :k0=(1��)k+�( )g� (d )

+M

Z
" ( 0) (1� � ( 0))1f 0:k0=(1��)k0+�( 0)gg

0 (d 0) ;

where variables with no prime are ones observed one period back, with  = (Z�1; k; Ai) and

 0 = (0; (k0 � ce) = (1� �) ; Ai). For Z = �z or 0,

�0 (f�z; 0g ; k0; Aj) =

Z
(1� � ( )) � ( )1f :k0=(1��)k+�( )g� (d )

+M

Z
" ( 0) � ( 0)1f 0:k0=(1��)k0+�( 0)gg

0 (d 0) :

By independence, a fraction p (Ai) has Z = �z, and the rest gets Z = 0, that is,

�0 (�z; k0; Aj) = p (Ai)�
0 (f�z; 0g ; k0; Aj) ;

�0 (0; k0; Aj) = (1� p (Ai))�
0 (f�z; 0g ; k0; Aj) :

Given the distribution measure � and �0, the cross-sectional variance in productivity can be

written as

� (A; �) /

Z
�z2�0 (�z; dk0; dA0) +

Z
A2�0 (A; dk0; dA0)�

�Z
�z�0 (�z; dk0; dA0) +

Z
A�0 (A; dk0; dA0)

�2

= �z2p (A) (1� p (A))

Z
�0 (f�z; 0g ; dk0; dA0) = �2 (A) � (A; �) :

The expression of cross-sectional variance can be simpli�ed in this way due to the linearity of

productivity in production function.
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4.4 Calibration

Before the description of calibration procedure, it is worth noticing that the mass of potential

entrantsM only a¤ects the scale of the economy once other parameters are determined. Since the

absolute scale is not of interest, the choice ofM is irrelevant. For quantitative exercise, the number

of potential entrants is �xed at 50000 each period. Furthermore, without aggregate �uctuation,

starting from zero incumbents, the economy always converges to a stationary state in the sense

that the exiting rate and entry rate are equal and the scale is neither expanding nor shrinking, as

long as there is positive measure of entrants at the beginning, and this is the case with or without

agents expecting the aggregate state to be varying over time. The reason is simple. Since there

is no aggregate �uctuation, the measure of entrants (in�ow) is �xed each period. The measure

of exiting �rms (out�ow) is a fraction of remaining ones (stock). The out�ow gradually increases

to the same level as the in�ow, and it is at this point that the scale of stock stops changing.

Consequently, the entry and exit rates are the same. Because of this stationarity feature, the

parameters that need to be internally determined are selected such that the statistics generated

by the model at its stationary state match their empirical targets.

The setup of the model is very close to the standard, therefore some of the parameter values

are directly taken from the literature. One period is chosen to be one year. The discount factor

is set as � = 0:938 to match the long-run average for U.S. �rm-level discount rate, as in Bloom

(2009). According to the same paper, capital depreciates at rate � = 0:1. The production function,

F (Z; k) = Zk�; is the same as the pro�t function in Cooper and Haltiwanger (2006), so I follow

their estimation and set � to be 0.592. Taken from the same work, the standard deviation of

aggregate process �A is 0.08, and the serial autocorrelation �A is assumed to be 0.8 which is

within the range between autocorrelation of common shock 0.76 and that of idiosyncratic shock

0.885 estimated in that paper.

The good productivity realization is predetermined as �z = 2 so that the probability of getting

�z is always around a half. This is to minimize the riskiness e¤ect by controlling the uncertainty

associated to the binary outcomed risky technology. The exogenous exiting hazard � that a¤ects

all �rms alike is set to be 2%, which is in line with the exiting rate of large plants found by, for

example, Lee and Mukoyama (2008). On the entrant side, it has been mentioned that the choice

of M is not important. The distribution of initial endowment G0 is Pareto such that, with slight

abuse of notation, G0 (k0) = 1 � (kmin=k0)
� with � > 0. Clearly, � governs the shape of initial

endowment distribution and it in turn determines the model generated �rm size distribution.

Ideally, this generated distribution shall also has a shape close to Pareto, however, the assumption

on one common productivity shock and no idiosyncratic shocks makes this task infeasible. This

can be corrected by introducing heterogeneous productivity, yet this practice will not provide more
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economic insight to this model. Therefore, for the numerical results, I set � = 1:

The remaining parameters to be internally calibrated are capital resale price �, capital ad-

justment cost as a fraction of pro�t ck, �xed operating cost cf , and entry cost ce. The model

suggests that I shall look at the statistics of �rm dynamics and investment rate distribution, and

the remaining parameters (�; ck; cf ; ce) are selected via simulated method of moments. The targets

regarding �rm dynamics are taken from Lee and Mukoyama (2008), and those on investment rate

distribution are from Cooper and Haltiwanger (2006). I also compute from the model average

�ve-year transition rates between di¤erent size classes, and compare the generated numbers to the

actual rates found by Acemoglu, Akcigit, Bloom, and Kerr (2011) using census data. The para-

meters are calibrated without aggregate �uctuation, and the aggregate state sequence, fAtg, is set

to be constant at its mean, but the �rms still expect the future states to be changing according

to the transition probability of A, �ij.

Table 3. Parameter Values and Rationale12

Parameters Description Notes

Aggregate Fluctuation

�z = 2 Good productivity realization. Predetermined. Normalization.

�A = 0:8 Autocorrelation. Cooper and Haltiwanger (2006)

�u = 0:048 Var. of innovation s.t. �A = 0:08: Cooper and Haltiwanger (2006)

Production

� = 0:592 Production function parameter. Cooper and Haltiwanger (2006)

� = 0:938 Discount factor. Bloom (2009)

� = 0:1 Capital depreciation rate. Bloom (2009)

� = 0:02 Exogenous exiting probability. Lee and Mukoyama (2008)

� = 0:84 Capital resale price. Internally determined.

cf = 1:62 Fixed operating cost. Internally determined.

ck = 0:165 Capital adjustment cost. Internally determined.

Entrants

ce = 0:1 Entry cost. Internally determined.

� = 1 Shape of G0. Predetermined.

12 I also tried several other sets of parameters. The negative sign of the correlations between aggregate state

and dispersion measures is robust, which is not surprising because the mechanism works under mild restrictions of

parameter space. However, it is true that the fraction of risky �rms is sensitive to the shape of value function. In
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Calibrated parameter values are summarized in Table 3, and simulated moments are compared

with their empirical counterparts in Table 4. Cooper and Haltiwanger (2006) compute a thorough

set of investment moments using a balanced panel from the LRD from 1972 to 1988. The model

generated moments are close to their target with expected exceptions. The standard deviation in

investment rates is much lower than data, because when the aggregate �uctuations are shut down,

there is no idiosyncratic uncertainty other than the riskiness a �rm chooses to take. With constant

aggregate state and no growth, the model generated mean level of investment rate, together with

fraction of large and positive investment rates, is below the target as well. The other set of targets

regards the entry and exit dynamics of �rms, which are taken from Lee and Mukoyama (2008).

They use the ASM portion of the LRD from 1972 to 1997 to analyze the behavior of plants. At

the same time, I look at the �ve-year transition rates between di¤erent size classes obtained by

Acemoglu et. al. (2011) using the CM portion. Firms are divided into two size classes, small and

large, by median shipments, and the third class is "not-in-business". For example, the transition

rate from class small to class large is computed as the fraction of originally small �rms that became

large ones in the next census. Since the census data is only available every �ve years, I let the

model produce the same transition rates for every �ve periods. Due to di¤erent sources of data, I

choose to hit a number within the range of empirically computed entry and exit rates. The model

failed to reproduce the eight transition rates, although it manages to capture the fact that small

�rms have higher exiting rates than large ones. Without assuming idiosyncratic shocks, the model

cannot generate a highly right skewed size distribution with a relatively small median, therefore

the simulated exiting rate is lower. At the same time, no further heterogeneity causes the large

transition rates between large and small classes.

particular, when � is high, future pro�t �ows are important, and the risky fraction declines, so does the exit rate.

The realizations of � are set to be f0:05; 0:1; 0:2; 0:5; 1g with probabilities f0:69; 0:155; 0:1; 0:05; 0:005g respectively.
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Table 4. Moments Generated from Model and Targets

Model Data

Investment

Mean of investment rate 0.097 0.122

Std. Dev. of investment rate 0.157 0.337

Fraction of inaction 0.059 0.081

Fraction w. positive investment 0.889 0.815

Fraction w. positive investment burst 0.064 0.186

Fraction w. negative investment burst 0.033 0.018

Data Source: Cooper and Haltiwanger (2006)

Entry and Exit

Mean entry rate 0.070 0.062

Mean exit rate 0.070 0.055

Relative size, entering 0.75 0.60

Relative size, exiting 0.58 0.49

Data Source: Lee and Mukoyama (2008)13

4.5 Quantitative Results

The mechanism explained in the illustrative three-period model remains at work in the quan-

titative model with in�nite horizon. The option to exit forms a lower bound for an incumbent�s

continuation value function, and in a conventional model without the additional choice of risky

technology, this lower bound in turn creates a non-concave portion on the continuation value at

the lower end with low capital levels. When the choice of risky technology is allowed as in this

model, �rms with capital levels in this portion have incentive to smooth out the non-concavity

by taking the risk. Of course, anticipating future option of the risky technology, the continuation

value function associated to the safe one becomes less convex compared to the conventional case.

The business cycle features can now be introduced in a more realistic fashion than compar-

ative statics. Without recalibrating, I add the aggregate �uctuation by simulating a sequence

of realizations of productivity level A, and let the model evolves accordingly. As the aggregate

state changes, the reaction of �rms is still very similar to the comparative statics in the simple

model. If A drops, the slopes of both risky and safe continuation value functions decrease, which

13 Lee and Mukoyama (2008) calculate the relative sizes of entering and exiting �rms based on number of

employees.
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forms a larger portion where risky technology is strictly better. Consequently, a larger fraction of

�rms opt to take the risk, which results in a larger cross-sectional standard deviation in produc-

tivity. Therefore, the productivity dispersion is larger. The opposite happens when A increases.

Nonetheless, provided the frictions and the law of motion of aggregate state, the magnitude of

the changes in fraction of risk taking �rms and in resulting standard deviation in productivity is

history dependent.

The main goal of this numerical exercise is to show that changes in the level of At alone

can generate countercyclical �rm-level productivity dispersion as a result of �rm�s risk taking

behavior, without introducing any time varying volatility in the driving force, At. The �uctuation

in productivity A follows the Markov process speci�ed in the Table 3, and not surprisingly, it is

positively correlated with the total output with correlation coe¢cient 0:4030 (p-value = 0.0000).

Therefore, the cross-sectionally averaged productivity can serve as an alternative cyclical indicator.

The measures for productivity dispersion are chosen to be (1) standard deviation of cross-sectional

distribution of realized Z, productivity, (2) fraction of �rms that prefer risky technology, and (3)

the 95% to 5% interpercentile range of realized Z, which is the value of Z at 95% percentile minus

the value of Z at 5% percentile.

Table 5. Generated Cyclicality

Cyclicality: Correlations (p-value) with Cyclical Indicators

Cyclical Indicators

Variables of Interests Avg. Productivity, A Total Output, O

Productivity Dispersion std:dev: (Z) -0.4450 (0.0000) -0.6969 (0.0000)

Frac. of Risky Firms � -0.4544 (0.0000) -0.6063 (0.0000)

Interpercentile Range 95%-5% IPR955 -0.2089 (0.0000) -0.6860 (0.0000)

Entry Rate rEN 0.0314 (0.4830) -0.7679 (0.0000)

Exit Rate rEX -0.4774 (0.0000) -0.5649 (0.0000)

Table 5 shows that the correlation coe¢cients between productivity dispersion and cyclical

indicators are signi�cantly negative, and the absolute values are in line with the data counterparts.

In fact, the correlations between productivity dispersion and total output is even larger in scale.

Moreover, the cyclicality of productivity dispersion measured is in comparable scale to that of the

fraction of �rms that choose risky technology, and the movements are in very similar patterns as

can be read o¤ from Figure (8). This illustrate the mechanism that it is the change in fraction of

risk taking �rms that drives the cyclical movement of productivity dispersion. In bad times, more
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Figure 7: Simulated sequences of entry and exit rates. The solid line represents the exit rates, and

the dashed line records entry rates. Grey bars indicate the value of A as in previous �gure.

�rms are willing to take the risk and randomize their future values. Consequently, the resulting

dispersion measured as standard deviation of cross-sectional productivity distribution is larger,

so is the interpercentile range.14 The assumed binomial outcome of a risky technology has the

potential to impact the behavior of the dispersion, however, such impact is controlled at a much

smaller scale by the choice of �A and �z and does not alter the main pattern. A somewhat unusual

result is the signi�cantly negative correlation between total output and entry rates. This is a result

of modelling technique. The entry decision of potential entrants depends largely on discounted

and expected future payo¤, so the impact of current aggregate state is minimal. At the same time,

entry rates increase when number of existing �rms is smaller. However, the total output is not

only a function of current state A, but it also positively depends on the number of existing �rms.

These two forces drive the entry rate series to move in the opposite direction to total output.

Figure (7) plots the truncated series of entry and exit rates from the model simulation. The

sequence of exit rates remains mostly in a reasonably scale between 3 to 12 percent. On the

contrary, there are quite a few episodes in which exit rates are really high. Extraordinarily high

exit rates happen after a succession of bad realizations of aggregate state A, when the number of

remaining �rms is small. This is not surprising under the model assumptions that (1) all �rms

14Due to the model assumption, cross-sectional IPR in productivity can only be either �z, �z�At, or At, and does

not have very interesting dynamics, although it is still countercyclical. This can be overcome by allowing a richer

set of productivity lotteries and keeping the expected productivity to be A. For example, in addition to (p (A) ; �z),

�rms can also choose any (p; �zA) pair with binary outcomes such that p�zA = A. Intuitively, the IPR measure in

this case will again be negatively correlated to At because smaller �rms have incentive to take even more risk in

bad times than in the original case. Therefore, the range of realized productivities is wider, and potentially the

IPR is larger and has more possible values.
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Figure 8: Simulated sequences of (1) cross sectional productivity dispersion measured as standard

deviation in realized productivity Z (solid line, left axis), and (2) fraction of �rms that choose

risky technology (dotted line, right axis, in %). The grey bars indicate the economic condition as

value of A. In particular, darker bars represent lower values of A.

share the same serially correlated A with no idiosyncratic shocks, and (2) given each realization

of A, there is only one alternative risky technology allowed. Figure (8) shows the truncated

sequences of countercyclical cross-sectional standard deviation in productivity and fraction of risk

taking �rms in each period. The realized standard deviation in productivity is mostly ranging

between 0.25 and 0.65, and the fraction of �rms choosing risky technology is mostly between 10%

and 55%. Peaks of productivity dispersion and risky fraction are associated to excessive exiting

rates, as the mechanism suggests.

Figure (9) shows how the productivity dispersion and fraction of risk-taking �rms will react

to a drop in A from its mean level. Originally, the model is simulated in the same way as it is

for calibration: the aggregate �uctuation is shut down by �xing A at its mean level �A, while the

�rms behave under the belief that A evolves according to �ij. Then, the value of A suddenly

and permanently switches to one standard deviation lower, �A� �A, and the �rms� belief remains

unchanged. The risky fraction and productivity dispersion increases immediately upon impulse,

then oscillate with an ascending trend, and eventually settles at a higher level. The two paths

may seem unusual at the �rst glance, but it is the joint work of (1) technology choice and (2)

capital adjustment costs. Upon the bad shock, as the result of higher entering threshold, the

number of entrants immediately drops to a lower level and then remains constant, and the scale

of the economy measured as the total number of remaining �rms decreases gradually to a new
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Figure 9: Impulse responses to a permanent (and expected) one standard deviation drop in aggre-

gate state. The left panel is the response of cross-sectional productivity dispersion measured as

standard deviation in realized productivity. The right one plots that of fraction of �rms choosing

risky technology.

stable level. If capital adjustment costs are shut down, then both the absolute number and the

fraction of risk taking �rms jump up upon impulse and drop in the following period. The reason

of this sudden jump and plump is that the risky technology becomes more appealing to �rms with

a wider range of capital stock when the shock hits, even though there is a higher probability of

bad outcome. Consequently, a large number of �rms exit due to the choice of risky technology,

which leaves less �rms remaining in the risky region and this causes the following plump. The

absolute number of risky �rms then gradually decreases while the fraction increases to a higher

level because of decreasing scale. This up-and-down trend is in line with what is shown in Figure

(9), which is driven by the technology choice. On the other hand, the oscillation is due to the

capital adjustment costs, which creates �rms� inaction in investment and prevents �rms from

freely changing their capital stocks. Therefore, �rms which should be in the risky region in the

free adjustment case may now be outside, and vice versa. Note that, the fraction of risky �rms is

around 14% when A is kept at its mean, corresponding to the standard deviation in productivity

at about 0.37. Cooper and Haltiwanger (2006) �nd that the plant-speci�c idiosyncratic shock

has a standard deviation of 0.64. Without assuming idiosyncratic risk, the calibrated stationary

version of this model is capable of reproducing at least half of the micro-level standard deviation.
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5 Concluding Remarks

Productivity dispersion tends to be larger during recessions. The prevailing view is that in-

creased uncertainty causes decline in aggregate economic activities. However, although uncertainty

matters, this story seems to contradict the observation that recessions lead increase in productivity

dispersion. To complement existing theories, I explore a simple mechanism through which aggre-

gate �uctuations due to standard "technology shocks" can endogenously generate countercyclical

dispersion in individual productivity. I alter the standard industry dynamics model with business

cycle features by incorporating technology choice as part of the individual decision problem. By

this feature, a �rm in this model can then decide the riskiness of its production. The resulting

productivity distribution is non-degenerate even if no other heterogeneity is modeled. The mo-

del provides the following predictions: small �rms are more likely to take risk and have lower

survival rates, but conditional on surviving, they exhibit higher productivity; a larger fraction of

�rms become risky in bad times, which also leads to higher exit rate; and realized individual-level

productivity dispersion is larger in recessions.

Table 6. Additional Moments: Transition Rates

5-Year Transition Rates Model Data

Small ! Exit 0.3491 0.5032

Small ! Small 0.2900 0.4203

Small ! Large 0.3609 0.0764

Large ! Exit 0.2755 0.1803

Large ! Small 0.3228 0.0564

Large ! Large 0.4017 0.7633

Entry ! Small 0.5070 0.7483

Entry ! Large 0.4930 0.2517

Data Source: Acemoglu et. al. (2011)

The mechanism that I suggest in this paper is clearly complementary to the literature. The

comparison between the model generated moments and empirical counterparts suggests that this

is not the whole story and that there are some possible extensions for future work. The additional

moments in Table 6 indicate that the shape of �rm size distribution generated from the model is

considerably di¤erent from the true one. Without altering the mechanism, introducing further het-

erogeneity in productivity can at least partly overcome this issue. In addition to that, adding more
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shocks, such as micro-level idiosyncratic shocks, and allowing for a richer set of risky technology,

can improve the �t of calibration targets, especially the standard deviation in investment rates.

This can also help reduce the extraordinarily high exit rate under aggregate �uctuation. Again,

these extensions will not alter the mechanism at work. A potentially more interesting extension

that I am currently working on is to generalize the model into a general equilibrium framework.

One way to do so is endogenize the capital market in which exiting �rms and shrinking �rm can

sell their capital holdings to growing ones. This may also help correct the high exit rate during

really bad times.
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