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Abstract

Stylized facts on financial time series data are the volatility of returns that follow non-normal conditions such
as leverage effects and heavier tails leading returns to have heavier magnitudes of extreme losses. Value-at-
risk is a standard method of forecasting possible future losses in investments. A procedure of estimating
value-at-risk using time-varying conditional Johnson Sy distribution is introduced and assessed with
econometric models. The Johnson distribution offers the ability to model higher parameters with time-
varying structure using maximum likelihood estimation techniques. Two procedures of modeling with the
Johnson distribution are introduced: joint estimation of the volatility and two-step procedure where
estimation of the volatility is separate from the estimation of higher parameters. The procedures were
demonstrated on Philippine-foreign exchange rates and the Philippine stock exchange index. They were
assessed with forecast evaluation measures with comparison to different value-at-risk methodologies. The
research opens up modeling procedures where manipulation of higher parameters can be integrated in the

value-at-risk methodology.
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Introduction

Financial institutions engage in investment activities to expand their assets so that they can provide quality
financial products and services to their clients. In these activities, financial institutions incur risks of loss from
their investment which may cause bankruptcy to their firms. In the intricate web of the financial sector, the

downfall of large institutions or many firms may lead to financial crisis.

Central banks as financial regulators require financial institutions to comply within levels of allowable
incurred risk in financial activities. Risks in financial activities are categorized in three kinds: (1) credit risk,
incurred by lending to other institutions, (2) market risk, incurred by keeping a portfolio of assets where
prices are determined by market forces, e.g., stocks, commodities, and currencies, and (3) operational risks,
incurred from internal operations of the institutions, such as electricity and office equipment failures. (BSP

Memo. Cir. 538)

Financial regulators observed international guidelines on risk capital adequacy over financial institutions as
stipulated by the Basel Committee on Banking Supervision (Basel, 2004). There are different multiple
suggested methods in dealing with different risks, yet the paper focuses on market risks where time series
analysis and econometric modeling are preferred. In managing market risks, one of the tools to comply with
these specifications is the Value-at-Risk (VaR) methodology, the measure of minimum possible loss as returns

of investment given a probability of extreme loss (Jorion, 20006).

Stylized facts in the distribution of returns are the time-varying nature in mean and variance, which brought
time series models autoregressive-moving average (ARMA) models and generalized autoregressive conditional
heteroscedasticity (GARCH) models in the fray of financial econometrics (Tsay, 2002). In higher moments,
unequal leverage effects due to negative shifts and fat tails have been evident in many researches, which
correspond left-side skewness and leptokurtosis which are changes in the shapes of distributions of returns
(T'say, 2002). In the existence of means and variances that change in time, the concept of time-varying
densities in financial returns is gaining ground and questions arise as whether there is strong evidence for

these behaviors in profits and losses (Jondeau, et. al. 2007).

The aim of the paper is to derive a VaR methodology that incorporates time-varying shape characteristics in
the framework. The Johnson Sy distribution with time-varying parameters is assumed in the value-at-risk
model as the underlying distribution of the returns (Yan, 2005). Two procedures are devised that incorporate
density changes, (1) a joint estimation in which mean and variance models are incorporated in the likelihood

function and (2) a two-step approach where the appropriate mean and variance models would generate



residuals to be fitted with the Johnson Su density. These procedures would be compared to econometric
methodologies for risk management on Philippine financial time series data with the aid of different

evaluation measures and statistical tests.
Returns from Asset Prices

Returns are relative capital gains from possessing financial assets and equities (Jorion, 2007; Tsay 2002). For

an asset of price P at time # an arithmetic return at time #is defined as (Jotion, 2007):

P—-P_
r;: tP t—1 (l)

t—1

The arithmetic return describes the relative change of assets based on most recent previous asset price.
The geometric return, also known as log-return, of an asset at time #is defined as (Tsay, 2002):

rtzlog[;;j ®

t-1

The logarithm is of base €, the Euler number. It is favorable to use the log-returns due to its additive
property (Jorion, 2007). The logarithmic transformation of the data is more favored since it restricts prices as
positive values compared to the arithmetic returns and reduces the magnitude of volatility in price changes
(Chatterjee, et al., 2000). With the statistically favorable advantages, returns computed in the paper are log-

returns.
The Definition of Value-at-Risk

Value-at-risk in simple description is a minimum threshold value for possible losses in a given probability of

risk to extreme loss (Jorion, 2007). A more formal definition is given by Tsay (2002), which deals with

probability. Suppose that at current time 7 a VaR value is to be estimated for £ periods ahead. Let ¥, be the

financial asset return series of interest to be evaluated with a distribution functon F| (x) , where a negative
t

return means loss in the long position. Define F, "' (q)=inf {x | F, (x)= q} to be the quantile function for

a left-tail probability g. Let the risk probability for extreme loss be p, commonly used values are 0.01,
0.05, or 0.10 . Then the 100(1 - p)% value-at-risk of possessing 1 unit of an asset £ petiods ahead is equal
to (Tsay, 2002):
VaR:p=P(r,, <VaR)=F, (VaR) or VaR=F_ (p) 3)

t+k —



In estimating VaR for an asset, the following elements should be known: (1) the probability p, (2) the

forecast horizon £, (3) the data frequency, e.g., daily or weekly, (4) the distribution of asset returns, and (5) the
amount of position for the asset (Tsay, 2002). In VaR estimation, statistical modeling and time series analysis
are used in describing the distribution of asset returns and research on deriving VaR from different methods

and techniques and comparison of these different techniques are fruitful and numerous.
The Family of Value-at-Risk Methods
Historical Method

In evaluating the quantile of a distribution for VaR, a simple approach is to solve for sample quantiles based

on historical data on asset returns. If {rl, Byyeurs rt}is a subset of data on consecutive periods of the return

series of an asset with window length #and Ty is the 7th smallest return in the window, then the one-period

ahead 100(1— p)% VaR is equal to:

VaR,,, = M) T (l‘p B [tp]) (r([tﬂ]“) a r([’l’])) @

where [q] means the integer part of the real number g (Tsay, 2002; Fallon and Sarmiento-Sabogal, 2003).

For example, in a window of an asset return series with 1500 data points, the long-position 99% VaR would

be the first percentile of the data, which is 15th smallest return value.

In this method of estimation, the assumed distribution of the data is the empirical distribution of returns. It
avolds the possible misspecification by not assuming mathematical probability distributions. It is a very easy
method that deals no statistical complexity. Caveat of the method is that it assumes that the distribution is
similar between past observed values and future unobserved values of the returns (Tsay, 2002). The static
approach ignores the time-varying nature of asset returns especially in volatility. In addition, the use of
sample quantiles in estimating true quantiles at the tails of a distribution is very unreliable with very high

variation (Danielsson and de Vries, 1997).
Econometric Methods

Econometric methods use time series modeling and analysis methodologies in modeling the distribution of

asset returns (T'say, 2002). The methodology involves the specification of the following: (1) conditional mean

structure [/, as a function of time t, e.g. using autoregressive-moving average (ARMA) models (Box ,et al. ,



1994) or regression models with exogenous explanatory vatiables, (2) conditional vatiance equation A, for
volatility as a function of time, e.g., using autoregressive conditional heteroscedasticity (ARCH) models
(Engle, 1982; Bollerslev, 1986; Nelson, 1991), and (3) specification of the standardized error distribution
g ~ F,, eg., using the standard normal distribution (Engle, 1982; Longerstaey and Spencer, 1996), the

standardized t distribution (T'say, 2002), or the generalized error distribution (Nelson, 1991).

Given that the proper three elements of the econometric methods has been fully specified and all model
parameters are estimated, the one-period ahead 100(1 — p)% VaR based on the econometric method is equal

to:

A

S -1
VaREcon = lut+l + ht+l Fs (p) (5)
The hats over the mean and variance specification imply one-step ahead forecasts for the mean and variance

. . -1, . . . o
of the return series. The function F, " is the quantile function of the standardized error distribution.

An example of popular models in the econometric method is the RiskMetrics model of J. P. Morgan
(Longerstaey and Spencer, 1996). The model assumes that the conditional mean of the returns is zero always

and the conditional variance follows a special IGARCH(1,1) model. The assumed error distribution of the

data is the standard normal distribution. In equation form for the log-return series 7, :

T, =0+\/h7,8,

£~ N(0,1) ©)
h=Ah_ +(1-2)¢g’,

t

The parameter A describes the variance process as an exponentially weighted moving average and is
determined to be any number between 0.9 and 1 (Longerstaey and Spencer, 1996; Tsay, 2002). A problem of
the RiskMetrics system is the assumption of normality. The distribution of financial returns tend to deviate
from the normal distribution and are more likely to be heavy-tailed, meaning that the data has greater chances

of tail values occurring in the changes of asset prices than compared to the normal distribution (Tsay, 2002).

Since the normal distribution is inadequate in modeling financial returns, another compromise is the t-
distribution, which has a bell-shaped density curve but with fatter tails compared to the normal distribution.

When an appropriate mean and variance model has been fitted for the standardized t distribution, the one-

step ahead 100(1— p) % VaR for the t distribution with » degrees of freedom is given by (Tsay, 2002):



N ! v r
VaREcon,t = ll'lt+l +L h (7)

1+1
v
v—2

The 1, , is the pth lower quantile of the t distribution with » degrees of freedom. The parameter » and other

model parameters are jointly estimated.
Extreme Value Theory Methods

In targeting tail values directly, techniques in extreme value theory are another set of tools for VaR
estimation. Extreme value theory methods are large-sample procedures designed to describe and make
inferences on the tail values of distributions of data (Coles, 2001). These techniques are described as semi-
parametric because of the involvement of parameter estimation in the methodology but the parameters are

not directly related to the distribution that generated the data (Jondeau, et al., 2007)

There are two basic techniques in extreme value theory: (1) the block maxima method (Berman, 1964;
Longin, 2000) and (2) the peaks-over-thresholds model (Pickands, 1975; Davison and Smith, 1990; Smith,
1999).

The block maxima technique has the following steps for a return series {yl s Voseens yT} (Longin, 2000): (1)

divide the data into exclusive g subsamples, each of equal subsample size of » periods (e.g., 7 = 20 for

months as subsamples, 60 for quarterly, 250 for yearly) such that T =mg , thus the data is of the form

{[yl, Vysrees Vo ] R [ym+1, Voinseees y2m] ,...,[ym(g_l)ﬂ, Vin(g-1y+25 3 Yimg ]} ; if 2 remainder 7 exists, then remove
the first 7 periods in the return series; (2) from each of the g subsamples, the subsample minimum value
y;“j“, Jj=L2,...,g is gathered for long-position VaR, creating a new data seties { oy, y?i“} ; (3) the

minimum series is fitted to the generalized extreme value (GEV) distribution for the minimum (Berman,
1964; Coles, 2001; Longin, 2000) and its parameters are estimated; the cumulative distribution function of the
GEYV is shown below:

A
1—exp _[Hful_gaJ if T#0
win (1) = ®)

1—exp{—exp[%j} if 7=0




The domain of F}, depends on the value of 7;if 7>0, then u > o —% (Weibull distribution),
u>a—"* when T <0 (Frechet distribution), and # €[] when 7 =0 (Gumbel distribution). From the

estimation of the parameters and fit of the distribution, the one-step ahead 100(1— p)% VaR is (Tsay,

2002):

N

&+ﬁf{[—1n(1—p)]f -1} if %0

VaR,,, = T
@+ fn|-In(1-p)] if £=0

O)

The peaks-over-thresholds approach is conducted in this manner (Smith, 1999): (1) transform the data by

changing the sign of the returns, i.e., let the transformed data 7, =—7, ; (2) choose a threshold value 77 so
that when 7. 277, the data point 7, will be included in a new data set for model fitting; otherwise, the data

. . . —% —% —% . . .
point is excluded, creating a new data set{r1 B AR } , where n* is the number of included data points;

(3) the new dataset will be fitted to the Generalized Pareto distribution (GPD) (Pickands, 1975) with its

cumulative distribution shown below:

1{1+§(’C_”H% if ££0
Pr(X <ulX >n)= i 10)

l—exp{—%} if £€=0

When the parameters of the GPD are estimated, the one-step ahead 100(1— p) % long position VaR is

equal to (Tsay, 2002; Coles 2001), with 7 as the total number of data points in the original data set:

o n* s
AP U DL | Q7Y
T {n(l—p)} .
VaR,,, = (i)
_,lmln{”(l_‘l’)} i E=0
n*

The problem with these procedures is their static properties, such that the time dynamics are not included in
the model (T'say, 2002). These methods have been adjusted to included time dependence such as a mixture
with econometric methods (McNeil and Frey, 2000; Suaiso, 2009) and the use of explanatory variables (Tsay,
2002; Cayton et al., 2010)



Conditional Density Methods

These methods deal with fitting distributions with parameters that are time-dependent (Jondeau, et al., 2007).
The econometric methods and time-varying extreme value theory models are special cases of this family of
procedures. Distributions used in these sets of procedure commonly involve more than two parameters,
which would include shape parameters such as those that affect skewness and kurtosis. In this family, higher
parameters are modeled with a time-varying structure to adapt to the concept dynamics in higher moments.
Distributions that have been used in literature are such as the skewed Student’s t distribution (Hansen, 1994;
Harvey and Siddique, 1999), Pearson Type IV distribution (Yan, 2005), Johnson Sy distribution (Yan, 2005),
Edgeworth series densities (Rockinger and Jondeau, 2001), and the Gram-Charlier densities (Jondeau and
Rockinger, 2001).

These researches generally underpin that time-varying higher moments and parameters may exist on some
financial assets, thus to fit returns with time-varying structures would be required in such cases. Each
distribution has their caveats and advantages, such as those that directly influence the moments of skewness
and kurtosis but are computationally intensive for computation of quantiles, e.g., the Gram-Charlier densities
and Edgeworth series densities (Jondeau and Rockinger, 2001; Rockinger and Jondeau, 2001), and those
which are computationally and analytically derivable quantiles yet do not directly influence the coefficients of
skewness and kurtosis, such as the Pearson IV and Johnson Sy distributions (Yan, 2005). Due to the
computational ease of estimation for parameters using maximum likelihood estimation and analytically
derivable quantiles after estimation (Yan, 2005), the Johnson Sy distribution is used by the paper for time-

varying conditional density.
The Johnson Sy Distribution

The Johnson Sy distribution was one of the distribution derived by Johnson (1949) based on translating the

normal distribution to certain functions. LettingZ ~ N (0,1) , the standard normal distribution, the random

variable Y has the Johnson system of frequency cutves from this method of transformation:

Z=;/+5g(YT_gJ (12)

The parameters ¥ and & may be any real number, while § and A should be positive numbers. The form of

the distribution depends on the function g: (1)if g (u) =u, it results to the normal distribution; (2)

g (u) =log [u / (1 —u )] , then the distribution is bounded , called the Johnson Sp distribution; (3) when



g(u)=1In(u), itis the log-normal distribution, and (4) when g (u)=sinh™ (u), the distribution is

unbounded, called the Johnson Sy (JSu) distribution.

From the transformation of the normal distribution, the cumulative distribution function of the JSuy

distribution is shown below. If ¥ ~ JS,, (é:, 1,7, 5) :

F,(y)= d{y+ Jsinh™ (y—fﬂ (13)

The function P (u) is the cumulative distribution function of the standard normal distribution. From the

equation above, the quantile function Fy_1 can be directly derived as:
@' (p)-
F,'(p)=¢&+ Asinh {%} (14)

The quantile function simply depends on the quantiles of the standard normal distribution o ( p) , which

are tractable due to the many functions available in computers and tables of standard normal quantiles in

literature.

The density of the JSy distribution, which will be used for the estimation procedure, is equal to (Yan, 2005):

£ (y)= i - ¢{7+5 sinh ™ (Lfﬂ 15)

A 1+(x_/1(§)

The function ¢(u) is the probability density function of the standard normal disitribution. The parameters of

the JSu are (f A, 7, o ) with each affecting the location, scale, skewness, and kurtosis of the distribution.

The parameters are not the direct raw moments of the distribution. The first four moments, the mean,
variance, third central moment, and fourth central moment, respectively, of the distribution are the following

(Yan, 2005):

U=E+ 0" sinh Q (16)
2
o’ :%(a)—l)(a)cosh29+1) (17)

i, = —% (P -1) [af (* +2)sinh 3Q+ 3sinh Q] (18)



L, :%(a)2 —1)2 [w“ (&' +20° +3w" —3)cosh4Q +4w' (& +2)cosh2Q+3(2e° +1)] 19)

The quantities in the moment formulas are = 7// 0 and W=exp (5_2) . The standard distribution for the

JSu exists when £ =0 and A =1, but the mean and the variance are not 0 and 1 respectively. To use the

Johnson distribution as a standardized error distribution in econometric modeling (e.g., in ARMA-GARCH

modeling), set the parameters in the following manner (Yan, 2005):

-1

& =—w"*sinh Q \/%(a)—l)(wcosh 2Q+1) (20)

-1

@

A = N%(w— 1)(wcosh2Q+1)

Joint Estimation Procedure for JSy Distribution

From the standardization of the distribution, mean-variance specifications can be introduced for econometric
modeling with the JSu distribution. For maximum likelihood estimation, the higher parameters can be
modeled to have time-varying structure, ultimately introducing dynamic properties to the skewness and
kurtosis. In modeling with the JSy with joint estimation of parameters having time-varying structures, the

following are sets of equations are defined:

Mean-Variance-Error Interaction:  y, = i, + \/E zZ, (22)
Mean Specification: u=g,(1) (23)
Variance Specification: h=g,(t) (24)

E(z)=0;var(z,)=1

Error Specification: @5)
g~ JSU (é:s,r’ﬂ's,r’ %’5:)

Third Parameter Specification: V.=8, (t ) (206)

Fourth Parameter Specification: 0 =g;s (t ) 27)

The functions g,,g,,8,, and g; are time-dependent functions related to £, e.g., g, = ARMA(p.q)
process for the mean, g, = GARCH (p,,q, ) for the variance, g y (1)= B, + Bx,_, for the structure of the

third parameter, and g5 (t ) = J, a constant value for the fourth parameter. The location and scale parameters

since they are function of time-varying third and fourth parameters due to standardization of the JSy



distribution, i.e., &, = £,(7,.6,), A, = f>(¥,,6,) . In this structure, it is implied that the skewness and

kurtosis would have time-varying properties due to the structure of the third and fourth parameters.

The log-likelihood sum to be maximized for estimation is written below:

0(8,4:81-812 85 Yisewr 1)

2
yt_g,u(t)_él:
St

gh (t)
A

=

1
log g5 (1)—log A, —Elog 1+

.,
LN

St

yf—gﬂ(t)_é:

+log| ¢| g, (1)+g,(t)sinh™ gh(;) —%log[gh(f)]

St

(28)
The use of the functions g,,8,,8,, and g, as arguments in the log-likelihood function implies the

estimation of the parameters inside these functions. The location and scale parameters should be substituted

to the appropriate functional form based on g, and g. If lagged values of the time series data are being

used, the addends of the summation are reduced to adapt to the use of lags.
Two-Step Procedure for JSu Distribution

Another procedure that would introduce time-varying mean and variance specifications in the JSy distribution

is a two-step procedure, where first the return series 7, are fitted with the appropriate model for mean 4,

and variance /1, and estimation is carried out using quasi-maximum likelihood estimation [QMLE] (Bollerslev

and Wooldridge, 1992). From the estimated model equations £, and ﬁt , the standardized residuals e, of the

model are computed:

e = 29)

From these residuals, they are fitted with the JSy distribution with structures in the third and fourth

parameters. The log-likelihood to be minimized would be of the form below:



E(gy,gg Iel,...,eﬂ)

2
n _ B (30)
:Z 10gg5(l‘)—10gﬂs’t—%]0g 1+(€tﬂ—fs”J +log ¢(87(1)+g5(1)8inhl[etﬂégs’t JJ
=1 .

S, St

After the proper estimation of the parameters of the model, either through the joint estimation or the two-
step procedure, the one-step ahead 100(1— p) % long position VaR is equal to:
N T K V) oy Y
VaRJSU =4, T ht+1 éS,t+1 + ﬂ’S,t+1 sinh {A—

t+1

€

The paper would compare the performance of the VaR of the time-varying JSuy with the econometric VaR in
Philippine financial time series datasets in terms of the number of exceptions and the magnitude of values

given by the VaR of the different methods.

The Evaluation of Value-at-Risk Methods

Number of Exceptions: Basel Requirements

A perspective of the evaluation of VaR methods is through the number of exceptions (Basel, 1996). A VaR
exception occurs when the actual loss exceeded the value of the anticipated VaR. Depending on the VaR
probability level, a specific amount of VaR exceptions are allowed per year. For example, for the 99% VaR, it
is expected and permitted that the number of exceptions be equal to 1% of the total number of periods in a
year. If a year had 250 time periods, about two or three exceptions are allowed per year. . Based on the
number of exceptions of the VaR model of a financial institution, it is classified into three zones: (1) the green
zone, where when institutions are inside this zone, it implies that their VaR model are able to fulfill the 99%
specification, (2) the yellow zone, where institutions in this zone imply that their VaR model may be able to
meet the 99% requirement but with low confidence, (3) and the red zone, where it indicates that the VaR
model are not able to meet the 99% specification. Depending on the number of exceptions received in a year,
a penalty multiplier in introduced in the calculation of appropriate risk capital based on the VaR. The table

below displays the multipliers for each zone and number of exceptions.



Table 1. Classification Zones Based on Number of Exceptions and
Appropriate Scaling Factors for Risk Capital
Scaling Factors for the
Market Risk Capital
3.00
3.00
3.00
3.00
3.00
3.40
3.50
3.65
3.75
3.85
Red Zone 10 or more 4.00
Source: Basel (1996)

Zone Number of Exceptions

o

Gtreen Zone

Yellow Zone

O 00 1N Ul|hA LN~

Number of Exceptions: Likelihood Ratio Tests

Another method for assessing VaR models for their performance is based on their adherence to the desired
risk probability. Christoffersen (1998) introduced a system of successive chi-square testing procedure for
assessment of VaR methods based on their number of exceptions within the forecast evaluation period.
Three tests are conducted on the frequency of exceptions, done successively: (1) unconditional coverage test,
which tests whether the risk probability is fulfilled by the VaR model, (2) independence test, which test
whether the probability of two successive exceptions is equal to the proportion of exceptions succeeded by
non-exceptions, and (3) conditional convergence test, which tests whether the probabilities of successive and
non-successive exceptions are equal to the coverage probability. When an initial tests leads to the acceptance
of the null hypothesis, it is a favorable result for the VaR model and a succeeding test is conducted. If an
initial test leads to rejection, then the succeeding test is not done and therefore the VaR procedure does not

have a favorable property based on the test. The sequence of tests is listed in the table below.



Table 2. Likelihood Testing Procedures for VaR Assessment

Name of Test Hypotheses Test Statistic Implication of
Acceptance Rejection
Unconditional | H 0IT=p 1—# 7T, # T VaR method VaR model
Coverage (exception LR, =2log [] [] ~ 1(21) is appropriate | is not
proportion I-p p in coverage of | appropriate
equals risk T =number of data points in the forecast period risk . in the given
probability) S probability. level of risk
Tl =number of VaR exceptions in the forecast Do next test. probability.
H,:7x>p period Adjust VaR
A model.
(VaR model does | £ = V = estimated proportion of VaR exceptions
not attain proper T
risk probability)
Independence | H 7. =1 AT AT A Occurrences VaR model
p 0T =T, (1=7,)" 2 (1= )™ 27 ‘
(Proportion of LR, =2log 0 - 0 o AIT — Lo Z(zl) of exceptions produées
un-clustered VaR 1=, )" A% we exception
. . independent clusteting.
exceptions is _ . .
ezuaﬁ)to the T,,, =number of two consecutive days with no of each other. | VaR model
proportion of exception Exceptions is not
clustered T, =number of periods with no exceptions followed clustering is appropriate
exceptions) by an exception fare ornone. |1
1, =number of periods with exceptions followed by Do next test. @Eg%ﬂﬂg
risks in
H,:my<m no exceptions times of
(proportion of T,, = number of two consecutive days with exceptions volatility
cluster;d VgR . T, . T, clustering.
exceptions is 0 = 3= ; Adiust VaR
higher than un- Ty +Ty, T+ T mo]del.
clustered P T, +T,
1 pool ~—
exceptions) " T+ Ty T+ Ty
Conditional H,:my=7m,=p Exception Proportions
Coverage (the proportions | LR, = LR, +LR,, ~ /%,(22) proportions are higher
exceptions are are within than
equal to the risk prescribed desired'r'isk
probability) risk probability.
probability Adjust VaR
H 1= levels. VaR model.
A= 7 ‘> p model is
(The proportions appropriate.

of exceptions are
larger than the
risk probability)

Source: Christoffersen (1998)

Magnitudes of Values

As risk capital is based on the value of VaR, the magnitude of the VaR methods are analyzed and compared.

Three features should be possessed by an appropriate method: (1) conservatism, which indicates that it

generally give a relatively higher VaR compared to other methods, (2) accuracy, in which the method is able

to identify the level of loss with minimum error in the magnitude, and (3) efficiency, in which the method is

able to compute the adequate level of risk capital such that risk is fully accounted yet not too high that




opportunity loss for other financial activity are constrained (Engel and Gizycki, 1999). A statistical measure is

selected for each quality as a measure of their compliance to each desired feature. The table below shows the

statistics and their intended analysis. Long position VaR values, where negative means loss, are assumed as

used in the following formulas.

Table 3. Statistical Measures for VaR Comparisons

Desired Statistical Measure Formula Analysis of Statistic
Quality
Conservatism | Mean Relative Bias T VR N The higher the MRB of a
[MRB] MRB, =+ ZM : VaR =) VaR, | VaR method, the more
(Engel and Gizycki, Ta VaR: =l consetvative it is telative to
1999) ) ] other models.
VaR, = the VaR on time 7 based on method 7
T = return series data length of evaluation
period
N = number of VaR methods being compared.
Accuracy Average Quadratic 1< The lower ot the closer to
Loss Function AQLF = Fz L(VaR,.1,) zero the AQLF is, the
[AQLF] = s more accurate the VaR
(Engel and Gizycki, _|1+(VaR,—r)" if VaR, >, method in forecasting and
1999) L(VaR,.1,)= . accounting for possible
0 otherwise lose g tor p
Efficiency Average Market Risk If the lower the AMRC,

Capital [AMRC]
(Basel, 1996)

T
AMRC =%ZMRC,

t=1
k t—60
MRC, = max {—6 > VaR[,—VaRH}
k=t-1

k = the penalty multiplier based on the number
VaR exceptions (see Table 1)

the lower the risk capital to
be allocated on the average.
The AMRC is jointly
analyzed with results of the
other statistics

From the established measures and procedures of assessment and evaluation, the paper wishes to evaluate the

time-varying methods of estimating VaR with the JSy distribution and compare it with other VaR

methodologies in literature.

Research Methodology

Data Used

In the evaluation of VaR methodologies, the following financial time series data are used: (1) the Philippine
Peso-US Dollar Exchange Rate (RUSD) from 4 January 1999 to 10 November 2011, (2) the Philippine Peso-
Euro Exchange Rate (REUR) from 4 January 1999 to 18 November 2011, (3) the Philippine Peso-
Singaporean Dollar (RSGD) from 3 January 2006 to 21 Novermber 2011, and (4) the Philippine Stock
Exchange Index (PSEI) from 3 January 2000 to 18 November 2011.




In division of the datasets, the most recent 250 data points per series would be the forecast evaluation period

and the rest of the peiords would be under the model estimation period.
Models Used

The data series would be evaluated with long position 99% one-step-ahead VaR values. The VaR based on
the time-varying JSu methods will be evaluated with the following econometric models: (1) GARCH(1,1)-
normal distribution-QMLE, (2) GARCH(1,1)-t distribution,(3) TARCH(1,1,1)-normal distribution-QMLE,
and (4) TARCH (1,1,1)-t-distribution. The GARCH(1,1) is based on the model by Bollerslev (1986) with the
form for the variance given below:

h=a,+aoh_z, +ph_ 32)

’

The argument z,_, is the standardized error of one period before, and the parameters (¢, ¢, ) are

estimated. The model assumes a symmetric effect of changes in the immediate past to the variance of current
changes, 1.e., it assumes no leverage effect. To account for asymmetric effect of past changes to current
volatility, the TARCH(1,1,1) (Zakoian, 1994) adds a term on the volatility and models the conditional

standard deviation. Thus in modeling the variance, the equation is modified as shown below:

2

h, = (0(0 +0 |Who 2|t l//l(o,oo) ( h_, ZH) h .z, +IB\/ h_, ) (33)
0 if u<o0

1 = 34

(O’N)(u) {1 if u>0 69

For the joint estimation of parameters on the JSy distribution, the following specification of the variance,

third, and fourth parameters are shown below:

h, = exp{eo +6, |\/ h_ 24|+ 0, h, Zt—l} (35)
V=@t | h_ oz, |+ @h 2, 36)
6, = g() + gl | h iz |+ gz h_z., @37

For the two-step procedure, the variance is estimated with the GARCH(1,1) model and the residuals were

modeled with the JSu using equations (36) and (37) with (/h,_, =1 since the residuals have unit variance. The

mean specification for all models was set to zero, i.e., #f, =0 and 7. =\/h, z,.

Descriptive Analysis of the Data



Graphical Analysis on Levels and Returns

Figure 1 displays the graphs of levels and returns of the RUSD. With the data, a period of increase or
depreciation of the Philippine peso occurred from before 1999 to 2001due to the effects of the Asian
financial crisis and national political crisis of the Philippines. Stability in the level of the exchange rate was
achieved from 2002 to 2004 and the appreciation of the peso started in 2005. In the offset of the 2008,
agricultural price inflation, called ‘agflation,” has occurred and depreciation began. The increase in the rate was
augmented with the offset of the 2008 financial crisis but by 2009, the appreciation of the peso returned,
continuing until the last point of the data. In the return series, the occurrence of very large changes were in
end-of-2000 to start-0f-2001, due to political uncertainty during the impeachment and ouster of the president
of the country. After 2001 stability in the changes were observed, yet after 2008 the changes were gaining
wider ranges compared to period in the years 2002-2007.

Figure 1. Time Plots of US Dollar Exchange Rate
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The graphs of the REUR are shown in figure 2. With the Euro, a surge of depreciation of the peso occurred
from 2001 to the highest point of valuation of the euro in terms of the peso at 2005. From then the changes
were relatively stable except in 2008-2010 where the euro had a wave of upturns and downturns of value in
terms of the peso. In terms of volatility large changes have occurred at end-of-2000 to start-of-2001 with
political unrest. A period of stability in changes was observed in 2002-2007 yet beginning 2008 to 2009 wider

volatility occurred due to the global financial crisis.

Figure 2. Time Plots of Euro Exchange Rate
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The RSGD levels and returns are graphed and displayed in Figure 3. The data is a short series yet it maintains
a level with the ranges of Php 28 to Php 36 per dollar. Appreciation occurred pre-2008 followed by sharp
depreciation in the first half of 2008. From then on a steady depreciation has occurred with the exchange rate.
In terms of volatility, wider and more volatile changes occurred in 2008 and 2009. A stable 2010 was

observed except for two abrupt changes in the early half of the year.

Figure 3. Time Plots of Singaporean Dollar Exchange Rate
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Figure 4 features the time plots of the PSEIL The index had experienced a surge in value from its bottom-of-
the-bowl state in 2002 and the increase lasted from 2003 to 2007. In late 2007 the agflation crisis in the
Philippines has started with rising food prices, followed by the global economic crisis of 2008-2009 which
devalued the index. At the second quarter of 2009 the index had a continuing period of growth, escaping

from the crisis. In the spectrum of volatility, two sharp increases were observed in end-of-2000 and start-of-



2001, and from then a stable variance has been observed. Around 2008-2009 was the widening of the range

occurred, with sharp downward changes in the end of 2008. From then two abrupt changes in 2010 were

observed and stability was observed.
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Figure 4. Time Plots of Philippine Stock Exchange Index
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Summary Statistics of Returns

Philippine Stock Exchange Index Returns
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Table 4 below shows the different statistics of financial time series returns. The four series have high kurtosis

values for returns, evident of the non-normality of the time series returns. The three currencies had negative

skewness, except for the PSEI which is skewed to the right. Reason behind the positive skewness of the PSEI

is its long-term bearish performance in the observation period. The PSEI is also the most volatile of the four

series with a wider range between the minimum and the maximum and high standard deviation. The most

stable would be the RSGD yet its stability is within its short observation period.

Table 4. Summary Statistics of the Financial Returns

RUSD REUR RSGD PSEI
Obs 3192 3300 1477 2990,
Mean 2.9499x1079 7.8269X10 3.2838X107 2.3321X104
Std. Dev. 4.2902%107 7.6022X103 3.6339X10 1.4409%10-2
Skewness -4.4820, -2.0704 -0.3035 0.4621
Kurtosis (unadjusted) 115.2209, 43.3032 5.5069 20.6623
Minimum -.10150 -.14193 -.01832) -.13089,
Maximum .04019, .04414 .01637 16178

Results and Discussion



On the Number of Exceptions

Table 5 shows the results of statistics based on the number of exceptions and likelihood ratio tests for the
different VaR methods in different return series. Generally, the econometric methods were better in terms of
the number exceptions than the JSy procedures. The econometric methods were generally placed in the green
zone with 4 or less exception, except in the case when GARCH QMLE methods were used on RSGD. The
JSu methods were often on the yellow zone, with some exceptions when joint JSy was used on REUR and
two-step JSu was used on the RUSD. This would mean that generally the JSu methods can be able to make

the prescribed 1% risk probability, but with low confidence.

Table 5. Table of Evaluation Measures Based on Exceptions

Model Joint JSu Two-Step JSu
Time Series RUSD|REUR|RSGD|PSEI |RUSD|REUR|RSGD|PSEI
Number of Exceptions 7 3 9 8 3 6 8 8
Likelihood Ratio Tests p-values
Uncondtional Coverage 0.0190(0.7580] 0.00140.0054]0.7580(0.0594| 0.0054]0.0054
Independence - - - 0.2389(- - - 0.2389
Conditional Coverage - - - 0.0105(- - - 0.0105
Model GARCH QMLE GARCH t
Time Series RUSD|REUR|RSGD|PSEI |RUSD|REUR|RSGD|PSEI
Number of Exceptions 0 4 5 2 0 2 4 2
Likelihood Ratio Tests p-values
Uncondtional Coverage - 0.3805]0.1619(0.7419] - 0.7419{0.3805(0.7419
Independence - - - - - - - -
Conditional Coverage - - - - - - - -
Model TARCH QMLE TARCH t
Time Series RUSD|REUR|RSGD|PSEI |RUSD|REUR|RSGD|PSEI
Number of Exceptions 0 4 4 2 0 2 4 2
Likelihood Ratio Tests p-values
Uncondtional Coverage - 0.3805]0.3805(0.7419] - 0.7419{0.3805(0.7419
Independence - - - - - - - -
Conditional Coverage - - - - - - - -

With the likelihood ratio tests, the tests for independence and conditional coverage were not conducted in
some cases since for the econometric methods in all series and in the JSu methods in RUSD, REUR, and
RSGD, no VaR exception clustering was observed. For the JSu methods on the PSEI though unconditional

coverage would likely be rejected, independence and conditional coverage tests are continued and shown.

The JSy methods on RSGD and PSEI were generally low performing with the formal test that these models

on these series may not be able to cover the appropriate risk probability compared to econometric methods.



But when confidence is relaxed in the case of the PSEI, the JSu methods were unlikely to have VaR exception
clustering. The JSu were less performing than the econometric methods in being able to predict points in time

when high-loss scenarios would occur.

On the Magnitudes of Values

Table 6 listed the results of magnitude-based statistics for comparison between econometric VaR methods

and JSu VaR procedures.

With MRB, the JSu methods were generally less conservative than the econometric methods in accounting for

risk, having negative MRB values compared to econometric VaR methods.
The AQLF values were generally highest in JSy methods compared to econometric methods except in the
case of using joint JSy in REUR. JSy methods were less accurate in predicting the magnitude of risk

compared to econometric methods.

Table 6. Table of Evaluation Measures Based on Magnitudes

Model Joint JSU Two-Step JSU

Time Series |[RUSD |REUR |RSGD |PSEI |RUSD |REUR |RSGD |PSEI
MRB -0.1796] -0.0743| -0.0883| -0.2187] -0.1375] -0.1220| -0.1298| -0.2307
AMRC 0.0233| 0.0509| 0.0274| 0.0845| 0.0198| 0.0477| 0.0251] 0.0831
AQLF 0.0492| 0.0120] 0.0572]| 0.0320| 0.0332] 0.0240| 0.0532| 0.0320
Model GARCH QMLE GARCH t

Time Series |[RUSD |REUR |RSGD |PSEI |RUSD |REUR |RSGD |PSEI
MRB 0.0124| 0.0118] 0.0072| 0.0529| 0.0955| 0.0830| 0.0925| 0.1395
AMRC 0.0288| 0.0440| 0.0265| 0.0907| 0.0251] 0.0472| 0.0279| 0.0986
AQLF 0.0000{ 0.0160| 0.0412] 0.0080| 0.0000] 0.0080| 0.0372| 0.0080
Model TARCH QMLE TARCH t

Time Series [RUSD |REUR |RSGD |PSEI |RUSD |REUR |RSGD |PSEI
MRB 0.0567| 0.0157| 0.0172] 0.0862| 0.1525| 0.0858| 0.1012| 0.1707
AMRC 0.0299| 0.0440| 0.0260| 0.0933]| 0.0262| 0.0472| 0.0281| 0.1006
AQLF 0.0000{ 0.0160| 0.0372] 0.0080| 0.0000] 0.0080| 0.0372| 0.0080

In assigning risk capital, JSU methods assigned lower capital in RUSD, where JSy fared well in predicting
when high loss periods would occur. With REUR, where JSu methods were better in predicting periods of
high risk, they placed higher risk capital, in due to their relatively poor performance in predicting the
magnitude of risk. Lower risk capital were assigned on the average on the PSEI by JSu methods compared to
econometric methods yet JSu methods were poor in predicting when high risk periods would occur. The risk
capital assigned on RSGD by the JSu and econometric methods are in range of each other, since the RSGD is

a relatively stable series compared to other returns.



Conclusions and Recommendations

The paper introduced and derived the VaR methodology in modeling returns using a time-varying conditional
JSu density. The performance of the model has been assessed and was compared with the econometric
methods of estimating the VaR. The performance of the JSy VaR in predicting periods of high risk was
generally in the yellow zone of methods, since it had higher number of exceptions. It was a less conservative

method of computing for VaR, with risks of underestimating the possible losses incurred.

The research paper contributes to the field of investigation into other nonnormal distributions in estimating
the VaR of financial assets. Itis possible to study the performance of the JSy VaR in other returns data,
especially in the assets of interest rates and commodities, especially when nonnormality is observed. The trials
of other possible specification of models such as in the parameters or a new distribution different to the

conducted study have a potential to produce better results, and such can be pursued in the future.
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Appendices

Model Results for RUSD

Joint JSu distribution

Number of obs

= 2941
wald chi2(2) =

197.67

GARCH(1,1)-Normal-QMLE (also for Two-Step JSu)

ARCH family regression

Log likelihood = 15109.291 Prob > chi2 0.0000
Sample: 1 — 2941 Number of obs 2941
Coef.  std. Err. z P>z [95% Conf. Interval] Distribution: Gaussian wald chi2(.) -
Log likelihood = 15244.67 Prob > chi2 = .
Insigma_2
r_usd_l1 59.32968  20.02176 2.96 0.003 20.08774  98.57162
ar_usd_11 382.272 27.6263 13.84 0.000 328.1255 436.4186 o
-13.40537  .0661977 -202.50 0.000  -13.53511 -13.27562
0N r_usd Coef. std. Err. z P>|z| [95% Conf. Interval]
r_usd_l11 -26.61691  4.922242 -5.41  0.000  -36.26433 -16.9695 arch
ar_usd_11 -4.381315 6.168206 -0.71 0.478  -16.47078  7.708146 (518 .2238584  .0186823 11.98 0.000 .1872417 .260475
_cons -.003158  .0109885 -0.29 0.774 -.024695 .018379
e garch
r_usd_11 -36.91273  63.62302 —0.58 0.562 ~161.6116 87.7861 L1. 7925047 . 0149086 53.16 0.000 .7632843 .821725
ar_usd_11 268.1492  82.89445 3.23  0.001 105.6791 430.6194
—cons 1.129331 .0713114 15.84 0.000 .9895633 1.269099 —cons 3.64e-08 8.49e-09 4.28 0.000 1.97e-08 5.30e-08
Result of Model Parameters in Two-Step JSu GARCH (1,1)-t
ARCH family regression
Sample: 1 — 2941 Number of obs 2941
Distribution: t wald chi2(.) -
Log likelihood = 15314.2 Prob > chi2 = =
Number of obs 2940
wald chi2(2) 73.85
Log likelihood = —4064.0317 Prob > chi2 = 0.0000 oM
r_usd Coef. std. Err. Z P>|z| [95% Conf. Interval]
Coef. std. Err. z P>|z| [95% conf. Interval] arch
L1. -2120506 .0232378 9.13 0.000 .1665053 .2575958
sres_j2_11 -.0783668 . -8. 0.000 -.096243 —. 0604907 garch
asres_j2_11 -.0001061  .0139974 -0.01  0.994 -.0275405 .0273283 L1, .7991809  .0188301 42.44  0.000 .7622747 .8360871
—cons —.0098121 .0138945 -0.71 0.480 —.0370449 .017 4206
—cons 3.70e-08 1.03e-08 3.60 0.000 1.68e-08 5.71e-08
delta
sres_j2_11 .2170272 .1516796 1.43 0.152 —.0802593 .5143137 /Indfm2 1.617007 .1625315 9.95 0.000 1.298451 1.935563
asres_ -1476059 .1845629 0.80 0.424 —.2141308 -
—_cons 1.82497  .1532824 11.91  0.000 1.524542 2.125398 df 7.037989  .8188318 5.663618 8.927942
TARCH(1,1,1)-QMLE TARCH(1,1,1)-t
ARCH family regression
Sample: 1 - 2941 Number of obs 2941
ARCH family regression Distribution: t wald chi2(.) -
Log likelihood = 15311.65 Prob > chi2 = N
Sample: 1 — 2941 Number of obs = 2941
Distribution: Gaussian wald chi2(.) -
Log likelihood = 15218.52 Prob > chi2 = - OPG
r_usd Coef. std. Err. z P>|z| [95% Conf. Interval]
0PG abarch
e coef. std. Err. 2 Pxlz| [95% Conf. Intervall L1. .1690324  .0162739 10.39  0.000 .1371362 2009286
abarch atarch
L1, .inm9a  .0083015 .74 ©0.000 1726274 2050687 L1. .0257312 .015545 1.66 0.098 -.0047365 .0561989
sdgarch
atarch L1. .839248  .0130014 64.55  0.000 .8137657 .8647304
L1. . 0390595 . 0082874 4.71 0.000 .0228165 .0553024
—cons . 0000362 7.65e-06 4.74 0.000 . 0000212 . 0000512
sdgarch
L1. -8150362 .0066287 122.96 0.000 - 8020442 - 8280281 /Indfm2 1.478495  .1430902 10.33  0.000 1.198043 1.758946
—cons - 000045 4.74e-06 9.49 0.000 . 0000357 . 0000543 df 6.386338 . 6276421 5.313626 7.806317




Model Results for REUR

Joint JSu distribution

GARCH(1,1)-Normal-QMLE (also for Two-Step JSu)

Number of obs = 3050 |ARCH family regression
X wald chi2(2) = 51.27
Log likelihood = 13390.366 Prob > chi2 = 0.0000 |cannte: 1 - 3050 Number of obs = 3050
Distribution: Gaussian wald chi2(.) = .
Coef. std. Err. z P>|z| [95% Conf. Interval]l |Log likelihood = 13375.89 Prob > chi2 = .
Insigma_2
r_eur_11 35.31211  11.37273 3.10 0.002 13.02196  57.60225
ar_eur_11 107.2021  17.22417 6.22 0.000 73.44333  140.9608 OIM
_cons -11.80824 .0528595 -223.39 0.000 -11.91184 -11.70464 r_eur Coef. std. Err. z P>|z| [95% Conf. Interval]
arch
r_eur_11 7.17846  2.709791 2.65 0.008 1.867367 12.48955
ar_eur_11 .485567 3.916592 0.12 0.901 —7.190813 8.161947 L1. . 0646709 . 0200405 3.23 0.001 .0253923 .1039494
_cons -.0076292  .0127545 -0.60 0.550  -.0326275 .0173692
garch
delta 022 000 3617
r_eur_11 -15.06646  7.487115 -2.01 0.044  -29.74094 -.3919873 L. -9311778 0223556 1. 0. - 887 - 9749939
ar_eur_11 -32.19464 8.674909 -3.71 0.000  -49.19715 -15.19214
_cons 1.795062 .11099 16.17  0.000 1.577526 2.012599 —cons 8.37e-08 5.25e-08 1.59 0.111 -1.92e-08 1.87e-07
Result of Model Parameters in Two-Step JSu GARCH (1,1)-t
ARCH family regression
Number of obs = 3049 Sample: 1 — 3050 Number of obs = 3050
wald chi2(2) = 3.79 Distribution: t wald chi2(.) = .
s - = Tikelih = 477. P hi = -
Log 1ikelihood = -4239.0844 Prob > chi2 = 0.1506 09 '7kel ood 3 & £0b 5= [Eh12
[ ]
Coef. std. Err. z P>|z| [95% Conf. Interval] r_eur Coef.  std. Err. z P>|z| [95% Conf. Interval]
arch
" L1, .0379317  .0082856 4.58 0.000 .0216921 .0541712
sres_j2_11 .0173361  .0089698 1.93 0.0s53 —.0002444 .0349167
asres_j2_11 .0025237 .0138495 0.18 0.855 —-.0246207 .0296681 garch
_cons -.008187  .0137375 .60 0.551 -.0351121 .0187381 L1. .9475774 .011043 85.81  0.000 .9259335 .9692213
delta _cons 1.29e-07 4.19e-08 3.09 0.002 4.74e-08 2.11e-07
sres_jz_ll -.0201295 .0550472 -0.37 0.715 -.1280201 .087761 /1ndfm2 1.685577 .1600585 10.53  0.000 1.371868 1.999286
asres_j2_11 -.1178727 .0638471 -1.85 0.065 -.2430106 .0072653
_cons 2.075173  .1523107 13.62 0.000 1.77665 2.373697 df 7.395561  .8636056 5.942708 9.383779
TARCH(1,1,1)-QMLE TARCH(1,1,1)-t
ARCH family regression
Sample: 1 — 3050 Number of obs = 3050
Distribution: t wald chi2(.) = =
ARCH family regression Log likelihood = 13484.8 Prob > chi2 = =
Sample: 1 — 3050 Number of obs = 3050
Distribution: Gaussian wald chi2(.) = = oPG
Log likelihood = 13396 Prob > chi2 - . r_eur Coef. std. Err. z P>|z| [95% Conf. Intervall
abarch
oPG L1, .0402055  .0091205 4.41  0.000 .0223295 .0580814
r_eur Coef. std. Err z P>|z| [95% Conf. Interval]
atarch
abarch L1. .0173125  .0092339 1.87 0.061 —.0007857 .0354107
L1. .053323  .0068042 7.84 0.000 .039987 .066659
sdgarch
atarch L1, .9501725 .0089512 106.15 0.000 .9326285 .9677166
L1. .0460043  .0064571 7.12  0.000 .0333486 . 0586601
_cons .0000369  .0000123 2.99 0.003 0000127 -0000611
sdgarch
1. W . 927647 . 0069683 133.12 0.000 .9139894 .9413046 /1ndfm2 1.700808 .134177 12.68 0.000 1.437826 1.96379
_cons 0000448 00001 4.46  0.000 .0000251 . 0000644 df 7.478372  .7350715 6.211529 9.126285




Model Results for RSGD

Joint JSu distribution

GARCH(1,1)-Normal-QMLE (also for Two-Step JSu)

Number of obs = 1226 ARCH family regression
wald chi2(2) = 25.83
Log Tikelihood = 6223.477 Prob > chi2 = 0.0000 Sample: 1 - 1226 Number of obs = 1226
Distribution: Gaussian wald chi2(.) = a
coef. std. Err. z P>|z| [95% Conf. Interval] LOg likelihood = 6221.988 Prob > chi2 = .
Insigma_2
r_sgd_11 4.770532 37.17653 0.13 0.898 -68.09412 77.63519 oM
ar_sgd_11 280.2138 55.16515 5.08 0.000 172.0921 388.3355
“cons -13.26659 .0805503 -164.70 0.000  -13.42447 -13.10872 r_sgd Coef. std. Err. z P>|z| [95% Conf. Interval]
d_11 3008584  8.660477 03 0.972 16.67336  17.27508 arch
r_sgd_ . - . -16. -
ar_cgd 11 37.63579 13.01215 89 0.008 12.13246 .13913 L1. .0828679 . 0209009 3.96 0.000 .0419029 .1238328
_cons -.0592509 .0209741  -2.82 0.005  -—.1003593 -.0181425 garch
delta L1. . 8964025 .0267768 33.48 0.000 .843921 .9488839
r_sgd_11 27.36721  41.33077 0.66 0.508  -53.63961 108.374
ar_sgd_11 | -149.5892 56.71475  -2.64 0.008  -260.7481 -38.43038
“cons 1.996604 .2178565 9.16  0.000 1.569613 2.423595 —cons 6.12e-08 2.76e-08 2.21 0.027 7.03e-09 1.15e-07
Result of Model Parameters in Two-Step JSu GARCH (1,1)-t
ARCH family regression
Sample: 1 - 1226 Number of obs 1226
Number of obs 1225 pistribution: t wald chi2(.) S
wald chi2(2) 4.59 Log likelihood = 6248.583 Prob » chi2 = .
Log Tikelihood = -1708.7662 Prob > chi2 = 0.1009
oIM
coef. std. Err. z  Pz| [95% Conf. Interval] r-sgd Coef.  std. Err. z Pzl [95% Conf. Interval]
arch
) L. .0738502  .0331151 2.23  0.026 .0089458 .1387546
sres_j2_11 -.0018062 .0142355 -0.13 0.899 -.0297073 .026095
asres_j2_11 .0470796  .0220011 2.14 0.032 .0039583 .090201 garch
—cons -.0440459 .0218843 -2.01 0.044 -.0869383 -.0011534 Li. -9021806  .0475548 18.97  0.000 - 808975 -9953863
delta _cons 6.39e-08 4.65e-08 1.37  0.170 -2.74e-08 1.55e-07
sres_j2_11 .1254927  .1155307 1.09 0.277  -.1009434  .3519288 indfmz 69 2568767 6. 45 102000 tacaay.  i2i160259
asres_j2_11 -.210815 .1763266 -1.20 0.232 -.5564087 .1347787
—_cons 2.180827 .298213 7.31  0.000 1.59634 2.765314 df 7.242457  1.346665 5.168699 10.67339
TARCH(1,1,1)-QMLE TARCH(1,1,1)-t
ARCH family regression
Sample: 1 - 1226 Number of obs 1226
- . Distribution: t wald chi2(.) s
ARCH fTamily regression Log 1ikelihood = 6247.953 Prob > chi2 = .
Sample: 1 — 1226 Number of obs 1226
Distribution: Gaussian wald chi2(.) - 0PG
Log likelihood = 6222.323 Prob > chi2 = . r_sgd Coef. std. Err. z P>|z| [95% Conf. Interval]
abarch
0PG L1, .0872491  .0197714 4.41  0.000 .048498 1260002
r_sgd Coef. std. Err. z P>|z| [95% Conf. Interval]
atarch
abarch L1. .0146545  .0207853 0.71 0.481 -.0260839 .0553929
L3 .0933566 .012129 7.70  0.000 .0695841 .117129
sdgarch
atarch L1, .8983876  .0218249 41.16  0.000 8556117 .9411636
L1. .0305413  .0137091 2.23  0.026 .003672 .0574105
_cons 0000458 .00002 2.28 0.022 6.49e-06 0000851
sdgarch
L1, 8871466 .011863 74.78 0.000 .8638956 .9103976 /1ndfm2 1.669968  .2509502 6.65 0.000 1.178115 2.161821
_cons .0000475  .0000111 4.29 0.000 .0000258 . 0000692 df 7.311998  1.333047 5.248245 10. 68695




Model Results for PSEI

Joint JSu distribution

GARCH(1,1)-Normal-QMLE (also for Two-Step JSu)

Number of obs 2740 i i
wald chiz(2) sa g9 ARCH family regression
Log likelihood = 10389.917 Prob > chi2 0.0000
Sample: 1 - 2740 Number of obs 2740
Distribution: Gaussian wald chi2(.) .
Coef.  std. Err. z P>|z| [95% Conf. Intervall |og likelihood = 10154.39 Prob » chi2 = -
Insigma 2
r_psei_11 -16.97485  6.615072 -2.57 0.010  -29.94015 -—4.009549
ar_psei_11 65.77364 8.621792 7.63  0.000 48.87524  82.67204 oIM
_cons -10.537 .0604384 -174.34 0.000 -10.65546 —10.41854 r_psei Coef. std. Err. z P>|z| [95% conf. Interval]
i arch
r_psei_11 -7.138833  1.419198  -5.03  0.000 -9.92041  -4.357256
ar_psei_11 -1.149297  1.920681 -0.60 0.550 -4.913762 2.615168 L1. .1153213  .0174944 6.59 0.000 0810329 -1496098
_cons -.0073575  .0121145 -0.61 0.544  -.0311014 .0163865
garch
delta
r_psei_l1 12.84385 6.882676 1.87 0.062 —.6459499 26.33364 L. -7425473 -0428603 7.3 0.000 -E585427 - 826552
ar_psei_l1 -3.486078 7.147872  —0.49 0.626  -17.49565 10.52349
_cons 1.344409 .0653743  20.56 0.000 1.216278 1.47254 —cons 5.64e-06 1.16e-06 4.87 0.000 3.37e-06  7.91e-06

Result of Model Parameters in Two-Step JSu

Number of obs
wald chi2(2)

2739

ARCH family reg

ression

GARCH (1,1)-t

Sample: 1 - 2740 Number of obs 2740
34.94 Distribution: t wald chi2(.) -
= Log 1ikelihood = 10429.78 Prob > chi2 = .
OIM
r_psei Coef. std. Err. z P>z [95% Conf. Interval]
arch
L1. .1647159 .0270476 6.09 0.000 .1117035 .2177283
garch
L1. .7163982 .0389079 18.41 0.000 . 6401402 .7926562
—cons 4.72e-06 9.60e-07 4.92 0.000 2.84e-06 6.61e-06
/1ndfm2 . 8669395 .1583476 5.47 0.000 .556584 1.177295
df 4.379617 -3768066 3.744702 5.245583

Log Tikelihood = -3599.7307 Prob > chi2 .
Coef. std. Err. z P>|z| [95% Conf. Interval]
sres_j2_11 -.054455  .0093085 -5.85 0.000 -.0726993 -.0362108
asres_j2_11 -.0047896 .0132116 -0.36 0.717 -.0306838 .0211047
_cons -.0065264 .0127573 -0.51 0.609  -.0315304 .0184775

delta

sres_j2_11 -.0778221  .0606603 -1.28 0.200 -.1967142 .0410699
asres_j2_11 .0162679  .0627436 0.26 0.795 -.1067072 .139243
_cons 1.352966 .056759  23.84 0.000 1.24172 1.464212

TARCH(1,1,1)-QMLE

ARCH family regression

ARCH family regr

ession

TARCH(1,1,1)-t

Sample: 1 — 2740 Number of obs = 2740
Distribution: Gaussian wald chi2(.) = =
Log likelihood = 10134.73 Prob > chi2 = .
OPG
r_psei Coef. std. Err. z P>z [95% Conf. Intervall
abarch
L1. .1261264 . 0062795 20.09 0.000 .1138187 .138434
atarch
L1 -.0686956  .0075525 -9.10 0.000 -.0834982  -.0538929
sdgarch
L1. . 8237644 .0111394 73.95 0.000 .8019317 . 8455971
_cons .0006865  .0000582 11.80 0.000 .0005724 0008005

Sample: 1 — 2740 Number of obs = 2740
Distribution: t wald chi2(.) = .
Log Tikelihood = 10438.23 Prob > chi2 = =
OPG
r_psei Coef. std. Err. z P>|z| [95% Conf. Interval]
abarch
L1. -1749928 .024425 7.16 0.000 -1271207 .2228649
atarch
L1. —.0638546 .0215707 -2.96 0.003 -.1061324 -.0215767
sdgarch
L1. 7972977 .0301787 26.42 0.000 .7381486 . 8564469
-cons - 000593 - 0001265 4.69 0.000 .0003451 . 0008409
/Indfm2 .8477833 .1352007 6.27 0.000 .5827947 1.112772
df 4.334466 .3156215 3.791037 5.042781




