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Abstract

What role do individual modes of transportation play in international trade? To
study this question, I develop a model of international trade that incorporates a
role for transportation and thus allows me to study mode-specific trade flows. I use
a novel data set to estimate the complete model for a sample of 79 countries dis-
tinguishing air, sea, and surface transportation. The estimated model implies that
surface transportation is mostly used for trade over short distances, whereas air
and sea transportation dominate long-distance trade. Furthermore, the different
modes of transportation display a high degree of substitutability. Using counter-
factual analysis I show the implications for the roles played by the different modes
of transportation. Long-distance modes are more important for poor countries be-
cause in order for them to realize gains from trade they need access to technologi-
cally advanced but far-away markets. Rich countries, on the other hand, can substi-
tute long-distance trade more easily for trade with neighboring countries without
changing the gains from trade much. As a consequence, reducing the estimated
asymmetries in mode-specific trade costs for only one long-distance mode, either
air or sea, can reduce income differences in the sample by about 35%.
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DEFYING GRAVITY

1. Introduction

For many countries, transportation related charges have become a larger obstacle to

realizing further gains from trade than tariffs. Figure 1 shows that almost all coun-

tries importing into the US face higher transportation charges than tariffs. The aver-

age ratio of transportation charges to tariffs in the sample is 3.2. As a consequence of

this, World Bank (2009) argues for investments in transportation infrastructure to lower

these transportation mode-specific trade barriers. In 2010, the World Bank invested $ 9

billion dollars or 15% of its total lending into such infrastructure projects.

But quantitative models of international trade are largely silent on the interaction

of trade and transportation. These models generally assume that there is just an aggre-

gate trade cost to be paid if two countries engage in trade.1 Therefore, these models

cannot be used to study the effects of changes in transportation mode-specific trade

costs on trade and, ultimately, welfare. In particular, they cannot be used to under-

stand the returns to the infrastructure investments meant to decrease transportation

mode-specific trade barriers.

In this paper, I develop a model of international trade that incorporates a role for

the mode of transportation and thus allows to address the implications of change in

mode-specific trade costs. I then use this model to study the role different modes of

transportation play in international trade. The framework rests on the static multi-

country model of Ricardian comparative advantage developed in Eaton and Kortum

(2002). There are two sectors: a final good sector that produces a non-traded con-

sumption good and an intermediate good sector producing a continuum of tradeable

varieties used in the production of the final good. Each country can produce each in-

termediate variety choosing from a menu of available production technologies. Each

productivity on the menu corresponds to a mode of transportation with which the good

can be exported. Trading goods between countries is subject to iceberg trade costs

where these trade costs can differ across the different modes of transportation. As in

standard Ricardian models an importer chooses the minimal price when deciding from

where to source a good. However, in my model an importer can choose both the source

country and the mode of transportation when choosing the minimal price, whereas

standard models only allow a choice of the exporting country. Allowing for the choice

of the mode of transportation allows me to study mode-specific trade flows and assess

the implications of changing mode-specific trade costs.

The modelling approach taken allows me to incorporate an arbitrary number of

transportation modes, whereas the previous literature has only considered the case of

1See, for example, Anderson and van Wincoop (2003), Eaton and Kortum (2002), and Chaney (2008).
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DEFYING GRAVITY

two modes (cf. Harrigan (2009)). This generalization turns out to be important because

the data set I use to estimate the complete model suggests to distinguish at least three

different modes. This data set reports mode-specific bilateral manufacturing trade

flows for a sample of 79 countries; the sample year is 2005. The three different modes of

transportation I distinguish are air, vessel, and surface transportation. Relative to mod-

els of aggregate trade flows the estimation of the model is complicated due to the fact

that the gravity equation in the model is non-linear in the mode-specific trade costs.

As a consequence, I jointly estimate the model’s system of equations using non-linear

least squares. In the estimation, the mode-specific trade cost functions are allowed to

differ along two dimensions. On the one hand the coefficients on geographic controls

like distance can differ: for example, the distance elasticities of air and surface trans-

portation are not restricted to be identical. On the other hand, the geographic controls

entering the trade cost functions can differ: the distance travelled by a ship transport-

ing goods from, say, Germany to Italy is much larger than the distance flown by an

airplane between the same countries. In addition, I allow for a mode- and country-

specific exporter fixed effect similar to Waugh (2010). The differences in the trade cost

functions across the different modes of transportation are crucial in matching mode-

specific trade flows. It turns out that the distance elasticity of surface transportation is

by far the largest, and that the cost of air transportation barely rises in distance. Fur-

thermore, the large contiguity effect usually found in the literature is mostly caused

by surface transportation; being contiguous to a country has a much smaller effect on

vessel transportation and barely any on air transportation.

To further highlight the role played by different modes of transportation I calculate

the share of gains from trade attributable to each individual mode. That is, I calculate

the loss in gains from trade if a given mode was not available. The average welfare loss

for shutting off trade by sea is with 2.9% largest, followed by surface transportation with

an average loss of 2.4%. Air transportation is the least important one with an average

loss of 0.8%. All these losses, however, are small compared to the average loss of 11.1%

entailed in a move to autarky. The reason is that modes are strongly substitutable for

each other. Another interesting feature is that this counterfactual highlights the impli-

cations of the geographic distribution of technology levels: on the globe, high technol-

ogy countries are mostly clustered together and so are low technology countries. As

a consequence, access to long-distance modes of transportation like trading by sea is

more important for poor countries than for rich countries. On the other hand, access

to surface transportation is more important for rich countries than for poor countries.

I then use the model to conduct another counterfactual, aimed at investigating

the role of transportation in reducing income differences. Recently, Waugh (2010) has
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shown that the systematic asymmetries in aggregate trade costs explain up to 30% of

income differences in the country sample he uses. I use the model to investigate the

extent to which the asymmetries in mode-specific trade costs can reduce income dif-

ferences. The results show that reducing the asymmetries in air or sea transportation

alone can reduce income differences by about 35%. To put this number into perspec-

tive, the income differences are reduced by 60% when moving to free trade. The reason

for this strong role played by a single mode of transportation in realizing gains from

trade is, again, the substitutability among the modes estimated in the model.

The arguments in this paper contribute to the large literature that tries to determine

the many different sources through which gains from trade arise. Most closely related

are Fogel (1964) and Donaldson (2008) in that they also evaluate the gains arising from

different means of transportation. Fogel (1964) investigates the effect of the railroads

connecting the US east and west coast that were built in the 19th century and concludes

that they did not lead to a significant increase in trade flows. Instead, they mostly led to

substitutions away from the system of inland waterways used before to the newly built

railroads. Donaldson (2008) investigates the effect of the railroads built by the British in

19th century India. He concludes that the railroads led to a considerable welfare gain

and that about 90% of these gains occurred as gains from trade. As in these papers,

I concentrate on the role played by different modes of transportation in trade. The

difference is that I do not concentrate on a particular infrastructure project but provide

a framework in which one can discuss the effects of different infrastructure projects

more generally.

By estimating mode-specific trade cost functions the paper also contributes to the

large literature that studies the determinants of international trade costs. Anderson

and van Wincoop (2004) provide an excellent recent survey of this literature. Most of

the literature studies aggregate trade costs between countries and evaluates their deter-

minants. One of the exceptions that study mode-specific trade costs is Hummels (2001)

who develops an empirical discrete choice model of mode-specific trade flows to deter-

mine the effect of delivery time on trade costs. He estimates his model using US import

data and finds that each day saved in shipping time is worth about 0.8% of the value of

the shipment. However, his approach does not allow one to estimate complete bilateral

trade cost functions. Furthermore, since he does not specify a full general equilibrium

model it is impossible to judge the contributions of individual modes to the overall

gains from trade. Harrigan (2009) develops a complete model of mode-specific trade

flows. His main concern is with the degree to which faster transportation can act as

a source of comparative advantage. He derives a set of implications from the model

and tests them using US import data. However, as mentioned above his modelling ap-
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proach does not generalize to more than two modes. But the quantitative importance

of multiple modes is an important feature of the data set I use to estimate my model.

The aim in modelling mode-specific trade flows in an explicit general equilibrium

setting is to establish a link between mode-specific trade costs and welfare. Such a

model closes a gap in two other strands of the literature. First, there are many studies

that investigate the link between trade costs and transportation infrastructure. They

generally find that improving transportation infrastructure lowers mode-specific trade

costs. For example, Clark, Dollar, and Micco (2004) use micro data from the U.S. Im-

port Waterborne Databank to investigate the determinants of maritime transport costs.

They conclude that improving port efficiency from the 25th to the 75th percentile of

their efficiency index decreases shipping costs by 12%. Another example is Limao and

Venables (2001). They investigate the impact of infrastructure on trade costs and in-

fer that dropping from the median to the 75th percentile on the distribution of infras-

tructure quality raises transport costs by 12%. But since these studies do not spec-

ify a general equilibrium model of mode-specific trade flows, they are unable to link

the reduction in mode-specific trade costs to welfare, which is the natural measure for

judging investment projects, for example. The model presented in this paper fills this

gap by providing just such a link. The only other model I am aware of that links infras-

tructure improvements to welfare gains is Donaldson (2008), already mentioned above.

However, one property of his model is that all trade between two regions uses the ex-

act same mode of transportation. That is to say, there is exactly one cost-minimizing

choice between to regions. But looking at modern trade flows between two countries,

it is evident that most country pairs employ a mixture of different modes of transporta-

tion. The model developed in this paper explicitly incorporates such mode-specific

mixtures.

The other part of the literature where a link between mode-specific trade costs and

welfare is of interest is a small literature that tries to determine the effects of stronger

competition among international carriers on international trade costs. Hummels, Lu-

govskyy, and Skiba (2009) investigate the role of shipping cartels in inhibiting interna-

tional trade. They find that the market power exerted by shippers explains a large part

of the variation in trade costs. A back-of-the-envelope calculation shows that reduc-

ing the market power would boost trade volumes by 6% to 15%. Micco and Serebrisky

(2006) investigate the role of increased competition in international air transportation

and the relation to air shipping costs. They investigate open-skies agreements (OSAs)

that liberalize air transportation markets and conclude that these agreements reduce

air shipping costs by about 9% for developed countries. They also find that for less de-

veloped countries these OSAs do not have a discernible cost effect. From a normative
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perspective, the ultimate object of interest in waging whether to liberalize shipping car-

tels or the aviation industry should be the change in a country’s welfare. With the help

of the model developed in this paper, it is possible to estimate these welfare gains and

determine the desirability of deregulation. Furthermore, the model offers a potential

explanation for the different effects of OSAs on developed and developing countries.

2. The Empirics of Mode-Specific Trade Flows

In this section I first introduce the data used in the paper. To the best of my knowledge,

the enlarged data set on mode-specific trade flows has not been used before in the

literature. I then highlight four properties of the data that will guide the development

of the structural model and provide insights into the identification of some of the key

parameters.

2.1. The Data

To study mode-specific trade flows in a multi-country setting I have to go beyond the

data set usually used for studying mode-specific questions in international trade. Al-

most all papers investigating these solely rely on the US Imports and Exports of Mer-

chandise.2 But as a consequence, the US is always on one side of the observed trade

flows, either as an importer or as an exporter. This does not allow the identification of

country specific components for any other country but the US, which makes the com-

plete specification of a general equilibrium model of international trade impossible.

Therefore, I combine this data set with a novel data set from Eurostat, the European

Union’s statistical agency. The EU data set contains all external trade flows of the 27 EU

members disaggregated by the mode of transportation. External trade flows are trade

flows between EU countries and non-EU countries. The fact that only external flows are

contained in this data set is due to the difference in customs requirements for record-

ing intra- and extra-EU trade flows. The EU data set distinguishes nine different modes

of transportation. However, to make the data set compatible with the US data, I only

use three modes: air, sea, and surface. What I call surface is thus an aggregate of the

remaining seven modes. These are trade by road, rail, inland waterways, fixed mecha-

nism, postal, and unknown mode of transportation. Fixed mechanism transportation

refers to goods that do not need external transportation, for example air planes, boats,

and trucks. In 2005, the average bilateral share of rail and road based transportation in

2See, for example, Hummels (2001), Harrigan (2009), and Hummels and Schaur (2010). Clark, Dollar,
and Micco (2004) rely on the US Waterborne Database which also only records trade with the US as one
partner.
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the category of surface based transportation was 80%.3 Thus, this category can really

be thought of as mostly reflecting trade by surface transportation.

The data on bilateral trade flows are collected from the statistical agencies of the

27 EU member countries. This gives the data set a particular structure, depicted in

figure 2. EU member countries and the US take on both the role of reporters and part-

ners, whereas all other countries in the sample are only partners. The distinction is

the valuation of the reported trade flows: imports to reporting countries are reported

including freight and insurance – what is commonly referred to as “cost, insurance,

freight” or c.i.f. – whereas exports from reporting countries are registered excluding

these additional charges. This is commonly referred to as “free alongside ship” or f.a.s.

This difference is due to the particular nature of customs forms used in international

trade: exporters are only required to report the value of the goods transported, whereas

importers also record the cost for shipping and insurance.4 The summary statistics pre-

sented in this section ignore this distinction, but the estimation procedure developed

below will take this difference into account.

As explained above, the EU data set only reports trade with external partners. There-

fore only trade flows between any two countries in different blocks in figure 2 are con-

tained in the sample but not within any one block. For example, the sample contains

the trade flows between Germany and Canada but not between Germany and Belgium.

Because of the use of both nautical and great circle distances in the estimation proce-

dure I also exclude all landlocked countries. This leaves 23 reporting countries, con-

sisting of the US and 22 European Union members. The EU countries not represented

in the sample are Austria, the Czech Republic, Hungary, and Slovakia. In addition, Bel-

gium and Luxembourg have been combined into one country. There are 56 partner

countries from all parts of the world in the rest of the sample. The sample year is 2005.

Since the model developed later is based on the Ricardian idea of comparative ad-

vantage, it is best thought of as describing trade in manufactured goods. Therefore I

restrict attention to manufacturing trade flows in what follows.5

2.2. Four Properties of the Data

In this subsection I describe four properties of the data. The first two show that the

choice of the transportation mode does not solely depend on country- or good-specific

factors. The third fact demonstrates that it is in fact geography that interacts very differ-

3See Lux (2010) for a more detailed discussion of this data set.
4See Hummels and Lugovskyy (2006) for a related discussion of the difference between c.i.f. and f.a.s.

flows in international trade.
5See the data appendix for a discussion of the concordance used.
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ently with the different transportation modes. The fourth property documents changes

in mode-specific transportation charges over time that will inform the inference on the

substitutability of transportation modes.

Fact I: Countries Alone Do Not Determine the Transportation Choice

Table 1 shows the summary statistics for the bilateral mode-specific shares gmni =
Xm

ni

Xni
in

the data set. Xm
ni is the spending of country n on imports from country i that are trans-

ported via mode m and Xni =
∑

mXm
ni, where the summation is over the three modes

air, vessel, and surface. Trade by vessel is the most important mode of transportation

with an average share of just over 60%. Air transportation is the second most important

mode with a share of just over 20%. Surface transportation has an average share of al-

most 19%. The variation of these bilateral mode-specific shares reported in the table,

measured as the coefficient of variation, is large for all three modes. For air and surface

transportation the coefficient of variation is 115.6% and 137.7%, respectively. Even for

maritime trade the variation is about 50%. The first and third quartile of each share dis-

tribution are also reported and further corroborate the significant amount of variation

in mode-specific shares.

Table 1 calculates the statistics across all bilateral pairs. To understand the role of

different modes of transportation at the country-level, figures 3 to 5 plot the median

of the export share gmni per exporter and mode against the (log) GDP per capita. The

figures show that most countries use all modes of transportation for their exports and

confirm the impression from table 1. They also demonstrate the variation in the use

of different modes across different countries. Air transportation plays a bigger role in

exports of rich countries but maritime trade is more important for poor countries. Sur-

face transportation is insignificantly correlated with an exporter’s GDP per capita in the

data set.

The summary statistics show that all three modes are actively used in international

trade and that there is a lot of variation in bilateral shares. The exporter level analysis

further details this variation. It shows that the variation of the summary statistics is

not exclusively caused by variation across different countries but that there is an active

use of multiple modes of transportation even at the exporter’s level. This shows that

the composition of mode-specific trade cannot be explained solely by country specific

characteristics.
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Fact II: Goods Alone Do Not Determine the Transportation Choice

The second stylized fact concerns the question whether the goods traded determine

the choice of the mode of transportation or whether there is substitutability of modes

for a given good. Since only the US data set contains information on good-specific

trade flows, I restrict the analysis of this point to the US Exports of Merchandise. To

investigate this point, I first calculate the mode-specific trade shares of US exports per

commodity. I then compute the Herfindahl index of these mode-specific shares for

every commodity across different modes, i.e.

HI(j) =
∑

m

s(j)2m,

where

s(j)m =
x(j)m
x(j)

.

x(j)m is the value of US exports of good j that is transported by mode m and x(j) =
∑

m x(j)m is the total value of US exports of good j. A good is a HS10 category. Figure

6 plots the histogram of the Herfindahl indices over commodities. The lower bound

of 1/3 represents an equal distribution of mode-specific shares for the commodity, im-

plying that the good is exported using all three modes equally. The upper bound of

one signals that all trade is concentrated in one single mode. If goods were transported

with only one mode of transportation, the histogram would show that the Herfindahl

indices for all commodities would be concentrated at one. But the histogram shows

that only just under 4% of all goods have an index of nearly one. The bulk of goods

have an index below 0.6. A trade-weighted average of these Herfindahl indices gives a

value of 0.57.

The histogram is only a count of commodities. To investigate the importance of the

goods being exported with one predominant mode and their contribution to total ex-

port values more closely, table 3 reports the share in overall US Exports that falls upon

goods that are exported with any mode-specific share – air, sea, or surface – above a

certain threshold. For example, about 0.6% of all US exports in 2005 were exported

with one mode-specific share above 99.5% and just under 5% of all exports had one

mode-specific share above 95%. Thus the vast majority of goods are not automatically

linked to a mode of transportation but rather exported with different modes of trans-

portation to different destinations, thus giving a central role to the bilateral geography.

I investigate the role of geography in shaping mode-specific trade flows in the next fact.
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Fact III: Geography Affects Transportation Modes Differently

To get a better understanding of the interaction of different modes of transportation

with geography I estimate a naive gravity regression as follows:

lnXm
ni = α+ α1 log

(
Yn
Nn

)

+ α2nn + α3

(
Yi
Ni

)

+ α4ni + dkni + lni + bni + cni + εmni. (1)

Xm
ni is the value of trade between n and i that is transported by mode m, α is a con-

stant, Yk is the GDP of country k, Nk country k’s population, dkni a distance dummy, lni a

dummy for n and i speaking a common language, bni one for sharing a common border,

and cni one for being on the same continent. It is a naive gravity regression because the

value of trade between n and i by mode m potentially depends on the costs of other

alternative modes of transportation. The degree to which this matters depends on the

substitutability of different transportation modes. This naive gravity regression does

not take this substitution possibility into account, but the structural model developed

below will provide a way to do this.

Table 2 shows the results of the estimation of equation (1). The results show that

richer countries trade more but that air is the mode most strongly influenced by this

effect. What is more, this effect is stronger for the exporter than for the importer for all

three modes. With respect to distance, the results show that the different modes have

very different profiles. Air is least affected by distance and surface is most strongly af-

fected by it. The other geographic controls show that being contiguous increases trade

by surface a lot but has an insignificant influence on the other two modes. Similarly,

speaking a common language does not foster trade by surface but rather trade by air

and sea. All of these effects are qualitatively in line with results from aggregate gravity

regressions. The new feature here is the quantitative variation across different modes.

The geographic controls used here are the ones commonly used as proxies for trade

costs in gravity regressions (e.g. Anderson and van Wincoop (2004)). The differences

across the different modes of transportation then seem to suggest that the transporta-

tion modes have different cost profiles. Taking this together with the second fact re-

ported above leads me to model the choice of different transportation modes as being

caused by the different bilateral characteristics of the trading countries as oppsed to

being solely caused by good-specific characteristics.

Together with the substitutability of transportation modes even at the HS10 level

documented above then suggests that agents minimize the costs across transportation

means associated with exporting a given good to a certain destination.
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Fact IV: Transportation Costs Vary Across Time

To understand the substitutability of different modes in response to the different cost

profiles documented above, it is necessary to observe some exogenous variation in

mode-specific trade costs. One source that reports such mode-specific charges are the

US Imports of Merchandise. This data set reports the charges paid for transportation

and insurance for each import separately from the total import value. Figure 7 plots

the average (across goods and exporters) ad-valorem equivalents of these charges for

air and sea transportation separately from 1995 to 2005. The time series plot shows that

there has been a considerable amount of variation in these charges over time. Most no-

ticeably, there was a large spike in air transportation charges in 2002. This spike is a

consequence of the tightened security measures after the terrorist attacks of Septem-

ber 11th, 2001. This exogenous shock to transportation charges is what will inform the

estimation of the substitutability between different modes in the fourth section.

3. Modelling the Mode of Transportation

In this section I develop a model of international trade that incorporates a choice of

the mode of transportation and thus allows one to study mode-specific trade flows.

The model is a multi-country Ricardian framework based on Eaton and Kortum (2002)

(EK, henceforth) with a production structure similar to Alvarez and Lucas (2007).

3.1. The Economic Environment

Consider a world of i = 1, . . . , N countries, each with a measure Li of consumers. Each

consumer supplies one unit of labor inelastically and only has preferences over the

non-traded final good.

In each country, there is a representative firm producing this non-traded final good.

The firm has access to the following Cobb-Douglas production technology:

Qi = Lα
i,fq

1−α
i,f .

Here, Li,f is the amount of labor used in the production of the final good in country i,

α ∈ [0, 1] is the labor share, common across countries, and qi,f is an aggregate interme-

diate good. The firm’s objective is to minimize the production cost of producing Qi by

choosing labor and the aggregate intermediate input, taking prices as given. The price

of the final good is denoted by Pi,f . The aggregate intermediate good is assembled from

a continuum of tradeable intermediate goods, qi(j), according to the CES aggregator

10
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qi =

(∫ 1

0
qi(j)

σ−1
σ dj

) σ
σ−1

,

where σ > 0 is the elasticity of substitution among the different varieties.

Each intermediate good j ∈ [0, 1] can be produced in each country under perfect

competition. To produce quantity qi(j) in country i, labor li and the aggregate interme-

diate good qi are combined according to

qi(j) = Xi(j)l
β
i q

1−β
i ,

where β ∈ [0, 1] is the labor share in intermediate good production. Across goods j pro-

duction technologies only differ by the productivity term Xi(j). Firms then minimize

the cost of supplying good j given the wage wi and the price of the aggregate interme-

diate Pi. Assuming free factor mobility within each country, the unit cost of the input

bundle for an intermediate variety j is identical for all varieties and given by

ci = Bwβ
i P

1−β
i ,

where B = β−β(1− β)1−β .

Because the intermediate goods are tradeable, firms will source their supply of in-

termediate j from the lowest cost supplier. I assume that trade across countries is sub-

ject to iceberg trade costs, so that an amount τ > 1 of a good needs to be shipped

for one unit to arrive.6 When choosing to source an intermediate variety from another

country, an importer can decide which of M different modes of transportation to use.

The price of intermediate j produced in country i and delivered to country n via mode

m is therefore

Pm
ni (j) =

ci
Xi(j)

τmni(j).

τmni(j) represents the iceberg trade cost. Not only does it depend on the origin country

i and destination n, but also on the mode m used for transportation and the variety j

being ordered. I assume that the trade cost can be decomposed into two components:

τmni(j) = τmniτ
m
i (j).

τmni is a component that is independent of the good being shipped and only depends

on the mode of transportation and (n, i)-specific characteristics, such as geography.

6Commonly, this formulation is attributed to Samuelson (1954). However, von Thuenen (1826) already
proposes such a treatment of transportation costs albeit in an economic geography framework.
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τmi (j) represents the particular costs of shipping good j via mode m, independent of

the destination. This cost can vary across exporters. Examples for this cost would be

special packaging requirements or a good’s bulkiness that makes it more or less costly

to ship with mode m. Furthermore, different countries can have differing abilities at

adjusting good j to mode m, thus allowing τmi (j) to differ by exporter.

Since the focus here is on aggregate determinants of mode-specific transportation

costs, it is convenient to define an effective productivity Zm
i (j) = Xi(j)

τmi (j) . This effective

productivity is an adjustment of the basic ability with which country i can produce

good j by its ability of preparing good j for transportation with mode m. The price of

delivering good j from country i to country n via mode m can then be rewritten as

Pm
ni (j) =

ci
Zm
i (j)

τmni . (2)

When choosing from where and how to source good j, importers in country n will

choose the lowest cost supplier, so that the actual price of good j in country n is given

by

Pn(j) = min
i,m

Pm
ni (j). (3)

Note that in addition to choosing the lowest cost producer importers can now also

choose the mode of transportation. In this aggregate approach to modelling mode-

specific trade flows the benefits of using one mode over another exclusively stem from

a lower price, as evident in (3). I thus abstract from intertemporal motives of the trans-

portation choice as modeled in Hummels (2001) or Hummels and Schaur (2010). In-

stead, I treat them as components τmi (j) of which I only describe the aggregate behavior

through the particular distributional assumption on Zm
i (j), to which I will turn next.

To facilitate the aggregation of these good-specific demands, I make an assumption

on the distribution of effective productivities Zm
i (j). Because of the common compo-

nent Xi(j) these effective productivities are correlated over modes of transportation m

for a given variety j. Therefore, I assume that the vector Zi(j) = (Zm
i (j))Mm=1 is dis-

tributed according to

Fi(z) = exp



−Ti

(

M−1
M∑

m=1

(z−θ
m )

1
1−ρ

)1−ρ


 , (4)

where Ti > 0, θ > max{1, σ − 1}, and ρ ∈ [0, 1). M is the total number of transportation

modes available. It is helpful for the interpretation of this distribution to view it as

univariate marginals combined by a copula. In particular, (4) is the combination of
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Fréchet marginals

u(z) = exp

[

−T
z−θ

M1−ρ

]

coupled by a Gumbel-Hougaard copula

ϕ(u(z)) = exp



−

(
∑

l

(− lnul(z))
1

1−ρ

)1−ρ


 ,

where u(z) = (ul(z))l. To verify this decomposition, plug the marginals back into the

copula to obtain (4). This decomposition shows that θ governs the dispersion of the

productivity draws. The larger θ, the lower the dispersion of productivities. Ti influ-

ences the mean productivity level: a higher Ti leads to larger productivity draws on

average. The association between the different mode-specific draws is entirely de-

termined by the copula. Nelsen (2006) shows that for this copula, ρ corresponds to

Kendall’s τ , a rank correlation statistic. For ρ = 0, the productivities are independent,

where as for ρ → 1 the draws are perfectly dependent. I assume that the productivities

Zi(j) are independently distributed across countries.

A distribution similar to (4) is also mentioned by EK and used by Ramondo and

Rodriguez-Clare (2009) to describe productivities in a model of multinational produc-

tion, albeit without making the connection to copulas. The main difference is the pres-

ence of the norming factor M−1, which is crucial to include in the current framework.

Proposition 1 summarizes some important implications of the economic structure

as laid out above, the proof of which can be found in the appendix.

Proposition 1. With the above economic structure,

i) the share of goods that n buys from i is given by

πni =
Φni

Φn
, (5)

where Φn =
∑

j Φnj and

Φnj = Tj(cjτnj)
−θ,

and

τnj =

[

1

M

∑

m

(τmnj)
− θ

1−ρ

] 1−ρ
θ

; (6)

ii) within the goods that n buys from i, the share that is being transported by mode m

13
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is given by

γmni =
(τmni)

− θ
1−ρ

∑

r(τ
r
ni)

− θ
1−ρ

; (7)

iii) the distribution of prices of goods actually sold by country i in countryn and shipped

via mode m is independent of the source and the mode of transportation;

iv) the price index of the intermediate good aggregate in country n is given by

Pn = χΦ
− 1

θ
n (8)

with χ =
[
Γ
(
θ+1−σ

θ

)] 1
1−σ and Γ(·) being the gamma function.

To close the model I assume balanced trade.7 Following the same logic as in Alvarez

and Lucas (2007) and Waugh (2010), the wages can be solved for using

wiLi =
∑

j

wjLjπji. (9)

Thus, for any given set of parameters, the endogenous prices wi and Pi can be solved

for using (8) and (9).

Property iii) of proposition 1 is instrumental in connecting the model’s parameters

to observed trade flows. Just as in EK, because the average spending in country n on

goods bought from country i and transported by mode m is equal over all sources and

modes, the fraction of goods country n buys from country i via mode m is also the

fraction of its expenditure on these goods:

Xm
ni

Xn
= γmniπni. (10)

Summing over m implies

Xni

Xn
= πni. (11)

At the same time,

Xm
ni

Xni
= γmni (12)

where Xm
ni is the c.i.f. value of goods that country n imports from country i via mode m,

Xni =
∑

mXm
ni and Xn =

∑

iXni. The share country n spends on goods from country i

7This is mostly an assumption of convenience. It would be easy to introduce trade imbalances between
countries as in Dekle, Eaton, and Kortum (2008).
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is larger the smaller country i’s relative input costs are, the better its relative technology,

and the smaller its aggregated mode-specific trade costs are. The mode-specific share,

however, is solely determined by the bilateral mode-specific trade cost relative to the

aggregated bilateral mode-specific trade costs.

3.2. A Closer Look at the Model

In this subsection I discuss several properties of the model. First, I explore the determi-

nants of the transportation choice. Then I show how the model nests Ricardian models

that study aggregate trade flows. Lastly, I discuss a simple welfare statistic and under

what circumstances this statistic is sufficient to deduce the gains from trade.

3.2.1. The Transportation Choice

To understand the choice of which mode country n uses when ordering its goods from

country i, it is useful to remember the trade-off for each individual good j in the set of

goods that n buys from i, Ωni. The possible prices of each good are given by

Pm
ni (j) =

ciτ
m
ni

Zm
i (j)

, j ∈ Ωni.

The importers are trading off a higher effective productivity against the mode-specific

trade costs. Equation (7) shows for each mode m the fraction of goods transported by

that mode, i.e. the fraction of goods for which the trade-off was resolved in favor of

mode m. Because of property iii) of proposition 1, this is also equal to the fraction of

n’s expenditures on goods from i that are transported with mode m. Taking the ratio of

these expenditure shares for two modes, say air and vessel, gives

Xa
ni

Xv
ni

=

(
τani
τ vni

)− θ
1−ρ

. (13)

This shows that the elasticity of substitution between air and vessel shipments is gov-

erned both by θ and ρ. Using the copula interpretation of the multivariate Fréchet dis-

tribution makes the interpretation of the elasticity parameter θ
1−ρ

clear. If θ is large, ef-

fective productivities are less dispersed. In that case, small differences in mode-specific

trade costs lead to larger changes in mode-specific trade flows. Similarly, if the corre-

lation between effective productivities is large – if the good specific components τmi (j)

do not play such a large role compared to the core productivity Xi(j) – mode-specific

productivities within a certain variety j are very similar, even if the dispersion of pro-

ductivities across varieties j may be large. Producers can then exploit the smallest dif-
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ferences between mode-specific transportation costs because it is cheap to fit the good

for another mode.

The mode-specific trade shares γmni derived in (7) show that in the model relative bi-

lateral mode-specific trade costs between countries determine the choice of the mode

of transportation. In particular, one exporter can have very different mode-specific

shares with each of his trade partners according to the bilateral mode-specific trade

costs between them. In this way, the model is able to capture differences that might

arise from different geographic characteristics of the modes of transportation: whereas

trucks and railroads might be very cheap for a destination close by, it seems reason-

able to expect ships to be the preferred means of transportation for longer distances as

already suggested by the naive gravity regressions in section two.

Looking at changes in mode-specific trade costs and the response of trade flows, it

follows from (10) that

∂ ln
(
Xm

ni

Xn

)

∂ ln τmni
= −

θ

1− ρ
(1− γmni)− θγmni(1− πni) < 0. (14)

An increase in trade costs for mode m will decrease country n’s spending on goods de-

livered by mode m from country i. This decrease happens at two margins. The first

margin is an internal substitution. At this margin the price change triggers a substi-

tution of modes away from m but keeping the source country i fixed. This is the first

summand on the right hand side. It shows that the elasticity is larger the smaller the

mode-specific share γmni is and the higher ρ. A high ρ means that the core productivity

term Xi(j) is the dominant determinant of Zm
i (j). Thus, the modes are very close sub-

stitutes in terms of costs, and a small change in one mode’s trade costs triggers a large

change away from that mode. This margin is smaller if the mode-specific share γmni is

already high. A high mode-specific share means that m is already the lowest cost mode

for delivering goods to n, which results in mode m dominating the composite trade

cost τni defined in (6). Changing the mode-specific trade cost, then, does not change

the relative price very much, so that the response of the mode-specific trade share
Xm

ni

Xni

is small.

The second term represents the external margin. It shows the substitution away

from i as a supplier. As discussed above, a high γmni means that mode m dominates

the bilateral composite trade cost τni. Therefore, a change in the mode-specific trade

cost leads to a strong response of the bilateral composite trade cost, which is what de-

termines the share country n spends on goods from country i. Correspondingly, the

external margin is stronger the larger γmni is. Following a similar argument, if i is already

the main supplier for goods to n – represented through a high πni – a change in the trade
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cost does not change the relative prices very much, so that the elasticity of the external

margin is lower.

Lastly, both margins are influenced in the same way by θ. Remember that a larger

θ implies a lower variance of the distribution. Thus, there are smaller differences in

productivities. As a result, small changes result in larger substitutions of modes and

sources.

As for the overall change in flows between n and i we have

∂ ln
(
Xni

Xn

)

∂ ln τmni
= −θγmni(1− πni) (15)

which is exactly the external margin discussed above. Changing a mode-specific trade

cost should only affect goods that are being transported with that mode, so that the

external margin discussed in (14) is also the overall change in trade between i and n as

shown in (15).

Note that both elasticities are non-constant: they are non-linear and increasing in

the mode-specific trade share. Thus, phases of rapid changes in mode-specific trade

costs do not have to translate into rapid changes in trade flows if that mode has a very

low share. On the other hand, as the mode becomes more important and takes up a

larger share in the bilateral trade relationship smaller price changes can have larger

effects on trade flows. The introduction of Open Skies Agreements (OSAs) seems to

offer one example of this. Micco and Serebrisky (2006) are puzzled that OSAs result

in larger changes in trade flows for middle- and high-income countries than for low-

income countries. Since low-income countries have lower air shares (cf. Lux (2010)),

the present model would predict exactly such a difference.

3.2.2. Deconstructing Gravity

To derive the gravity equation in this model, define a country’s total sales as

Qi :=
∑

r

Xri =
∑

r

Φri
Xr

Φr
= c−θ

i Ti

∑

r

[

M−1
∑

m

(

(τmri )
−θ
) 1

1−ρ

]1−ρ
Xr

Φr
︸ ︷︷ ︸

=:Λi

.

Λi can be interpreted as country i’s market access. Using this and the definition of Φn

in (11) leads to the gravity equation

Xni =
XnQi

ΦnΛi

[

M−1
∑

m

(

(τmni)
−θ
) 1

1−ρ

]1−ρ

. (16)
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Trade between two countries is determined both by the importer’s total spending Xn

conditional on ΦnΛi and the exporter’s total sales Qi. The strength of the competition

in the import market, summarized through Φn, and the exporter’s market access, Λi,

influence trade negatively, as do geographic barriers τmni . The composite bilateral trade

cost τni defined in (6) can then be interpreted as a theoretically consistent aggregator

of mode-specific trade costs; it is the aggregate bilateral trade cost index. An interpre-

tation of approaches like EK or Waugh (2010) is that in modelling aggregate trade flows

they concentrate on modelling τni and ignore the aggregation implicitly involved. To

get a better understanding of the trade cost index τni, log-linearize (6) around τmni = 1:

ln τni =
∑

m

γmni ln τ
m
ni . (17)

According to the model, aggregate trade costs are approximately a weighted average

of the mode-specific trade costs where the weights are equal to the bilateral mode-

specific trade shares γmni. Note that (16) collapses to EK’s expression for τmni ≡ τni for all

m: if trade costs do not differ across the modes of transportation, then the two models

are identical.

Note that the gravity equation (16) is no longer log-linear in the trade costs, and in

particular no longer log-linear in distance. To the extent that distance influences the

modes differently, such a log-linear gravity expression is misspecified, as can also be

seen from (17).

3.2.3. A Sufficient Statistic Approach?

Arkolakis, Costinot, and Rodriguez-Clare (2010) show that in most standard trade mod-

els it is possible to investigate the welfare gains from trade and also the gains from

a given change in trade costs through two simple statistics: the trade elasticity and

the share of expenditures on domestic goods. Their characterization of standard trade

models includes models in the tradition of EK and also Melitz (2003). However, the

present framework violates this characterization as long as changes in mode-specific

trade costs are concerned because the assumption of a common and constant trade

elasticity is violated.8 To see this, note that the trade elasticity is

∂ ln
(

Xm
ni

Xm
nn

)

∂ ln τmni
= −

θ

1− ρ
(1− γmni)− θγmni.

8The restriction to mode-specific trade costs is important. Because the model nests EK, the arguments
of Arkolakis, Costinot, and Rodriguez-Clare (2010) go through even in the current framework as long as
only changes in the aggregate trade cost index τni are concerned.
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Whereas in standard trade models this elasticity is constant, and equal to −θ in EK, in

the disaggregated model this elasticity is dependent on the bilateral pair through γmni.

As a consequence the argument in Arkolakis, Costinot, and Rodriguez-Clare (2010) that

allows them to reduce welfare gains to a function of the home expenditures and the

trade elasticity does not hold for ρ > 0. For ρ = 0, however, the expression collapses to

−θ and the argument is again applicable. The intuition is that in this case modes are not

more interdependent than individual countries; for the sake of the welfare gains, mode-

specific trade flows can be viewed as separate countries. What causes the breakdown of

their result is the fact that the substitution elasticities between modes within a country

and across countries can and do differ, as I will show in the next section.

4. Estimation

In this section I discuss the estimation of the model and present the results. Given the

non-linearity of the model already discussed in connection with the gravity equation,

the model’s estimation has to be based on a system of non-linear equations. I first

derive this system of equations and discuss the estimation strategy. Then I determine

θ and ρ, two parameters that have to be determined outside of the main estimation

procedure. Lastly, I present the results and discuss their robustness.

4.1. Estimating the Model

To determine the set of parameters to be estimated, I assume a log-linear form for the

mode-specific trade cost function. In particular, I assume

ln τmni = fm
i + αm

1 bni + αm
2 lni + αm

3 cni + αm
k dk,mni

= fm
i +α

′
msni,

(18)

where the second line implicitly defines sni and αm. bni is a dummy variable that is

one if n and i share a common border, lni is a dummy that is one if n and i share a

common language, cni is a dummy that is one if n and i are on the same continent,

and dk,mni is one if the distance between countries n and i lies in the k-th interval. Note

that distance is a mode-specific regressor in the estimation: I use nautical distances for

trade by vessel and great circle distances for trade by air and surface. Nautical distances

measure the shortest path across water between the largest ports of any two countries

and are thus generally larger than great circle distances. Figure 8 plots the histogram

of the ratio of bilateral great circle distance to nautical distance. The histogram shows
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that the relative distances are concentrated around one, but that there is a substantial

left tail for which the great circle distance is much smaller than the nautical distance.

The nautical distances are from Feyrer (2009); see the data appendix for a more detailed

description of their construction. The effects on the other regressors are allowed to vary

by mode of transportation. fm
i is a mode-exporter specific fixed effect in the trade cost

function. Its inclusion is motivated by the arguments in Waugh (2010).

The set of parameters to be estimated consists of the trade cost function parameters

αm and the fixed effects fm
i for the three modes, the price index parameters Φi, and θ

and ρ. Conditional on θ and ρ, estimating the other parameters starts from (10). Some

simple algebra leads to

Xm
ni

Xn

Xi

Xii
= M−(1−ρ) Φi

Φn
(τmni)

− θ
1−ρ

[
∑

r

(τ rni)
− θ

1−ρ

]−ρ

∀m (19)

for a given country pair (n, i). Theoretically, it is possible to estimate the trade cost

and price index parameters based on this set of equations. But this requires that all

mode-specific trade flows are c.i.f. trade flows. Remember, though, that for every pair

of countries I observe the flows from the reporter to the partner as f.a.s. and the flows

from the partner to the reporter as c.i.f.9 Exploiting the assumption from above that the

observed component of trade costs does not depend on any good specific characteris-

tics, it holds that Xm
ni = τmniY

m
ni , where Y m

ni is f.a.s. spending on imports from country i

to country n via mode m. It is then possible to rewrite (19) as

Y m
ni

Xn

Xi

Xii
= M−(1−ρ) Φi

Φn
(τmni)

− θ
1−ρ

−1

[
∑

r

(τ rni)
− θ

1−ρ

]−ρ

. (20)

Thus for every country pair in the sample I now have six equations: three for the flows

from the partner to the reporter, i.e. (19), and three for the other direction, i.e. (20).

To derive the actual equations used to estimate the model define

X̃m
ni = ln

(
Xm

ni

Xn

Xi

Xii
M1−ρ

)

and

Ỹ m
in = ln

(
Y m
in

Xi

Xn

Xnn
M1−ρ

)

.

Then for any tuple (n, i) there are three equations – for air, sea, and surface – with c.i.f.

trade flows and three equations with f.a.s. flows:

9Every country pair I observe must, of course, always consist of one reporter and one partner.
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X̃m
ni = lnΦi +

−θ

1− ρ
(fm

i +α
′

msni)− ρ ln
∑

r

exp

[
−θ

1− ρ
(fr

i +α
′

rsni)

]

− lnΦn + εmni (21)

and

Ỹ m
in = lnΦn+

(
−θ

1− ρ
− 1

)

(fm
n +α

′

msni)−ρ ln
∑

r

exp

[
−θ

1− ρ
(fr

n +α
′

rsni])

]

− lnΦi+εmin, (22)

I jointly estimate this system via non-linear least squares. The Φi are captured through

fixed effects and so are the fm
i . The sni only consist of observable components. The

parameters to be estimated are Φi, f
m
i , and αm. Because of the use of a spline for the

effect of distance, I normalize ΦUS and fm
US for all m to one and zero, respectively. θ and

ρ cannot be reliably estimated in this system of non-linear equations. Although they

are theoretically identified, I have found that the use of fixed effects to capture Φi and

fm
i makes it impossible to estimate them reliably. I discuss the identification of them

in the next section.

Given the system of equations, define the error term as

u
′
ni :=

(

εani,c εvni,c εlni,c εani,f εvni,f εlni,f

)

(23)

where the subscript c signals c.i.f. flows and f signals f.a.s. flows. I assume that uni ∼

(0,Ω) i.i.d. over the tuples (n, i). This assumption does not allow for any correlation of

trade flows of the same exporter or importer beyond the explicitly modelled correlation

through Φi or fm
i . However, it does allow for an arbitrary correlation structure of the

flows between any two countries. Because θ and ρ are estimated parameters but are

used in the estimation of the system of equations, the asymptotic approximation to the

standard errors is incorrect. Instead, I determine the standard errors of the estimation

via bootstrapping. The bootstrap is based on B = 500 replications.

After having identified the parameter Φi, it is possible to identify Ti according to

Ti =
Xii

Xi

Φi

c−θ
i

, (24)

where the wages used to calculate ci are determined through the balanced trade con-

dition (9) using observed trade shares Xni/Xn as in Waugh (2010). The balanced trade

condition uses workforce data based on Heston, Summers, and Aten (2009); the exact

procedure is described in the data appendix. The price indices needed for ci are calcu-

lated using (8) and the estimated Φi.
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4.2. Determining θ and ρ

Estimating θ and ρ starts from (13). Taking logs of that expression gives

ln

(
Xa

ni

Xv
ni

)

= −
θ

1− ρ
ln

(
τani
τ vni

)

.

The problem with estimating − θ
1−ρ

is that τmni is generally unobserved. Using proxies

as in (18), however, does not allow a separate identification of the elements of αm from

(18) and − θ
1−ρ

. As argued in section 2, the observable transportation charges contained

in the US Imports of Merchandise data set constitute a component of τmni and vary over

time.

In line with the trade cost function assumed in (18), one estimation approach would

be

ln

(

Xa
US,i

Xv
US,i

)

=
fa
i

fv
i

+αδ ln

(

δaUS,i

δvUS,i

)

+α1bUS,i+α2lUS,i+α3cUS,i+αa
kd

k,a
US,i+αa

l d
l,v
US,i+ξUS,i, (25)

where ξUS,i is an error term assumed to satisfy the standard assumptions. The same

controls as in (18) are added since the transportation charges δmUS,i only represent part

of the overall trade costs. The charges δmUS,i are the ad-valorem equivalent of the import

charges reported in the data set. Comparing (18) and (25) it becomes clear that there

is no possibility of reliably estimating the exporter specific trade cost component fm
i .

The problem is that there is no variation over the importer; the transportation charges

are only reported for the US as an importer. On the other hand, an estimation utilizing

the time dimension of the data would lead to inaccurate estimates given the relatively

short time span of 11 years. Assuming that fm
i does not change over short horizons of

time, it is possible to improve on (25) by estimating it in a differenced form (I drop the

importer subscript to avoid cluttered notation):

∆ ln

(

Xa
i,t

Xv
i,t

)

= αδ∆ ln

(

δai,t
δvi,t

)

+∆ξi,t, (26)

with ∆yt = yt − yt−1. This formulation assumes that the coefficients on time-invariant

proxies like contiguity and distance do not change over short intervals of time. Some

evidence for this assumption with respect to distance can be found in Disdier and Head

(2008). In this differenced form, the assumption on the error term is now (cf. Cameron

and Trivedi (2005))
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Et

[(

∆ ln
δai,t
δvi,t

∆ξi,t

)]

= 0, (27)

where Et(·) denotes the conditional expectation on time t information. This estimation

approach is similar to the demand equation specification used by Broda and Weinstein

(2006) to estimate demand elasticities. But instead of specifying a supply equation, I

exploit the exogenous shock of the 9/11 attacks to identify the substitution elasticity as

discussed below.

Figure 9 shows the scatter plot of ∆ ln
(
Xa

i,t

Xv
i,t

)

against ∆ ln
(
δai,t
δvi,t

)

, using annual data

from 1995 to 2005. The sample of exporters is the same country sample as the one

used in the main estimation. As predicted by the model, there is a negative relationship

between the two variables. Table 4 contains the regression results. The first column

contains the basic regression (26). The estimate for αδ is significant with a value of

−6.7. The result is quite robust to other specifications. The parameter estimate barely

changes when time fixed effects are included. This confirms that there are not different

growth rates of the two mode-specific trade values over this time period that could in-

fluence the result. One worry from the inspection of figure 9 is that the outliers might

dominate the result. To control for these outliers, column three reports the results of

an iterative least squares procedure that reweighs observations in each iteration de-

pending on their influence on the estimates. The results show that the outliers are not

driving the estimate of αδ. The estimate slightly increases for the robust procedure.

One further worry might be that the variation in transportation charges is not ex-

ogenous, i.e. that the identifying assumption (27) is violated. To investigate this furter

I estimate the coefficient by splitting the sample in pre-1999 and post-2000. The varia-

tion in the latter half is strongly driven by the increase in air transportation charges in

the wake of the 9/11 attacks documented in figure 7 and discussed above. The estima-

tion shows that the coefficient for these two sub-samples are -6.3 and -7, respectively,

which frame the estimate of -6.7 obtained using the whole sample.

Disentangling θ and ρ is more difficult. The difficulty of estimating the aggregate

trade elasticity is common to this class of Ricardian models (cf. EK and Waugh (2010)

but also Fieler (2009)). The original idea of EK to estimate θ is via an arbitrage condition

on goods’ prices in different countries. This condition states that

pn(l)

pi(l)
≤ τni ∀ l ∀n, i.

With this condition it is possible to estimate τni and thus obtain an estimate of θ inde-

pendent of the effects of geographic proxies. Simonovska and Waugh (2009) argue that
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this approach actually upward biases the estimate of θ because of the inherent bias in

the first-order statistic used to estimate τni. They correct for this bias in an EK model

and arrive at an estimate of θ = 4.22. This approach is not correct, however, if goods

can be transported with different modes of transportation. The reason is that the no-

arbitrage condition changes to

pn(l)

pi(l)
≤ min

m
τmni ∀ l ∀n, i.

Because minm τmni ≤ τni(τ
m
ni) where τni(τ

m
ni) is the choice-theoretically consistent trade

cost index derived above, they overestimate the true θ as it would be estimated using

the disaggregated model presented here. Thus, their estimate is an upper bound on the

value of the trade elasticity. EK suggest an alternative estimation procedure relying on

wage data instead of price data. This approach is valid in the current context, as well.

With this method they reach a value of θ = 3.6. This is generally considered to be a

lower bound on the parameter.

It turns out that the difference between the mode-specific trade costs is not very

large, so that minm τmni − τni(τ
m
ni) is likely to be small and the resulting remaining bias

in the estimate of Simonovska and Waugh (2009) as well. This suggests using a value of

θ = 4, which implies a ρ = 0.4 for an estimate of θ
1−ρ

of 6.7.

4.3. Estimation Results

I drop all zero trade flows from the sample.10 This leads to a drop of about 8.5% of

observations. The remaining sample contains 7308 observations, which are roughly

equally distributed over the six equations.

4.3.1. Model Fit

To understand the fit of the model I use the correlation between the model’s predicted

bilateral trade shares and the data. The correlations are reported in table 5. For the

aggregate bilateral trade share Xni

Xn
the correlation is 0.59. At this stage of aggregation the

model is essentially identical to EK in the formulation of Waugh (2010). As he discusses

in the paper, the fit of the model in explaining trade flows is very accurate measured

through the model’s R2. Stating the correlation measure here is meant to serve as an

anchor for evaluating the model’s ability to fit mode-specific trade flows.

Table 5 also reports the correlation between data and model predictions for mode-

10Helpman, Melitz, and Rubinstein (2008) investigate the potential sample selection bias introduced by
this method and find a negligible bias.
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specific trade shares
Xm

ni

Xn
, i.e. the predicted γmni. Sea based trade shares have the highest

correlation with 0.65. The correlation for air shares is 0.6. The model’s fit is worst for

surface based trade flows; the correlation between predicted and actual trade shares

drops to 0.44. Given that the last is an agglomeration of several flows, this does not

seem too unexpected.

Comparing the fit for the bilateral aggregate trade share and the mode-specific trade

shares reveals that the model describes the mode-specific trade flows about as well as

the aggregate ones. Thus, an accurate description of mode-specific trade flows is possi-

ble even without concentrating on goods’ characteristics to explain the transportation

choice.

4.3.2. Parameter Estimates

Table 6 shows the estimated coefficients of the mode-specific trade cost functions for

contiguity, sharing a common language, and being on the same continent. The co-

efficient estimates are translated into ad-valorem cost equivalents using the relation

100 × (exp(α̂j) − 1). The reported significance levels are based on bootstrapped stan-

dard errors with 500 replications. In line with usual estimates of these coefficients (cf.

Anderson and van Wincoop (2004)) all three characteristics lead to a reduction in trade

costs. What is new here is the separation across modes of transportation. Not surpris-

ingly, sharing a common border has the strongest effect on surface transportation: it

lowers trade costs by 46.2% compared to just about 12.3% for trade by vessel. Air trans-

portation profits from a common border through a reduction of 21.8%. A common

language is most helpful in lowering trade costs for air transportation, surface based

transportation profits the least from it. However, the variation across modes is consid-

erably lower than compared to the estimates for contiguity. Being based on a common

continent is, not surprisingly, most helpful for surface based trade with a cost reduc-

tion of ca. 24% and least cost-reducing for shipping. The estimates are very precise

based on the reported significance levels. Overall, this deconstruction of the effects

of trade cost proxies into their differential effects through the modes of transportation

shows the large and intuitive heterogeneity that is lost in the usual aggregate approach

to estimating trade costs.

Figure 10 plots the estimated distance splines α̂m
k over the distance categories. I

choose the mid-point of each interval on the x-axis. The intervals are reported in

table 7. They have been chosen such that roughly an equal amount of observations

falls into each category to maximize the precision of the estimates. The bands around

the splines are 95% confidence intervals. The confidence intervals are based on boot-
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strapped standard errors, as above. As for the other trade cost proxies, disaggregating

the effect of distance by the mode of transportation reveals a rich variation that seems

intuitive. Distance has the largest effect on surface based transportation, which seems

quite intuitive given that most of this category entails goods transported by trucks and

railroad. The effect on air transportation is relatively modest. Going from trade below

2500 km to over 11000 km raises air transportation costs only by about 69% compared to

177% for surface based transportation. Again, this seems very much in line with com-

mon intuition: once an airplane is in the air the marginal kilometer should be rather

cheap compared to a truck. The distance effect on shipping is somewhere in between

these two extremes. It rises in the beginning, but flattens off for larger distances.

Figure 11 plots the estimated exporter fixed effects in the trade cost function for

air transportation, fa
i , against the log of the GDP per capita. In line with what Waugh

(2010) finds there is a strong negative correlation between the two variables. Figure 12

and 13 plot the fixed effects for vessel and surface transportation, respectively, and the

same pattern emerges: rich countries face lower barriers to exporting and do so across

different modes of transportation. To further investigate the variation of the exporter

fixed effects, I calculate the coefficient of variation both within countries across modes

and across countries for each mode. The mean of the variation within countries and

across modes is 0.31 with a median of 0.25. The variation across countries is around

three times as large: 0.78 for air, 0.93 for sea, and 1.08 for surface transportation.

Figure 14 plots the estimated technology parameters Ti against GDP per capita. The

technologies are strongly positively associated with GDP per capita. This strong co-

variation is also found in Waugh (2010). Japan has the highest estimated technology

closely followed by Korea. The countries with the lowest technologies are predomi-

nantly African countries; Ghana has the lowest estimate.

4.3.3. Difference to an Aggregate Model

How different are the estimates from an aggregate model if the variation across modes

is as large as shown in table 6? To investigate the answer to this question, I simulate

aggregate trade flows using the estimates from the model. I then estimate an aggregate

specification just as in Waugh (2010) using these simulated data. The last row of table 6

reports the results from this experiment. Not surprisingly, the aggregate estimates lie in

between the disaggregated estimates. Figure 15 combines the distance estimates from

the disaggregated model with the estimates from the aggregated model. As in the case

of the trade cost function parameters, the aggregate distance effect is a combination of

the effects of the three modes. There are two things to note about the results.
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First, the large aggregate contiguity effect is what Overman, Redding, and Venables

(2004) and Hummels (2007) call the puzzling fact that most countries tend to trade with

their neighbors. Disaggregating the model and estimating mode-specific trade costs

reveals that the contiguity effect is largely driven by surface trade. From this observa-

tion, one plausible explanation of this effect might be based on different transporta-

tion economies of scale associated with the different modes. Assume that the different

economies of scale are captured in large fixed transportation costs associated with mar-

itime trade and much smaller fixed transportation costs for surface trade. Then many

more small shipments will be send via surface transportation whereas only sufficiently

large shipments are traded between countries where maritime trade is the cheaper op-

tion. The estimates show that surface trade is only feasible for short distances; the

distance profile is much steeper for surface than for the other modes. If the amount

of small shipments is a sufficiently large share of overall trade flows, this mechanism

could generate the large estimated contiguity effect.

The second interesting thing to note concerns the disaggregated distance profiles in

figure 15. There is a sense in the gravity literature that distance only matters for shorter

distances and not so much for larger distances. The disaggregated estimates show that

this is the combination of surface trade having both a large distance elasticity and being

predominantly used for regional trade with neighbors or on the same continent. This

leads to a sharp increase in the aggregate estimate of the distance effect. For larger dis-

tances, however, the other two modes become more dominant and the distance effect

is dominated by the distance profile of air and vessel. The estimates show that trade in

these modes reacts much less to distance which leads to the observed flattening of the

aggregate distance effect.

4.4. Robustness

In this subsection I discuss some additional results that are meant to highlight the ro-

bustness of the benchmark estimation.

4.4.1. Weighted NLS

The benchmark estimation is not efficient since it does not explicitly exploit the as-

sumed correlation structure of Ω. To determine whether a weighted NLS procedure

would yield more efficient – and generally different – estimates, I re-estimate the model.

At this second step I use a weighted NLS procedure, where the estimate of Ω is based

on the residuals ûni. The standard error of the regression when comparing the weighted

and the unweighted estimate are virtually indistinguishable. The sample is large enough
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for there to be no efficiency loss to the unweighted procedure.

4.4.2. The Importance of ρ

To determine the sensitivity of the estimates with respect to ρ, I re-estimate the model

with two different values of ρ: ρ = 0.2 and ρ = 0.6, keeping θ = 4. Table 8 reports

the resulting correlations between predicted mode-specific shares
Xm

ni

Xn
and the data.

The correlations barely change with the different values of ρ, which hints at it being

poorly identified in the model itself. Note that Ramondo and Rodriguez-Clare (2009)

experience a very similar result in their model of multinational production, using a

very similar correlated Fréchet distribution.

4.4.3. Great Circle Distances

The benchmark model uses actual nautical distances for the maritime trade flows. It

seems clear that in many cases the great circle distance is only a poor proxy for the

distance actually travelled by a ship. Indeed, the discussion of figure 8 above has al-

ready established the extent of this difference in the data set. However, it is much less

clear what implications this difference in distances has for the study of trade flows.

In order to determine the quantitative importance of this difference, I re-estimate the

model using only great circle distances. The fit of the model is basically unchanged; the

standard error of the regression is only 0.7% larger. Table 9 shows the results for the co-

efficients of the trade cost function. Although there are some differences between the

two models, they all are extremely minor. Figure 16 plots the resulting distance effects

of the different modes. Here, there is basically no change with respect to surface or air

transportation. On this metric, maritime trade has the lowest distance sensitivity of all

modes. For distances beyond 6000 km, the distance effects of air and vessel transporta-

tion are basically indistinguishable. The fact that the relative distance effects become

more similar with increasing distance means that the air share grows relative to their

vessel share: more distant partners have higher air shares relative to the vessel shares

than closer partners. This is reminiscent of the effects Harrigan (2009) finds. Here, how-

ever, this effect occurs at a more aggregate level and for a wider sample of countries.

5. Two Counterfactuals

Before discussing the counterfactuals, some as yet unspecified parameters have to be

determined. Since these parameters are not readily estimateable from the data I choose

to calibrate them in line with previous work. Table 10 summarizes these parameters
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and the values I choose. β is the value added share in intermediate good production.

Using data on value added and gross manufacturing production from the UNIDO data I

calculate a value of 0.31 for the countries in my sample. Waugh (2010) uses a minimally

larger share of 0.33. σ is the elasticity of substitution between intermediate varieties.

The value does not play any role other than in the constant χ of the price index and

only needs to satisfy the restriction θ > max{1, σ − 1}. I choose σ = 4.5. α controls

value added in the final good production. Alvarez and Lucas (2007) discuss plausible

values in the range of 0.7 to 0.8. I follow Waugh (2010) and pick α = 0.75.

5.1. The Role of Transportation

In the first series of counterfactuals I take the benchmark model as estimated above

and compare this to worlds in which one of the three modes is not available. The aim

of the counterfactual is to try to understand the contribution of each individual mode

to the gains from trade. To gauge this contribution, I calculate for each counterfactual

the statistic

∆i,m =

ωi,m

ωi
− 1

ωi,aut

ωi
− 1

. (28)

ωi =
wi

Pi,f
denotes the real wage of country i in the benchmark case, ωi,m denotes the real

wage when mode m is made prohibitively expensive, and ωi,aut is the real wage under

autarky. The statistic ∆i,m denotes the fraction of the gains from trade that are foregone

if mode m is eliminated. Figures 17 to 19 show a scatter plot of these statistics against

(log) GDP per capita for the three different modes along with the best fit lines. Figure 17

shows that richer countries rely slightly more heavily on air transportation for realizing

their gains from trade. But the slope of this relationship is rather small. Furthermore,

it shows that most countries do not rely very much on trade by air. The gains from

trade would be on average only 8% lower if air transportation was impossible. Figure

18 shows that the picture is very different for trade by sea. First, the importance of sea

transportation is large for most countries: gains from trade would be on average 34%

lower if sea transportation was not possible. Furthermore, the relation with a country’s

development level is reversed. Poor countries rely much more heavily on access to sea

transportation than rich countries. The reason for this becomes clear when looking

at the role played by surface transportation in realizing gains from trade as depicted

in figure 19. This figure makes clear that rich countries rely more heavily on surface

transportation than poor countries.

The intuition for this pattern is best understood by thinking about European and
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African countries. If European countries’ access to far-away markets is made more ex-

pensive by eliminating air transportation, some trade will shift towards neighboring

countries. But for European countries, these are still technologically advanced markets

that offer many opportunities to exploit comparative advantages. Thus, the second-

best price for most goods will not be much higher than it was and the welfare gains

from trade are not strongly influenced. The story is different for African countries. If

African countries are forced to trade more with their neighbors because long-distance

trade has become more expensive, this means going from trading with technologically

advanced but far-away markets to trading with close but technologically much less ad-

vanced markets. This results in sharply increasing prices for goods and thus a larger

negative change in the real wage.

This counterfactual highlights the role of different modes of transportation in over-

coming the adverse distribution of technological achievements across the globe. Tech-

nologically advanced countries are bunched together and so are technologically dis-

advantaged countries. As a result, the poor countries rely on long-distance modes of

transportation to profit from trade much more heavily than rich countries.

Whereas the discussion so far has focused on relative gains from the modes, table 11

summarizes the level effects. The first column shows that the average welfare change

across modes is very different. Shutting off air transportation decreases the average real

wage by only 0.8% whereas shutting off sea or surface transportation has much larger

effects: -2.9% and -2.4%, respectively. Note that these changes do not add up to the

average loss of 11% when going to autarky. The reason is the strong substitutability. To

highlight this, the second column shows the drop in world trade. Comparing this to

the share of world trade transported by each affected mode prior to the counterfactual

in column three shows that the drop is always much smaller. That is, a lot of trade is

actually retained and shifts to other modes of transportation.

5.2. The Role of Transportation in Decreasing Income Differences

Recently, Waugh (2010) has argued that exporter-specific fixed effects in the trade cost

functions can explain up to 30% of income differences. Given the strong substitutabil-

ity of transportation modes highlighted in the first set of counterfactuals, I now ex-

amine the ability of mode-specific exporter fixed effects to account for income differ-

ences. To do this, I compare income differences in the benchmark model to a model

where I reduce the mode-specific fixed effects in the trade cost functions to the US

level for a particular mode. That is, I set fm
i = min{fm

i , fm
US}. Table 12 shows the re-

sulting changes in income differences, measured as the variance of the log of the real
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wage. The results show that reducing the exporter specific barriers for either air or

sea transportation reduces income differences by about 35% in the sample. Reducing

the barrier for surface transportation only reduces income differences by a little over

20%. The difference is easily understood with the intution already developed above.

As discussed in Waugh (2010), the reduction of income differences through a reduc-

tion of asymmetries in trade costs is caused by poor countries starting to import a lot

more goods to compensate for their technological disadvantage. But if the asymmetry

is reduced in surface transportation, poor countries can only trade more cheaply with

other countries nearby, which are mostly technologically disadvantaged, as well. If, on

the other hand, the asymmetries are reduced in long-distance modes like air or sea

transportation, poor countries can access technologically advanced far-away markets

and thus exploit much larger gains from trade. The last column shows that reducing

all mode-specific exporter fixed effects simultaneously reduces income differences by

about 40%, only slightly more than in the case of air or sea transportation. Again, be-

cause the substitutability between different transportation modes is so strong, reduc-

ing the asymmetries in only one long-distance mode already allows countries to realize

large additional gains from trade.

To put these numbers in perspective, I determine the reduction of income differ-

ences achieved in a world of free trade, i.e. where τmni ≡ 1 for all modes m. In such a

world, income differences shrink to about 40% of what they are in the benchmark case.

Thus, reducing the exporter specific barriers in sea transportation alone achieves half

the reduction in income differences compared to a world of free trade.

As a further check I calculate the change in income differences resulting from re-

ducing the fixed effect to the minimum within each country. The results are reported

in the third column. This exercise is meant to show that the reduction in income dif-

ferences does not come from the reduction of within country variation of these fixed

effects but really from the much larger across country variation in export barriers.

6. Conclusion

In this paper I have developed and estimated a model of mode-specific international

trade flows to study the role played by individual modes of transportation in interna-

tional trade and the effects of changes to mode-specific as opposed to aggregate trade

costs. Although the model is able to accomodate any number of transportation modes,

I concentrate on the three most important ones: air, sea, and surface transportation.

I estimate the model using a novel data set. The resulting estimates of the trade cost

functions are quite intuitive, showing that air and vessel transportation are impor-
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tant for long-distance trade and surface transportation mostly used for short-distance

trade.

I then use counterfactual analysis to show two things. First, I decompose the gains

from trade into their mode-specific components. To do this I compare the benchmark

model to a world where one mode is prohibitively expensive. The most important les-

son is that modes are strongly substitutable: even removing the possibility to trade by

sea, the most widely used mode, reduces welfare on average by only about 3% com-

pared to the average loss of 11% when moving to autarky. The second implication is the

different importance of transportation modes for different countries. Poor countries

rely much more heavily on access to long-distance transportation in realizing gains

from trade than rich countries. The reason lies in the geographic distribution of tech-

nologies. Since rich and poor countries form clusters on the globe, eliminating long-

distance trade for rich countries is not as damaging as removing it for poor countries.

Rich countries can substitute much of their trade towards their neighbors who are still

technologically advanced enough to exploit large gains from trade. Poor countries, on

the other hand, face a much steeper price increase when forced to trade more with their

technologically disadvantaged neighbors.

In a second counterfactual I investigate the role of individual modes of transporta-

tion in reducing income differences. The high substitutability estimated implies that

removing asymmetries in air or sea transportation alone can reduce income differences

in the sample by about 35%. In comparison, moving to a world of free trade reduces in-

come differences by about 60%.

One limitation of the model developed here is that it is static. However, there is ev-

idence that the delivery time matters for international trade, cf. Evans and Harrigan

(2005) or Alessandria, Kaboski, and Midrigan (2008). An interesting avenue for future

research would thus be to study the role of different transportation modes in inter-

national trade in a dynamic context. The considerable challenge here is to generalize

these dynamic trade models to a multi-country framework.
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A Data Appendix

A1. Gross Manufacturing Production

The data for gross manufacturing production come from three different sources. If available, I use the

UNIDO Industrial Statistics Database 2008.11 However, these data are not available for all countries in the

sample. Where necessary, I supplement the data with gross manufacturing production from the OECD

STAN database12 or impute it with UN National Accounts Statistics on value added in manufacturing.13

Exchange rate adjustments for the OECD data are made using the exchange rates from the Penn World

Tables 6.3.

A2. Trade Data

To limit the trade flows to manufacturing I employed the concordance suggested in Maskus (1991).

Mode-Specific Trade Data: The data for bilateral trade flows disaggregated by the mode of trans-

portation come from two sources. The data on flows involving the U.S. are from the US Imports/Exports

of Merchandise. The second data source is the XTNET data base from Eurostat.14 To convert the trade data

quoted in Euro into US dollars, I use the exchange rates as reported in the Penn World Tables, edition 6.3.

Aggregate Trade Data: Trade data on aggregate trade flows are from the update data set based on

Feenstra, Lipsey, and Bowen (1997).

A3. Geographic Data

The geographic data used for the trade cost function all come from the CEPII data base.15 The great circle

distance is measured in kilometers.

The data for bilateral nautical distances have been generously provided by James Feyrer. For details

of the calculation of these distances, see Feyrer (2009). The data set reports bilateral distances as days for

a round trip. To convert them into kilometers, I assume a vessel operating 24 hours per day at 20 knots.

A4. Labor Force Data

Using data on GDP per capita, population, and GDP per worker, the labor force for each country in the

sample is recovered as in Caselli (2005). The data are from Heston, Summers, and Aten (2009).

B Proof of Proposition 1

The proof is based on arguments similar to the ones in Ramondo and Rodriguez-Clare (2009). First, note

that the distribution of prices for goods n buys from i is given by

11http://www.unido.org/index.php?id=o3472
12http://www.oecd.org/document/54/0,3343,en 2649 34445 21573686 1 1 1 1,00.html
13http://unstats.un.org/unsd/snaama/Introduction.asp
14http://epp.eurostat.ec.europa.eu/newxtweb/
15http://www.cepii.fr/anglaisgraph/bdd/distances.htm
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With this, the price distribution of goods in n is
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i
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This proves (5). To see what share n buys from i via mode m, let us focus on one particular mode, say
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because − x
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Now Φn1

Φn
is the share of goods n buys from i = 1, so
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is the share of goods n buys from i = 1 that are transported via mode m = a. This proves (7). Then the

distribution of prices in n for goods that are actually imported from country i = 1 with mode m = a is

P [{P a
n1(j) ≤ p} | {P a

n1(j) ≤ Pm
nl (j) ∀m ∀ l}] =

P [{P a
n1(j) ≤ p} ∩ {P a

n1(j) ≤ Pm
nl (j) ∀m ∀ l}]

P [{P a
n1(j) ≤ Pm

nl (j) ∀m ∀ l}]

=
1

P(A)
P

[

{Za
1 (j) ≥

c1τ
a
n1

p
} ∩ {Zm

l (j) ≤
clτ

m
nl

c1τa
n1

Za
l (j) ∀m ∀ l}

]

=
1

P(A)

∫ ∞

c1τa
n1

p

F (dz, . . . , anl,mz, . . .)

=
1

P(A)
exp

[

−Φn(c1τ
a
n1)

θz−θ
]∣
∣
∣

∞

c1τa
n1

p

= 1− exp[−Φnp
θ]

= Gn(p).

(B.9)

This proves the third claim. Applying once again the same logic as in EK, it can then be shown that

Pn =

[

Γ

(
θ + 1− σ

θ

)] 1
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︸ ︷︷ ︸

χ

Φ
− 1

θ
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This proves (8).
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Figure 3: The graph shows the median share of exports by air against the (log) GDP per capita. The solid
line shows the best fit.
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Figure 4: The graph shows the median share of exports by sea against the (log) GDP per capita. The solid
line shows the best fit.

37



DEFYING GRAVITY

FRA

IRLMLT

ROU

SVN

SWE

CYP

NLD

PRT

LVA

LTU

DEU

FIN

ITA

USAGRC

DNK

POL

BEL

BGR

EST ESP

GBR

MOZ
CRI

THA

CHL

JOR

TGO

IDN

KWT

NZLNIC

ISL

VEN

ZAF

ISR

SEN

UKR

TUN

PAN

PNG
JAM

KEN

LKA

ECU

CHN
BRA

OMN

KOR

DOM

NOR

IRN

IND

GTM

BEN

JPN

QAT

VNM AUS

COL

SYR

SLV

TUR

CMR

GHA

PHL

MUS

MEX

ARG

MAR

BGD

EGY

PAK

HND

YEM

PER

RUS

URY
MYS

CAN

0
.2

.4
.6

M
e
d
ia

n
 E

x
p
o
rt

 S
h
a
re

7 8 9 10 11
GDP pc (log)

Surface

Export Share vs. GDP pc

Figure 5: The graph shows the median share of exports by surface transportation against the (log) GDP
per capita. The solid line shows the best fit.
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Figure 11: Estimated f̂a
i against the log of GDP per capita.
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Figure 12: Estimated f̂v
i against the log of GDP per capita.
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Figure 13: Estimated f̂s
i against the log of GDP per capita.
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Figure 14: Estimated T̂i against the log of GDP per capita.
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Figure 15: α̂m
k against the mid point of the k-th distance interval together with the distance estimates from

an aggregate model. The distance for air, surface, and the aggregate estimate is the great circle distance,
whereas the vessel estimate is plotted against bilateral nautical distance.
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great circle distance.
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Figure 17: Plotting ∆i,m for air transportation by country against (log) GDP pc. See (28) for a definition.
The straight line is the best fit.
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Figure 18: Plotting ∆i,m for sea transportation by country against (log) GDP pc. See (28) for a definition.
The lines are best fit lines.
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Figure 19: Plotting ∆i,m for surface transportation by country against (log) GDP pc. See (28) for a defini-
tion. The lines are best fit lines.
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Table 1: Mode-Specific Bilateral Shares

Mean CV 25% 75%

Air 20.8% 115.7% 2.6% 29.7%

Sea 60.3% 49.5% 38.7% 85.7%

Land 18.9% 137.7% 0.5% 26.6%

Notes: Summary statistics of the bilateral
mode-specific trade shares for the countries
contained in the sample. The sample year is
2005.
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Table 2: Naive Gravity Regressions

The Modes

Regressors Air Sea Surface

(log) GDP pc Imp. 1.57∗∗ 1.28∗∗ 1.21∗∗

(log) Pop. Imp. 1.04∗∗ 0.89∗∗ 0.83∗∗

(log) GDP pc Exp. 2.45∗∗ 1.56∗∗ 1.35∗∗

(log) Pop. Exp. 1.23∗∗ 1.17∗∗ 1.13∗∗

(0, 2500] – – –

(2500, 4000] −0.45∗ −0.84∗∗ −2.35∗∗

(4000, 5000] −0.48∗ −1.05∗∗ −2.46∗∗

(5000, 6000] −0.61∗∗ −1.11∗∗ −2.1∗∗

(6000, 7000] −0.53∗∗ −1.54∗∗ −2.65∗∗

(7000, 8000] −0.63∗∗ −1.34∗∗ −2.48∗∗

(8000, 9000] −0.59∗∗ −1.34∗∗ −2.4∗∗

(9000, 10000] −0.47∗ −1.4∗∗ −2.34∗∗

(10000, 11000] −0.96∗∗ −1.95∗∗ −2.84∗∗

(11000,∞) −1.52∗∗ −1.77∗∗ −2.75∗∗

Com. Language 1.31∗∗ 0.91∗∗ −0.28

Contiguous −0.51 −0.72 2.6∗∗

Com. Continent 0.13 0.05 0.92∗∗

Constant −60.78∗∗ −43.59∗∗ −40.2∗∗

R2 0.71 0.69 0.52

No. Obs. 2477 2487 2212

Notes: Results of the estimation of (1) using robust
standard errors. ∗∗ denotes significance at the 1% level,
∗ denotes significance at the 5% level.
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Table 3: Value Shares in Exports

Mode-Specific Share Threshold

> 0.995 > 0.99 > 0.98 > 0.95

Value Share in Exports 0.6% 1% 1.8% 4.9%

Notes: The aggregate value share of exported goods with one
good-specific mode-specific share above the given threshold. Data are
from the US Exports of Merchandise. A good is a HS10 classification.

Table 4: Estimation of −θ/(1− ρ)

OLS OLS Robust ≤ 1999 ≥ 2000

− θ
1−ρ

−6.7 −6.7 −6.9 −6.3 −7

(0.00) (0.00) (0.00) (0.02) (0.00)

Time Effect no yes no no no

No. Obs 775 775 775 308 390

R2 0.19 0.25 – 0.19 0.22

Notes: Estimates of equation (26). p-values are given in
parentheses.

Table 5: Correlations of Predicted Shares and Data

Modes

Air Sea Land Aggregate

Correlation 0.6 0.65 0.46 0.58

Notes: Correlations of predicted bilateral

mode-specific trade shares, X̂m
ni/Xn, and data,

Xm
ni/Xn and for aggregate bilateral trade shares.
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Table 6: Trade Cost Estimates

Contiguity Common Language Common Continent

Air −21.8%∗∗ −20.6%∗∗ −18.7%∗∗

Sea −12.3%∗ −15.8%∗∗ −10.6%∗∗

Surface −46.2%∗∗ −11.6%∗∗ −23.9%∗∗

Aggr. −40.3%∗∗ −16.9%∗∗ −16.5%∗∗

Notes: Estimates of the mode-specific trade cost functions expressed as
ad-valorem equivalents. The last two rows report the values from estimating an
aggregate model with data simulated according to the model. ∗∗ denotes
significance at the 1% level, ∗ denotes significance at the 5% level. The
standard errors are based on bootstrapped standard errors.

Table 7: The Distance Intervals

Air & Surface Vessel

[0, 2500) [0, 5000)

[2500, 4000) [5000, 7500)

[4000, 5000) [7500, 9000)

[5000, 6000) [9000, 105000)

[6000, 7000) [105000, 12000)

[7000, 8000) [12000, 13500)

[8000, 9000) [13500, 16500)

[9000, 10000) [16500,∞)

[10000, 11000)

[11000,∞)

Notes: The distance intervals
used in the paper. Air and
surface uses great circle
distance, vessel transportation
is in nautical distances.
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Table 8: Robustness with respect to ρ

Air Sea Land

Mode-Specific Shares (ρ = 0.4) 0.6 0.65 0.46

Mode-Specific Shares (ρ = 0.2) 0.53 0.61 0.52

Mode-Specific Shares (ρ = 0.6) 0.59 0.64 0.48

Notes: Correlations of predicted bilateral mode-specific trade

shares, X̂m
ni/Xn, and data, Xm

ni/Xn for different values of ρ.
ρ = 0.4 is the benchmark case.

Table 9: Trade Cost Estimates for Great Circle Distance

Contiguity Common Language Common Continent

Air −22%∗∗ −19.9%∗∗ −12%∗

Sea −14.6%∗∗ −15.6%∗∗ −5.6%

Surface −46%∗∗ −10.9%∗∗ −17.7%∗∗

Notes: Estimates of the mode-specific trade cost functions using great circle
distance for all modes. The last two columns report the values from estimating
an aggregate model with data simulated according to the model. ∗∗ denotes
significance at the 1% level, ∗ denotes significance at the 5% level, and a

denotes significance at the 10% level. Standard errors are bootstrapped.

Table 10: Calibrated Parameters

Value Source

β 0.31 UNIDO

σ 4.5 σ < θ + 1

α 0.75 Alvarez and Lucas (2007)

Notes: Values for the parameters of the
model that are calibrated.
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Table 11: Summary Statistics of the Role of Transportation

Aggr. Trade

Counterfactual Avg. Welfare Change X̃/X Xr/X

Air −0.8% 94.9% 87.8%

Sea −2.9% 64.7% 44%

Surface −2.4% 80.2% 68.3%

Autarky −11.1% 0% –

Notes: X denotes total world trade and X̃ denotes total world
trade in the counterfactual. Xr is the total trade of the unaffected
modes prior to the counterfactual.

Table 12: Real Wage Differences relative to Benchmark

Counterfactual Air Sea Surface All

fm
i = fm

US 66.4% 64.3% 78% 60.7%

τmni ≡ 1 – – – 39.3%

fm
i = minl f

l
i 99.2% 98.3% 100.5% 99%

Notes: Ratios of the variances of log real wages. The
variance of the log of the real wage in the benchmark case is
0.21.
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