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A Pareto-metaheuristic for a bi-objective winner determination problem in a

combinatorial reverse auction

Tobias Buer∗, Herbert Kopfer

Chair of Logistics, University of Bremen, P.O. Box 330440, 28334 Bremen, Germany

Abstract

The bi-objective winner determination problem (2WDP-SC) of a combinatorial procurement auction for transport

contracts comes up to a multi-criteria set covering problem. We are given a set B of bundle bids. A bundle bid b ∈ B

consists of a bidding carrier cb, a bid price pb, and a set τb of transport contracts which is a subset of the set T of

tendered transport contracts. Additionally, the transport quality qt,cb
is given which is expected to be realized when a

transport contract t is executed by a carrier cb. The task of the auctioneer is to find a set X of winning bids (X ⊆ B),

such that each transport contract is part of at least one winning bid, the total procurement costs are minimized, and

the total transport quality is maximized. This article presents a metaheuristic approach for the 2WDP-SC which

integrates the greedy randomized adaptive search procedure, large neighborhood search, and self-adaptive parameter

setting in order to find a competitive set of non-dominated solutions. The procedure outperforms existing heuristics.

Computational experiments performed on a set of benchmark instances show that, for small instances, the presented

procedure is the sole approach that succeeds to find all Pareto-optimal solutions. For each of the large benchmark

instances, according to common multi-criteria quality indicators of the literature, it attains new best-known solution

sets.

Keywords: Pareto optimization, multi-criteria winner determination, combinatorial auction, GRASP, LNS

1. Introduction and literature review

Combinatorial auctions are applied when bidders are interested in multiple heterogenous items and when the

bidders valuations of these items are non-additive. This is for example the case with the procurement of transport

services which often are highly interdependent. We focus on these kinds of items in the following. In a combinatorial

transport auction, a shipper wants to procure transport services from many freight carriers. Items of a transport auction

are denoted as transport contracts. Such a contract is a framework agreement with a duration of about one to three

years, that defines an origin location and a destination location between which a certain volume of goods has to be

regularly carried (usually on the road) while a specified service level has to be satisfied.
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Combinatorial transport auctions allow freight carriers (bidders) to submit bundle bids. A bundle bid is an all-

or-nothing bid on any subset of the set of tendered transport contracts. In particular, a freight carrier can bid on

combinations of transport contracts that exhibit strong synergies ([1], [2], [3]). With this, the shipper strives to

reduces his or her total transport costs.

Real-world applications of combinatorial auctions for the procurement of transport service are described by Led-

yard et al. [4], Elmaghraby and Keskinocak [5], for example. Caplice and Sheffi [6, 7] discuss real-world issues of

combinatorial transport auctions and report, among other things, that practical transport auctions studied handle an

average annual procurement volume of 150 million US-dollar. The whole auction process is complex and can last a

few months [6].

After bidding is completed, the shipper (auctioneer) has to decide which of the received bundle bids should be

accepted as winning bids. This problem is known as the winner determination problem which is usually modeled as a

combinatorial optimization problem (for a review see [8]). For combinatorial auctions which are used for selling items,

the set packing problem is used to maximize the total revenue (compare [9, 10], for a review see [11]). Conversely,

the winner determination problem of combinatorial procurement auctions like transport auctions are often modeled

based on the set covering problem or the set partitioning problem and the total procurement costs are minimized.

In practice, shippers usually also want to ensure or improve service quality of the procured transport contracts

(’transport quality’) and therefore do not exploit their full potential for cost savings [3]. Models of winner deter-

mination problems of combinatorial auctions that try to integrate quality aspects in the decision making process are

described in [6], [7], [12], [13]. Primarily, these approaches try to integrate quality aspects as some kind of side

constraint or they use penalty costs to disadvantage low quality carriers or bundle bids, respectively. However, this

requires preference information of the shipper with respect to the desired trade-off between transport costs and trans-

port quality. As Caplice and Sheffi [6] state, identifying the desired trade-off is one of the most challenging tasks

in the procurement of transport contracts for a shipper. Therefore, Buer and Pankratz [14] introduced an additional,

second objective function for maximizing the transport quality within a winner determination problem. The resulting

bi-objective model, denoted as 2WDP-SC, seems helpful, if the desired trade-off between transport costs and transport

quality is a priori unknown to the shipper.

This paper presents a new heuristic for a bi-objective winner determination problem. The presented heuristic

outperforms previous methods for that optimization problem [14, 15, 16]. The article is organized as follows. Section

2 introduces the studied bi-objective winner determination problem. To solve it, we present a new Pareto metaheuristic

called PNS (Section 3). The performance of PNS is evaluated by means of a benchmark study (Section 4) whose

results are discussed in Section 5. Section 6 summarizes the findings.
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2. The bi-objective winner determination problem

The bi-objective winner determination problem of a combinatorial transport procurement auction based on a set

covering formulation (2WDP-SC) has been introduced by Buer and Pankratz [14]. We are given a set T of transport

contracts offered by a single shipper (decision maker) and a set B of bundle bids which have been submitted by a

set C of carriers. A bundle bid b ∈ B is composed of a carrier cb ∈ C, a bid price pb ∈ R+, and a subset τb of the

offered transport contracts T . With the bundle bid b, the carrier cb ∈ C expresses the intention to execute the set of

transport contracts τb ⊆ T , if he gets paid the price pb by the shipper. Let atb = 1 if t ∈ τb and atb = 0 otherwise

(∀t ∈ T,∀b ∈ B). If atb = 1, we say b covers t. Furthermore, we are given parameters qt,cb
∈ N (∀t ∈ T, c ∈ C) which

indicate the achieved transport quality if transport contract t is executed by carrier c who submitted bundle bid b ∈ B.

The shipper prefers higher values of qt,cb
.

The optimization task of the shipper is to determine a set of winning bids X (X ⊆ B). The binary decision variable

xb indicates, whether bundle bid b ∈ B is accepted as winning bid (xb = 1 ⇔ b ∈ X) or not. The 2WDP-SC asks for

the set of winning bids X that covers all transport contracts T and at the same time strives to do both, to minimize the

total procurement costs and to maximize the total transport quality. The 2WDP-SC is defined by the expressions (1) –

(4).

min f1(X) =
∑

b∈B

pb · xb, (1)

min f2(X) =(−1)
∑

t∈T

max
b∈B
{qt,cb

· atb · xb}, (2)

s. t.
∑

b∈B

atb · xb ≥ 1, ∀t ∈ T, (3)

xb ∈ {0, 1}, ∀b ∈ B. (4)

Objective function f1 (1) minimizes the total procurement costs of the shipper. That is, the sum of the prices of the

winning bids. Objective function f2 (2) maximizes the total transport quality of the procured transport contracts. For

ease of notation used later, we minimize the negative total transport quality to obtain a pure minimization problem.

Constraint set (3) guarantees, that each transport contract is covered by at least one winning bid. Finally, expression

(4) ensures, that each bundle bid is an all-or-nothing bid, that is, partial acceptance of a bundle bid is prohibited.

The formulation of the objective function f2 is influenced by the set covering inequality (3). Because of (3), a

transport contract t may be covered by multiple winning bids although it must be executed only once (this is possible

due to the free disposal assumption). Therefore, the maximum function in f2 makes sure, that for each transport

contract t only the highest transport quality value qt,cb
for the given the set of winning bids is summed up once.

Note, that using the set partitioning equality with a strict equal sign instead of (3) would avoid this issue – however,

this would complicate finding a feasible solution and most likely lead to higher total procurement costs f1 which is
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unwanted by the shipper (using set covering or set partitioning variant in this context is discussed in more detail by

Buer and Pankratz [15, p. 195f]).

The expressions (1), (3), and (4) define the well-known NP-hard set covering problem [17]. If a single objective

decision problem with fk, k = 1 is NP-complete, then the corresponding multi objective decision variant with fk, k > 1

is also NP-complete [18]. Therefore, the 2WDP-SC is NP-hard.

Finally, we introduce the notation of solution dominance. Let k be the number of objective functions of a

minimization problem and let X1, X2 be two feasible solutions. X1 weakly dominates X2, written X1 � X2, if

fi(X
1) ≤ fi(X

2), i = 1, . . . , k. X1 dominates X2, written X1 ≺ X2, if fi(X
1) ≤ fi(X

2), i = 1, . . . , k and fi(X
1) < fi(X

2)

holds at least for one k. An approximation set is a set of feasible solutions which do not ≺-dominate each other.

The approximation set which contains those feasible solutions which are not weakly dominated by any other feasible

solution is called Pareto-optimal set.

3. A Pareto metaheuristic based on GRASP and adaptive LNS

The developed metaheuristic procedure is denoted as Pareto neighborhood search (PNS). It integrates search

techniques known from the metaheuristics greedy randomized adaptive search procedures (GRASP) and large neigh-

borhood search (LNS). With respect to the multicriteria situation, the search uses dominance-based and criterion-

individual search techniques (cf. Talbi [19, p. 323ff]). Dominance-based search means that values of both objective

functions are used to control the search process, while criterion individual search means that only a single objective

criterion is used and the other is temporarily neglected. An overview of PNS is given in Alg. 1.

Algorithm 1: Pareto neighborhood search (PNS)

Input: problem data: B; parameters: r, dmax, ds

Output: approximation set A

A← ❞♦♠✐♥❛♥❝❡❇❛s❡❞❈♦♥str✉❝t✐♦♥(B, r, dmax)

A← ❧♦❝❛❧❙❡❛r❝❤(B, ds, A)

3.1. Construction Phase (DRC)

A set of non-dominated solutions is constructed with a method called dominance-based randomized construction

(DRC, cf. Alg. 2). DRC is a multi start procedure that iteratively constructs feasible solutions to obtain a good

approximation set. The termination of the multi start procedure is controlled by the parameter dmax ∈ N. That is, DRC

terminates if dmax solutions are constructed successional without finding a new non-dominated solution.

A single feasible solution is actually constructed by adding bundle bids successively to an infeasible solution X.

The bid to be added next is determined via a two-stage candidate bid selection procedure.
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Algorithm 2: DRC

Input: set of bundle bids B, no. sectors r, dmax

Output: approximation set A

d ← 1

repeat ✴✴ r❡st❛rt ❧♦♦♣

k ← 0

X ← ∅

B′ ← B

while X infeasible do

CL← ∅

R1 foreach b ∈ B \ X do

if g(b, X) = ∞ then

B← B \ {b}

else

R2 CL← CL ⊎ {b}

end

end

b′ ← s❡❝t♦r❈❛♥❞❙❡❧❡❝t✐♦♥(CL, k, r)

X ← X ∪ {b′}

k ← k + 1

end

if (∄X′ ∈ A|X′ ≺ X) then

A← A ⊎ {X}

d ← 1

else

d ← d + 1

end

B← B′

until d = dmax

In the first stage, a set of candidate bids, also denoted as candidate list CL ⊂ B \ X, is determined. Bids in CL

are potential candidates to be added to the current solution X. Therefore, we use the vector-valued greedy function

g(b, X) = (P(b, X),Q(b, X)) to rate every bundle bid which was also used by Buer and Pankratz [15]. The elements of

the candidate list CL are those bundle bids which are not dominated by other bundle bids with respect to the valuation
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of g(b, X).

The first rating function P(b, X) measures the ability of a bundle bid b < X to make X a feasible solution and to

improve f1(X). Lower values of P(b, X) are considered as better. P(b, X) calculates the average additional costs for

those contracts in b which are not yet covered by X (cf. Chvátal [20]). Let τ(X) denote the set of contracts covered

by X, i.e. τ(X) =
⋃

b∈X τ(b). If all transport contracts τ(b) of a bundle bid b are already covered by X, then b cannot

contribute to reach feasibility of X and therefore P(b, X) is set to +∞. P(b, X) is defined according to (5).

P(b, X) =



























pb

|τ(b)\τ(X)|
if τ(b) \ τ(X) , ∅,

+∞ otherwise.

(5)

The second rating function Q(b, X) measures the ability of a bundle bid b < X to improve f2(X). By accepting an

additional bundle bid b as winning bid the transport quality f2 either remains stationary or increases, i.e., ∆ f2(X) =

f2(X ∪ {b})− f2(X) ≥ 0. In contrast to f1, the value of f2 cannot worsen by accepting an additional bid. The increment

in transport quality ∆ f2(X) is divided by the total number of contracts covered by each individual bid in X ∪ {b} , that

is
∑

b′∈X∪{b} |τ(b
′)|. By this, covering a contract by several bids is penalized. Finally, this value is multiplied by −1, so

that smaller values of Q(b, X) represent better bids (in consistence with P(b, X)). If ∆ f2(X) = 0, b does not improve

f2 and Q(b, X) assigns a rating of +∞. Q(b, X) is defined according to (6).

Q(b, X) =



























−
∆ f2(X)

∑

b′∈X∪{b} | τ(b
′) |

if ∆ f2(X) > 0,

+∞ otherwise.

(6)

By means of the vector-valued rating function g(b, X) the candidate list is constructed during the foreach-loop of

DRC (cf. remark R1 of Alg. 2). As long as the constructed solution X is infeasible, the following steps are performed:

Each bundle bid b ∈ B \ X is rated according to g(b, X). If the rated bundle bid b is not dominated by any of the

bundle bids in CL, then b is added to CL and those bundle bids in CL which are dominated by b are removed. This is

symbolized by the operator ⊎ (cf. remark R2 of Alg. 2). On the other hand, if g(b, X) = (+∞,+∞) then b is not able

to contribute to the constructed solution X and can be disregarded in future ratings of the same solution.

After all bundle bids in B \ X have been rated and the set of candidate bids CL is available, a bundle bid has to be

selected from CL and added to X at random. This is done in the second stage of the two-stage candidate bid selection

procedure.

In the second stage, the procedure sectorCandSelect (cf. Alg. 3) selects a particular bundle bid b ∈ CL that should

be added to the infeasible solution X. The procedure sectorCandSelect requires as input the candidate list CL ⊆ B,

the number of up to now constructed solutions k ∈ N, and the external parameter r ∈ N.

First, the bundle bids of the given candidate list CL are partitioned into r subsets CLs ⊂ CL which are denoted as

sectors. Second, depending on the number of up to now constructed solutions k a sector CLs is selected from which a
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P (b, x)

Q(b, x)

min

min

b1

b2

b3
b4

b5
b6 b7 b8 b9 b10

s = 1 s = 2 s = 3

Figure 1: Organization of candidate list

bundle bid b is randomly chosen with probability 1/|CLs|.

Algorithm 3: sectorCandSelction

Input: candidate list CL, mult start counter k, no. sectors r

Output: a selected bundle bid b, b ∈ CL

n← |CL|

if r > n then r ← n

m j ← ⌊n/r⌋ ✴✴ ❝❛r❞✐♥❛❧✐t② ♦❢ CL j, 1 < j < r

m1 ← n − m j · (r − 1) ✴✴ ❝❛r❞✐♥❛❧✐t② ♦❢ CL1

sort elements of CL in increasing order of P(b, X)

6 s← k mod r + 1 ✴✴ ❞❡t❡r♠✐♥❡ s❡❝t♦r

if s = 1 then

CLs ← CL[1,m1]

else

CLs ← CL[m1 + m j · (s − 2) + 1,m1 + m j · (s − 1)]

end

select a bid b ∈ CLs with probability 1/|CLs|

return b

Each sector Cs should contain an equal number of bundle bids. If an equal division of bids to sectors is not possible

(|CL| mod r > 0), then the remaining bids are assigned to the first sector CL1. Therefore, |CL1| ≥ |CL2| = . . . = |CLr |.

In the example of Fig. 1, the candidate list CL is made up of ten non-dominated bundle bids b1, . . . , b10. These are

divided into r = 3 sectors. Sector CL1 contains four bids and sectors CL2 and CL3 contain three bids, respectively.

From the sector CLs, a bundle bid is chosen randomly with equal probability. The sector CLs is determined

depending on the number of constructed solutions k so far (cf. Line 6 of Alg. 3). To construct the first solution

(k = 0), all bundle bids are drawn from the first sector CL1. For the second solution (k = 1), all bundle bids are drawn

7



from sector CL2 and so forth.

The idea of segmenting the bundle bids into sectors, is to steer the search process into certain dimensions of the

bicriteria objective space. The options to choose a bundle bid in each construction step are reduced and the pressure

to steer into a certain part of the objective space is increased. Without any segmentation (r = 1), decisions made in the

later stage of constructing a solution might conflict previous decisions. For example, first some bundle bids are chosen

which might result in a good solution with respect to the first objective, later some other bundle bids are chose which

are in favor of the second objective function; sometimes this will lead to good compromise solution but sometimes

the solution quality will be poor in both objective functions.

3.2. Improvement phase

The improvement phase (cf. Alg. 4) is inspired by the metaheuristic large neighborhood search. Basically,

solutions from the approximation set A are destroyed randomly according to a destroy rate and after that rebuilt by

means of a greedy single-criterion method. The actual destroy rate and the actual choice of one of the two greedy

rating functions P(b, X) and Q(b, X) are decided during the improvement phase by setting parameters self-adaptive.

The main criterion for the self-adaptive parameter setting, that is the choice of a destroy rate as well as a greedy

rating function, is the number of failed attempts to improve X ∈ A. This measure for ’success’ of a certain destroy rate

and a certain greedy rating function is tracked on a local level for each solution and not on a global level for the entire

approximation set. With this focus on individual solutions in A, the improvement phase is able to better account for

structural differences between non-dominated solutions. Structural differences on the decision space level may occur

for solutions that lie in very different areas of the objective space but are nevertheless Pareto optimal. For example, a

solution X with a high value for f1(X) and a low value for f2(X) versus a solution X′ with a low value for f1(X′) and a

high value for f2(X′).

The improvement phase (cf. Alg. 4) requires as input an approximation set and a destroy strategy. A destroy

strategy ds is a sequence 〈ds1, . . . , dsn〉 of destroy rates (∀dsi > 0). The notations fail[X].P and fail[X].Q in Alg. 4

denote the number of failed attempts to improve the solution X with the greedy rating function P(., X) and Q(., X),

respectively. Furthermore, the approximation set A is implemented as a first-in, first-out list structure. To remove

a solution from A, the solution on the first position is chosen (cf. remark R1); a new non dominated solution X is

inserted at the back of A. At the same time, solutions in A which are dominated by X are deleted (cf. remark R2). With

this first-in, first-out approximation list, the computational effort to improve solutions in A is approximately equally

distributed among all regions of the approximation front.

The procedure destroySol (cf. Alg. 5) destroys a given solution X. This is done by removing bundle bids from

X randomly with a destroy rate (removal probability) of dsi percent. The destroy rate dsi depends on the destroy

strategy ds and the numbers fail[X].P and fail[X].Q of failed attempts to improve X (cf. Alg. 5, remark R1). The

destroy probability is the probability by which a bundle bid b ∈ X is removed from X. The function rand(1, 100)

returns a random number between 1 and 100 (inclusively). The procedure destroySol returns the resulting solution
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Algorithm 4: Improvement phase

Input: approximation set A, ds

repeat

R1 select and remove the first solution X of A

reinsert X at back of A

Xd ← ❞❡str♦②❙♦❧✭X, fail[X].P, fail[X].Q, ds✮

Xr ← r❡♣❛✐r❙♦❧✭Xd, fail[X].P, fail[X].Q✮

if ∄Xa ∈ A | Xa � Xr then

R2 A← A ⊎ {Xr} ✴✴ ✐♥s❡rt ❛t ❜❛❝❦ ♦❢ A

fail[Xr].P← 0

fail[Xr].Q← 0

else if fail[X].P < fail[X].Q then

fail[X].P← fail[X].P + 1

else

fail[X].Q← fail[X].Q + 1

end

until time limit reached

return A

X′ ⊆ X which is probably infeasible.

Algorithm 5: destroySol

Input: X, fail_P, fail_Q, ds

Output: X′ ⊆ X

X′ ← X

R1 i← min(fail_P, fail_Q) mod |ds|

foreach b ∈ Xd do

if rand(1,100) ≤ dsi then X′ ← X′ \ {b}

end

return X′

The destroyed solution X′ is passed to the procedure repairSol (cf. Alg. 6). Furthermore, the procedure repairSol

gets the numbers of failed attempts fail.P and fail.Q to improve X ⊇ X′ by using rating function P(., X) and Q(., X),

respectively. A new feasible solution is searched for via a a single-criterion greedy heuristic. The heuristic chooses

among P(., X) and Q(., X) that function, which produced less unsuccessful improvement attempts to generate a new
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non-dominated solution (cf. Alg. 6, remark R1). During the while-loop, the solution X′ is repaired by consecutively

adding bids to X′ in a greedy fashion. If the greedy rating function returns +∞ for a bundle bid, this bid cannot

improve the solution and therefore must not be considered in further iterations (cf. Alg. 6, remark R2).

Algorithm 6: repairSol

Input: infeasible solution X′, fail.P, fail.Q

Output: feasible solution X ⊃ X′

R1 if fail.P < fail.Q then g(., .)← P(., .)

else g(., .)← Q(., .)

while X′ infeasible do

z∗ ← ∞

b∗ ← ∅ ✴✴ ♠♦st ❣r❡❡❞② ❜✐❞

foreach b ∈ B \ X do

if g(b, X′) < z∗ then

z∗ ← g(b, X′)

b∗ ← b

R2 else if g(b, X′) = ∞ then B← B \ {b}

end

X ← X ∪ {b∗}

end

return X

The improvement phase terminates, after reaching a preset time limit.

3.3. Note on a Mathheuristic Extension

Buer and Pankratz [14] introduced an exact branch-and-bound method based on the epsilon constraint approach

for the 2WDP-SC. This approach, denoted as ǫLBB, was successfully used in Buer and Pankratz [15] to hybridize the

path-relinking phase of a GRASP method for the 2WDP-SC. Obviously, we therefore also tried to further improve the

solution quality of PNS by integrating ǫLBB in three ways: 1) hybridizing ǫLBB and dominanceBasedConstruction

(Alg. 2), 2) hybridizing ǫLBB and localSearch-Phase (Alg. 2), and 3) using ǫLBB in both phases. All in all, given

the same computing time, the three hybridized approaches led to inferior results compared to PNS. Therefore, we do

not pursue this research direction further.
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4. Design of computational study

The performance of the proposed heuristic is measured by means of a computational study. This section gives

remarks on the test procedure, presents the used benchmark instances, and introduces measures from the literature for

the quality of an approximation set.

4.1. General remarks and test procedure

The computational evaluation is done by means of artificial benchmark instances. All algorithms were imple-

mented in Java (JDK 6, Update 23). All tests were executed on the same type of personal computer (CPU Intel core

i5-750, four cores a 2.66 GHz). This also includes those heuristics that were published previously (cf. Sect. 5.3), that

is, previous computational experiments were repeated if necessary. Up to four independent computational test runs

were executed in parallel, however, the implementation of the evaluated heuristics uses no parallelization.

We first evaluate some main design choices of the method PNS. At the same time, we work out reasonable values

for the three external parameters of the method PNS. Finally, the new method PNS is compared to three other heuristics

from the literature.

4.2. Benchmark instances

The 37 benchmark instances for the 2WDP-SC introduced by Buer and Pankratz [14] are used. These instances

take into account some specific features of the transportation scenario at hand. In particular, the instance generation

procedure creates bundle bids that satisfy the free disposal assumption. This is important, as this assumption was

required to model the 2WDP-SC with set covering constraints (instead of set partitioning constraints).

For seven instances, all Pareto optimal solutions are known. These instances are denoted as small instances

(instance group S). The small instances feature up to 80 bundle bids. For the remaining thirty instances, the set of

Pareto optimal solutions is unknown. These instances are denoted as large instances. These instances are divided

into different classes by means of different groups classifying instances according to their number of bundles or their

number of contracts. There are three groups A, B, and C which contain instances with 500, 1000, and 2000 bundle

bids, respectively. The groups a, b, c denote instances with 125, 250, and 500 transport contracts, respectively.

Consequently, the class Cb for example contains those instances with 2000 bundle bids and 250 transport contracts.

This notation is used in Tab. 4, Tab. 5, and Tab. 6.

4.3. Quality indicators for approximation sets

The assessment of the quality of an approximation set is a nontrivial task. An intensive examination of different

approaches is given by Zitzler et al. [21]. The evaluation of algorithms in view of the obtained solution quality is

usually more complex in the multiple objective case than in the single objective case. In the single objective case,

performance statements are naturally made by comparing the objective function values of solutions generated by

different algorithms. However, in multi objective case, approximation sets have to be compared whose fronts cross
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each other. Given two approximation sets A and B with solutions in A that dominate solutions in B and the other way

round (a ≺ b and a′ ≺ b′ for a, a′ ∈ A and b, b′ ∈ B) makes performance comparisons difficult.

One way to measure approximation set quality is the usage of quality indicators which should narrow down

the comparison of two approximation sets to the comparison of two real-valued numbers. Roughly speaking, a

quality indicator is a function that assigns to one or more approximation sets a scalar value. This always goes along

with a loss of information intrinsic to the approximation sets. Hence, it is advisable to use more than one quality

indicator to balance the individual strengths and weaknesses of indicators (which are discussed e.g. by Zitzler et al.

[21]). Therefore, we use three different quality indicators for the computational study, the hypervolume indicator,

the multiplicative epsilon indicator, and the coverage indicator. Those quality indicators seem to be among the most

readily accepted in the literature.

4.3.1. Hypervolume indicator IHV

The hypervolume indicator IHV (A) measures the volume of the objective subspace that is weakly dominated by

the solutions of a given approximation set A and bounded by a reference point r [22, 23]. The reference point r has

to be weakly dominated by each solution. Higher indicator values imply a better approximation set. Fig. 2 (left)

shows three non-dominated solutions a1, a2, a3. The part of the objective space that is dominated by these solutions

and bounded by the reference point r is shaded in gray. The volume of the gray area is the value of IHV ({a1, a2, a3}).

In Fig. 2 (right) the new non-dominated solution a4 is added and the hypervolume is increased by the volume of the

area shaded in dark gray. Apparently, every new non-dominated solution increases the value of IHV .

f1

f2 f2

f1

b a
1

b a
2

b a
3

×r

bc
a4

b a
1

b a
2

b a
3

×r

IHV ({a
1, a4, a3}) > IHV ({a

1, a2, a3})

Figure 2: Principle of hypervolume indicator IHV .

Following earlier studies on the 2WDP-SC [14, 15], the reference point r is defined as r1 = f1(B) and r2 = 0. The

values of the objective functions f1 and f2 differ in several orders of magnitude (using the benchmark instances of

Section 4.2). Therefore they are normalized prior to calculating IHV according to equation (7).

f ′i (X) =
fi(X) − f min

i

ri − f min
i

with i ∈ {1, 2} (7)

and f min
1

:= 0, f min
2

:= f2(B) − 1.
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4.3.2. Epsilon indicator Iǫ

The multiplicative epsilon indicator Iǫ(A, B) introduced by Zitzler et al. [21, p. 122] compares two approximation

sets A and B and is based on the epsilon dominance relation �ǫ . It is defined as follows:

f (a) �ǫ f (b)⇔ ∀i ∈ {1, . . .m} : fi(a) ≤ ǫ · fi(b). (8)

Iǫ(A, B) is the minimum factor, by which the value of the objective function of each solution in B has to be

multiplied, such that each solution in B is epsilon dominated by at least one solution in A.

Iǫ(A, B) = inf
ǫ∈R
{∀b ∈ B, ∃a ∈ A : f (a) �ǫ f (b)}. (9)

Lower values of Iǫ(A, B) imply a higher quality of A. By definition, it holds that Iǫ(A, B) ≥ 1. For Iǫ(A, B) = 1,

each solution in B is weakly dominated by a solution in A. In general, Iǫ(A, B) , Iǫ(B, A) holds.

Iǫ(A, B) is a binary indicator. In case that more than two approximation sets should be compared, a pairwise

comparison of the involved approximation sets is required. To simplify the comparison, in this study, we use the

unary epsilon indicator [24, S. 12]:

Iǫ(A) := Iǫ(A, A
R). (10)

AR is denoted as reference approximation set. AR is the set union of the approximation sets A′ to be compared

without any dominated solutions.

4.3.3. Coverage indicator IC

Zitzler and Thiele [22, S. 297] introduced the binary coverage indicator. The coverage indicator IC(A, B) indicates

the fraction of solutions in the approximation set B, that are dominated by at least one solution in the approximation

set A.

IC(A, B) =
|{b|∃a ∈ A : f (a) � f (b)}|

|B|
. (11)

In general, Iǫ(A, B) , Iǫ(B, A) holds. Higher values of IC(A, B) imply a higher quality of A. The range of values is

0 ≤ IC(A, B) ≤ 1, where IC(A, B) = 1 indicates, that each solution in B is dominated by at least one solution in A. Like

Iǫ(A, B), IC(A, B) is again a binary indicator and we only use the unary variant by means of a reference approximation

set: IC(A) := IC(A, AR).
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5. Results and discussion

5.1. Contribution of two-stage candidate bid selection

We evaluate, whether the quality of the approximation sets generated by the two-stage candidate bid selection

procedure is improved in comparison to a traditional single-stage bid selection procedure. For this, only the construc-

tion procedure DRC (cf. Alg. 2) is studied. The single-stage selection procedure is realized by setting the number of

sectors r to 1. The two-stage procedure is realized by using multiple sectors (r > 1).

We try to receive an impression of the actual size of the candidate list to identify a reasonable number of sectors

r. Each of the 37 instances was solved 500 times by the heuristic DRC (cf. Alg. 2). Immediately prior to each call

of the method sectorCandSelection(CL,k,r) in DRC, the size of the candidate list CL was measured. Tab. 1 shows

the aggregated results. The average size of the candidate list CL grows slightly with increasing numbers of bundle

bids per instance. Nevertheless, even for the largest instances with 2000 bids, the median of |CL| is only 4 and the

maximum size is 21. To avoid an insufficient small number of bids per sector, we use three sectors (r = 3) in the

two-stage bid selection approach.

Table 1: Size of the candidate list CL during construction phase.

Instance group Mean Stand. dev. Median Max.

S (<100 bids) 3.00 1.47 3 7

A (500 bids) 4.19 2.22 4 16

B (1000 bids) 4.29 2.51 4 16

C (2000 bids) 4.58 2.91 4 21

Construction of 500 solutions for each instance.

The construction heuristic with a single-stage bid selection is denoted as DRCr=1 and the two-stage bid selection

heuristic is denoted as DRCr=3. In contrast to Alg. 2, both heuristics terminate after 1000 constructed solutions (and

dmax = ∞). For each of the thirty large instances five test runs with different random seeds were performed. A test run

is the one-time solution of an instance with both heuristics DRCr=1 and DRCr=3. The results for the quality indicators

IHV , Iǫ , and IC are shown in Tab. 2. Note that approximation set AR was calculated on a per test run basis and not over

all five test runs per instance.

Applying the Wilcoxon signed rank test to the results, the null hypothesis (’the quality indicator median values

of the different algorithms possess the same probability distribution’) can be rejected for each of the three quality

indicators. The p-values for IHV , Iǫ , and IC are ≤0.0001, ≤0.0001, and 0.0028, respectively. The results are statistically

significant even for very tight levels of significance of one percent or lower. Therefore, it is highly likely, that the

observed quality differences of the obtained approximation sets can be attributed to the usage of the two-stage bid

selection procedure in the construction phase.
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Table 2: One-stage versus two-stage selection of bids from the candidate list with DRCr=1 and DRCr=3.

IHV Iǫ IC

DRCr=1 DRCr=3 DRCr=1 DRCr=3 DRCr=1 DRCr=3

Q25 0.8815 0.8924 1.09 1.13 0.07 0.05

Q50 0.8917 0.8992 3 1.2 0.11 0.09

Q75 0.9352 0.9526 13 1.29 0.15 0.13

Regarding the median values of the quality indicators IHV and Iǫ , the two-stage approach DRCr=3 clearly outper-

forms the one-stage heuristic DRCr=1. In contrast, the median values of IC suggest an opposite interpretation. Looking

at the generated approximation sets, the two-stage heuristic seems to discover better extreme solutions than DRCr = 1,

especially with respect to f1. On the other hand, DRCr=1 seems to generate more and better compromise solutions

with balanced f1 and f2 values. This might explain the slightly better values of IC in Tab. 2 for the algorithm DRCr=1.

All in all, the two-stage candidate bid selection approach clearly increases the quality of the calculated approximation

sets.

5.2. Contribution of dynamic destroy rates in improvement phase

The goal of this experiment is twofold. On the one hand, we want to check if the proposed dynamic destroy rates

in the solution phase improve approximation set quality. On the other hand, a proper destroy strategy is searched for.

A destroy strategy is a sequence 〈ds1, . . . , dsn〉 of destroy rates. 17 different destroy strategies are compared, Tab. 3

shows the results. Each of the 17 different destroy strategies is used to compute the thirty large instances twice. These

17 strategies include the five non-dynamic strategies 〈3〉, 〈6〉, 〈9〉, 〈12〉, 〈15〉 with an a priori fixed destroy rate which

is unchangeable. We also experimented with larger destroy rates between 20 and 40 percent, however, these seem

clearly inferior to the smaller destroy rates shown in Tab. 3. Column two to four of Tab. 3 show the median of the

appropriate quality indicator over 60 runs of the destroy strategy. The runtime for each run was fixed to five minutes.

The best median values are bold.

The strategies 〈3〉, which is static, and 〈3, 6, 9, 2, 4〉 achieve the best median values for two quality indicators,

respectively. We use both strategies to compute each of the large instances five times. Applying the Wilcoxon signed

rank test to the results, the null hypothesis (’the quality indicator median values of the different algorithms possess

the same probability distribution’) can be rejected for two of the three quality indicators on a level of significance of

less than three percent. The p-values for IHV , Iǫ , and IC are ≤0.0001, 0.0216, and 0.4231, respectively. The dynamic

strategy clearly outperforms the static strategy by means of the hypervolume indicator while the observed difference

by means of the coverage indicator is not significant. We conclude, that the dynamic strategy 〈3, 6, 9, 2, 4〉 works best.

Fig. A.3 in the appendix depicts three runtime distributions which indicate that this strategy usually obtains a given

target value faster.
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Table 3: Results for 17 different destroy strategies for PLNS.

strategy IHV Iǫ IC

〈3, 6, 9〉 0.9095 1.01 0.01

〈6, 12, 18〉 0.9093 1.02 0.00

〈9, 18, 27〉 0.9089 1.03 0.00

〈9, 6, 3〉 0.9097 1.015 0.01

〈18, 12, 6〉 0.9096 1.02 0.00

〈27, 18, 9〉 0.9093 1.03 0.00

〈3〉 0.9096 1.01 0.07

〈6〉 0.9096 1.02 0.02

〈9〉 0.9096 1.02 0.00

〈12〉 0.9092 1.025 0.00

〈15〉 0.9092 1.03 0.00

〈5, 15, 7〉 0.9096 1.02 0.00

〈7, 19, 9〉 0.9093 1.02 0.00

〈15, 5, 10〉 0.9094 1.02 0.00

〈19, 7, 14〉 0.9095 1.02 0.00

〈3, 6, 9, 2, 4〉 0.9097 1.01 0.05

〈6, 12, 18, 5, 10〉 0.9096 1.02 0.00

Median values of quality indicators over two runs of each large instance.
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5.3. Comparison with other heuristics

To benchmark the new method PNS by means of approximation set quality the three heuristics SPEA2A, P-

GRASPP+HPR, and PGRASPQ+HPR are used. The method SPEA2A is based on the Strength Pareto Evolutionary

Algorithm 2 introduced by Zitzler et al. [25]. This generic multi objective genetic algorithm was adapted by ge-

netic operators specific to the 2WDP-SC in [14]. In that paper the method was called A8. PGRASPP+HPR, and

PGRASPQ+HPR were proposed in [15]. Both methods are multi objective GRASP whose path-relinking phase was

hybridized with the exact branch-and-bound method ǫLBB by [14]. Another hybridized heuristic for the 2WDP-

SC was discussed in [16] (see also 3.3) which is, however, not included in our comparison, as it does not clearly

outperform the mentioned heuristics on the majority of instances.

For the benchmark, the parameters of PNS are set as follows. The number of sections r are set to 3, the vector

destroy probabilities is set to (3,6,9,2,4), and the termination criterion of the construction phase is set to dmax = 92.

While the configuration of the first two values were justified in Sections 5.1 and 5.2, the value of the termination

criterion dmax was determined as follows: for each large instance, 1000 solutions were generated with DRC (cf. Alg.

2). The experimental distribution of the number of unsuccessful improvement tries was recorded (median 6, mean 20,

standard deviation 42) and dmax was set to the value of the ninety-five percent quantile, which is 92.

The runtime of each heuristic was five minutes (300s). All heuristics solved all instances on the same type of

computer. Please note, we do not cite the computational results of the experiments in [14, 15] but solve all instances

again on the same (and faster) computer.

The results for the small instances with known Pareto optimal solution sets are shown in Tab. 4. The two rightmost

columns show the Pareto optimal hypervolume values and the cardinality of the reference approximation set AR (here,

it is identical to the Pareto optimum solution set). These optimal results haven been obtained by the bicriteria branch-

and-bound method ǫLBB introduced in [14].

Algorithm PNS is able to solve all seven small instances to Pareto optimality, that is the whole Pareto optimal

solution set is found. In contrast, the procedures PGRASPP+HPR and PGRASPQ+HPR are able to solve six out of

seven instances to Pareto optimality. In [15], only four instances could be solved to Pareto optimality. The method

SPEA2A is able to find some Pareto optimal solutions for six instances (S1 – S5, S7), but never the complete set.

The results for the large instances without known Pareto optimum solution are shown in Tab. 5. This time, the

reference approximation set AR (cf. two rightmost columns) is generated by merging the approximation sets of PNS,

PGRASPP+HPR, PGRASPQ+HPR, and SPEA2A and removing the dominated solutions. The last five rows of Tab.

5 show the 25 percent quantile, the median, the 75 percent quantile, the mean, and the standard deviation for each

heuristic and each quality indicator.

The heuristic PNS finds new best approximation sets in terms of IHV and Iǫ for all thirty instances. Therefore,

PNS clearly outperforms the existing approaches in terms of approximation set quality. Furthermore, from the values

of IC follows that the approximation sets computed by PNS are even equal to the reference approximation set AR in

28 out of 30 instances. Only for the instances Ba3 and Cc7, the reference approximation set is not solely generated
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Table 4: Comparison of solution approaches by means of small instances (instance group S).

Instance PNS PGRASPP+HPR PGRASPQ+HPR SPEA2A ǫLBB*

IHV Iǫ IC IHV Iǫ IC IHV Iǫ IC IHV Iǫ IC IHV |AR |

S1 0.8576 1.00 1.00 0.8576 1.00 1.00 0.8576 1.00 1.00 0.8573 1.03 0.71 0.8576 7

S2 0.6095 1.00 1.00 0.6095 1.00 1.00 0.6095 1.00 1.00 0.6022 1.08 0.45 0.6095 11

S3 0.8169 1.00 1.00 0.8169 1.00 1.00 0.8169 1.00 1.00 0.8125 1.47 0.38 0.8169 13

S4 0.5677 1.00 1.00 0.5677 1.00 1.00 0.5677 1.00 1.00 0.5636 1.41 0.25 0.5677 12

S5 0.8652 1.00 1.00 0.8644 1.01 0.88 0.8652 1.02 0.94 0.8535 2.00 0.29 0.8652 17

S6 0.6988 1.00 1.00 0.6988 1.00 1.00 0.6988 1.00 1.00 0.6879 1.27 0.10 0.6988 10

S7 0.8915 1.00 1.00 0.8915 1.00 1.00 0.8915 1.00 1.00 0.8866 1.66 0.12 0.8915 17

*The method ǫLBB calculates always Pareto-optimal solutions.

by PNS. Consequently, the solution approach PNS obtains for all three quality indicators the best median indicator

values at the same time.

5.4. Runtime behavior

To compare the runtime of the three heuristics from the literature with the new method PNS, a target hypvervolume

value is defined for each instance. The runtime needed to achieve the target value is measured.

The target value is defined as the lowest IHV value per instance shown in Tab. 4 and Tab. 5. Therefore, we are sure

that each heuristic has been able to reach the target value at least once. The best known hypervolume value seems not

to be a qualified target value because this target value will probably not be reached by most heuristics, which limits

the value of the experiment. Following, each instance is solved by each heuristic 75 times and the time to target is

measured. The total runtime per heuristic was limited to three minutes (180s). Note, if an algorithm could not reach

the target value within 180s, then a runtime of 180s is reported anyway. Therefore, an algorithm might appear faster

than it actually is. However, this behavior occurred only with the heuristic SPEA2A and never with the heuristic PNS.

The aggregated results are reported in Tab. 6. According to the reported median values for the 37 instances, the

new heuristic PNS ranks second. The fastest method is PGRASPP+HPR, third place goes to PGRASPQ+HPR, and

fourth place goes to SPEA2A. The median runtime of the method PGRASPQ+HPR for the larger instances is around

135s, which can be explained by a switch from the neighborhood search phase towards the path relinking phase, which

is time dependent. Furthermore, although SPEA2A can repeatedly not achieve the target value in the predefined 180s

(cf. Q75 in Tab. 6), for some of the larger instances SPEA2A seems competitive (cf. Q25 and Q50).

To give more insights into the runtime behavior of the heuristics, Fig. A.4(a)-(f) show the experimental runtime

distribution for selected instances. The method SPEA2A is missing on some figures, as this procedure is sometimes

too slow and the respective curve would lie too distant from the other curves.
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Table 5: Comparison of solution approaches by means of large instances (instance groups A, B, and C).

Instance PNS PGRASPP+HPR PGRASPQ+HPR SPEA2A reference

IHV Iǫ IC IHV Iǫ IC IHV Iǫ IC IHV Iǫ IC IHV |AR |

Aa1 0.9027 1.00 1.00 0.8996 1.14 0.00 0.8929 1.11 0.00 0.8895 1.33 0.00 0.9027 68

Aa2 0.9132 1.00 1.00 0.9118 1.06 0.00 0.9056 1.09 0.00 0.9016 1.42 0.00 0.9132 43

Aa3 0.9063 1.00 1.00 0.9026 1.04 0.00 0.8996 1.08 0.00 0.8979 1.29 0.00 0.9063 60

Ba1 0.9559 1.00 1.00 0.9521 1.21 0.00 0.9510 1.13 0.00 0.9475 1.43 0.00 0.9559 100

Ba2 0.9596 1.00 1.00 0.9578 1.11 0.00 0.9545 1.14 0.00 0.9502 1.85 0.00 0.9596 80

Ba3 0.9619 1.00 0.99 0.9595 1.22 0.00 0.9557 1.19 0.01 0.9521 1.36 0.00 0.9619 70

Bb1 0.9084 1.00 1.00 0.9050 1.17 0.00 0.9013 1.08 0.00 0.8971 1.34 0.00 0.9084 58

Bb2 0.9070 1.00 1.00 0.9036 1.13 0.00 0.9009 1.07 0.00 0.8990 1.29 0.00 0.9070 65

Bb3 0.9050 1.00 1.00 0.9033 1.14 0.00 0.8984 1.07 0.00 0.8960 1.33 0.00 0.9050 51

Bb4 0.9143 1.00 1.00 0.9071 1.36 0.00 0.9024 2.00 0.00 0.8840 20.00 0.00 0.9143 149

Bb5 0.9071 1.00 1.00 0.9006 1.12 0.00 0.8988 1.10 0.00 0.8913 2.00 0.00 0.9071 108

Bb6 0.9102 1.00 1.00 0.9041 1.24 0.00 0.8993 1.13 0.00 0.8941 1.35 0.00 0.9102 114

Ca1 0.9809 1.00 1.00 0.9798 1.21 0.00 0.9783 1.18 0.00 0.9579 11.00 0.00 0.9809 100

Ca2 0.9825 1.00 1.00 0.9809 1.35 0.00 0.9794 1.22 0.00 0.9793 1.53 0.00 0.9825 85

Ca3 0.9812 1.00 1.00 0.9781 2.00 0.00 0.9786 1.17 0.00 0.9691 5.00 0.00 0.9812 73

Cb1 0.9585 1.00 1.00 0.9560 1.15 0.00 0.9529 1.15 0.00 0.9527 1.27 0.00 0.9585 78

Cb2 0.9589 1.00 1.00 0.9567 1.21 0.00 0.9539 1.13 0.00 0.9527 1.35 0.00 0.9589 50

Cb3 0.9569 1.00 1.00 0.9544 1.09 0.00 0.9530 1.09 0.00 0.9512 1.32 0.00 0.9569 30

Cb4 0.9594 1.00 1.00 0.9546 2.00 0.00 0.9533 1.17 0.00 0.9410 13.00 0.00 0.9594 143

Cb5 0.9621 1.00 1.00 0.9581 1.42 0.00 0.9556 1.19 0.00 0.9495 7.00 0.00 0.9621 119

Cb6 0.9586 1.00 1.00 0.9537 1.33 0.00 0.9524 1.17 0.00 0.9507 1.54 0.00 0.9586 100

Cc1 0.8991 1.00 1.00 0.8914 2.00 0.00 0.8883 1.11 0.00 0.8773 27.00 0.00 0.8991 147

Cc2 0.9083 1.00 1.00 0.8980 3.00 0.00 0.8974 1.15 0.00 0.8894 16.00 0.00 0.9083 164

Cc3 0.9043 1.00 1.00 0.8972 1.30 0.00 0.8944 1.11 0.00 0.8923 1.29 0.00 0.9043 128

Cc4 0.9087 1.00 1.00 0.9059 1.03 0.00 0.9046 1.05 0.00 0.9013 1.20 0.00 0.9087 14

Cc5 0.9014 1.00 1.00 0.8996 1.02 0.00 0.8980 1.04 0.00 0.8972 1.05 0.00 0.9014 8

Cc6 0.8980 1.00 1.00 0.8962 1.02 0.00 0.8949 1.03 0.00 0.8931 1.21 0.00 0.8980 12

Cc7 0.9001 1.00 0.97 0.8940 1.09 0.00 0.8923 1.08 0.03 0.8916 1.23 0.00 0.9001 86

Cc8 0.9042 1.00 1.00 0.8981 1.19 0.00 0.8955 1.09 0.00 0.8957 1.23 0.00 0.9042 65

Cc9 0.9018 1.00 1.00 0.8932 1.11 0.00 0.8922 1.10 0.00 0.8905 1.22 0.00 0.9018 89

Q25 0.9045 1.00 1.00 0.8996 1.11 0.00 0.8976 1.08 0.00 0.8925 1.29 0.00 0.9045 59

Q50 0.9095 1.00 1.00 0.9055 1.18 0.00 0.9019 1.11 0.00 0.8985 1.35 0.00 0.9095 79

Q75 0.9588 1.00 1.00 0.9557 1.32 0.00 0.9532 1.17 0.00 0.9506 1.96 0.00 0.9588 106

µ 0.9292 1.00 1.00 0.9251 1.32 0.00 0.9225 1.15 0.00 0.9178 4.35 0.00 0.9292 82

σ 0.0303 0.00 0.01 0.0315 0.42 0.00 0.0320 0.17 0.01 0.0315 6.50 0.00 0.0303 41

Q50 denotes the median. The best median-values are bold. Q25 and Q75 denote the lower and upper quartile, respectively.

µ and σ denote mean the standard deviation, respectively.
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Table 6: Comparison of the runtime (s) of the four heuristics for instance groups S, A, B, and C.

Group PNS PGRASPP+HPR PGRASPQ+HPR SPEA2A

Q25 Q50 Q75 Q25 Q50 Q75 Q25 Q50 Q75 Q25 Q50 Q75

S 0.03 0.07 0.12 0.02 0.06 0.2 0.06 0.16 0.635 104.16 168.36 182.67

A 2.64 3.66 5.04 0.30 0.58 1.82 88.36 135.05 145.61 183.05 182.94 183.20

B 7.86 11.75 18.48 0.91 1.80 3.89 10.81 135.05 135.19 8.14 97.55 182.95

C 24.07 35.28 52.54 3.50 10.20 36.67 3.74 135.05 137.79 13.61 26.27 182.73

S. A. B. C 3.50 16.65 34.37 0.52 2.39 10.75 1.45 87.66 135.17 14.30 142.33 182.87

6. Conclusion

Considering quality aspects during winner determination in a combinatorial reverse auction for transport contracts

is of practical importance. In this paper, we studied a bi-objective winner determination problem that is based on the

set covering problem and minimizes the total transport costs and the total transport quality simultaneously. To solve

this problem, the heuristic PNS was developed. PNS is inspired by the metaheuristics GRASP and LNS. To construct

an initial set of non dominated solutions, PNS applies a dominance-based randomized greedy heuristic which uses

a two-stage candidate bid selection procedure. The initial solutions are improved by means of a search in large

neighborhoods which switches the applied parameters (removal probability of bids and greedy rating function) in a

self-adaptive manner. Self-adaptive configurations depend on individual solutions and not on the entire approximation

set. PNS was tested by means of 37 benchmark instances. In terms of approximation set quality, PNS outperforms

all known heuristics on each of the 37 benchmark instances. Furthermore, PNS is the second fastest method tested.

Subject of our future research will be the development of solution approaches for bi-objective winner determination

problems which take into account additional business constraints proposed e.g. by Caplice and Sheffi [6].

Appendix A. Time-to-Target plots

Hoos and Stützle [26] as well as Ribeiro et al. [27] discuss the evaluation of algorithms by runtime distributions.

Time to target plots were introduced by Feo et al. [28]. To draw the plots presented in this appendix the programm of

Aiex et al. [29] was used.

References

[1] Kopfer H, Pankratz G. Das Groupage-Problem kooperierender Verkehrsträger. In: Kall P, Lüthi HJ, editors. Operations Research Proceedings

1998. Berlin: Springer; 1999, p. 453–62.

[2] Pankratz G. Analyse kombinatorischer Auktionen für ein Multi-Agentensystem zur Lösung des Groupage-Problems kooperierender Spedi-

tionen. In: Inderfurth K, Schwödiauer G, Domschke W, Juhnke F, Kleinschmidt P, Wäscher G, editors. Operations Research Proceedings

1999. Berlin: Springer; 2000, p. 443–8.

[3] Sheffi Y. Combinatorial auctions in the procurement of transportation services. Interfaces 2004;34(4):245–52.

20



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900  1000

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time to target

PLNS_3
PLNS_3_6_9_2_4

(a) Instance Aa2, target value IHV = 0.9131

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900  1000

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time to target

PLNS_3
PLNS_3_6_9_2_4

(b) Instance Bb6, target value IHV = 0.9097

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time to target

PLNS_3
PLNS_3_6_9_2_4

(c) Instance Cc5, target value IHV = 0.9046

Figure A.3: Empirical runtime distribution of PLNS〈3〉 and PLNS〈3,6,9,2,4〉 (dotted) determined by 200 runs

21



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time to target

PGRASP_P+HPR
PGRASP_Q+HPR

PNS

(a) Instance Aa2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time to target

PGRASP_P+HPR
PNS

(b) Instance Bb2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time to target

PGRASP_P+HPR
PGRASP_Q+HPR

PNS
SPEA2A

(c) Instance Bb4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140  160  180  200

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time to target

PGRASP_P+HPR
PGRASP_Q+HPR

PNS

(d) Instance Ca3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140  160  180  200

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time to target

PGRASP_P+HPR
PGRASP_Q+HPR

PNS
SPEA2A

(e) Instance Cc6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140  160  180  200

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

time to target

PGRASP_P+HPR
PGRASP_Q+HPR

PNS
SPEA2A

(f) Instance Cc9

Figure A.4: Empirical runtime distribution of PNS compared to benchmark heuristics determined by 75 runs
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