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Abstract

According to a minimalist version of Afriat’s theorem, a consumer behaves as a utility

maximizer if and only if a feasibility matrix associated with his choices is cyclically consistent.

An “essential experiment” consists of observed consumption bundles (x1, · · · , xn) and a fea-

sibility matrix α. Starting with a standard experiment, in which the economist has specific

budget sets in mind, we show that the necessary and sufficient condition for the existence

of a utility function rationalizing the experiment, namely, the cyclical consistency of the

associated feasibility matrix, is equivalent to the existence, for any budget sets compatible

with the deduced essential experiment, of a utility function rationalizing them (and typically

depending on them). In other words, the conclusion of the standard rationalizability test, in

which the economist takes budget sets for granted, does not depend on the full specification

of the underlying budget sets but only on the essential data that these budget sets generate.

Starting with an essential experiment (x1, · · · , xn;α), we show that the cyclical consistency

of α, together with a further consistency condition involving both (x1, · · · , xn) and α, guar-

antees that the essential experiment is rationalizable almost robustly, in the sense that there

exists a single utility function which rationalizes at once almost all budget sets which are

compatible with (x1, · · · , xn;α). The conditions are also trivially necessary.

JEL classification number : D11, C81.

Key words: Afriat’s theorem, budget sets, cyclical consistency, rational choice, revealed

preference.
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1 Introduction

Afriat (1967)’s theorem has been revisited in a few recent papers, which propose new proofs

(Fostel et al., 2004; Chung-Piaw and Vohra, 2003), extensions (Forges and Minelli, 2009) or new

interpretations (Ekeland and Galichon, 2010) of the result. In all these papers, as already in the

classical one (see, e.g., Varian, 1982), information on the choices of a given consumer at various

dates j = 1, · · · , n is summarized by an n× n feasibility matrix. The (j, k) entry of this matrix

takes the value −1, 0 or 1 and indicates to which extent the item (e.g., a consumption bundle)

that has been chosen by the consumer at date k is affordable or not at date j.1 According to

(a minimalist version of) Afriat’s theorem, the consumer behaves as a utility maximizer if and

only if the feasibility matrix satisfies a tractable property, referred to as “cyclical consistency”.

This version of Afriat’s theorem is recalled in Section 2 as Proposition 1.

In a standard framework, the observed choices of the consumer are bundles x1, · · · , xn ∈ R
ℓ
+,

which define, together with the associated feasibility matrix, what we call in this paper an

“essential experiment”. To test the consumer’s rationality, the economist basically has to check

whether the feasibility matrix is cyclically consistent. When performing this test, the economist

typically has precise budget sets in mind for every date. As shown by Forges and Minelli

(2009), even if the budget sets are quite general (namely, just compact and comprehensive),

Afriat’s original constructive approach applies: if the feasibility matrix is cyclically consistent,

the economist can derive an explicit utility function rationalizing the data. This is another

version of Afriat’s theorem, which is stated in Section 3 as Proposition 2.

Not surprisingly, the above utility function depends on the economist’s budget sets. But,

especially if these budget sets are complex, e.g., involve tariffs or taxes, the consumer’s budget

sets (namely, the ones over which he possibly optimizes) might not fully coincide with the

economist’s ones. For instance, if the consumer buys small quantities of some good at every

date j = 1, ..., n, he may not understand that a low unit price is charged to large quantities of

that good.

We are thus led to the following question:

Given an essential experiment (x1, · · · , xn;α) in which the feasibility matrix α is cyclically

consistent, can we construct a utility function v which robustly rationalizes (x1, · · · , xn;α), in

the sense that v(xj) maximizes v over Bj , for any family (Bj) of budget sets compatible with

(x1, · · · , xn;α)?

1Denoting the feasibility matrix as α = (αjk), αjk = −1 if item k is affordable at date j without exhausting

the consumer’s revenue, αjk = 0 if item k is affordable at date j and exhausts the consumer’s revenue, αjk = +1

if item k is not affordable at date j.
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The motivation for such a utility function v is clear: v would not be sensitive to those specific

aspects of the budget sets that the consumer might not perceive.

First of all, we observe that the previous question is not meaningful unless the essential

experiment satisfies some basic consistency requirement guaranteeing that there indeed exists

(compact, comprehensive) budget sets that are compatible with it. We introduce the property

that the essential experiment “contains no contradictory statement” in order to capture such a

requirement.

Next, we construct an essential experiment (x1, x2;α) ∈ R
2
+ which contains no contradictory

statement, where α is cyclically consistent, and which cannot be rationalized robustly. This

simple example is by no means pathological and shows that, formulated exactly as above, the

question cannot be answered positively.

Nonetheless, we prove that every essential experiment (x1, · · · , xn;α) which contains no

contradictory statement and where α is cyclically consistent can be rationalized in an almost

robust way, in the sense that for every sufficiently small ǫ, there exist an almost largest fam-

ily (Bǫ) of budget sets compatible with (x1, · · · , xn;α) and a utility function vǫ rationalizing

(x1, · · · , xn; α) over (Bǫ). It is not difficult to prove that, conversely, if (x1, · · · , xn;α) can be

rationalized in an almost robust way, then (x1, · · · , xn;α) contains no contradictory statement

and α is cyclically consistent. This is the main content of the theorem given in Section 4.

Our results can be interpreted in the standard framework where the economist starts with

a priori given budget sets. From these and the observed consumption bundles, one can deduce

an essential experiment. A by-product of the theorem (already contained in Proposition 2) is

that the necessary and sufficient condition for the existence of a utility function rationalizing the

economist’s budget sets (namely, the cyclical consistency of the feasibility matrix or the General-

ized Axiom of Revealed Preference - GARP -) is also equivalent to the existence, for any budget

sets compatible with the deduced essential experiment, of a utility function rationalizing them.

In other words, the conclusion of the standard rationalizability test, in which the economist

takes budget sets for granted, does not depend on the full specification of the underlying budget

sets but only on the essential data that these budget sets generate; the economist’s conclusion

automatically applies to a whole family of budget sets. This also means that there is no way

to test whether standard data - involving a full description of budget sets - are rationalizable

without testing at the same time that a whole class of data, based on a variety of different

budget sets, are also rationalizable.
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2 Essential data

Let α = (αjk)j,k∈N be a feasibility matrix as described in Introduction, i.e. an n × n matrix

with diagonal terms equal to 0 and remaining terms equal to −1,0 or 1, which summarize the

affordability of observed choices at each step. Given this essential data which can be identified

with a restricted choice experiment, a traditional question is to verify in which extent the choices

are consistent with the data, namely if there exists a rationalization. This amounts to finding

numbers vj , for every item j, such that vj ≥ vk for every affordable item k at date j, with strict

inequality if k does not exhaust entirely the revenue of the agent.

Definition 1 Utils (vj)j∈N are said to rationalize the feasibility matrix α, if, for every j ∈ N ,

vj ≥ vk for every k ∈ N such that αjk ≤ 0, and vj > vk for every k ∈ N such that αjk < 0.

The following tractable condition of cyclical consistency is the usual test to verify whether

or not an experiment can be rationalized.

Definition 2 An n × n real matrix A = (ajk)j,k∈N is cyclically consistent if for every chain

j, k, ℓ, ..., r, ajk ≤ 0, akℓ ≤ 0, ..., arj ≤ 0 implies all terms are 0.

In the framework of revealed preference analysis, the use of basic data α is not new, and

is the key ingredient to derive Afriat’s inequalities in the consumer problem. More precisely,

the role of the feasibility matrix is identified in the next result, which is actually implicit in the

classical Afriat (1967)’s theorem. For recent proofs see also Fostel et al. (2004); Chung-Piaw

and Vohra (2003); Ekeland and Galichon (2010).

Proposition 1 The following conditions are equivalent:

1. There exist utils (vi)i∈N rationalizing the feasibility matrix α.

2. The feasibility matrix α is cyclically consistent.

Proof [1. ⇒ 2.] is proved in Ekeland and Galichon (2010, replacing Rij by αij in the proof of

3. ⇒ 1. in Theorem 0). [2. ⇒ 1.] is proved in Fostel et al. (2004, replacing A′ by α page 215).�

Remark 1 Ekeland and Galichon (2010) derive a dual interpretation of matrix α in terms

of a market with n traders and an indivisible good (house) to be traded (see also Shapley and

Scarf (1974)). In the autarky allocation, each trader j owns house j. Matrix α summarizes

then preferences of traders in the initial autarky allocation: αjk = 1 is strict preference of his

own house over house k; αjk = −1 is strict preference of house k over his own house; αjk = 0
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is indifference of trader j between house k and his own house. In this dual interpretation,

Proposition 1 actually amounts to: the autarky allocation is a no trade equilibrium allocation

supported by prices πj = −vj (condition 1.) if and only if it is Pareto optimal (condition 2.).

3 Budget sets

From now on we turn to the single consumer problem with ℓ consumption goods, where utility

is now defined by a function v : R
ℓ
+ → R. Hence, the economist observes consumption bundles

in addition to the essential data. This leads to the following notion of experiment which is

hereafter the basic data in our revealed preference analysis.

Definition 3 An essential (consumer) experiment (x, α) consists of observed consumption bun-

dles (xj)j∈N , xj ∈ R
ℓ
++, and a feasibility matrix α.

We adopt a standard approach to model general budget sets. The formulation encompasses

the following cases: classical linear budget sets; budget sets defined by the intersection of linear

inequalities, as in Yatchew (1985); convex but non-linear budget sets, as in Matzkin (1991).

Therefore the budget of the consumer can result from the application of quantity constraints,

taxes and other sources of non convexities.

Besides compactness, the crucial requirement is monotonicity (condition A.2 in the definition

below).

Definition 4 A set Bj is a budget set if

A.1. Bj is a compact subset of R
ℓ
+,

A.2. Bj is comprehensive from below in R
ℓ
+; and if x ∈ FrBj then, for all k ∈ [0, 1), kx ∈

Bj \ FrBj.
2

The next definition is the natural extension of the classical notion of experiment with linear

budget sets. First, the budget sets Bj are implicitly assumed to be known by the economist, who

will make inferences over the consumer’s choices. Second, consumption choices exhaust entirely

the available revenue, at each given date. Note that the latter fact is also implicitly assumed in

the classical theory, with linear budget sets defined by prices and the consumption choices at

each date.

2Given a set C ∈ R
ℓ
+, let Fr C be the set {x ∈ C | {xk} + R

ℓ
++} ∩ C = ∅}.
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Definition 5 An experiment (x,B) consists of observed consumption bundles xj ∈ R
ℓ
++ and of

budget sets Bj, such that xj ∈ FrBj for every j ∈ N .3

In the standard approach of revealed preference analysis, an experiment (x,B) is given.

This formulation implicitly assumes that a rational consumer perfectly knows his budget set Bj

for every j ∈ N . The economist is interested in testing whether the consumer chooses every

consumption bundle “rationally” given the budget sets at each date.

Definition 6 A utility function v is said to rationalize an experiment (x,B) if v(xj) = maxx∈Bj
v(x)

for every j ∈ N .

Next we we describe how to relate budget sets and the matrix α in order to establish a

rationalizability test of the consumer problem in terms of essential data only.

Definition 7 Given an experiment (x,B), let Ax,B denote the n×n matrix with entries ax,B
jk =

−1 if xk ∈ intBj; ax,B
jk = 0 if xk ∈ FrBj; ax,B

jk = 1 if xk /∈ Bj.

An essential experiment (x,α) admits a budget representation if there exists a family of

budget sets (Bj)j∈N such that (x,B) is an experiment and Ax,B = α. A family (Bj)j∈N with

this property is said compatible with (x,α).

Given an experiment (x,B), the economist can deduce the corresponding essential experi-

ment by setting α = Ax,B. Alternatively, let us imagine that the essential experiment is the

only available one (the full sample may be too complex to be fully memorized or the consumer

privately knows his budget sets and the economist just obtains essential budgetary information

from the consumer, in a “thought experiment”). Under this interpretation, the essential ex-

periment (x,α) does not necessarily admit a budget representation. In the next section, we

introduce a tractable necessary and sufficient condition (“no contradictory statement”) for this

property to hold (see also Corollary 1 at the end of Section 4). For the time being, we just

assume that (x,α) admits a budget representation, as it is the case if the essential experiment

is simply deduced from some experiment (x,B).4

The next result can be deduced from Proposition 3 in Forges and Minelli (2009).

Proposition 2 Let (x,α) be an essential experiment which admits a budget representation. The

following conditions are equivalent:

3Note also that the definitions of budget set and experiment imply altogether that any budget set considered

hereafter has a nonempty interior.
4The reason why we postpone the introduction of the condition is simply to avoid repetitive arguments in the

proofs of Proposition 2 and Theorem 1.
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1. For any (Bj)j∈N compatible with (x, α), there exists a locally non satiated, continuous

utility function vB rationalizing the experiment (x,B).

2. The matrix α is cyclically consistent.

Proof [1. ⇒ 2.] Since (x,B) admits a budget representation, there exists a locally non

satiated, continuous utility function vB rationalizing an experiment (x,B) where Ax,B = α.

Hence, v(xj) ≥ v(xk) for every k such that αjk ≤ 0; with strict inequalities if αjk < 1, using

local non satiation. Then Proposition 1 gives the result.

[2. ⇒ 1.] Since (x, α) admits a budget representation, it holds that α is cyclically consistent

iff (x,B) satisfies GARP, for every family (Bj)j∈N compatible with (x,α) using straightforward

arguments. Then apply Proposition 3 in Forges and Minelli (2009) to conclude the proof.5 In

particular, the construction of the utility functions relies on the following arguments: for every

compatible family (Bj)j∈N , construct continuous, monotone mappings (gB
j )j∈N to describe the

budget sets as Bj =
{

x ∈ R
ℓ
+ : gB

j (x) ≤ 0
}

; use cyclical consistency of the matrix with entries

(gB
j (xk))j,k∈N to derive inequalities à la Afriat; and finally, thanks to these inequalities, construct

an explicit a utility function vB depending on the mappings (gB
j )j∈N .6 �

The previous proposition sheds further light on the standard rationalizability test, which is

performed on the basis of the full experiment (x,B), but only uses the matrix Ax,B, equal here

to α. The economist designs the test with specific budget sets (Bj)j∈N in mind but ends up

checking the cyclical consistency (or rationalization) of the matrix α, which is equivalent to the

rationalization of a whole class of budget sets. By proceeding in this way, we get a different

utility function for every family of compatible budget sets. One can therefore question the

predictiveness of such a utility function, defined up to a family of budget sets. This motivates

the next section.

4 Robust rationalization

Let us start with an essential experiment (x, α). The following definition of robust rational-

ization naturally emerges from the discussion in Section 3: the utility function v rationalizes

robustly the experiment (x,α) if v rationalizes the experiment (x,B) for every family (Bj)j∈N

5The experiment (x,B) satisfies GARP if, for every j, k ∈ N , xkHxj implies xk /∈ intBj , where H is the

transitive closure of the direct revealed preference relation R: xkRxj if xj ∈ Bk. For easy constructive proofs of

the equivalence between GARP and the existence of a rationalization, see, e.g., Varian (1982) in the linear case

and Forges and Minelli (2009) in the general case.
6The matrix with entries (gB

j (xk))j,k∈N is cyclically consistent iff the matrix Ax,B is cyclically consistent.

7



compatible with (x,α). The existence of a robust rationalization amounts therefore to the exis-

tence of a largest family of budget sets compatible with the essential experiment. Unfortunately,

even if (x,α) is well behaved (in particular, α is cyclically consistent), such a family may not

exist as the next simple example illustrates.

Example Let
[

(x1, (α11, α12)), (x2, (α21, α22))
]

be an essential experiment such that α12 = 1,

α21 = −1 and x1 /∈ x2 + R
ℓ
+. First, it is an easy matter to verify that the experiment admits

a budget representation (actually, x1 /∈ x2 + R
ℓ
+ guarantees that there is no contradictory

statement). For instance define a compatible family as follows: B1 =
[

{x1} − R
ℓ
+

]

+
and B2 =

[

{x2} − R
ℓ
+

]

+
∪

[

{x1 + ν1} − R
ℓ
+

]

+
for some ν > 0 sufficiently small.7 8

Suppose now that x2 /∈ x1 +R
ℓ
+, we can add a piece to the budget set B1 without modifying

the resulting matrix Ax,B. More precisely, there exists η > 0 such that, for all ǫ ∈ (0, η), 1

1+ǫ
x2 /∈

B1. Thus the family (Bǫ
1, B

ǫ
2), where Bǫ

1 = B1 ∪
[

{( 1

1+ǫ
x2} − R

ℓ
+

]

+
and Bǫ

2 = B2 is compatible

with the essential experiment. Suppose that there exists a well-behaved v rationalizing robustly

the essential experiment, then v rationalizes the experiments
(

(x1, B
ǫ
1), (x2, B

ǫ
2)

)

for all ǫ ∈ (0, η).

It follows that v(x1) ≥ v( 1

1+ǫ
x2) since 1

1+ǫ
x2 ∈ Bǫ

1 and v(x2) ≥ v(x1) since x1 ∈ Bǫ
2. From local

non satiation, v(x2) > v(x1) since x1 ∈ intBǫ
2 but this contradicts the continuity of v as ǫ tends

to 0.

The previous experiment, which satisfies consumer’s rationality for any compatible family of

budget sets, is by no means pathological. Hence, we cannot hope for a robust rationalization.

To obtain a contradiction in the above construction we assumed that x2 /∈ {x1}+ R
ℓ
+. One can

define an analogue impossibility result in general provided that the essential experiment (x,α)

satisfies the equivalent requirement.

The previous example also shows that, by enlarging gradually a family of budget sets com-

patible with a given essential experiment (x,α), we get at the limit budget sets which are

well-behaved but are not compatible with (x,α) anymore. We will nevertheless achieve almost

robust rationalization, which we define precisely below.

Definition 8 Let (x,α) be an essential experiment. Let ǫ > 0, the pair (Bǫ, vǫ) where Bǫ is a

family of budget sets and vǫ is a utility function, is said to ǫ-robustly rationalize (x, α) if:

(i). The family Bǫ is compatible with (x,α),

(ii). The function vǫ rationalizes the experiment (x,Bǫ),

7Note that the essential experiment satisfies cyclical consistency and therefore (Bǫ
1, B

ǫ
2) satisfies GARP.

8For any set A ⊂ R
ℓ, let [A]+ denote the non negative subset of A, [A]+ = A ∩ R

ℓ
+.
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(iii). For every family (Bj)j∈N compatible with (x,α), Bj ⊆ (1 + ǫ)Bǫ
j for every j ∈ N .

The justification for the terminology is that (ii) implies that vǫ rationalizes experiment

(x,B), for every compatible family (Bj)j∈N included in Bǫ and, by (iii), every compatible

family is almost included in Bǫ. To show the former statement, note that xj is such that

vǫ(xj) ≥ vǫ(x) for all x ∈ Bǫ
j then a fortiori vǫ(xj) ≥ vǫ(x) for all x ∈ Bj ; and since xj ∈ Bj , it

follows that vǫ rationalizes the experiment (x,B).

Taking again the essential experiment (x, α) as basic data, Propositions 1 or 2 tell us which

conclusion we can draw from the cyclical consistency of the matrix α but does not question the

compatibility between the consumer’s choices (xj)j∈N and α viewed as budgetary information,

namely whether there exists a family of budget sets (Bj)j∈N compatible with (x,α). This is the

purpose of the following tractable condition which will be used in the final result, jointly with

cyclical consistency.

Definition 9 An essential experiment (x,α) admits a contradictory statement if there exist

j, k, k′ ∈ N such that either [αjk < αjk′ and xk ≥ xk′] or [αjk = αjk′ = 0 and xk ≫ xk′ ].

We are now in position to state our main result which provides the existence of a (ǫ-robust)

rationalization and a budget representation on the basis of essential experiment only, by putting

together the properties of cyclical consistency and (no) contradictory statement.9

Theorem 1 Let (x,α) be an essential experiment. The following conditions are equivalent:

1. There exist (Bi)i∈N compatible with (x, α) and a locally non satiated, continuous utility

function vB rationalizing the experiment (x,B).

2. The essential experiment (x,α) admits no contradictory statement and α is cyclically

consistent.

3. There exists η > 0 such that, for all ǫ ∈ (0, η), there exists a locally non satiated, continuous

utility function vǫ rationalizing ǫ-robustly the experiment (x, α).

Proof [1. ⇒ 2.] To show cyclical consistency of α proceed as in the proof of Proposition 2

(1. ⇒ 2.). To show the property of non contradictory statement, suppose, first, on the contrary

that there exist j, k, k′ ∈ N such that [αjk < αjk′ and xk ∈ {xk′} + R
ℓ
+]. Since (Bi)i∈N is

compatible with (x,α) we have either [xk ∈ intBj and xk′ /∈ intBj ] or [xk ∈ FrBj and xk′ /∈ Bj ]

9There is no hope to obtain testable restrictions in the consumer problem if one considers poorer information

than the one contained in essential experiments.
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together with xk ∈ {xk′} + R
ℓ
+, but this contradicts A.2. Second, suppose on the contrary that

there exist j, k, k′ ∈ N such that [αjk = αjk′ = 0 and xk ∈ {xk′} + R
ℓ
++]. Since (Bi)i∈N is

compatible with (x,α) we have xk ∈ FrBj and xk′ ∈ FrBj with xk ∈ {xk′} + R
ℓ
++, but this

contradicts again A.2.

[2. ⇒ 3.] Let m > 0 be such that xj ≤ m1 for every j ∈ N and define the following family

Bǫ = (Bǫ
j)j∈N (see also Figure 1):10

Bǫ
j =

[(

int
(

(∪k∈N,αjk=0({xk} + R
ℓ
+))

⋃

(∪k∈N,αjk=1({
1

1 + ǫ
xk} + R

ℓ
+))

))c

∩
(

{m1} − R
ℓ
+

)]

+

x3 (α13 = 0)

x4 (α14 = 1)•

x2
(α12 = −1)

x1 (α11 = 0)
•

••

•

m1•

1

1+ǫ
x4

Bǫ
1

Figure 1: Construction of the family (Bǫ
j)j∈N (here Bǫ

1)

By construction, each Bǫ
j is a budget set. Suppose now that there exists j ∈ N such that

xj /∈ FrBǫ
j for all ǫ > 0. Since xj ∈ intBǫ

j implies αjj < 0, there exists necessarily k such

that either αjk = 0 and xk ≪ xj or αjk = 1 and 1

1+ǫ
xk ≪ xj , for all ǫ > 0. Since αjj = 0

this contradicts the fact that (x,α) admits no contradictory statement, (using ǫ tends to 0 if

necessary). We have thus demonstrated that (x,Bǫ) is an experiment for a sufficiently small ǫ.

We show now that Ax,Bǫ
= α for a sufficiently small ǫ.

Let j, k ∈ N be such that αjk = −1. Suppose that there exists k′ such that xk ∈ {x′

k} + R
ℓ
+

with αjk′ = 0. But it is then a contradictory statement. Suppose that there exists k′ such

10The vector 1 is the vector of R
ℓ whose components are equal to 1.
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that xk ∈ { 1

1+ǫ
x′

k}+ R
ℓ
+ with αjk′ = 1 for all ǫ > 0. As ǫ tends to 0, this contradicts again

the fact that (x,α) admits no contradictory statement. Therefore there exists ǫ > 0 such

that xk /∈ (∪k′∈N,αjk′=0({x
′

k} + R
ℓ
+))

⋃

(∪k′∈N,αjk′=1({
1

1+ǫ
x′

k} + R
ℓ
+)). Thus xk ∈ intBǫ

j ,

that is ax,Bǫ

jk = −1.

Let j, k ∈ N such that αjk = 0. Suppose that there exists k′ such that xk ∈ {x′

k} + R
ℓ
++ with

αjk′ = 0. Then it is then a contradictory statement. Suppose then that there exists k′

such that xk ∈ { 1

1+ǫ
x′

k}+ R
ℓ
+ with αjk′ = 1 for all ǫ > 0. As ǫ tends to 0, this contradicts

again the fact that (x,α) admits no contradictory statement. Therefore there exists ǫ > 0

such that xk /∈ int
(

(∪k′∈N,αjk′=0({x
′

k}+R
ℓ
+))

⋃

(∪k′∈N,αjk′=1({
1

1+ǫ
x′

k}+R
ℓ
+))

)

but clearly

belongs to (∪k′∈N,αjk′=0({x
′

k} + R
ℓ
+))

⋃

(∪k′∈N,αjk′=1({
1

1+ǫ
x′

k} + R
ℓ
+)). Thus xk ∈ FrBǫ

j ,

that is ax,Bǫ

jk = 0.

Finally, let j, k′ ∈ N such that αjk′ = 1. Then clearly, for all ǫ > 0, xk′ ∈ int
(

(∪k∈N,αjk=0({xk}+

R
ℓ
+))

⋃

(∪k∈N,αjk=1({
1

1+ǫ
xk} + R

ℓ
+))

)

, that is to say xk′ /∈ Bǫ
j , i.e. ax,Bǫ

jk′ = 1.

It follows that there exists η > 0 such that, for all ǫ ∈ (0, η) , (Bǫ
j)j∈N is compatible with

(x,α), as was to be proved.

Let η be the threshold as constructed above and let ǫ ∈ (0, η). The construction of (Bǫ
j)j∈N

is such that for every compatible family (Bj)j∈N with (x, α), it holds that Bj ⊆ (1 + ǫ)Bǫ
j for

every j ∈ N . It remains to prove that one can construct a well behaved utility function vǫ with

the desired properties. Using 2. and the fact that (Bǫ
j)j∈N is compatible with (x,α), Proposition

2 establishes the existence of a locally non satiated, continuous utility function vǫ rationalizing

(x,Bǫ).

[3. ⇒ 1.] Consider the pair (v
η
2 , B

η
2 ) which rationalizes the experiment (x,α) η

2
-robustly,

which is given by condition 3. Then a fortiori the well behaved function v
η
2 rationalizes the

experiment (x,B
η
2 ) as required by condition 1. �

Finally, using the proof of the previous result we also obtain the following corollary which

clarifies the role of contradictory statement:

Corollary 1 The two following conditions are equivalent:

1. The essential experiment (x,α) admits a budget representation

2. The essential experiment (x,α) admits no contradictory statement.
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