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Abstract

This paper investigates how the introduction of user fees and defensive expenditures change the

complex dynamics of a discrete-time model, which represents the interaction between visitors and envi-

ronmental quality in a Open-Access Protected-Area (OAPA). To investigate this issue more deeply, we

begin by studying in great detail the OAPA model and then we introduce the user fee (β) and the de-

fensive expenditures (ρβ) specifically directed towards at the protection of the environmental resource.

We observed that some values of β can generate a chaotic regime from a stable dynamic of the OAPA

model. Finally, to eliminate the chaotic regime, we design a controller by OGY method, assuming the

user fee as a controller parameter.

1 Introduction

Empirical analysis has shown that tourists are willing to pay more for environmental management, if they

believe that the money they pay will be allocated for biodiversity conservation and protected area manage-

ment (see [3] and [19]). Consequently, the funds for maintaining public goods can be increased by fees

payed by visitors of the Protected Areas (PA).

Several works in economic literature analyze the effects on ecological dynamics generated by economic

activity and environmental defensive expenditures. In particular, [1] and [2] analyze the stabilizing effect

on ecological equilibria in an optimal control context in which ecological dynamics are represented by

predator-prey equations

More recently economists, social and political scientists have started to develop and adapt chaos theory

as a way of understanding human systems. Specifically, [8], [7], [6], [11], [16] and [17] have considered

chaos theory as a way of understanding the complexity of phenomena associated with tourism.

In [18] a three-dimensional environmental defensive expenditures model with delay is considered. The

model is based on the interactions among visitors V , quality of ecosystem goods E, and capital K, intended

as accommodation and entertainment facilities, in PA. The visitors’ fees are used partly as a defensive

expenditure and partly to increase the capital stock.

Based on the continuous environmental model of [18], in this paper we analyze a discrete-time model

with no capital stock and with no time delay. We aim at analyzing how the dynamics change when switching

from OAPA (where, normally, there are no services or facilities) and PA with visitor fees to protection of

the environmental resources.

This paper is organized as follows. In Section 2, we present the discrete-time model that embodies

the user fees and defensive expenditures. In Section 3, the dynamics of an open-access protected area, i.e.
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without the user fee and defensive expenditures, is studied in great detail, including stable fixed point, peri-

odic motion, bifurcation (flip-flop and Neimark-Sacker bifurcations) and chaos, using visitors’ preferences

on the environmental quality represented by the parameter σ. Section 4 deals with the control of chaotic

motion and the process of control is achieved using a relative user fees and defensive expenditures.

2 The mathematical model with user fee and defensive expenditures

The model refers to a generic protected area and describes the interplay between two state variables: the

size V (t) of the population of visitors of the protected area at time t and an index E(t) measuring the quality

of environmental resources of the protected area. The dynamic of V (τ) is assumed to be described by the

differential equation:
dV

dt
= −b− cV + dE (1)

According to such equation, the time evolution of V (t) depends on three factors: i) −b represents the

negative effect of the fee that visitors have to pay to enter the protected area; ii) −cV is the negative effect

due to congestion; iii) dE (d is the parameter that presents attractiveness associated with high environmental

quality) is the positive effect of environmental quality on visitors’ dynamics. b, c and d are strictly positive

parameters.

The dynamic of the environmental quality index E(t) is assumed to be given by:

dE

dτ
= r0(1− E)E − aV 2 + qbV (2)

which assures that,the time evolution of environmental quality is described by a logistic equation (see [4]).

According to equation (2), visitors generate a negative impact on environmental quality (this effect is repre-

sented by −aV 2); however visitors also generate a positive effect in that a share q of the revenues deriving

from the fees is used for environmental protection (this effect is represented by qbV ). r and a are strictly

positive parameters while q is a parameter 0 ≤ q ≤ 1.

Euler’s difference scheme for the continuous system (1-2) takes the form (see [10]):

V (t+∆t)− V (t)

∆t
=− b− cV (t) + dE(t))

E(t+∆t)− E(t)

∆t
=r0(1− E(t))E(t)− aV 2(t) + bqV (t)

(3)

Where ∆t denotes the time step. As ∆t → 0, the discrete system converges to the continuous system.

Roughly speaking, a discrete system can give rise to the same dynamics as a continuous system if the ∆t is

small. However, it may generate qualitatively different dynamics if ∆t is large. In this sense, the discrete

system with ∆t > 0 generalizes the corresponding continuous system. In the following, we first simplify

the discretised system (3) by changing variables 1 and posing r = ro∆t, α = a∆t, β = b∆t, γ = c∆t,

ρ = q∆t and σ = d∆t (3) can be written as

x →x− β − γx+ σy

y →y + r(1− y)y − αx2 + βρx
(4)

where γ, σ, α are strictly positive parameters, while β and ρ are not negative. UN RIFERIMENTO AL

FATTO CHE I PARAMETRI SIANO UGUALI AL SISTEMA CONTINUO

1A variable w(t) in continuous time can be written by w(tn) in discrete time. Set tn = ∆t · n (n = 1, 2 . . .). Then given

∆t > 0, the variable can be expressed as follows; w(tn) = w(∆t ·n) = wn and w((tn +∆t) = w(∆t · (n+1)) = wn+1. Thus,

by the same token, the discretized dynamic system (3) can be written as

xn+1 =xn − b∆t− c∆txn + d∆tyn

yn+1 =yn + ro∆t(1− yn)yn − a∆tx2
n
+ b∆tqxn

Length of one period is equal to ∆t. For notational convenience, replacing n with t yields the following discrete-time system.
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3 The dynamic behavior of an open-access PA model

In this section we analyze the dynamics of our model the assumption of free-access in the protected area;

in this context, visitors have not to pay a fee to visit the area and system (4) becomes:

x →x− γx+ σy

y →y + r(1− y)y − αx2
(5)

To compute the fixed points of (5) we have to solve the nonlinear system:

x =x− γx+ σy

y =y + r(1− y)y − αx2

obtain from map (4) by β = 0.

Proposition 1 The system (5) present always two fixed points:

a) P1 = (x∗

1, y
∗

1) = (0, 0)

b) P2 = (x∗

2, y
∗

2) = (
r
γ

σ

α + r(
γ

σ
)2
,
γ

σ
x∗)

Now we study the stability of these fixed points.The local stability of a fixed point (x∗, y∗) (it denotes

(x∗

1, y
∗

1) or (x∗

2, y
∗

2)) is determined by modules of eigenvalues of the characteristic equation at the fixed

point.

The Jacobian matrix of the map (5) at positive point (x∗, y∗) is given by

J =

(

−γ + 1 σ

−θ1 1 + θ2

)

(6)

where θ1(σ) = 2αx∗, θ2(σ) = r(1 − 2y∗). The characteristic equation of the Jacobian matrix J can be

written as

λ2 + p(σ)λ+ q(σ) = 0 (7)

where p(σ) = γ − θ2(σ) − 2 and q(σ) = (1 + θ2(σ))(1 − γ) + σθ1(σ). In order to study the moduli the

eigenvalues of the characteristic equation (7), we first give the following lemma, which can be easily proved

Lemma 1 Let F (λ) = λ2 + pλ+ q. Suppose that F (1) > 0, λ1 and λ2are two roots of F (λ) = 0.

(i) |λ1| < 1 and |λ2| < 1 (sink) iff F (−1) > 0 and q < 1

(ii) |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and (|λ2| < 1)( saddle) iff F (−1) < 0

(iii) |λ1| > 1 and |λ2| > 1 (source) iff F (−1) > 0 and q > 1

(iv) λ1 = −1 and |λ2| ̸= 1 (flip-flop bifurcation)iff F (−1) = 0 and p ̸= 0, 2

(v) λ1 and λ2 are complex and |λ1| = |λ2| = 1 (Neimark-Sacker bifurcation) iff p2 − 4q < 0 and q = 1

From the Lemma 1 follows that:

Proposition 2 The fixed point P1 = (0, 0) is always unstable, while the fixed point P2, varying σ can be a

sink, a source or a saddle (see Figure 1).
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Figure 1: The parameter’s are α = 0.12, β = 0, γ = 0.375, ρ = 0, r = 2.8

The Figure 1 shows the values of F (−1), q − 1, p2 − q, defined in Lemma 1, as a function of the

parameter σ.

We fix α = .12,γ = 0.375, r = 02.8 and assume that σ can vary. Smaller values of sigma σRC(see Figure

1) are associated with real eigenvalues, while higher values of it are associated with complex eigenvalues.

According to Lemma 1, when the parameter σ belongs to the interval (0, σff ) (dash-dot line) we are in

the situation described in point ii) of Lemma 1,when σ = σff = 0.656407 a flip-flop bifurcation occurs,

when σ ∈ (σff , σNS) we are in the situation described in i) (solid line), at the value of σNS = 1.416516 a

Neimark-Saker bifurcation takes place, finally for σ > σNS the fixed point is unstable.

These various results will be discussed and illustrated in Figure 2 in the remaining part of this section.

The bifurcation diagram with respect to x and y also shows all the remarkable phenomena that occur

(see for instance Figure 2).

The attractor in Figure 3(a) is a bounded region in the phase space to which all sufficiently close tra-

jectories are asymptotically attracted for a long enough period of time. While every trajectory is chaotic,

the chaotic attractor reveals information about the long-term trends of the system. The stretching causes

orbits on the attractor to exhibit sensitive dependence on initial conditions (chaos) and the folding causes the

fractal (strange) structure. The impressive structure appearing for σ = 0.165 is chaotic and is represented

in Figure 3(a).

Continuing to increase the value of σ we arrive to a stable equilibrium point showed graphically in Figure

3(b). Both variables of the dynamic system converge towards a unique and stable point independently from

the initial state. The equilibrium point is characterized by the values x∗

2 = 2.223, y∗2 = 0.6949. The

eigenvalues of the Jacobian matrix computed at the equilibrium point are λ = 0.226651 ± i0.7155 with

|λ| = 0.7635
Continuing to increase the value of σ a Neimark-Sacker bifurcation takes place. For the parameter

value σ = 1.4165, the equilibrium point occurs at x∗

2 = 2.3432, y∗2 = .6205 and the associated pair of

complex conjugate eigenvalues are λ = .47498 ± i.8799 with |λ| = 1.000 this shows that the eigenvalues

are belong to the unit circle and the stability properties of the equilibrium change through a Neimark-Sacker

bifurcation. Figure 3(c) illustrates the phase plot for the bifurcation value of σ.

Continuing to increase the value of σ, we see what happens for σ = 1.42. The coordinates of the
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Figure 2: Bifurcation diagram for the a) x state coordinate, b) y state coordinate, varying σ. The parameter’s

are α = 0.12, β = 0, γ = 0.375, ρ = 0, r = 2.8
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Figure 3: Phase plot with the parameter’s of Figure 1. a) chaotic trajectory, b) the stable fix point before the

Neimark-Sacker bifurcation occurs, c) the Neimark-Sacker bifurcation, d) the stable invariant closed curve

around the fixed point created after bifurcation, e) chaotic trajectory
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Figure 4: Bifurcation diagram for the a) x state coordinate, b) y state coordinate, varying β . The parameter’s

are α = 0.12, σ = 1.2, γ = 0.375, ρ = 0.2, r = 2.8

equilibrium are x∗

2 = 2.3456, y∗2 = .61937 and the associated eigenvalues are λ = .4782 ± i.8819. The

modulus of the complex conjugate eigenvalues is |λ| = 1.0032, and so we can conclude that the equilibrium

became unstable and an invariant closed curve arises around the fixed point, which is shown in the Figure

3(d).

As σ is further increased a strange attractor is produced by successive stretching and folding. The

equilibrium is x∗

2 = 2.3657, y∗2 = .6006 and the eigenvalues are λ = .53066± i.88656, with |λ| = 1.0332.

The strange attractor is generated by the breaking of the invariant circles and the appearance of twelve

chaotic (not shown in this figure) regions changes as they are linked into a single chaotic attractor.

4 Controlling through β by OGY method

We are interested in modifying the dynamic behavior of the OAPA model, where we introduce the visitors

fee β and the defensive expenditure ρβ.As it was shown in Figure 2, at the value σ = 1.2, the OAPA model

presents a stable fixed point. Figure 4 shows the bifurcation diagram of the system (3) where parameter

β is varied in the interval [0, 0.8] and the parameter ρ is posed equal to 0.2. We can achieve both stable

dynamics and chaotic dynamics. In fact, starting from a stable fixed point of the OAPA system, for values

of β ∈ [0, 0.42) the system (3) admits a stable fixed point, while for β > 0.42 the system exhibits chaotic

dynamics.

In this section, we describes a method to stabilize this chaotic dynamic.

In order to achieve this goal the so-called OGY method (see [14])is used as main tool.

The OGY method was used successfully in several studies, both in economics and physics (see [5]

and[9]). As it is summarized in [9], [15] and [13], the OGY method is based on the following assumption

a1) A chaotic solution of a non linear dynamic system may have even an infinite number of unstable peri-

odic orbits.

a2) In a neighborhood of periodic solution the evolution of the system can be approximated by an appro-

priate local linearization of the equation of motion.

a3) Small perturbations of the parameter p of the system can shift the chaotic orbit toward the so-called

stable manifold of the chosen periodic orbit.
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a4) The points belonging to the stable manifold approach the periodic solution in the course of time.

Our goal is to find a "good" way to approach the periodic unstable orbit by proper changes of the

parameter if the starting point is in a neighbourhood of the periodic unstable orbit.

Let us assume that the model can be described as

zn+1 = f(zn, p) (8)

where n = 1, 2, ....., p is real parameter, zn = (xn, yn) ∈ ℜ2, f = (f1, f2).

a5) Suppose that we have a fixed point z0 = (x0, y0) belonging to a fixed parameter value p0 such that

z0 = f(z0, p0) (9)

and this fixed point is unstable.

a6) Assume that the Jacobian matrix has two eigenvalues λ1, λ2 satisfying |λ1| < 1 < |λ2|.

Then it follows from a2) that, starting sufficiently close to z0 and p0, we can approximate the right hand

side (8) by the first degree terms of its Taylor expansion around z0 and p0. Then by a3), modifying p we try

to shift the chaotic orbit toward a stable manifold.

Thanks to the OGY method the goal of approaching a stable manifold may be achieved as follows. Let

zn and pn be closed enough to z0 and p0 as required in a2). Then the next point of the orbit is determined

by (8)

zn+1 = f(zn, pn) (10)

Our aim is to determine pn, i.e. how to control the system that orbit approaches the unstable fixed point.

From the above results we get the following theorem:

Theorem 1 Under the assumptions a1) − a6) there is a value for pn such that trajectory of the recurrence

map (8) is shifted towards to the stable manifold.

We fix the parameters α = 0.12, γ = 0.375, σ = 1.2, ρ = 0.2 and r = 2.8, β = 0.745 in such context

the system exhibits a chaotic attractor. We consider that β is the control parameter which is available for

external adjustment but is restricted to lying in some small interval |β − β0| < δ, δ > 0 around the nominal

value β0 = 0.745. The system becomes:

x(t+ 1) = x(t)− β − 0.375x(t) + 1.2y(t)

y(t+ 1) = y(t) + 2.8(1− y(t))y(t)− 0.12x2(t) + 0.2βx(t)
(11)

Following [12] we consider the stabilization of the unstable period one orbit P2 = (x∗, y∗) = (1.21738, 1.00126).
The map (11) can be approximated in the neighborhood of the fixed point by the following linear map

(

xt+1 − x⋆

yt+1 − y⋆

)

∼= A

(

xt − x⋆

yt − y ∗ ⋆

)

+B
(

β − β0

)

(12)

where

A =













∂f(x⋆, y⋆)

∂xt

∂f(x⋆, y⋆)

∂yt
∂g(x⋆, y⋆)

∂xt

∂g(x⋆, y⋆)

∂yt













(13)

and






∂f(x⋆, y⋆)

∂β
∂g(x⋆, y⋆)

∂β






(14)
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are the Jacobian matrixes with respect to the control state coordinates (x(t), y(t)) and to the control param-

eter β. The partial derivatives are evaluated at the nominal value β0 and at (x∗, y∗). In our case we get

(

xt+1 − 1.21738
yt+1 − 1.00126

)

∼=





0.625 1.2
−0.14317 −1.80708





(

xt − 1.21738
yt − 1.00126

)

+

(

−1
0.24347

)

(

β − 0.75
)

(15)

Next, we check whether the system is controllable. A controllable system is one for which a matrix H can

be found such that J − BH has any desired eigenvalues. This is possible if rank(C) = n where n is the

dimension of the state space, and

C = (B : JB : J2B : · · · : Jn−1B) (16)

In our case it follows that

C = (B : JB) =





−1 −0.3328
0.24347 −0.29681



 (17)

which obviously has rank 2 and so we are dealing with a controllable system. If we assume a linear feedback

rule (control) for the parameter of the form

(β − β0) = −H

(

x(t)− x∗

y(t)− y∗

)

(18)

where H := [h1 h2], then the linearized map becomes

(

x(t+ 1)− x∗

y(t+ 1)− y∗

)

∼= (J −BH)

(

x(t)− x∗

y(t)− y∗

)

(19)

that is

(

xt+1 − 1.21738
yt+1 − 1.00126

)

∼=





0.625− h1 1.2− h2

−0.14317 + 0.2437h1 −1.80708 + 0.2347h2





(

xt − 1.21738
yt − 1.00126

)

(20)

which shows that the fixed point will be stable provided that A − BH is asymptotically stable, that is,

all its eigenvalues have modulus smaller than one. The eigenvalues µ1, µ2 of the matrix A−BH are called

the "regulator poles" and the problem of placing these poles at the desired location by choosing with given

is the "pole-placement problem". If the controllability matrix ’ from equation (16) is of rank n, n = 2 in

our case, then the pole-placement problem has a unique solution. This solution is given by

H = (α2 − a2 α1 − a1)T
−1 (21)

where T = CW and

W =





a1 1
1 0



 =





1.1820 1
1 0



 (22)

Here a1, a2 are the coefficients of the characteristic polynomial of J 1.e.

|J − λI| = λ2 + a1λ+ a2 = λ2 + 1.1820λ− 0.9576 (23)

and α1, α2 are the coefficients of the desired characteristic polynomial of J − BH , i.e.

((J − BH)− µI) = µ2 − α1µ+ α2

⇒ α1 = −(µ1 + µ2)

⇒ α2 = µ1µ2

8



From equation (21) we get that

H = (µ1µ2 + 0.9576 (µ1 + µ2)− 1.1820)





−0.64437 −2.64657
−0.02382 4.00933



 (24)

= (−.6444µ1µ2 − .5889 + .02382µ1 + .02382µ2 − 2.647µ1µ2 − 7.274− 4.009µ1 − 4.009µ2)
(25)

Since the 2 − D map is nonlinear, the application of linear control theory will succeed only a sufficiently

small neighborhood U around (x∗, y∗). Taking into account the maximum allowed deviation from the

nominal control parameter β0 and equation (18), we obtain that we are restricted to the following domain

DH =

{

(x(t), y(t)) ∈ ℜ2 :

∣

∣

∣

∣

H

(

x(t)− x∗

y(t)− y∗

)∣

∣

∣

∣

< δ

}

(26)

This defines a slab of width
2δ

|H|
and thus we activate the control (18) only for values of (x(t), y(t)) inside

this slab, and choose to leave the control parameter at its nominal value when (x(t), y(t)) is outside the slab.

Any choice of regular poles inside the unit circle serves our purpose. There are many possible choices

of the matrix H . In particular, it is very reasonable to choose all the desired eigenvalues to be equal to zero

and in this way the target would be reached at least alter n period, and, therefore, a stabile orbit is obtain

out of the chaotic evolution of the dynamics.

In Figure 5 (a)-(b) we show the time series of the chaotic trajectory initiated at point (x0, y0) = (0.9, 0.8)
which have chosen to control. In contrast Figure 5 (c)-(d) presents the controlled orbit converging to the

stabilized fixed point when the feedback matrix H is chosen such that the eigenvalues of (J − BH) are

µ1 = µ2 = 0. This implies that µ1 + µ2 = 0, µ1µ2 = 0 and so H = (−0.5889,−7.274). For this control

strategy we have also chosen δ = 0.1.

5 Conclusion

In this work we studied a discrete-time model that describes the interaction between visitors and the envi-

ronment resource, in an Open Access Protected Area (OAPA). It was shown that by varying the parameter

that indicates the preferences of visitors with reference to the environmental quality we can have complex

dynamics (flip-flop bifurcation, Neimark-Sacker bifurcation and chaotic dynamics). Furthermore, we ana-

lyzed the impact that user fees and environmental defensive choices can have on the OAPA dynamics when

it presents a stable equilibrium. Finally we have applied the OGY control technique (with user fee β as con-

trol parameter) and it was shown that the aperiodic and complicated motion that arises from the dynamics

of the model can be easily controlled by small perturbations in their parameters and be turned into a stable

steady state.

9



0 500 1000 1500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

(a) Original chaotic orbit of the variable x(t)

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

(b) Original chaotic orbit of the variable y(t)

0 500 1000 1500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

(c) Controlled chaotic orbit of the variable x(t)

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

(d) Controlled chaotic orbit of the variable y(t)

Figure 5: Compare between original and controlled orbit
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