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EXECUTIVE SUMMARY 

 
This study extends the previous work of Burkey and Obeng (2004) that examined the impact 

of red light cameras on the type and severity of crashes at signalized intersections in 

Greensboro, NC. The extension takes the following form. First, we extend the data to cover 

57 months and to include demographics, technology variables, the condition of a driver at 

the time of the crash, vehicle characteristics, land use, and visual obstruction. Second, 

instead of examining the impact of red light cameras, we focus on identifying the 

determinants of crash severity, two-vehicle crashes, and property damage costs. The major 

findings are that the safety impacts of seatbelt use outweigh the impacts of airbags 

deploying because the latter tends to increase evident injuries and property damage costs, 

while the former reduces these injuries. We also find that head-on collisions and under rides 

increase evident injuries. For two-vehicle crashes, we find that the risk of severe injuries 

increases in pickup-pickup crashes and SUV-pickup crashes, while the risk of possible 

injuries increases in car-truck crashes. For property damage costs, we found the condition of 

the driver at the time of the crash (i.e., illness, impaired, medical condition, driver falling 

asleep, driver apparently normal) to be important determinants in increasing these costs. The 

types of accidents that we found to increase property damage costs are running into a fixed 

object and under rides. Different types of vehicles sustain different property damage costs in 

crashes. In increasing order, these property damage costs are $799.35, $844.47, $949.31, 

$1,016.37, and $1,084.35 for vans, pickups, light trucks, sports utility vehicles, and 

passenger cars respectively. Finally, we found that property damage costs of crashes are low 

where the land uses are commercial and institutional suggesting that the accidents that occur 

in these areas are minor. 
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1. INTRODUCTION 

Problem Statement: Nearly half of all accidents in the U.S. occur at or near intersections. 

Consequently, many specific studies have been conducted that investigate how various 

aspects of intersections relate to safety and accident rates. One such aspect is automated 

enforcement of traffic signals using cameras, i.e., red light cameras, which is a major new 

initiative used by many urban areas to reduce red light running and improve safety. At this 

point, the conclusion that red light cameras (RLCs) reduce accidents is based on sparse and 

primarily anecdotal evidence. McFadden and McGee (1999) concluded that, while 

reductions in violations, cost savings, and public acceptances are all benefits from their use, 

“Additional crash data are needed to validate and quantify the RLCs automated enforcement 

programs implication on crashes” (p. 27). Further, a recent review of studies on red light 

cameras by McGee and Eccles (2003) raises questions about the results of the studies. This 

is because these authors found that many of the studies were not well-designed, lacking 

well-selected control groups, and used little data. 

 Burkey and Obeng (2004) tried to resolve some of the problems with the earlier 

studies by using a large data set for Greensboro, North Carolina, with some degree of 

success. Working with the traffic-engineering department of the City of Greensboro and the 

North Carolina Department of Transportation, these researchers collected and analyzed a 

large data set on intersection accidents that include red light cameras as a variable. In their 

final data were 7,581 accidents that occurred at 302 signalized intersections over 45 months. 

Some of the data were on traffic counts (average daily volume), the presence of red light 

cameras, all red time, amber time, right turn signal, left turn signals, pedestrian crossing 

signal, number of lanes, left and right turn lanes, medians, and sidewalks. Others were types 

of accidents (e.g., rear-end collisions, front to side impacts), severity of accidents (e.g., 

fatality), types of vehicles involved, snowfall and precipitation, when the accidents occurred, 

and when a red light camera was placed at each intersection. These authors found that red 

light cameras did not appear to reduce accidents at intersections, but were associated with 

higher rates of accidents.   

 

Objective: The present study extends the work of Burkey and Obeng (2004) in three main 

ways. First, it expands the data set to include a longer time span, updating the data from 45 

months to 57 months. Second, it expands the data to include property damage costs, 
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demographic information about drivers, the predominant land use at intersections, possible 

visibility problems at intersections that contributed to a crash, the conditions of vehicles’ 

drivers at the time of accidents, and vehicle information (e.g., type of vehicle, estimated 

travel speed at impact, seat belt usage, airbag deployment). An additional, though minor, 

focus of this project is the efficacy of red light cameras by including appropriate new 

variables in the analysis. Thirdly, this study expands the analysis to investigate not only the 

determinants of accident rates, but also the determinants of accident severity given that an 

accident has occurred. This is done in three ways.  First, a property damage cost model is 

developed to identify the predictors of damage cost produced in an accident. Second, a 

severity model is developed to identify the predictors of severe accidents (e.g. fatal, severe 

injury, or property damage only). Lastly, the study employs a recently developed technique 

to analyze the determinants of injury severity in two-vehicle crashes. This new technique is 

bivariate Poisson, which allows various types of injuries to be simultaneously estimated and 

correlated with one another.  

 

Organization: The rest of the report is divided into seven sections. In Section 2, we present a 

review of the relevant literature that bears on this study, followed by a description of the 

data in Section 3, and an analysis of crash severity in Section 4. Section 5 deals with the 

determinants of injuries in two-vehicle crashes, Section 6 deals with land use and visibility 

effects on crashes, and Sections 7 and 8 deal with the determinants of property damage costs 

and conclusions, respectively. 

 

2. LITERATURE REVIEW 

Of the 6,394,000 automobile crashes in the U.S. in the year 2000, about 44% occurred at 

intersections or were classified as “intersection-related.” Of these, 47% occurred at 

intersections with traffic signals (NHTSA, Traffic Safety Facts 2000). The nature of 

intersections poses a special set of dangers for vehicles, pedestrians, and bicyclists. For 

vehicles, intersections are likely to involve dangerous “angle” crashes where little protection 

is given to drivers and occupants, and rear-end collisions where whiplash injuries are 

common. Approximately 22% of fatalities and 46% of injuries to pedestrians occur at 

intersections. 

 The Advocates for Highway Safety (2001) suggest nine main ways to improve 

intersection safety: 
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1) Changes to or installation of appropriate static traffic control devices 

2) Installing traffic signals 

3) Proper timing of traffic signals 

4) Installing dedicated turning lanes 

5) Removing sight distance restrictions 

6) Use of roundabouts 

7) Use of Intelligent Transportation Systems (ITS) 

8) Automated enforcement of red light running 

9) Better signing such as larger, brighter stop, yield, and speed limit information 

Within these nine suggestions are components that deal with structural changes, law 

enforcement, and conveying information to drivers. The standard protocol of most modern 

traffic-safety campaigns focuses on the “Three E’s”: Engineering, Enforcement, and 

Education.  

 Tarawneh et al. (2001) found that an education campaign significantly increased 

drivers’ understanding of traffic laws associated with red-light running. However, the 

Insurance Institute for Highway Safety (IIHS) (2001) criticizes the role of education in 

increasing safety and believes that engineering and enforcement efforts are much more 

important. Many times enforcement efforts are done on a high intensity but discontinuous 

basis (often called a “blitz” approach). These efforts can significantly affect safety, but are 

too costly to be used continuously. However, a low level of targeted enforcement can have 

large benefits. In Australia, several areas have been using Random Road Watch programs. 

These programs randomly monitor areas of roadway for two-hour periods using marked 

patrol cars. The intensity of the effort is chosen at a level that can be sustained over the long 

run and has been found to reduce accidents significantly, particularly fatal crashes (down 

31%) (Newstead et al., 2001). 

 When analyzing strategies for safety improvements on roadways, one must first 

establish that a given strategy will produce the desired results. Occasionally, the goals of a 

safety program are measured in terms of compliance with the law. This is often the case with 

seatbelt programs, speed-reduction programs, and child-safety-seat programs. However, the 

underlying goal should never be ignored, which is to reduce crashes and the resulting 

fatalities, injuries, and property damage. 

 Once a strategy is known to increase safety, good estimates of the extent of its 

benefits should be made for various types of its applications. The main purpose of 
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quantifying the benefits is so that reasonably accurate studies of efficiency can be made. 

Except on social or political grounds, a strategy is of no practical value if its costs exceed 

the benefits gained, or if a strategy with similar benefits can be implemented with lower 

costs. The most obvious benefits to a safety program are reductions in fatalities, injuries, and 

property damage. The most common method of classifying injuries and accidents is the 

KABCO method, which categorizes accidents and injuries as: 

K:  Killed 
A:  Incapacitating or Disabling Injury 
B:  Not Incapacitating, but Evident, Injury 
C:  Possible Injury, 
O:  No Injury, Property Damage Only (PDO) 

It must be understood that accident classification and estimates of property damage amounts 

are somewhat subjective and normally determined by a police officer at the scene. In the 

present study, we use the KABCO system as reported in our accident data. To compare 

severity between different types of accidents, it is sometimes convenient to attach a dollar 

value to each type of accident or injury. In October 1994, the FHWA issued a list of 

“Comprehensive Cost Estimates,” listed in Table 1. These values were updated to 2002 

dollars by the investigators of this project.1 

 

Table 1: Comprehensive Costs of Crashes 

Severity Description FHWA (1994) FHWA (2002)              NCDOT 2001

K Fatal $2,600,000 $2,979,600 $3,300,000

A Incapacitating 180,000 206,280 200,000

B Evident 36,000 41,256 57,000

C Possible 19,000 21,774 27,000

PDO Property Damage Only 2,000 2,292 3,900

 

 Also listed in Table 1 are “Standardized Crash Cost Estimates for North Carolina,” 

issued in December 2001, by the NCDOT (Troy, 2001). The values determined in this report 

are termed “comprehensive,” in that they include estimates of medical, work loss, employer 

costs, traffic delay, property damage, and changes in quality of life. Though these cost 

estimates were issued in 2001, they are measured in terms of year 2000 dollars. In addition 

                                                 
1 This is updated using GDP Implicit Price Deflator from Q1, 2002. 
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to accident reductions, other possible benefits or costs of implementing safety programs are 

changes in delays at intersections, resulting in effective increases or reductions in road 

capacity. These changes affect travel times for roadway users and they should be counted 

properly in benefit/cost ratios. While reducing speed limits may increase safety but reduce 

capacity, there are safety efforts that have also been shown to increase capacity. For 

example, efficiently programming traffic control devices in a network can yield benefits in 

reduced delays and reduced fuel use, as well as increased safety (Skabardonis, 2001). 

 Another important consideration is that very few safety improvement projects are 

undertaken randomly, as would be required for an unbiased estimate of the effects. Most 

often, safety efforts are directed toward intersections or roadways that have the highest 

accident rates in a given time period. Ceteris paribus, an intersection with an unusually high 

accident rate in one period is likely to have a lower (more average) rate in the next. This 

phenomenon is sometimes called the “regression to the mean effect.” Thus, the effects of a 

safety program targeted in this way may be overstated. Kulmala (1994) found that accidents 

declined approximately 20% due to regression to the mean effects, independent of any 

safety measures implemented. If ignored, regression to the mean effects can easily mislead 

researchers to inappropriately attribute crash reductions to an ineffective safety program.  

 In addition, the quality of the data used in safety studies must be ascertained. One 

often overlooked aspect of accident data is censoring. One must realize that not all accidents 

are reported and state laws differ on reporting requirements. In North Carolina, the crash-

reporting threshold is currently $1,000. That is, if a police officer is called to the scene of an 

accident, the officer is not required to make a report of the details of the accident unless he 

or she estimates that the damage is in excess of $1,000 or if there is injury. Therefore, many 

accidents are never entered into a crash database and this may affect the results of accident 

studies if ignored. The research related to this subject has been sparse. Zegeer et al. (1998) 

studied the differences in various types of accidents that would be reported under three 

different types of reporting thresholds: traditional (value), tow away, and injury. They found 

that using higher thresholds (tow away versus traditional, for example) tends to seriously 

underreport certain types of crashes. One would expect that the traditional thresholds lead to 

similar types of bias in accident reporting.   
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 In this study, we analyze four main questions: 

1) What crash-level factors can help explain injury severity? 

2) What crash-level factors can help explain property damage levels? 

3) What vehicle-level and driver characteristics determine injury severity levels in 

two-vehicle crashes? 

4) What roles do land use and visibility problems play in determining accident 

rates at intersections? 

In the next section, we describe the data set used for this report.  

 

3. DATA  

Context 

The focus of this research is the City of Greensboro, North Carolina. With the cooperation 

of the Greensboro Department of Transportation (GDOT), and NCDOT, we collected most 

of the data on accidents and the characteristics of intersections with stoplights in the city. 

The data include demographic information, driver condition, land use, vehicle use, and 

economic variables that were obtained from the Safety Information Management and 

Support Section of North Carolina Department of Transportation (NCDOT). This section of 

the NCDOT is responsible for acquiring and compiling accident data from police reports, 

and entering them into computerized databases called the “Traffic Engineering Accident 

Analysis System” (TEAAS). The data are primarily contained in three types of files. The 

Occupants file contains information on those in the vehicles at the time of the crash. The 

Event-Level data contains one record for each accident, including location, number of 

vehicles involved, numbers of injuries, and other data. Lastly, the Unit-Level data contains 

one record for each vehicle involved in each accident. Each record details the type of 

vehicle, damage estimates, injury levels, indications of use of alcohol, drugs or seatbelts, 

and many other variables. We used the Event-Level data and organized them based upon the 

routes where the accidents occurred, and matched them with intersections. Additionally, we 

combined this information with the Unit-Level data. Thus, the data is organized by each 

vehicle involved in an accident at a signalized intersection. Specific details of this data 

follow. 
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Independent variables 

1. Signalized intersection characteristics: Previous studies shed light on those 

intersection characteristics that explain the probability of an accident occurring. 

These characteristics include the length of amber time, red time, number of lanes, 

pedestrian signals, medians, and no turn on red signals. For example, Burkey and 

Obeng (2004) found that these variables are differently associated with various 

types and severities of accidents. We include data on these variables in the present 

study. 

2. Traffic and road characteristics: The probability of an accident occurring is very 

much related to both traffic and road characteristics. Traffic volume, for example, 

has been used in analyses of highway safety/fatalities (Michener and Tighe, 1992), 

as have traffic volume per lane (Milton and Mannering, 1998) and posted speed 

limits (McCarthy, 1994). Furthermore, Keeler (1994) found differences in the signs 

of speed limits on rural and urban roads, which he attributes to offsetting behavior 

and the ease of evading speed limits in rural areas. In addition to these variables, our 

data include the estimated speed of each vehicle in the accident, the speed of each 

vehicle at the time of impact, and the condition of the road (whether wet or dry). 

3. Land use characteristics: The type of land use at an intersection could affect crashes 

and therefore highway safety. Commercial and retail activities are major traffic 

generators and increase the exposures of drivers to accidents, especially accidents 

involving turning vehicles. Similarly, entrances to residential areas are major 

accident points. To capture these land use effects, our model includes binary 

variables for the following land uses: residential, institutional, commercial, and 

industrial. 

4. Driver characteristics: Numerous studies shed light on the effect of driver 

characteristics on accidents. While previous studies on health and safety found 

income (Peltzman 1975, Keeler 1994) and the proportion of young people (Cook 

and Tauchen, 1982) as relevant in explaining highway accidents, recent studies 

focus on the physical condition of the driver as a major contributor of crashes. This 

is because it has been found that drivers under the influence of drugs and alcohol or 

who become ill while driving are involved in some of the most fatal highway 

accidents. Our data includes information on gender, driver license restriction 
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(corrective lenses, daylight driving, 45-miles-per-hour driving, no interstate 

driving), and driver impairment (alcohol and/or drugs suspected).  

5. Technology variables: The probability of an accident occurring and its severity 

depend upon the technological features of the intersection such as the presence of a 

red light camera. In addition, they depend upon the technological features of the 

vehicles and whether or not those features deployed at the time of accidents. For 

example, ABS brakes are known to reduce stopping distances and could reduce 

accidents in the absence of offsetting behaviors by drivers. However, while airbags 

and shoulder belts may reduce injuries, they do not reduce accidents. The effects of 

these technological variables are examined in this research. These technological 

variables include shoulder and lap-belt use, only lap-belt use, only shoulder-belt use, 

airbag deployed/not deployed, airbag deployed on side, and airbag deployed front 

and side. Also, we include the presence of a red light camera at an intersection in the 

analysis. 

6. Vehicle type: The severity and damage from highway crashes depend upon the types 

of vehicles involved. More severe accidents and property damage occur when 

accidents involve passenger cars and heavier vehicles such as trucks, sports utility 

vehicles, and vans. In accidents involving passenger cars and sports utility vehicles, 

for example, it is possible for over/under rides to occur and result in fatalities. In 

related research, Bedard et al. (2002) studied the impact of driver impairment, 

speed, vehicle deformity, airbag deployment, and vehicle weight on driver fatalities. 

They used odds ratios and logistic regression to explain factors that increase the 

likelihood of a driver fatality. Kockelman and Kweon (2001) used ordered probit 

models to investigate the severity of injuries in different types of vehicles. They 

found that light trucks and SUVs are more dangerous in single-vehicle accidents. In 

addition, they found that these vehicles are safer for the occupants involved in a 

multi-vehicle crash, but are more dangerous for occupants of other vehicles. Acierno 

et al. (2004) studied the impact that differing vehicle types can have on the type and 

severity of injuries. For example, when a passenger vehicle is hit by a LTV (Light 

Truck Vehicle2), the risk of injuries is higher. When hit in the side, head and upper 

thorax injuries are common, and the risk of death is 27-48 times greater than if the 

vehicle was hit by a passenger car. When hit head-on, injuries to lower extremities 

                                                 
2 SUVs, Pickup Trucks and Minivans. 
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are common in addition to upper-body injuries, and are 3-4 times more likely to be 

fatal (compared to an accident with a passenger car). To account for the effects of 

different types of vehicles, our data identifies the types of vehicles involved in each 

accident. Specifically, the data identifies the following types of vehicles: passenger 

cars, light trucks, single unit trucks, vans, sports utility vehicles, and others. 

7.  Environmental variables: Weather conditions affect the probability of a crash 

occurring and severity of crashes. Rainfall, for example, increases stopping 

distances and the probability of an accident occurring. Heavy crosswinds, snowfall, 

and sleet also affect crashes. In our previous study (Burkey and Obeng 2004), we 

found both rainfall and snowfall have significant effects on crashes. However, 

regarding snowfall it was found that its relationship with crashes at intersections is 

negative, which we attributed to business and school closures in Greensboro during 

snowfall that removes traffic from streets and highways. This finding suggests that 

the effect of snowfall on crashes may depend upon location and frequency of 

snowfalls. The environmental variables included in this study are those related to 

weather (snow, rain, sleet, fog, cloudy, clear), and others that may obstruct vision 

(sunlight, trees, buildings, and vehicles). 

 

Dependent variables 

Consistent with the objectives of this study, the dependent variables are the severity of 

accidents and the cost of accidents. For severity, we distinguish between four types of 

crashes. They are those that cause fatalities, incapacitating injuries, evident but not 

incapacitating injuries, and possible injuries. A separate model is developed to explain each 

of the four types of severe accidents. For the cost of accidents, we use two dependent 

variables. The first is the estimate of property damage cost in the police accident reports. 

This property damage cost is approximate. However, under the assumption that errors in this 

cost are independent of the explanatory variables, we can use it in our equations. Police 

officers are required to file a complete accident report providing damage estimates if the 

property damage is at least $1,000 or if an injury occurred. Our data show many property 

damage estimates of less than $1,000, suggesting that those accidents involved injuries. 
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Table 2: Descriptive Statistics 

Variable               Mean      Std.Dev.    Minimum    Maximum      Cases 

Estimated damage $  2259.3314  2144.1438       0.0000 19000.0000      16993 

Crashes with damage   0.9535     0.2106       0.0000     1.0000      17116 

Severity 

Fatalities            0.0010      0.0315      0.0000     1.0000      17116 

Incapacitating        0.0045      0.0728      0.0000     3.0000      17116 

Evident injury        0.0511      0.2465      0.0000     4.0000      17116 

Possible injury       0.2952      0.6138      0.0000    11.0000      17116 

Intersection/Traffic characteristics 

Speed estimate       20.0807     15.7065      0.0000   100.0000      16986 

Log(daily volume)    10.4050      0.4323      8.8209    11.1452      17110 

Average amber time    4.1236      0.2216      3.0000     5.0500      17110 

Driver condition/characteristics 

Apparently normal     0.5566      0.4968      0.0000     1.0000      17110 

Ill                   0.3200      0.4665      0.0000     1.0000      17110 

Impaired              0.0163      0.1267      0.0000     1.0000      17110 

Medical condition     0.2180      0.1460      0.0000     1.0000      17110 

Asleep                0.0416      0.1997      0.0000     1.0000      17110 

Female                0.4722      0.4992      0.0000     1.0000      17110 

Type of vehicle collision 

Rear end slow/stopped 0.3398      0.4737      0.0000     1.0000      17116 

Left turn same        0.0983      0.2978      0.0000     1.0000      17116 

Left-turn different   0.0315      0.1748      0.0000     1.0000      17116 

Sideswipe same direc. 0.0601      0.2377      0.0000     1.0000      17116 

Sideswipe opp. direc. 0.0091      0.0950      0.0000     1.0000      17116 

Fixed object          0.0072      0.0845      0.0000     1.0000      17116 

Head-on               0.0151      0.1219      0.0000     1.0000      17116 

Rear turning          0.0123      0.1101      0.0000     1.0000      17116 

Ran off road right    0.0098      0.0983      0.0000     1.0000      17116 

Right turn different  0.0075      0.0862      0.0000     1.0000      17116 

Right turn same       0.0106      0.1026      0.0000     1.0000      17116 

Backup                0.0097      0.0980      0.0000     1.0000      17116 

Other vehicle colli.  0.0283      0.1659      0.0000     1.0000      17116 

Vehicle characteristics 

Passenger car         0.6683      0.4709      0.0000     1.0000      17110 

Pickup                0.0984      0.2979      0.0000     1.0000      17110 

Van                   0.0440      0.2050      0.0000     1.0000      17110 

SUV                   0.0968      0.2957      0.0000     1.0000      17110 

Light truck           0.0303      0.1715      0.0000     1.0000      17110 

Land use 

Residential           0.2127      0.4092      0.0000     1.0000      17116 

Commercial            0.7537      0.4309      0.0000     1.0000      17110 

Industrial            0.0048      0.0691      0.0000     1.0000      17116 

Institutional         0.0191      0.13672     0.0000     1.0000      17110 

Technology variables 

Shoulder/lap          0.8933      0.3088      0.0000     1.0000      17116 

RLCPRES               0.1577      0.3645      0.0000     1.0000      17110 

Airbag                0.6654      0.4719      0.0000     1.0000      17110 

Deployed front        0.0721      0.2586      0.0000     1.0000      17110 

Deployed side         0.0064      0.0799      0.0000     1.0000      17110 

Others 

Under ride            0.0226      0.1487      0.0000     1.0000      17110 

Over ride             0.0152      0.1225      0.0000     1.0000      17116 

No visual obstruction 0.9210      0.2697      0.0000     1.0000      17110 
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Descriptive statistics 

The descriptive statistics in Table 2 provide some information about the data. These 

statistics show that those involved in the crashes were mostly men (52.78%) and appeared 

normal (55.66%). However, a sizable percentage (21.80%) had medical conditions and 

32.00% were ill. Those impaired by drugs and/or alcohol accounted for only 1.63% of the 

crashes and a driver falling asleep behind the wheel accounted for 4.16% of the crashes. 

 An observation from the table is that 75.37% of the crashes occurred where the 

predominant land use is commercial and 21.27% occurred where the predominant land use 

is residential. Very few crashes occurred near where the major land use is industrial or 

institutional. This distribution of where the crashes occurred could reflect prior 

determination by traffic engineers concerning where to locate traffic lights. Since 

commercial land uses generate a lot of vehicular traffic, it is common to locate traffic lights 

near them. The same can be said of residential land use, though to a lesser extent. 

 A further observation is that 95.35% of the crashes involved property damage 

costing $2,259.33 on the average, and 29.52% of the crashes involved possible injuries. The 

data also show that very few accidents were fatal (0.10%), incapacitating (0.45%), or 

involved evident injury (5.11%). In short, most of these crashes were minor. One reason for 

this may be the low average estimated traveling speed of 20.08 miles per hour for the 

vehicles in the crashes and 66.54% of these vehicles having airbags. Also, it may be because 

89.33% of the vehicle occupants wore seatbelts. Furthermore, in 7.21% of the vehicles, the 

airbags in the front passenger compartment deployed possibly reducing injuries to the driver 

and front-seat occupants, while in 0.64% the side airbags deployed. This latter percentage 

could indicate the most severe crashes. In fact, since this percentage is very close to that for 

fatalities it is possible that both percentages show the same type of crash. 

 Due to the preponderance of passenger cars in traffic streams, we would expect that 

most of the crashes would involve passenger cars. Indeed, this is the case as the data reveals. 

The data shows that though various types of vehicles were involved in crashes, most 

(66.83%) were passenger cars, 9.84% were pickups, 9.68% were sports utility vehicles, 

4.4% were vans, and 3.3% were light trucks. The rest, 5.8% included single unit trucks, 

tractor-trailers, taxicabs, motorcycles, and school buses, etc. 

 Because the focus of the study is on vehicular crashes, the data does not show 

crashes between vehicles and pedestrian, animals, bicyclists, or movable objects. For this 

reason, the percentages in the table for types of crashes do not sum to one hundred. The data 
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show that 33.98% of the intersection crashes involved running into the back of a slowed or 

stopped vehicle, 9.83% involved vehicles making a left in the same roadway, 6.01% 

involved sideswiping a vehicle in the same direction, while 3.15% involved vehicles turning 

left on different roadways. Each of the other entries in the table shows a percentage that is 

less than three percent. 

 

Correlations 

The data was analyzed using various statistical methods including correlation to establish 

relationships among the independent variables. This is particularly important to identify 

linear dependencies among the variables that could seriously affect the reliability of the 

estimated coefficients. Appendix A shows the correlations between the independent 

variables. Clearly, most of these correlations are very low suggesting that linear 

dependencies would not be a problem in using these variables in the equations to be 

estimated. However, close observation reveals a sizable positive correlation between red 

light cameras and traffic volume. Since higher traffic volumes are generally associated with 

minor accidents because speed tends to be low, we should expect some relationship between 

red light cameras and minor accidents. In the next section, we will examine if this 

relationship indeed exists when other confounding variables are accounted for. Interestingly, 

there is a negative correlation between female drivers and the reporting of an accident being 

related to falling asleep or a medical condition. 

 

4. ANALYSIS OF CRASH-LEVEL SEVERITY 

This section analyzes factors that can predict the most severe injury sustained by all 

involved in a crash. Milton and Mannering (1998) argue that since most accident frequency 

data are over-dispersed, the appropriate model to use is the negative binomial model. 

However, in this section we categorize individual accidents by severity and perform analysis 

to determine the factors that explain the severity category.  For example, the occurrence of a 

fatal accident or an accident involving property damage is recorded as one and non-

occurrence as a zero. Because these occurrences are the dependent variables in our 

equations, negative binomial models are inappropriate. Because the dependent variable is 

dichotomous, we use probit and logit equations to estimate an equation for each type of 

accident.  
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In addition, there are very few fatal crashes in the data; therefore, they are combined 

with those that result in incapacitating injuries and one equation estimated for them. In all, 

two equations are estimated for crash severity and they are: 1) a probit model for fatal and 

incapacitating crashes, and 2) a probit model for evident injury. These equations are of the 

form, 

)1(βXY =  

Where Y is the dependent variable, X is a subset of the independent variables in Table 2 and 

β is a vector of the coefficients to be estimated. These independent variables are the 

characteristics of signalized intersections, traffic and road characteristics, land use 

characteristics, driver characteristics, technology, and environmental variables. 

 

Results 

Fatal and incapacitating injuries 

Table 3 shows the maximum likelihood estimates of the coefficients of the equation for the 

combined fatal and incapacitating injuries from vehicle crashes. The fit statistics show that 

the model fits the data relatively well. At the 0.5 threshold level (i.e., predict that fatalities 

and incapacitating injuries equal to one if the fitted probability of these injuries occurring is 

greater than 0.5), 99.67% of the actual ones and zeroes in the dependent variable are 

correctly predicted. However, it is worth noting that with this threshold, the model correctly 

predicts the zeroes better than it predicts the ones. For example, while it correctly predicts 

99.565% of the zeroes, it incorrectly predicts 98.61% of the ones. These results show that 

the data is quite unbalanced with many zeroes. In fact, our data has 72 crashes involving 

fatal or incapacitating injuries (i.e., probability = 0.0055) coded as ones compared to 16,263 

crashes coded as zeroes that did not result in these injuries. These levels of prediction 

notwithstanding, the results provide useful information to explain crashes that result in fatal 

and incapacitating injuries. 

 

The effect of technology variables on fatal and incapacitating injuries:  From the 

coefficients in Table 3, some information can be gleaned about the effect of technology 

variables on crashes that result in fatalities and incapacitating injuries. These technology 

variables are the presence of airbags in the vehicles involved in the crashes, front airbag 

deployed, and side airbag deployed. We observe that the coefficient of the presence of 

airbags in vehicles is negative and statistically significant at the 0.0019 level. This result 
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confirms the commonly accepted notion that airbags reduce fatalities and incapacitating 

injuries. On the other hand, when we examine the coefficients of airbag deployment, the 

opposite results are obtained. Here, the coefficients of both the front and side airbags 

deploying are positive and statistically significant at the 0.0000 and 0.0371 levels 

respectively. These positive coefficients suggest that when the front and side airbags deploy 

in crashes, they could result in incapacitating injuries and possibly fatalities. 

 

The relative contributions of the technology variables to incapacitating injuries and 

fatalities from intersection crashes are obtained by examining their marginal effects. These 

marginal effects are presented below. Clearly, they show that the marginal effect of the side 

airbag deploying versus not deploying is not statistically significant. On the other hand, the 

marginal effects of the front airbag deploying and there being an airbag in a vehicle involved 

in a crash at an intersection are statistically significant. The sizes of these marginal effects 

show that when a front airbag deploys it may increase the probability of injuries and 

fatalities occurring more than the reduction in this probability when there is an airbag in a 

vehicle. 
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Table 3: Binomial Probit: Fatality and Incapacitating Injuries 

 Weighting variable                 None 

 Number of observations            16335 

 Iterations completed                 10 

 Log likelihood function       -363.1880  

 Restricted log likelihood     -462.3978  

 Chi squared                    198.4197  

 Degrees of freedom                   11  

 Prob[ChiSqd > value] =         .0000000      

Variable               Coefficient   Standard Error  b/St.Er.      P[|Z|>z]   Mean of X 

 Constant              -4.6425       0.7427         -6.251          0.0000 

 Occupants             -0.1114       0.0798         -1.396          0.1627        1.3895 

 Amber time (seconds)   0.4233       0.1756          2.410          0.0160        4.1235 

 Speed estimate        -0.0027       0.0003        -10.659          0.0000       14.9971 

 (Speed estimate)2       0.0003       0.0000          7.183          0.0000      630.1699 

 Apparently normal      0.2033       0.1027          1.979          0.0479        0.5573 

 Rear-end slow/stopped -0.3460       0.1310         -2.641          0.0083        0.3508 

 Head-on collision      0.6055       0.2071          2.924          0.0035        0.0140 

 Passenger car          0.1848       0.1146          1.613          0.1068        0.6683 

 Airbag                -0.3443       0.1110         -3.103          0.0019        0.6664 

 Airbag deployed front  0.5935       0.1386          4.282          0.0000        0.0618 

 Airbag deployed side   0.6917       0.3317          2.085          0.0371        0.0053 

 Fit Measures for Binomial Choice Model  

 Probit   model for variable FTL  

 Proportions P0= .9956   P1= .0044   

 N =   16335 N0=   16263   N1=      72   

 LogL =  -363.18796 LogL0 =  -462.3978  

 Estrella = 1-(L/L0)^(-2L0/n) = 0.0136  

     Efron   McFadden    Ben./Lerman   

    .05280     .21456         .99173   

    Cramer  Veall/Zim.      Rsqrd_ML   

    .05830     .22398         .01207   

 Information  Akaike I.C. Schwarz I.C.   

 Criteria         .04594     842.78870   

Frequencies of actual & predicted outcomes 

Predicted outcome has maximum probability. 

Threshold value for predicting Y=1 = .5000 

            Predicted 

Actual      0    1  |  Total 

  0     16263    0  |  16263 

  1        71    1  |     72 

Total   16334    1  |  16335 

Analysis of Binary Choice Model Predictions Based on Threshold =  .5000 

Prediction Success 

Sensitivity = actual 1s correctly predicted                    1.389% 

Specificity = actual 0s correctly predicted                  100.000% 

Positive predictive value = predicted 1s that were actual 1s 100.000% 

Negative predictive value = predicted 0s that were actual 0s  99.565% 

Correct prediction = actual 1s and 0s correctly predicted     99.565% 

Prediction Failure 

False pos. for true neg. = actual 0s predicted as 1s            .000% 

False neg. for true pos. = actual 1s predicted as 0s          98.611% 

False pos. for predicted pos. = predicted 1s actual 0s          .000% 

False neg. for predicted neg. = predicted 0s actual 1s          .435% 

False predictions = actual 1s and 0s incorrectly predicted      .435% 
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 Mean  Standard. Error            t-value    Probability 

Airbag present in 
vehicle 

     -0.0022  0.0008  -2.631 0.0085  

Front airbag 
deployed  

      0.0071   0.0030  2.409 0.0160  

Side airbag deployed 0.0105  0.0104       1.015  0.3103 

 

Types of accidents vs. fatal and incapacitating injuries: Types of accidents also have 

significant effects on fatalities and incapacitating injuries. Two types of crashes are 

examined here. They are running into the back of a slowed or stopped vehicle, and head-on 

collision. Both types of crashes have opposite and statistically significant effects on fatal and 

incapacitating injuries. Running into the back of a slowed or stopped vehicle at an 

intersection is negatively associated with suffering incapacitating injuries and fatalities, 

showing that these crashes are generally not serious. On the other hand, a head-on collision 

is a very serious crash and it is positively associated with fatalities and incapacitating 

injuries. Examining the marginal effects of these types of crashes, we observe that when an 

intersection crash involves running into the back of a slowed or stopped vehicle, its marginal 

effect on the probability of fatality and incapacitating injuries occurring is negative (-

0.0016) and statistically significant (0.0034). Contrariwise, when the crash involves a head-

on collision, its marginal effect (0.0080) is not statistically significant (0.1304).       

 

Driver condition vs. fatal and incapacitating injuries:  Driver condition at the time of a 

crash also affects fatality and incapacitating injuries. We noted this in the data section; here 

we consider it explicitly in modeling fatal and incapacitating injuries. While the data 

provides a variety of information about driver condition, only one is considered in Table 3 

and this is if the driver involved in the crash appeared normal. The log-likelihood estimation 

did not converge to a solution when other descriptors of driver condition were included in 

the model. The results of the estimation in Table 3 show that those involved in crashes that 

involved fatalities and incapacitating injuries appeared normal. The estimated coefficient of 

this driver condition and its associated probability are respectively 0.2033 and 0.0479. And, 

its marginal effect of 0.0011 with a level of significance of 0.0464 shows that apparently 

normal drivers contribute very little (less than 1%) to the probability of a crash occurring 
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that leads to fatalities and incapacitating injuries. This suggests that such crashes may be due 

to drivers who do not appear normal or who may have some medical problems. 

 

Intersection and traffic characteristics vs. fatal and incapacitating injuries: Four variables 

are used to capture the effects of intersection and traffic characteristics on crashes that result 

in fatalities and injuries. They are the type of vehicle involved in the crash (represented by 

passenger car), the estimated speed of the vehicle in the crash, the square of this estimated 

speed, and amber time setting. The results show that the coefficient of passenger car, though 

positive, is not statistically significant. Its probability of 0.1068 is outside the commonly 

acceptable range, i.e., p < 0.10. Thus, we cannot say that when passenger cars are involved 

in crashes at signalized intersections they would be associated with more fatalities and 

incapacitating injuries than other vehicles. When also we examine the amber time settings at 

signalized intersection, it can be said that they appear to be associated with high levels of 

crashes that result in fatalities and incapacitating injuries. Here, we observe that the 

coefficient of amber time is 0.4233 with a probability of 0.0160, which is statistically 

significant. However, the marginal effect of amber time is 0.0022 (probability = 0.0185) and 

shows that increasing it by one second would increase by 0.22% the probability of a crash 

occurring that involves fatalities and incapacitating injuries. 

The effect of estimated travel speed on crashes involving fatalities and incapacitating 

injuries is examined with two variables, one linear and the other quadratic. The results show 

that both variables have coefficients that are opposite in signs and that are highly significant 

(probability < 0.0000). While the linear speed term has a negative coefficient, the quadratic 

term has a positive coefficient. These coefficients imply that as estimated travel speed 

increases there would be an initial reduction in crashes resulting in fatalities and 

incapacitating injuries. This could occur if it increases traffic flow and reduces stop-and-go 

operations. However, at some point an increase in speed would increase the probability of 

crashes resulting in fatalities and incapacitating injuries.  

 

Evident injury 

Table 4 shows the maximum likelihood estimate of crashes that involved evident injury. 

Here, we removed from the data all crashes that involved fatal, incapacitating, and possible 

injuries. Similar to those crashes that involved fatal and incapacitating injuries, the model 

fits the data very well. The Chi-squared of the model is 1193.714 and its probability is 
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0.0000. We also observe that at the 5% threshold level the model predicts 99.87% of the 

actual zeroes and 9.233% of the actual ones, which reflects the unbalanced nature of the 

data. Specifically, the data contains 4.92% of crashes that resulted in evident injuries. 

Combined, at this threshold level, the model correctly predicts 95.411% of the actual ones 

and zeroes. 

 

The effect of technology variables on evident injury: The technology variables considered in 

this equation include the presence of red light cameras at intersections, drivers’ use of 

shoulder and lap belts, and use of only lap belt at the time of the crash. Others are the 

presence of an airbag in a vehicle involved in a crash, front airbag deployed, and side 

airbags deployed. Obviousl,y from the table the presence of a red light camera at an 

intersection is not related to crashes that result in evident injuries. This is quite surprising 

since red light cameras are touted for reducing crashes at intersections, particularly severe 

crashes that cause injuries. However, it is consistent with what Burkey and Obeng (2004) 

found in their study of red light cameras using a subset of data included in this study. 

 The relationship between the presence of airbags in vehicles and evident injury is 

negative and statistically significant and similar to what we found between crashes that 

result in fatal and incapacitating injuries and airbags. The coefficient of the presence of an 

airbag in a vehicle is -0.3932 and it is significant at the 0.0000 level. Therefore, the 

probability of crashes occurring at signalized intersections that result in evident injuries 

could reduce if the vehicles had airbags. However, when the airbags deploy they do not have 

the same negative effect on evident injuries as the presence of an airbag in a vehicle. 

Whether the airbag deploys in front or on the side, its effect is to increase the probability of 

an evident injury occurring. This is quite clear from the coefficients of 1.5974 (probability = 

0.0000) and 1.3766 (probability = 0.0000) for side and front airbags deploying respectively. 

The marginal effects of the presence of an airbag in a vehicle, and front and side airbags 

deploying also are statistically significant and are shown below. These marginal effects 

show that when either the front or the side airbag deploys the probability of evident injury 

occurring is far larger than the decrease in the probability of an evident injury occurring in a 

vehicle that has an airbag. 
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Table 4 – Binomial Probit Model of Evident Injury 

 Log likelihood function       -1950.749 

 Restricted log likelihood     -2547.606  

 Chi squared                    1193.714  

 Prob[ChiSqd > value] =         .0000000      

Variable                      Coefficient    Standard Error b/St.Er. P[|Z|>z]  Mean of X| 

 Constant                      -0.5411       0.5854        -0.924   0.3554 

 Red light camera               0.0492       0.0685         0.718   0.4727       0.1568 

 Log( daily traffic volume)    -0.0985       0.0561        -1.755   0.0793      10.4067 

 No visual obstruction          0.4742       0.0939         5.052   0.0000       0.9098 

 Rear-end slow/stopped         -0.5898       0.5922        -9.960   0.0000       0.3354 

 Head-on collision              0.2887       0.1368         2.110   0.0348       0.0133 

 Side swipe same direction     -0.6681       0.1251        -5.343   0.0000       0.0738 

 Backup                        -1.3336       0.6535        -2.041   0.0413       0.0119 

 Passenger car                  0.0653       0.0551         1.185   0.2362       0.6414 

 Pickup                         0.1051       0.0808         1.300   0.1937       0.1076 

 Straight truck                -0.7676       0.4301        -1.785   0.0743       0.0112 

 Shoulder/lap belt             -0.6925       0.0680       -10.190   0.0000       0.8883 

 Shoulder belt only            -0.6686       0.1681        -3.977   0.0001       0.0193 

 Airbag deployed side           1.5974       0.1799         8.879   0.0000       0.0042 

 Airbag deployed front          1.3766       0.0656        20.991   0.0000       0.0473 

 Airbag                        -0.3921       0.0479        -8.186   0.0000       0.6604 

 Occupants                      0.0640       0.0203         3.155   0.0016       1.3218 

 Speed estimate                -0.0033       0.0003       -11.845   0.0000      15.8964 

 (Speed estimate)2               0.0002       0.0000         7.438   0.0000     629.4370 

 Under ride                     0.2889       0.1369         2.110   0.0349       0.0225 

 Residential land use           0.0834       0.0520         1.604   0.1088       0.2087 

 Fit Measures for Binomial Choice Model  

 Proportions P0= .950801   P1= 0.0492 

 N =   12988 N0=   12349   N1=     639   

 LogL = -1950.74869 LogL0 = -2547.6057 

 Estrella = 1-(L/L0)^(-2L0/n) = .09942 

     Efron   McFadden    Ben./Lerman   

    0.1749     0.2343         0.9229 

    Cramer  Veall/Zim.      Rsqrd_ML  

    0.1754     0.2987         0.0878  

 Information  Akaike I.C. Schwarz I.C.   

 Criteria      0.3036      4100.4048  

Threshold value for predicting Y=1 = .5000 

            Predicted 

Actual      0    1    Total 

  0     12333   16    12349 

  1       580   59      639 

Total   12913   75    12988 

Analysis of Binary Choice Model Predictions Based on Threshold =  .5000 

Prediction Success 

Sensitivity = actual 1s correctly predicted                    9.233% 

Specificity = actual 0s correctly predicted                   99.870% 

Positive predictive value = predicted 1s that were actual 1s  78.667% 

Negative predictive value = predicted 0s that were actual 0s  95.508% 

Correct prediction = actual 1s and 0s correctly predicted     95.411% 

Prediction Failure 

False pos. for true neg. = actual 0s predicted as 1s            .130% 

False neg. for true pos. = actual 1s predicted as 0s          90.767% 

False pos. for predicted pos. = predicted 1s actual 0s        21.333% 

False neg. for predicted neg. = predicted 0s actual 1s         4.492% 

False predictions = actual 1s and 0s incorrectly predicted     4.589% 
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   MARGINAL    

   EFFECT   STD. ERR T-VALUE      PROB. 

Shoulder and lap -0.0695  0.0102 -6.844    0.0000   

Shoulder belt only -0.0217  0.0027 -8.147    0.0000   

Airbag deployed front  0.2392   0.0198 12.096    0.0000   

Airbag deployed side  0.3339   0.0667   5.010    0.0000 

Airbag -0.0027  0.0037 -7.251    0.0000        
 

Two other technology variables whose relationships with evident injury we 

examined are shoulder and lap belts. When used together, these belts have negative 

relationships with there being evident injuries in crashes at intersections. The coefficient of 

using lap and shoulder belts together is -0.6925 with a probability of 0.0000. Similarly, 

when shoulder belts are used alone they reduce the probability of evident injuries occurring 

in crashes at signalized intersections. The coefficient of using shoulder belts alone is -0.6686 

with a probability of 0.0001. Although these coefficients are very close, their marginal 

effects in the above table show that the injury reduction effect of using shoulder and lap 

belts together is more than three times the effect of using a shoulder belt alone. To be exact, 

when shoulder and lap belts are used the probability of sustaining evident injury in a crash 

reduces by 6.95% (probability = 0.0000), compared to a reduction of 2.17% (probability = 

0.0000) in sustaining evident injury in an accident at an intersection.  

Combining these results we consider a typical automobile user, a driver wearing a 

combined shoulder and lap belt and driving a vehicle equipped with front and side airbags 

that deploy during a crash at a signalized intersection. The marginal effects of the 

technology variables show that such a typical automobile driver would have a 50.09% 

chance of sustaining an evident injury. If the same driver used only the shoulder belt, the 

probability of him/her sustaining evident injury becomes 54.87%. If the vehicle did not have 

a side airbag the probability of an evident injury occurring would reduce to 16.70%. 

 

Types of accidents vs. evident injuries: Evident injuries may also be due to the types of 

crashes that occur. Though our data contain many types of crashes, we focus only on those 

for which we obtained statistically significant coefficients. Three types of accidents 

qualified to be included in the model of evident injury and two had negative and statistically 

significant coefficients. These two are crashing into the back of a slowed or stopped vehicle 

and backing up, and their respective coefficients are -0.6681 (0.0000) and –1.3336 (0.0413), 

where the probabilities are in parentheses. Thus, the probability of a crash at a signalized 
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intersection resulting in evident injury is smaller when it involves running into the back of a 

slowed or stopped vehicle, or when the crash results from a vehicle backing up. These 

results are also borne out when we examine the marginal effects of these types of crashes. 

Such an examination leads to the table below, which shows that the reduction in the 

probability of evident injury is larger than occurs from side swiping a vehicle that is moving 

in the same direction. 

 

                                                                               MARGINAL 

                                                                    EFFECT    STD. ERR T-VALUE PROB. 

Back of slowed/stopped vehicle -0.0302 0.0027 -11.356 0.0000 

Head on collision   0.0225 0.0136    1.660 0.0969 

Side swipe vehicle in same direction       -0.0235 0.0024  -9.651 0.0000 
 

While both types of crashes are negatively related to evident injury, Table 4 and 

above table show that head on collisions are positively associated with sustaining an injury. 

The coefficient of head on collision is 0.2887 and it is significant at the probability level of 

0.0348. However, the probability of the marginal effect of head on collision is very weak, 

leading us to surmise that there is not strong evidence to suggest that head on crashes at 

signalized intersections are not strongly related to evident injury. This may be because these 

types of crashes seldom occur particularly in an environment where raised medians are used 

at signalized intersections to separate traffic flowing in opposite directions. 

 

Type of vehicle versus evident injury: To examine the impact of the type of vehicle involved 

in a crash on evident injury we included three types of vehicles in the model. They are 

passenger cars, pickups, and straight trucks. Both passenger cars and pickups have positive 

coefficients in the model, but these coefficients are not statistically significant. This shows 

that we cannot be confident that evident injury would be observed when these two types of 

vehicles are involved in crashes. Contrary to these results we find that the coefficient of a 

straight truck is -0.7676 and its level of significance of 0.0743 is very weak, just as is its 

marginal effect. Specifically, the marginal effect of a straight truck is 0.0068 with a level of 

significance of 0.2288. Together these results show that type of vehicle does not have a 

statistically significant effect on crashes at a signalized intersection that result in evident 

injuries.  
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Traffic volume and speed vs. evident injury:  Table 4 also shows the effects of traffic volume 

and speed on the probability of evident injuries occurring in crashes at signalized 

intersections. The coefficient of traffic volume is –0.0985 with a significance level of 

0.0793, which shows that its relationship with evident injuries is very weak. However, when 

we examine the effect of estimated speed the vehicle was traveling when the accident 

occurred, its linear and quadratic terms are highly statistically significant. The coefficient of 

the linear and quadratic terms are –0.0033 (0.0000) and 0.0002 (0.0000) respectively, where 

the terms in parentheses are the probabilities. As we have argued in previous discussions, 

the negative coefficient of the linear term shows that the probability of evident injury 

occurring is low when estimated speed is high, while the coefficient of the quadratic term 

shows that beyond some point an increase in estimated speed would be associated with an 

increase in the probability of evident injury occurring.  

 

Type of land use and evident injury: The effect of land use on evident injury is also in Table 

4. Here, the considered land use is residential and it is found that it does not have a 

statistically significant effect on evident injury. Though its coefficient is positive, its level of 

significance of 0.1088 shows this coefficient is not different from a zero. Thus, crashes 

involving evident injury are found everywhere and not confined to specific places or where 

some predominant land uses occur. 

 

Other factors vs. evident injury: Besides the above results, crashes that involve under rides 

result in evident injury. The coefficient of this variable is 0.2889 and its level of significance 

is 0.0349. Similarly, when a crash is a result of no visual obstruction it results in evident 

injuries. The coefficient of no visual obstruction is 0.4742 with a probability of 0.0000. It 

follows that crashes at intersections that result in evident injuries cannot be attributed to 

visual obstructions. 

 

5. DETERMINANTS OF INJURIES IN TWO-VEHICLE CRASHES 

The discussions in the previous section were concerned with fatalities and incapacitating 

injuries, and evident injuries. In those discussions, we considered all types of crashes and 

did not distinguish between single car and multiple car crashes. In this section, we consider 

the most common type of crashes at signalized intersections, crashes involving two vehicles. 

To do so we pulled all crashes that involved only two vehicles and classified them in terms 
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of severity using the KABCO method. The fatalities and severe injuries (Type A) occurred 

so rarely in the data set that they were combined with evident injuries and non-disabling 

injuries (Type B) into a category called ‘Severe.” Possible injuries (Type C) were examined 

for comparison. This process yielded 6,188 events with 12,376 vehicles involved containing 

17,922 occupants. The proportions of persons who had severe and possible injuries are 4.9% 

and 29.4% respectively. Of the types of accidents recorded, 39.4% involved angle crashes, 

14.8% left-turning vehicles, 1.6% head-on collisions, 32.9% rear-ending a slow or stopped 

vehicle and 2.0% right-turning vehicles. About 54% of the crashes involved male drivers, 

98% of the drivers wore seatbelts during the crash, and 1.9% of the drivers were impaired. 

For 8.1% of the crashes, air bags deployed, and 5% involved visibility obstruction. Table 5 

presents descriptive statistics for the explanatory variables in the study of two vehicle 

crashes. Using this data we analyzed the factors that influence the number of severe (K, A, 

B) and possible (C) injuries that occur in two-vehicle crashes. These factors include the 

characteristics of the vehicle containing the occupants who suffered injuries as well as the 

characteristics of the other vehicle involved in the crash. Of key interest here are the 

estimated speeds of both vehicles at impact and the types of vehicles involved. 

To focus on the most common occurrences with a relatively simple model, we 

restricted attention to accidents involving cars, pickups, SUVs, minivans, and “single unit 

trucks.” These single unit trucks include many types of delivery trucks that have two axles. 

Examining all of the possible combinations of these vehicle types would require 20 different 

pairings to be examined. To reduce this to 12 categories, pickups and minivans were 

combined into one category because of their similar weights. 

 

The model 

Again, recall that the number of injuries of each type is a count variable. So, we employ 

Poisson regression models to analyze two-vehicle crashes. However, it would be improper 

to ignore the fact that the number of severe injuries and the number of minor injuries 

occurring in the same vehicle are related. A method that considers this relationship is 

therefore needed. Some authors have used Seemingly Unrelated Regression (SUR) type 

model tailored for count data in analyzing this relationship (King, 1989; Winkelmann, 

2000). A relatively new approach is the bivariate Poisson constructed using a trivariate-

reduction technique, which we use in this section. 
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Table 5: Descriptive Statistics of Data for Two-Vehicle Crashes 

Description Variable Mean Std. Dev.

Number of Occupants ocpnt 1.448 0.841

Damage estimate dmgest 2251.449 2006.815

Speed at impact spatimp 15.705 12.722

 Categorical Variables:  Proportion 

Severe injuries severe 0.049 

Possible (C)-injuries cinj 0.294 

Road surface condition (wet) wet3 0.200 

Angle crash type angle 0.394 

Left turning crash type leftturn 0.148 

Headon collision headon 0.016 

Rear end crash type rear 0.329 

Right turning crash type rturn 0.020 

Gender male 0.540 

Seatbelt use seatbelt 0.982 

Airbag deployment airbag 0.081 

Visibility obstruction visob 0.049 

Impairment impair 0.019 

Proportion of number of cars 
involved car 0.703 

Number of pickups involved pickup 0.107 

Number of SUVs involved suv 0.101 

Number of light-trucks involved ligtrk 0.032 

Number of trucks involved truck 0.057 

Under ride uride 0.022 
 

To understand this technique let X1, X2, and X3 be independent Poisson random 

variables. We can construct conceptual models in the standard (log-link) way, modeling the 

expected values of the Xi as , {1,2,3}i iX B

i e iλ = ∈ . Then, both {X= X1 + X3, Y= X1 + X3} 

follow a bivariate Poisson distribution. The joint probability density function of this 

distribution is 
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This formulation is convenient because it explicitly allows for a relationship between X and 

Y, namely, cov (X, Y) = 3λ . If this covariance is zero, the estimation reduces to the product 

of two independent Poisson distributions (called a double Poisson model by Johnson et al. 
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(1997)). It has been shown that a misspecification of a binomial Poisson as a double Poisson 

model will cause the model’s parameters to be overestimated (Karlis & Ntzoufras, 2003). 

 Application of this equation requires estimating three equations jointly, i.e., two 

“independent” equations for severe (fatal and incapacitating injuries) and evident injuries, 

and a covariance equation showing the interrelatedness of these two equations.3 The two 

“independent” equations explaining severe and possible injuries in the first vehicle in a two-

vehicle crash use three types of explanatory variables. First, is a set of indicator variables to 

account for the types of vehicles in two-vehicle accident. There were twelve possible 

accident types (e.g., the first vehicle is a car and the second vehicle is SUV), and we created 

interaction variables for them and used a car-car accident as the reference category, 

therefore omitting it from the estimation. These interaction variables measure the relative 

impact of a collision in comparison to riding in a car and being in an accident where the 

other vehicle is also a car. For reference, there were 3,090 car-car accidents (7,180 vehicles) 

involving 304 severe injuries and 1,941 C injuries for the 8,914 occupants of the vehicles. 

This implies mean risk rates of 0.0341 and 0.2177 per occupant. The coefficients of the 

interaction variables should be understood in relation to these values. The third equation, 

which constructs the covariance between the two types of injury severity, contains the 

estimated speed of both vehicles at impact and the natural logarithm of the number of 

occupants is used as the exposure variable. 

 

Diagnostics and Goodness of Fit 

The most common problem facing Poisson models is over-dispersion. Since the Poisson is a 

single parameter distribution, such that the mean is equal to the variance, one must check for 

a violation of this assumption. Over-dispersion is particularly problematic because if the 

variance is much larger than the mean type one errors can result because of underestimated 

standard errors. In the two-vehicle crashes, the means and variances are very close for each 

of the two dependent variables. From our data, the mean of the severe injuries is 0.049, and 

the variance of the residuals is 0.056. For the possible injuries variable the mean is 0.294, 

and the variance of the residuals is 0.355. These small amounts of over-dispersion will not 

affect the results in this paper because the bivariate Poisson’s standard errors are estimated 

via a bootstrap method. The standard errors reported here were generated with 200 

                                                 
3 The estimates were derived using the bivpois package for R developed by D. Karlis and I. Ntzoufras. See 
http://stat-athens.aueb.gr/~jbn/current.htm for more information. 
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estimations of the model parameters using randomly generated observations as the 

dependent variables. 

We report several standard measures of goodness of fit as described in Greene (2002, 

p. 742). They include the pseudo R2, which is based on deviances (Cameron & Windmeijer, 

1997) and compares the amount of improvement of the model over a null model compared 

to that of a saturated model. Another common pseudo R2 measure is the likelihood ratio 

index, sometimes called the McFadden R2. This index is less appropriate for working with 

discrete data, because the maximum possible value of 2

lri
R  is considerably less than zero 

(Cameron & Trivedi, 1998). We also report the Akaike and Bayesian (Schwartz) 

Information Criteria (BIC) for the model as well as for the null and saturated models for 

comparison. These latter measures become lower as the model improves, but contain a 

penalty for loss of degrees of freedom. There is little evidence that one is superior to the 

other; however, the BIC has a bias toward a simpler model. 

 

Results 

Table 6 shows the results of crashes involving two vehicles. The 2
DEVR is 0.4416 and it 

suggests a reasonable fit of the model to the data. The first section of the results estimates 

the interactive effect of different types of vehicles being involved in a crash. Again, the 

omitted (reference) category for these interaction variables is car*ocar, which would 

describe the risk of injury when riding in a passenger car involved in a crash with another 

car. A positive coefficient would suggest a higher expected number of injuries and negative 

lower. For severe injuries, a car hit by a pickup or minivan, SUV, or truck has positive 

estimated coefficients. However, all t-statistics for these interactions are slightly too low for 

a confident conclusion of higher risk of injury in these accidents. We find statistically 

significantly more dangerous interactions between pickups and minivans, and riding in an 

SUV and being hit by (or hitting) a pickup or minivan. 

 For possible injuries, we find a statistically significant increase in risk for a car in an 

accident with a truck. However, we find significant decreases for passengers of pickups or 

minivans in an accident with a car, and for SUV passengers in an accident with either a car 

or another SUV. There is borderline statistical significance for the decrease of possible 

injuries for SUV passengers in an accident with a pickup/minivan. Deployment of an airbag 

is statistically significant and positive for both severity levels. This result may reflect 
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injuries caused by airbags, but likely reflect the force and location of impact. If the driver of 

a vehicle is impaired, its occupants are less likely to have possible injuries, but much more 

likely to have severe injuries.   

 If the driver is male, there is no effect on severe injuries, but a significant decrease in 

possible injuries. This could reflect the well-known aversion of males to seek medical 

attention unless there is an obvious need (Hemmila, 2004). A driver’s use of a seat belt is 

very strongly related to a decrease in severe injuries, but not possible injuries. Being in a 

vehicle that under rode another vehicle, i.e., goes under another vehicle in a crash, is less 

likely to involve possible injuries and more likely to involve severe injuries (the latter with 

unconvincing levels of statistical significance).    

The final category of explanatory variables is accident type. The estimates are all 

positive and most are statistically significant. The reference category (omitted) for these 

dummy variables is all types of crashes other than those listed. A large component of these 

crashes is sideswipe, which rarely causes injuries. Therefore, the accident types listed are the 

more dangerous types of accidents.  

 The covariance equation relating the possible and severe injuries contains the speed 

of both vehicles and controls for the number of occupants. Of course, as the number of 

occupants increases the number of injuries also increases. We are unaware of any previous 

research that has empirically investigated the impact of the speeds of each vehicle on the 

number of injuries. Consistent with expectations, the speed of both vehicles matters, but the 

speed of the vehicle you are traveling in has a larger impact than the speed of the other 

vehicle.  
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Table 6: Two-Vehicle Accidents 

Equation 1: Severe Injuries   Equation 2: Possible Injuries   

Variable Coeff. SE t ratio Variable Coeff. SE t ratio 

 (Intercept) -3.139 0.342 -9.184  (Intercept) -1.691 0.154 -10.976 

 car*opickmini 0.207 0.152 1.367 car*opickmini 0.073 0.059 1.237 

 car*osuv 0.264 0.171 1.544  car*osuv 0.079 0.057 1.381 

 car*otruck 0.317 0.219 1.452  car*otruck 0.244 0.080 3.030 

 pickmini*ocar 0.039 0.167 0.234 pickmini*ocar -0.353 0.066 -5.324 

pickmini*opickmini 0.524 0.267 1.965 pickmini*opickmini 0.033 0.126 0.266 

 pickmini*osuv 0.368 0.427 0.860 pickmini*osuv -0.306 0.177 -1.728 

 pickmini*otruck 0.266 1.841 0.145 pickmini*otruck -0.031 0.240 -0.131 

 suv*ocar 0.032 0.203 0.157  suv*ocar -0.339 0.079 -4.273 

 suv*opickmini 0.824 0.274 3.010  suv*opickmini -0.272 0.170 -1.600 

 suv*osuv -0.093 1.008 -0.092  suv*osuv -0.390 0.164 -2.375 

 suv*otruck -0.873 5.293 -0.165  suv*otruck -0.253 0.294 -0.861 

 airbag 1.646 0.087 18.828  airbag 0.742 0.046 16.247 

 impair 0.672 0.211 3.180  impair -0.381 0.149 -2.554 

 male -0.036 0.085 -0.428  male -0.387 0.035 -11.153 

 seatbelt -1.524 0.161 -9.460  seatbelt -0.111 0.128 -0.867 

 uride58 0.413 0.271 1.523  uride58 -0.396 0.121 -3.281 

 angle 1.430 0.313 4.576  angle 0.772 0.088 8.768 

 headon 1.890 0.353 5.346  headon 0.988 0.134 7.373 

 Leftturn 1.212 0.320 3.791  leftturn 0.706 0.094 7.488 

 Rear 0.187 0.335 0.558  rear 0.789 0.093 8.511 

 rturn 1.240 0.419 2.958  rturn 0.045 0.189 0.237 

        

Equation 3: Common Factors       

Variable Coeff. SE t ratio     

 (Intercept) -10.252 0.893 -11.482     

 spatimp 0.070 0.016 4.388     

 spother 0.033 0.013 2.481     

 logocc 3.255 0.448 7.273     

BIC Saturated      Null  Model 
                        257705.07  22428.97  21450.32 

2 0.4416
DEV

R =  

AIC Saturated      Null Model 
                          56801.46  22404.62  21060.72 

2 0.0640
lri

R =  
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6. LAND USE AND VISIBILITY EFFECTS ON ACCIDENT RATES 

The previous section did not consider the effects of land use and visual obstruction on 

crashes. We did so in Section 4 and did not find statistically significant relationships 

between severity of crashes and land use. This, of course, does not mean that crashes are 

unrelated to land use. For, as we have argued, entrances to commercial areas tend to 

generate a lot of traffic and increase the risk of a crash occurring. We take this issue again in 

this section because very little research has focused specifically on the relationship of 

visibility and land use characteristics to accident rates. Ward and Wilde (1996) evaluate the 

effect of improving visibility at railway crossings, finding evidence of risk-compensating 

behavior, and no demonstrable effect on safety. Ossenbruggen, Pendharker, and Ivan (2001) 

study the relationship between various types of land use (e.g., residential, shopping, and 

commercial) and accidents, finding that shopping areas may have low accident rates if they 

are more pedestrian-friendly. In the present study, however, we use total crashes instead of 

different types of crashes and include in the analysis the degree of visibility obstructions and 

the type of predominant land use at each intersection that may contribute to accident rates. 

In their reports of accidents, police officers can select between six choices to 

describe the predominant land use at an intersection and these are listed in Table 74. 

Different officers sometimes report different choices, especially at intersections with mixed 

uses. Therefore, we construct land use variables by calculating the percentage of accident 

reports that describe an area as residential, commercial, and so on. In this way, an 

intersection is not restricted to be in only one category, but the percentages are likely to 

reflect the mixed land uses at that intersection5. Similarly, we use the accident data to 

construct a variable to describe the degree to which visibility obstructions play a role in 

causing accidents. We calculate the proportion of all accidents at an intersection in which a 

vision obstruction played a role. From Table 7 we included trees, crops, brushes, building(s), 

embankment, sign(s), hillcrest, and blinded by sunlight and other lights. The observed 

percentages range from a zero percent to 16.7 percent of accidents at each intersection being 

related to a visibility obstruction. 

 

                                                 
4 Although “UNKOWN” is a valid option on the accident report, there were no accidents in this dataset where 
the Development Type was “unknown”. 
5 Initially, zoning maps were to be used for determining land use. However, city officials correctly pointed out 
that current zoning may not accurately reflect the current land use, especially in cases where undeveloped 
property exists.  Additionally, many intersections have two or more land uses represented. 
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Table 7: Land Use and Visibility Variables 

Development Types: Vision Obstruction Types: 

Farms, woods, pastures None 

Residential Vehicle window(s) obscured 

Commercial Trees, crops, brush, etc. 

Institutional Building(s) 

Industrial Embankment 

Unknown Sign(s)  

  Hillcrest 

  Parked vehicle(s) 

  Vehicle(s) in traffic/moving 

  Blinded, headlights 

  Blinded by sunlight 

  Blinded, other lights 

  Other 

  

The models run are the same as in Burkey and Obeng (2004), with the variables 

above added and their results are in Table 8. As can be seen, the coefficient of visibility is 

not statistically significant. This could be due to the lack of a truly objective measurement of 

visibility. The land use variables are comparative to the reference category, which is 

residential land use. The only statistically significant category is for a commercial area, 

which has an estimated coefficient of 0.3716. This coefficient shows that accident rates in 

commercial areas are approximately 45% higher than elsewhere, ceteris paribus. This is 

consistent with the fact that commercial areas are activity centers, and have many vehicles 

entering and exiting their driveways, thereby creating the potential for traffic conflict and 

accidents. Additionally, many activities in such areas may distract drivers and cause them to 

have accidents. 
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Table 8: Poisson Regression Model of Total Crashes 

 Number of observations   17157

 Log likelihood function   -17128.05 

 Restricted log likelihood   -19025.40 

 Chi squared   3794.704

 Degrees of freedom  22 

 Prob[ChiSqd > value]                 

 Chi- squared 20000.05772 

  RsqP   0.1879

 G  - squared  18354.87585

RsqD  0.1715

Variable Coefficient Std.Err. b/St.Er. P[Z>z] Mean(X)

Constant -11.4690 0.3561 -32.203 0.0000

MONTH -0.0004 0.0000 -5.340 0.0000 29

RLCPRES 0.3729 0.0046 8.139 0.0000 0.0029

TOTLTL 0.0063 0.0016 3.977 0.0001 1.6445

DEDRTL 0.0027 0.0023 1.158 0.2470 0.4419

SWLK 0.1198 0.0028 4.271 0.0000 0.4319

SLDMED -0.0075 0.0030 -2.465 0.0137 0.1761

PEDSIG -0.2235 0.0032 -6.993 0.0000 0.2591

NLT 0.0016 0.0036 0.460 0.6457 0.1030

NTR 0.1487 0.0026 5.698 0.0000 0.2093

SNOW -0.0021 0.0008 -2.597 0.0094 0.4123

PRECIP 0.0008 0.0005 1.683 0.0923 3.6540

TOTLN -0.0002 0.0005 -0.417 0.6764 8.1395

ST1FLOW -0.0036 0.0025 -1.441 0.1497 0.9103

ST2FLOW -0.0036 0.0025 -1.441 0.1497 0.8605

ST1RED 0.0021 0.0013 1.630 0.1030 1.5402

ST2RED 0.0021 0.0013 1.630 0.1030 1.5437

AMBD1 -0.1179 0.0029 -4.059 0.0000 0.5701

AMBD2 -0.1179 0.0029 -4.059 0.0000 0.5685

ST1SP -0.0007 0.0002 -2.809 0.0050 34.635

ST2SP -0.0007 0.0002 -2.809 0.0050 34.8339

LNEWADV 1.0995 0.0033 33.136 0.0000 10.1392

VISOB -0.0002 0.0005 -0.382 0.7024 1.1265

FARM -0.1506 0.3895 -0.387 0.6990 0.0011

COMM 0.3716 0.0041 8.969 0.0000 0.64854

INST -0.2040 0.1591 -1.282 0.1999 0.0029

INDUST 0.2389 0.461459 0.518 0.6047 0.0006
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7. DETERMINANTS OF PROPERTY DAMAGE COSTS 

Although we have analyzed crash severity and the impacts of land use and vision 

obstruction on crashes, we still have not considered property damage costs. These costs form 

a substantial portion of crash costs, and for this reason, we examine these costs in this 

section. 

Property damage costs do not follow the same distribution as crash severity data. As 

we have noted, the property damage cost data is censored and continuous over strictly 

positive values. It follows that this cost cannot be negative. With this type of distribution, 

the appropriate model to estimate is a left-censored Tobit model. The underlying regression 

in the Tobit model is, 

20 1* *
Y Y X , if L Y U , where ~ N , ( )β ε ε σ⎡ ⎤= = + < < ⎣ ⎦  

Where *
Y  is a latent variable, U  and L  are the thresholds, and LY ≥*  shows lower-tail 

censoring. Additionally, LY ≤*

 
shows upper-tail censoring. Woodridge (2000) shows that, 

based upon equation (2), the log-likelihood function for each observation (i) is of the form, 

1 0 1 1 0 1 2i i i i i i( , ) (Y )log[ ( X / )] (Y )log{( / ) [(Y X ) / ] } ( )β σ Φ β σ σ φ β σ= = − + > −l  

This equation is summed over all observations and then maximized to obtain the coefficients 

of the Tobit equation. Furthermore, he shows that when the dependent variable follows a 

Tobit model, the expectation of this variable is a nonlinear function of the independent 

variables and the estimated coefficients. This characteristic of the Tobit model shows that its 

estimated coefficients cannot be interpreted as the marginal effects of the independent 

variables on the observed dependent variable even though the relationship is linear in 

equation (2). The marginal effect of each j variable must be calculated so that we can make 

informed judgments about the contribution of each variable to property damage cost and 

total crash cost.  This marginal effect of each variable (j) when censoring occurs on the left 

is 

( ) 3j

j

E y X
X / ( )

X
β Φ β σ

⎡ ⎤∂ ⎣ ⎦ =
∂
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Property damage cost model 

Vehicles that are involved in accidents at signalized intersections sustain damages that 

depend upon the characteristics of the intersection, driver, type of accident, types of vehicles 

involved in the accident, technology features in the vehicle, and predominant land-use. A 

model of damage cost was estimated in this study. The dependent variable in this model is 

the damage cost estimate in the accident reports. Intersection characteristics are the presence 

of red light cameras, the logarithm of the sum of traffic volumes on all the roads at an 

intersection, and amber time on the major road. The characteristics and condition of drivers 

are in terms of gender (female = 1, male = 0), illness suspected (ILL35), medical condition 

(MEDCON35), impairment (IMPAIR35), apparently normal (APPN35), and falling asleep 

(ASLEEP35). Besides these variables, the damage cost model includes the following: hitting 

the rear of a slowed vehicle (RSLO10), a fixed object (FIXOBJ10), rear of a turning vehicle 

(RTRN10), side-swiping a vehicle moving in the opposite direction (SSOPD10), side 

swiping a vehicle moving in the same direction (SSSDXN10), involvement in a head-on 

collision (HEADON10), and hitting a vehicle backing up (BACKUP10). We also 

distinguish between the following types of vehicles: passenger cars (PCAR41), pickups 

(PICKUP41), vans (VAN41), sports-utility vehicles (SUV41), and light trucks 

(LIGTRK41). The technology variables in the model are the presence of red light cameras at 

an intersection (RLCPRES), presence of airbags in the vehicles (AIRBAG), front airbag 

deployed (DEPFRT28), and side airbags deployed (DEPBS28), while the land use variables 

are commercial (COMMERC2) and institutional (INSTITU2). Other variables are estimated 

speed of vehicle (SPDEST), its quadratic term (ST2), and a variable showing if the crash 

involved a vehicle riding under another vehicle (URIDE58). Except traffic volume, amber 

time, and the speed, all other variables are binary.  

 Table 9 shows the results of estimating a censored Tobit regression equation for 

property damage cost and the fit measures. Obviously, from this table, most of the 

coefficients are statistically significant at commonly accepted levels, i.e., p < 0.10. The only 

variable whose coefficient is statistically insignificant is gender, i.e., being a female driver. 

The marginal effects of the variables are in Table 10 and are the changes in property damage 

cost resulting from changes in the continuous variables, or from having the binary variables 

take values of one instead of zero. These marginal effects measure the unit worth or cost of 

the variables. 
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Technology variables vs. property damage cost: Examining the technology variables, the 

results in Table 10 can be broken into two areas. First, we observe that the introduction of a 

red light camera at an intersection has a very weak marginal effect on property damage cost. 

It appears that the presence of a red light camera reduces the property damage cost of a crash 

by only $66.70. This result, significant at the 0.0912 level, shows that our data do not 

support a strong association between red light cameras and the property damage costs of a 

crash. However, this negative effect suggests that it is a benefit of installing a red light 

camera. 

 Second, we find that the presence of airbags and airbags deploying increase property 

damage costs of crashes. The amounts of these cost increases are $51.42, $1,897.67, and 

$2,211.94 for having an airbag in a vehicle, front airbag deploying, and both side airbags 

deploying respectively. Thus, property damage cost is higher when the side airbags deploy 

than when the front airbag deploys. It follows that if the airbag in a vehicle does not deploy 

in a crash the presence of an airbag would add only a miniscule $51.42 to the vehicle 

damage cost, which is not highly significant statistically. This reflects the fact that the force 

of the impact is so low as to result in only minor property damage. However, if the front and 

side airbags deploy, the force of the impact would be so high as to cause property damage in 

excess of $4,000.   

 

Type of vehicle vs. property damage cost:  Property damage costs are generally expected to 

be high when large vehicles are involved in crashes with small vehicles. This is because 

large vehicles cause a lot of damage to small vehicles when both are involved in a crash. We 

also expect that when large vehicles are involved in crashes at signalized intersections they 

would sustain less property damage than small vehicles. This commonly held expectation is 

borne out by the marginal effects in Table 10. Here, we find that vans, pickup trucks, light 

trucks, sports utility vehicles, and passenger cars sustain increasing levels of property 

damage when they are involved in crashes. Specifically, the amounts of property damage 

sustained by these vehicles are $799.35, $844.47, $949.31, $1,016.37, and $1,084.35 

respectively. Using these results, we find that when pickup trucks, light trucks, sports utility 

vehicles and passenger cars are involved in crashes, the property damage costs are 5.64%, 

18.76%, 27.15%, and 35.65% larger than the corresponding costs when vans are involved in 

crashes. 
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Table 9: Property Damage Costs  

 Dependent variable               DMGEST  

 Weighting variable                 None  

 Number of observations            17110  

 Iterations completed                  6  

 Log likelihood function       -147490.7 

 Threshold values for the model:  

 Lower=     .0000     Upper=+infinity  

 LM test [df] for Tobit= 4513.110[ 31]      

 ANOVA based fit measure =    .146836  

 DECOMP based fit measure =    .161542  

 

Variable   Coefficient   Standard Error b/St.Er.  P[|Z|>z]  Mean of X| 

 

Constant  -436.9799       478.0596     -.914    0.3607 

RLCPRES       -77.2453        45.7272    -1.689    0.0912   0.1577 

LNEWADV   -84.7541        41.1753    -2.058    0.0396     0.4050 

ST1AMB   336.3575        71.5452     4.701    0.0000     4.1236 

APPN35   946.2601       109.1617     8.668    0.0000     0.5566 

ILL35    850.5339       110.9104     7.669    0.0000     0.3200 

IMPAIR35   700.4164       160.2978     4.369    0.0000   0.0163 

MEDCON35   792.9404       149.5237     5.303    0.0000   0.0218 

ASLEEP35   807.0585       132.7353     6.080    0.0000     0.0416 

VOB34    196.7931        68.5288     2.872    0.0041     0.9210 

RSLO10  -959.4279        34.8375   -27.540    0.0000     0.3398 

FIXOBJ10   857.7788       181.8743     4.716    0.0000     0.0072 

RTRN10  -784.9244       139.3939    -5.631    0.0000     0.0123 

SSOPD10  -400.2542       161.5606    -2.477    0.0132     0.0091 

HEADON10   396.9033       125.0108     3.175    0.0015     0.0151 

SSSDXN10 -1000.2132        65.8989   -15.178    0.0000     0.0601 

BACKUP10 -1206.8901       157.8349    -7.647    0.0000     0.0097 

FEMALE   -22.0447        32.4147     -.680    0.4965     0.4722 

PCAR41  1255.7010        77.6419    16.173    0.0000     0.6683 

PICKUP41  977.91862        88.7067    11.024    0.0000     0.0984 

VAN41   925.66589       103.9312     8.907    0.0000     0.0440 

SUV41   1176.9875        89.9666    13.082    0.0000     0.0968 

LIGTRK41  1099.3224       114.7870     9.577    0.0000     0.0303 

SPDEST     3.5395         0.4782     7.402    0.0000   12.6951 

ST2      0.2857   0.0256    11.162    0.0000  637.9631 

URIDE58   697.6382       103.0574     6.769    0.0000    0.0226 

COMMERC2  -137.5802        37.9727    -3.623    0.0003    0.7537 

INSTITU2  -267.6135       116.3823    -2.299    0.0215     0.0191 

AIRBAG    59.5504        33.8400     1.760    0.0784     0.6654 

DEPFRT28  2197.5488        61.2456    35.881    0.0000     0.0721 

DEPBS28  2561.4902       189.8623    13.491    0.0000     0.0064 

         Disturbance standard deviation 

Sigma        1971.113491       10.9732  179.630   .0000 
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Table 10: Marginal Effects 

 They are computed at the means of the Xs.  

 Scale Factor for Marginal Effects   .8635  

Variable     Coefficient   Standard Error b/St.Er. P[|Z|>z]  Mean of X 

Constant     -377.3487       412.7823   -0.914    0.3606 

 RLCPRES      -66.70439       39.4873   -1.689    0.0912  0.1577 

 LNEWADV       -73.1884       35.5570   -2.058    0.0396    10.4050 

 ST1AMB        290.4574       61.7833    4.701    0.0000     4.1236 

 APPN35        817.1315       94.2149    8.673    0.0000     0.5566 

 ILL35         734.4683       95.7294    7.672    0.0000     0.3201 

 IMPAIR35      604.8361      138.3954    4.370    0.0000  0.0163 

 MEDCON35      684.7341      129.0857    5.304    0.0000  0.0218 

 ASLEEP35      696.9256      114.5860    6.082    0.0000  0.0416 

 VOB34         169.9383       59.1754    2.872    0.0041  0.9210 

 RSLO10       -828.5024       30.1451  -27.484    0.0000  0.3398 

 FIXOBJ10      740.7245      157.0583    4.716    0.0000  0.0072 

 RTRN10       -677.8120      120.3829   -5.630    0.0000  0.0123 

 SSOPD10      -345.6347      139.5162   -2.477    0.0132  0.0091 

 HEADON10      342.7410      107.9551    3.175    0.0015  0.0151 

 SSSDXN10     -863.7220       56.9454  -15.168    0.0000  0.0601 

 BACKUP10    -1042.1953      136.3185   -7.645    0.0000  0.0097 

 FEMALE        -19.0364       27.9912   -0.680    0.4964  0.4722 

 PCAR41       1084.3455       66.9958   16.185    0.0000  0.6683 

 PICKUP41      844.4698       76.5624   11.030    0.0000  0.0842 

 VAN41         799.3476       89.7132    8.910    0.0000  0.0395 

 SUV41        1016.3734       77.6461   13.090    0.0000  0.0679 

 LIGTRK41      949.3066       99.0890    9.580    0.0000  0.0033 

 SPDEST          3.0565        0.4118    7.422    0.0000    12.6951 

 ST2             0.2467   0.0222   11.139    0.0000   637.9631 
 URIDE58       602.4370       89.0062    6.768    0.0000  0.0262 

 COMMERC2     -118.8058       32.7912   -3.623    0.0003  0.7537 

 INSTITU2     -231.0944      100.5007   -2.299    0.0215  0.0191 

 AIRBAG         51.4241       29.2227    1.760    0.0785  0.6654 

 DEPFRT28     1897.6670       53.1141   35.728    0.0000  0.0721 

 DEPBS28      2211.9439      164.0544   13.483    0.0000  0.0064 

 Sigma           0.0000   ....... (Fixed Parameter)........ 

 Note: E+nn or E-nn means multiply by 10 to + or -nn power.) 

 

 

Type of crash vs. property damage cost: Table 10 also shows the effects of various types of 

crashes on property damage costs. In particular, it shows that the property damage costs of 

some crashes are lower than the comparable costs of other crashes. The crashes that seem to 

result in low property damage costs are side swiping a vehicle moving in the opposite 

direction (-$345.63), hitting the rear of a turning vehicle (-$677.81), hitting the rear of a 

slowed vehicle (-$828.50), side swiping a vehicle moving in the same direction (-$863.72), 

and crashing into a vehicle backing up (-$1,042.20). The dollar amounts in parentheses are 
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how much less the property damage costs are compared to all other crashes. For example, 

the cost of a crash occurring at a signalized intersection that involves a vehicle backing up is 

$1,042.20 less than the property damage costs of all accidents that occur in other situations. 

Examining the amounts, we observe that the cost reductions are large in absolute terms for 

the less occurring crashes. 

 Three types of crashes whose property damage costs are larger than all other 

comparable crashes are head-on collisions, running into a fixed object, and a crash that 

involves a vehicle going under another vehicle. A vehicle that is involved in head-on 

collisions sustains $342.72 more in property damages compared to a vehicle that is involved 

in other accidents. Similarly, a vehicle that crashes into a fixed object at a signalized 

intersection sustains property damage costs of $740.72 compared to vehicles in different 

crashes. In addition, when a crash involves one vehicle going under another vehicle, the 

property damage cost is $602.44. Because these costs are positive, these crashes are the ones 

to reduce. Actions to reduce crashing into a fixed object, for example, could include 

widening the shoulder and placing road signs and lamp posts safe distances away from the 

road. 

 

Intersection characteristics vs. property damage costs: We have argued earlier that 

intersection characteristics such as traffic volume and amber time setting could have effects 

on property damage costs from crashes. In Table 10, we find that the marginal effects of 

these characteristics are statistically significant and generally positive. They show that 

lengthening the amber time by one second, for example, could increase property damage 

cost of a crash by $290.46. This finding seems contrary to previous studies, which suggest 

that lengthening the amber time would reduce crashes. If the results of these other studies 

were valid, the costs of crashes would also decrease. While our results show that crash costs 

increase with longer amber time, they also show that higher traffic volumes at an 

intersection are associated with smaller amounts of crash costs. From Table 10, a percentage 

increase in traffic volume would reduce the property damage costs of a crash by $73.19. 

This reduction occurs because at higher traffic volumes speed reduces, stop-and-go 

operations increase, and the crashes that occur are minor. Often, these crashes are running 

into the back of a slowed vehicle, which, as our previous discussion shows, is associated 

with low crash costs. 
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Driver characteristics and condition vs. crash costs: In both Tables 9 and 10, the effects of 

driver characteristics and condition on crash costs are also shown. We find that gender does 

not have a statistically significant relationship with crash costs. Therefore, we cannot say 

that female drivers are involved in more costly crashes than male drivers are involved. 

However, the condition of the driver at the time of the crash does have appreciable effect on 

property damage cost. Here, we find that being impaired by alcohol or drugs increases 

property damage cost from a crash by $604.84, compared to increases of $684.73, $696.93, 

and $734.47 from having a medical condition, falling asleep, and falling ill respectively. 

This is quite surprising since we had expected that impaired drivers would be more involved 

in crashes that involved large property damage costs. That we did not find that to be the case 

must be qualified. Our data deals with city roads with lower speed limits and not rural roads 

where speed limits are high and where very severe accidents and high property damage costs 

have been reported for impaired drivers. Another surprising result in Table 10 is that drivers 

who appear normal tend to be involved in crashes that result in a large property damage cost. 

This cost is $817.13.  

 

Land uses vs. property damage cost: The environment where a crash occurs could also have 

some effects on property damage costs. In heavily built areas with large traffic generators, 

we expect more crashes to occur because of a large number of turning vehicles. For 

example, this would be the case of large shopping centers such as malls. Even here, our 

earlier results still suggest that because of increases in traffic volume, speed would be low 

and fewer minor crashes could be observed. Alternatively, our earlier results seem to point 

to the fact that such places would observe less severe crashes compared to other areas in the 

city because they would have more turning vehicles and increased traffic volume. These 

earlier results are supported by what we found by analyzing the costs of crashes that occur 

where the predominant land uses are commercial or industrial. Crashes that occur where the 

predominant land use is commercial involve property damage costs that are $118.81 less 

than from crashes that occur near other land uses indicating that these are minor accidents. 

Similarly, we found that a crash occurring where the predominant land use is institutional 

results in property damage cost that is $231.09 less than those that occur elsewhere. Thus, 

both commercial and institutional land uses are associated with lower property damage costs 

from crashes. 
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Other factors vs. property damage cost: Other factors that contribute to property damage 

costs and that we examined in Tables 9 and 10 are those relating to the environment and 

driver behavior. Regarding environmental variables, Table 10 shows that when a crash is a 

result of a visual obstruction it adds $169.94 to property damage cost. Using the estimated 

speed of vehicle and its quadratic term to proxy driver behavior, we find that the coefficients 

of both variables are highly significant statistically, showing that they contribute to high 

property damage costs from crashes. Yet, their effects on property damage costs are very 

small, showing that they do not increase these costs appreciably.  

 

8. CONCLUSIONS 

The purpose of this research is to extend the previous work of Burkey and Obeng (2004) by 

expanding the data over a longer time series, and including technological, visibility, vehicle, 

traffic, land use and demographic variables to investigate the determinants of accident rates, 

accident severity and property damage cost. To accomplish this purpose the research 

estimates models to explain accident rates, accident severity (including two-vehicle crashes), 

and property damage cost for accidents that occur at signalized intersections. 

 

Severity and type of accident 

Fatalities and incapacitating injuries: For accidents that involve fatalities and incapacitating 

injuries, the results are that while airbags reduce fatalities, incapacitating injuries and 

fatalities are high when the front airbags deploy. The marginal effects of side airbags 

deploying are not statistically significant in such accidents. Other factors that tend to 

increase fatalities and incapacitating injuries are type of accident (head on collision), higher 

amber time, and speed. With regard to speed, its initial effect reduces fatalities and 

incapacitating injuries, perhaps reflecting road quality, though ultimately it increases them. 

For example, among the roads studied, those with higher posted speed limits have solid 

medians over most of their lengths, multiple lanes, and good signage. On the other hand, 

fatalities and incapacitating injuries are low when the accident involves running into the 

back of a slowed or stopped vehicle, which shows these types of accidents are minor. In fact, 

these are the types of accidents that most often do not require a police accident report to be 

completed because of low property damage costs, unless the occupants sustain some 

injuries. 
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Evident injury: Compared to fatalities and incapacitating injuries, evident injury reduces in 

accidents in which the occupants wear shoulder belts only, shoulder and lap belts, and where 

the vehicles involved have airbags. These findings are not new and echo what has been 

shown to be the case by several researchers. They may also show effectiveness of 

regulations regarding seatbelt use, as well as reflect vehicle age and quality of vehicles. For 

example, all new vehicles have front airbags and seatbelts, and they are built to higher 

standards of quality than old vehicles. Similar to what we observed earlier, evident injuries 

increase when airbags deploy in such accidents thus giving support to the advice often given 

to drivers not to sit close to airbags. These injuries also increase when the accident involves 

head on collision. However, they initially are decreasing with speed, but increase at higher 

speeds. We also found that evident injuries are low in accidents that involve running into the 

back of a slowed or stopped vehicle and side swiping a vehicle moving in the opposite 

direction, and are high in accidents that involve head-on collisions.   

 

Two-vehicle accidents: Some of the above findings apply to two vehicle accidents as well. 

For example, we found that possible injuries increase in two vehicle accidents when airbags 

deploy. Additionally, we found increased risk of possible injury in car-truck accidents, and 

decreased risk of possible injury in pickup (minivan)-car, SUV-car, and SUV-SUV 

accidents. Being a male driver is also associated with reduced risk of possible injury in a 

two-vehicle accident, and possible injuries occur in all types of accidents. 

For two vehicle accidents that result in severe injuries, we did not obtain as many 

statistically significant results as we obtained for possible injuries. Here, we did not find 

statistically significant effects of most two-vehicle accidents on increased risk of severe 

injuries except accidents between pickups (or mini buses), and between SUVs and pickups. 

This risk of injury increases when various types of accidents occur (except running into the 

back of a slowed or stopped vehicle), when airbags deploy and a driver is impaired, and it 

reduces when vehicle occupants use seat belts.  

 

Property damage costs 

Besides type and severity of accidents our analysis of property damage costs show that 

intersections with red light cameras are associated with low property damage costs in 

accidents but that this cost is not very strong statistically. On the contrary, vehicles with 

airbags sustain more damage costs in accidents than those without airbags but the amount of 
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this increase is not very high. However, when the front airbag in a vehicle deploys or when 

both the front and side airbags deploy in accidents they result in large property damage 

costs. For example, when both the front and side air bags deploy they result in a 16.56% 

($314.27) increase in property damage cost over the cost of the front airbag alone deploying. 

This cost increase shows that the force of the collision is very high in accidents in which 

both the side and front bags deploy. Additionally, such accidents tend to be severe with 

vehicles sustaining frontal and side damages. 

Another finding is that property damage cost is highest when passenger cars are 

involved in accidents followed in decreasing order by sports utility vehicles (perhaps due to 

their rollover effects), light trucks, pickups, and vans. Specifically, compared to a van, the 

property damage costs of pickup trucks, light trucks, sport utility vehicles, and passenger 

cars are higher by 5.64%, 18.76%, 27.15%, and 35.65% respectively. Therefore, among the 

vehicles analyzed, vans sustain the least damage cost in accidents at signalized intersections. 

Yet another finding is that the amount of property damage cost depends upon the type of 

accident. Everything else constant, accidents that involve running into the back of a slowed 

or a turning vehicle, and side swiping a vehicle moving in the same or a different direction 

are less costly than other accidents. The accidents whose property damage costs are very 

high are colliding into a fixed object, under ride, and head on collision.  

We found that most driver characteristics affect property damage costs of accidents. 

Drivers who are categorized as apparently normal in police accident reports are those who 

cause very large property damage costs in accidents. They are followed respectively by 

those classified as having fallen ill, and those who fell asleep (or fainted or lost 

consciousness) while driving, had medical conditions, or were impaired by medications, 

drugs or alcohol. Driver errors or distractions may be the reason those who appear normal 

are involved in more costly accidents than others are. Although our results show low 

property damage costs from impaired drivers we caution that they do not show that 

impairment results in low property damage costs in every case. This is because we did not 

analyze blood alcohol levels, nor did we study rural highways where most severe drunk 

driving accidents have been observed. The fact that the roads analyzed are in urban areas, 

have more traffic, lower posted speed limits, and are better designed with clear sight 

distances than rural roads, may account for the rather low property damage costs when 

impaired drivers are involved in accidents at signalized intersections. Gender is the only 

driver characteristic that was not related to property damage cost in a statistically significant 
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way. Thus, we cannot say that accidents involving female drivers tend to involve more 

property damage costs than those involving males.  

 

Recommendations 

Crash severity and property damage costs can be reduced by adopting some traffic 

countermeasures. From our results, it is appears that installing red light cameras at some 

intersections could reduce property damage costs of accidents somewhat (given that an 

accident has already occurred). Though we find this to be true, the effects of these cameras 

on reducing the frequency of accidents and accident severity are unsettled with some studies 

finding they increase accidents and others finding they reduce accidents. In this study, we 

did not find a statistically significant impact of red light camera on severity of crashes, but 

continue to find an increase in accident rates after the installation of a red light camera. 

Therefore, we should be careful where to install red light cameras. We also find that 

evidence in favor of speed reduction since we have found that speed increase ultimately 

increases injuries and property damage costs resulting from crashes.  

Lastly, for traffic engineers and transportation planners, the marginal effects of the 

variables in the property damage cost model, particularly for the different vehicles, should 

be useful in estimating the benefits or costs of intersection improvements. For example, if 

the traffic composition and accident rates are known it should be possible to calculate the 

monetary benefits of accident reduction from traffic countermeasures. 
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Appendix A 

Correlation Matrix  
 

             1       2     3     3     4     5     6    7 8       9     10    11    13    14   15    16     17    18    19    20    21    22    23 
1.  RLCPRES  1.00      
2.  LNEWADV   .40  1.00      
3.  ST1AMB    .18   .23  1.00      
4.  APPN      .01   .06   .07  1.00     
5.  ILL      -.01  -.06  -.06  -.78  1.00     
6.  IMPAIR    .01   .00   .00  -.15  -.09  1.00     
7.  MEDCON    .00   .01  -.01  -.17  -.10  -.02  1.00     
8.  ASLEEP   -.00   .00  -.01  -.24  -.14  -.03  -.03 1.00   
9.  NOVOB34   .02   .04   .03   .12   .07   .01   .02  .02 1.00     
10. RSLO10    .12   .21   .10   .05  -.03  -.01   .00 -.02  .07  1.00    
11. FIXOBJ   -.01  -.04  -.01  -.03   .01  -.00   .00  .01 -.04  -.06  1.00    
12. RTRN      .01   .03   .02  -.00  -.00   .00   .00 -.01  .01  -.08  -.01  1.00    
13. SSOPD    -.02  -.03  -.02  -.02   .01   .02  -.01 -.00 -.03  -.07  -.01  -.01  1.00    
14. HEADON   -.01  -.04   .01  -.01  -.00   .02   .00  .03  .01  -.09  -.01  -.01  -.01  1.00    
15. SSSDXN   -.00   .00  -.02  -.01  -.00   .01  -.00  .00 -.02  -.18  -.02  -.03  -.02  -.03  1.00  
16. BACKUP   -.01  -.02   .01   .00  -.00   .01  -.01  .00  .00  -.07  -.01  -.01  -.01  -.01  -.03  1.00  
17. FEMALE    .00  -.01  -.02  -.01   .01  -.01  -.05 -.11 -.11   .01  -.03  -.00   .00  -.02  -.00  -.01 1.00    

18. PCAR     -.01  -.01  -.04  -.10   .15   .03   .02 -.00  .08  -.03  -.02  -.02   .00  -.01  -.03  -.02  .16  1.00   
19. PICKUP    .00   .00   .03   .12  -.11  -.02  -.02  .01  .03   .02  -.01   .01  -.02   .01  -.00   .02 -.21  -.48  1.00   
20. VAN      -.01  -.01   .00   .03  -.04   .01  -.00  .03  .01  -.01  -.01   .01  -.00   .01   .01   .02 -.03  -.31  -.07  1.00   
21. SUV       .02   .02   .03   .06  -.04  -.01  -.00 -.02  .04   .05   .00   .00  -.00  -.00  -.02  -.00  .01  -.47  -.11  -.07  1.00   
22. LIGTRK    .00   .02  -.00   .04  -.05  -.00   .00  .02  .02   .00  -.02  -.00   .01  -.01   .01  -.01 -.01  -.25  -.06  -.04  -.06  1.00    
23. SPDEST    .00  -.03   .04  -.01   .03   .00   .01  .02  .09  -.12   .04  -.02   .00   .03   .03  -.09 -.06   .01   .01  -.00  -.01   .01  1.00  

 


