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This article analyzes tacit collusion in infinitely repeated multiunit uniform price auctions in a

symmetric oligopoly with capacity-constrained firms. Under two popular definitions of the uniform

price, when each firm sets a price-quantity pair, perfect collusion with equal sharing of profit is

easier to sustain in the uniform price auction than in the corresponding discriminatory auction.

Moreover, capacity withholding may be necessary to sustain this outcome. Even when firms may

set bids that are arbitrary finite step functions of price-quantity pairs, in repeated uniform price

auctions maximal collusion is attained with simple price-quantity strategies exhibiting capacity

withholding.

1. Introduction

� This article contributes to the study of tacit collusion by analyzing infinitely repeated

multiunit uniform price auctions with capacity-constrained firms. As in our earlier work on

discriminatory auctions, we modify the Bertrand-Edgeworth approach by allowing each firm to

simultaneously set a price-quantity pair specifying the firm’s minimum acceptable price and the

maximum quantity the firm is willing to sell at this price.1 Using this game, we analyze the

feasibility of perfect collusion using two different rules for determining the uniform price. Under
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the first rule, which we call the Market Clearing Price rule, the uniform price is equal to the

minimum price at which the quantity offered by the firms is greater than or equal to demand.

Under the second rule, called the Maximum Accepted Price rule, the uniform price is equal

to the highest submitted price at which the residual demand left over from supply provided at

strictly lower prices is strictly greater than zero. Both definitions have been used extensively in

the literature (see, for example, Green and Newbery, 1992; von der Fehr and Harbord, 1993).

When each firm sets a price-quantity pair, there exists a range of discount factors for which

the monopoly outcome with equal sharing is sustainable in either of the uniform price auctions,

but not in the corresponding discriminatory auction. Moreover, capacity withholding may be

necessary to sustain this outcome.

We extend these results to the case where firms may set bids that are arbitrary step functions

of price-quantity pairs with any finite number of price steps. Surprisingly, under the Maximum

Accepted Price rule, firms need employ no more than two price steps to minimize the value of the

discount factor above which the perfectly collusive outcome with equal sharing is sustainable on

a stationary path. Under the Market Clearing Price rule, only one step is required. That is, within

the class of step bidding functions with a finite number of steps, maximal collusion is attained

with simple price-quantity strategies exhibiting capacity withholding.

These results are particularly relevant for markets such as electricity markets in which

uniform price and discriminatory auctions govern exchange. Our simple model captures some

of the basic features of operating electricity markets, such as the UK spot market, the Spanish

wholesale market, or the Victoria Power Exchange. In these markets, capacity-constrained firms

compete by offering step bidding functions that vary in their complexity depending on the

market.

The theoretical literature on capacity-constrained uniform price auctions applied to elec-

tricity markets can be traced back to Green and Newbery (1992) and von der Fehr and Harbord

(1993).2 The former assumes that capacity-constrained firms offer continuous supply functions,

whereas the latter assumes that firms submit discrete step functions similar to those in this

article. In both papers the analysis is static, and thus ignores the strategic implications of repeated

interaction. Although, as Borenstein, Bushnell, and Wolak (2002) note, most electricity markets

provide favorable conditions for firms to collude, surprisingly, little attention has been paid to

the theoretical modelling of collusion in electricity markets. An exception is Fabra’s (2003)

comparison of the uniform price and discriminatory auctions in Bertrand-Edgeworth duopoly

supergames.

Fabra (2003) has shown that under Bertrand-Edgeworth (B-E) duopoly, divisions of the

monopoly profit can be supported in the infinitely repeated uniform price auction for strictly

lower discount factors than in the infinitely repeated discriminatory auction. However, this result

is only valid for a subset of symmetric capacities for which nonstationary paths with bid rotation

can be sustained as perfect equilibria of the uniform price auction. For example, in the duopoly,

if each firm’s capacity is large enough to supply the monopoly output, incentives to deviate

from perfectly collusive paths in the uniform price auction are no less than in the discriminatory

auction. Furthermore, on the nonstationary paths with bid rotation that minimize incentives to

deviate in the uniform price auction, firms do not equally share monopoly profit. Expanding the

strategy space to price-quantity pairs, thereby allowing for physical withholding, has important

implications for the sustainability of perfect collusion in the uniform price auction. A direct

implication of capacity withholding is that, in contrast to B-E competition, when capacity is such

that n − 1 firms can supply the monopoly output, the monopoly outcome can be supported for

a strictly wider range of discount factors in the uniform price auction than in the discriminatory

2 More recent theoretical work related to this study includes Baldick and Hogan (2001), Boom (2003), Borenstein,

Bushnell, and Stoft (2000), Ciarreta and Espinosa (2005), Crampes and Créti (2005), Crawford, Crespo, and Tauchen

(2005), Fabra, von der Fehr, and Harbord (2006), Garcı́a-Dı́az and Marı́n (2003), Gutiérrez-Hita and Ciarreta (2003),

Lave and Perekhodstev (2001), Le Coq (2002), and Ubéda (2004).
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auction. Moreover, this result holds even if we restrict attention to stationary paths on which each

firm obtains an equal share of the monopoly profit.

In the discriminatory auction, the incentive to deviate from perfect collusion is minimized

on a stationary path on which each firm sets the monopoly price and offers its whole capacity.

On the other hand, in the uniform price auction, if the uniform price is given by the Market

Clearing Price rule, the stationary path on which each firm withholds capacity to offer its share

of monopoly output at a price below some critical level (strictly lower than the monopoly price)

minimizes firms’ incentives to deviate in the class of stationary paths with equal sharing of

the monopoly profit. If the uniform price is given by the Maximum Accepted Price rule, then

incentives to deviate from perfect collusion are minimized when n − 1 firms withhold capacity

to offer their share of the monopoly output. The remaining firm acts as the price setter and offers

capacity at the monopoly price. Together, these two results provide a conclusive theoretical

link between equilibrium capacity withholding and the ability to support tacitly collusive

outcomes.

The remainder of the article is organized as follows. In Section 2, we describe the model and

the simultaneous move price-quantity uniform price auction under two alternative definitions of

the uniform price and characterize the Nash equilibria of the game. In Section 3, we introduce

notation and definitions used in analyzing the price-quantity supergame. In Section 4, we show

that under both formulations of the uniform price, capacity withholding relaxes incentives to

deviate on perfectly collusive stationary perfect equilibrium paths with equal sharing. On such

paths, incentives to deviate are minimized when n firms withhold capacity under the Market

Clearing Price rule and when n − 1 firms withhold capacity under the Maximum Accepted Price

rule. Section 5 extends the results in Section 4 to L-step bidding functions, L ≥ 1, and shows that

bidding functions with at most two steps are sufficient in order to minimize firms’ incentives to

deviate from a perfectly collusive path. One step is required under the Market Clearing Price rule

and two steps under the Maximum Accepted Price rule. Section 6 concludes.

2. The simultaneous move price-quantity game

� The model. Consider a market for a homogeneous good. There are n firms in the industry.

Let N = {1, . . . , n} denote the set of firms. Firm i’s cost function is such that unit cost ci is

constant up to capacity ki. Firms are symmetric: ki = k and ci = c = 0 for all i. Let d(p) be market

demand and assume that it satisfies the following assumptions.

Assumption 1. d(p) is continuous on [0,∞). ∃ p̄ > 0 such that d(p) = 0 if p ≥ p̄ and d(p) >

0 if p < p̄. d(p) is twice continuously differentiable and d ′(p) < 0 on (0, p̄). Finally, pd(p) is

strictly concave on [0, p̄] with maximizer pm.

These assumptions guarantee that there exists a unique unconstrained monopoly price, pm.

Inverse demand exists and is denoted by P(y), where y is output. To ensure that there exists a

unique Cournot equilibrium with a strictly positive price in the quantity-setting game with n

symmetric firms (without capacity constraints), demand given by d(p), and zero marginal cost,

we further assume3

Assumption 2. d ′(p) + pd ′′(p) < 0 on (0, p̄).

Under assumptions analogous to Assumption 1 for P(y), this is equivalent to assuming

that log P(y) is strictly concave over the relevant range and implies that Cournot quantity

3 See Deneckere and Kovenock (1999), who also compare and contrast these conditions to inverse-demand-based

conditions guaranteeing the existence and uniqueness of Cournot equilibrium. Note also that in the absence of capacity

constraints, if ci = 0 for every i, bootstrap Cournot equilibria exist in which equilibrium price is zero and every group of

n − 1 firms sets their aggregate quantity q > d(0).
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DECHENAUX AND KOVENOCK / 1047

best-response functions are downward sloping (see Deneckere and Kovenock, 1999). Denote

by r(z) a firm’s Cournot best response to an aggregate quantity z set by other firms. That is, r(z)

maximizes P(x + z)x with respect to x. Let yc be the quantity set by each firm in the Cournot

equilibrium with strictly positive price.

In the one-shot simultaneous move price-quantity game, firms simultaneously set price-

quantity pairs, (p, q), where p ∈ R+ and q ∈ [0, k]. Firm i’s strategy space is thus Si = R+ × [0, k].

A strategy profile (p, q) = ((p1, q 1), . . . , (pn, qn)) is an element of ×n
i=1 Si. In this article, we restrict

the analysis to pure strategies.

Define q̂i = min{qi , d(0)} to be the effective quantity offered by firm i. Given a strategy

profile (p, q) and a coordinate p ∈ R+ of the price vector p, define the set L(p | p, q) ≡

{i ∈ N | pi = p}. L(p | p, q) is the set of firms setting price p. We have L(p | p, q) = ∅ if

for all i , pi �= p. Let L−(p | p, q) ≡ ∪z<p L(z | p, q) be the set of all firms charging a price strictly

less than p. To simplify notation, we often drop the argument (p, q).

We assume efficient rationing. Hence, given a strategy profile (p, q), the residual demand

faced by firms in L(p) is

R(p | p, q) = max

⎧

⎨

⎩

d(p) −
∑

j∈L−(p)

q j , 0

⎫

⎬

⎭

.

If L−(p) is empty, then we define R(p | p, q) = d(p). Note that here the residual demand is the

demand left over from supply provided at strictly lower prices.

If, in case of a tie in price at p, we assume that firms share residual demand in proportion to

their effective quantities offered, then for i ∈ L(p | p, q), sales are

si (p | p, q) = min

{

q̂i ,
q̂i

∑

l∈L(p)
q̂l

R(p | p, q)

}

.

In this context, the literature has defined a uniform price auction in two distinct ways. We

will examine each in turn. In the first definition, we follow Green and Newbery (1992), who use

a specification in which the uniform price is the price at which the quantity demanded is equal

to the quantity supplied (see also Boom, 2003; Ubéda, 2004; Fabra, von der Fehr, and Harbord,

2006). This formulation leaves open the possibility that the uniform price will not be one of the

submitted bids. See Figure 1 for an illustration.

Definition 1 (market clearing price). Given a strategy profile (p, q) in the uniform price auction,

the uniform price Pe(p, q) is the unique price that solves

min

{

p

∣

∣

∣

∣

∑

i∈L(p | p,q)

q̂i ≥ d(p)

}

,

where L(p | p, q) = L−(p | p, q) ∪ L(p | p, q).

Definition 2 is the approach used by von der Fehr and Harbord (1993) (see also Crampes

and Créti, 2005; Fabra, 2003; Le Coq, 2002). The price each firm receives in the uniform price

auction is equal to the maximum accepted price, where the maximum accepted price is the

highest submitted price at which the residual demand left over from supply provided at strictly

lower prices is strictly positive. Note that in this definition, the uniform price must be one of

the submitted prices, and thus may not clear the market. See Figure 1 for an illustration. For

Definition 2, we require slightly more notation. Let p = (p1, . . . , pn) and define

P(p, q) = {p ∈ {p1, . . . , pn} | R(p | p, q) > 0}.

P(p, q) is the set of submitted prices with R(p | p, q) > 0.

C© RAND 2007.
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FIGURE 1

DETERMINING THE UNIFORM PRICE UNDER DEFINITION 1 AND DEFINITION 2

Definition 2 (maximum accepted price). Given a strategy profile (p, q) in the uniform price

auction, the uniform price Pa(p, q) is equal to the maximum accepted price, that is

Pa(p, q) = maxP(p, q) if P(p, q) �= ∅,

and

Pa(p, q) = p̄ if P(p, q) = ∅.

For u ∈ {e, a}, firm i’s payoff, i = 1, . . . , n, under the two alternative definitions is simply

πi (p, q) = Pu(p, q)si (pi | p, q).

Before proceeding with the characterization of equilibria, we first justify our assumption

of efficient rationing. Note that our choice of the efficient rationing rule does not play a role in

Definition 1. The market clearing price does not depend on the specific rationing rule used, but

only on the vector of price-quantity pairs submitted by the firms. Moreover, every consumer that

obtains a unit of the good pays the same price per unit no matter which firm supplies it. It follows

that without cross-subsidization between consumers, any consumer who obtains a unit must be

willing to pay at least the uniform price for that unit.

When the uniform price is defined as in Definition 2, the firms’ prices are ranked in increasing

order, with the lowest-price firms selling first. If demand were not rationed efficiently, at some

strategy profiles, there would exist consumers who would be required to pay more than their

C© RAND 2007.
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reservation value at the uniform price. Implementation of other rationing rules would therefore

require cross-subsidization of consumers.4

� Pure strategy equilibria. We now define critical prices that are useful in characterizing a

firm’s profit from deviating from a given profile. We also characterize a firm’s minmax payoff.

First, for q < d(0), define the residual demand monopoly price for a firm with capacity k,

pr(k, q):

pr (k, q) ≡ max
{

arg max
p

{p[d(p) − q]}, P(k + q)
}

.

pr(k, q) is unique for every pair (k, q) given our assumptions on demand. From the strict

concavity of pd(p), it is clear that whenever pr(k, q) is strictly positive, it is strictly decreasing

in q. A firm’s profit from setting pr(k, q) after lower-price firms have sold a quantity q is

π
¯

(k, q) ≡ pr (q)[d(pr (q)) − q]. For q ≥ d(0), a firm’s residual demand after other firms have

sold a quantity q is zero for all p. In this case, we define pr(k, q) ≡ 0 and it follows that

π
¯

(k, q) = 0 for all q ≥ d(0).

Defining pr ≡ pr(k, (n − 1)k), it is straightforward to show that if (n − 1)k < d(0), then a

firm’s minmax payoff, π
¯

, is π
¯

= pr [d(pr ) − (n − 1)k] > 0. If (n − 1)k ≥ d(0), then by definition,

pr((n − 1)k) = 0 and each firm’s minmax payoff is π
¯

= 0.

Following Deneckere and Kovenock (1992), let p
¯
(k, q) be the unique price less than or equal

to pr(k, q) at which a firm is indifferent between being the low-price firm at p
¯
(k, q) and being

a monopolist on residual demand left after q is sold and earning π
¯

(k, q). p
¯
(k, q) is equal to the

smallest solution to

p × min{d(p), k} = π
¯

(k, q).

If q < d(0), then p
¯
(k, q) > 0. If q ≥ d(0), by definition π

¯
(k, q) = 0, and thus p

¯
(k, q) = 0. In the

continuation, we will use the notation p
¯

to denote p
¯
(k, (n − 1)k). Moreover, because ki = k for

every i, when there is no ambiguity we use pr(q) to denote pr (k, q), π
¯

(q) to denote π
¯

(k, q), and

p
¯
(q) to denote p

¯
(k, q).

We can now state the following proposition describing equilibrium in the one-shot price-

quantity uniform price auction with common capacities ki = k and common unit costs ci = 0, for

every i, which we denote by Ŵu(k, 0), where u ∈ {e, a} indicates the definition of the uniform

price that is employed.

Proposition 1. The sets of pure strategy equilibria, Eu(k, 0), of the one-shot uniform price

auctions Ŵu(k, 0), u = e, a, are completely characterized as follows.

(i) Suppose k ≤ yc. Then Ea(k, 0) = {(p∗, q∗) | p∗
i ≤ P(nk) and q∗

i = k, ∀i ∈ N , with

p∗
j = P(nk) for at least one j ∈ N } and E e(k, 0) = {(p∗, q∗) | p∗

i ≤ P(nk) and q∗
i = k,

∀i ∈ N }.

(ii) Suppose k ≥
d(0)

n−1
. Then Ea(k, 0) = {(p∗, q∗) | ∃ i, j, i �= j, such that p∗

i = p∗
j = 0 and

∀h ∈ L(0 | p∗, q∗),
∑

l∈L(0 | p∗,q∗)\{h}
q̂∗

l ≥ d(0)}. Define C(0) ≡ {(p∗, q∗) | p∗
i ≤ p

¯
((n −

1)yc) and q∗
i = yc, ∀i ∈ N }. Then E e(k, 0) = E a(k, 0) ∪ C(0).

(iii) Suppose k ∈ (yc,
d(0)

n−1
). Define y

¯
to be the unique y ∈ (d(pr) − (n − 1)k, k)

such that π
¯

((n − 2)k + y) = pr k. Then Ea(k, 0) = {(p∗, q∗) | ∃ j ∈ N such that p∗
j =

pr and q∗
j ∈ [y

¯
, k] and ∀i �= j, p∗

i ≤ p
¯
, and q∗

i = k} and E e(k, 0) = E a(k, 0) ∪ C(0),

where C(0) is as defined in (ii).

Moreover, for every k ∈ R+, u ∈ {e, a}, and i ∈ N , there exists a pure strategy equilibrium

of Ŵu(k, 0) in which πi (p
∗, q∗) = π

¯
.

4 As Davidson and Deneckere (1986) have shown, in discriminatory auctions, the firms’ payoffs depend on the

particular rationing scheme employed. One prominent alternative to efficient rationing is proportional rationing. The

implications of assuming efficient rationing rather than proportional rationing are explored in Section 4, where we

compare uniform price and discriminatory auctions.
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Proof. See the Appendix.

Proposition 1 demonstrates that, under both rules for determining the uniform price, if each

firm’s capacity k is less than or equal to its n-firm Cournot output, each firm sets price at or

below the capacity clearing price P(nk) and sells its capacity. If, for this range of capacities, the

Maximum Accepted Price rule is used in determining the market price, at least one of the firms

must set price equal to P(nk).

For k in the classical Bertrand region where any (n − 1) firms have sufficient capacity to

satisfy the whole market demand d(0) at unit cost c = 0, the uniform price is always zero in the

auction with the Maximum Accepted Price rule. This requires that at least two firms price at zero

and set quantities sufficiently large that any unilateral deviation to a higher price yields zero sales.

These classical Bertrand equilibria are also contained in the set of equilibria under the Market

Clearing Price rule. However, under this rule, the equilibrium set also contains Cournot-like

equilibria in which all firms set prices at or below p
¯
((n − 1)yc) and sell their Cournot quantity

yc. The uniform price in these equilibria is the Cournot price P(nyc).

For k ∈ (yc,
d(0)

(n−1)
), the intermediate range between the Cournot output and the classical

Bertrand region, for each j ∈ N , there exists a continuum of equilibria in which firm j sets p∗
j =

pr and all other firms price at or below p
¯
. The (n − 1) low-price firms all have sales equal to

capacity k and firm j sells to residual demand. In these equilibria, the quantity that firm j places

on the market must be sufficient to deter a unilateral deviation by a low-price firm to a price

above pr. The critical supply that achieves this is the quantity y
¯

defined in Proposition 1, so j

must supply at least y
¯
, which we show is greater than residual demand d(pr) − (n − 1)k. Under

the Maximum Accepted Price rule, these equilibria define the complete set of equilibria. For the

Market Clearing Price rule, the set must again be augmented by the set of Cournot-like equilibria

described in the previous paragraph.

In our analysis of the repeated uniform price auctions that follows, the most important aspect

of the characterization in Proposition 1 is the fact that, under both uniform price rules, for any

common capacity k and any firm i there exists a one-shot Nash equilibrium in which i receives

its minmax profit π
¯

. This allows the direct construction of credible punishments in the repeated

uniform price auctions that force any unilaterally deviating firm down to its minmax per-period

continuation payoff.

3. The price-quantity supergame

� In this section, we examine the supergame Ŵu(k, 0, δ) obtained by infinitely repeating the

one-shot game Ŵu(k, 0) and discounting payoffs with discount factor δ < 1. In the supergame,

a path τ is an infinite sequence of action profiles {(pt , qt )}∞
t=0. A pure strategy σ i for firm i is a

sequence of functions, {σ i (t)}
∞
t=0, such that for every t , σ i (t) : H t → S i , where Ht is the set of

possible histories h t = (p0, q0, . . . , pt−1, qt−1) up to time t and h0 is the null history. A strategy

profile is a vector σ = (σ 1, . . . , σ n). Each strategy profile generates an infinite path τ (σ ). Firm

i’s normalized discounted value from period s along a given path τ = {(pt , qt )}∞
t=0 is given by

Vi (τ, s) = (1 − δ)

∞
∑

t=s

δt−sπi (p
t , qt ).

We refer to Vi(τ , t) for t = 0, 1, 2, 3, . . . , as firm i’s continuation value at t. We let Vi(τ ) ≡

Vi(τ , 0) denote the payoff associated with the entire path. A security-level punishment for firm i is

a path on which firm i obtains the discounted sum of its minmax profit, equal to π
¯

in normalized

terms. The result below establishes that a perfect equilibrium security-level punishment in pure

strategies exists under both definitions of the uniform price. After any unilateral deviation by firm

i, firm i’s punishment consists of reverting to a static equilibrium in every period.

Proposition 2. For every k ∈ R+, δ ∈ (0, 1), u ∈ {e, a}, and i ∈ N , there exists a perfect

equilibrium of Ŵu(0, k, δ) which serves as a security-level punishment for firm i.

C© RAND 2007.
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Proof. From Proposition 1, the simultaneous move game has a pure strategy equilibrium in

which firm i obtains its minmax payoff, ∀i and k. Because repeating a minmax one-shot

Nash equilibrium forever is a perfect equilibrium security-level punishment, the result follows

directly. Q.E.D.

In the continuation, we assume that each firm’s capacity is larger than its share of the

monopoly output, k >
d(pm )

n
. If, on the other hand, k ≤ d(pm )

n
, all firms are capacity constrained in

the one-shot Nash equilibrium and equilibrium payoffs are Pareto optimal. Thus, the simultaneous

move equilibrium is a collusive outcome immune to deviations for any discount factor.

Consider a stationary path τ = {(p1, q 1), (p2, q 2), . . . , (pn, qn)}. Let π ∗
i (p−i , q −i ) be firm

i’s optimal deviation profit as a function of the prices and quantities set by the remaining n − 1

firms. Formally, π ∗
i (p−i , q−i ) = sup{pi ,qi }

πi (pi , qi , p−i , q−i ). Because from Proposition 2 a perfect

equilibrium security-level punishment exists, the incentive constraints that provide the perfect

equilibrium conditions for the stationary path τ are simply

(1 − δ)
[

π ∗

i (p−i , q−i ) − Pu(p, q)si (pi | p, q)
]

≤ δ[Pu(p, q)si (pi | p, q) − π
¯

] (1)

for every i ∈ N and u ∈ {e, a}. In the continuation, we refer to the difference between firm i’s

one-period profit obtained from deviating optimally in period t and its one-period profit from

conforming to the prescribed path as firm i’s incentive to deviate. In equation (1), the incentive to

deviate is given by the term in the square brackets on the left-hand side.

In the next section, we characterize all stationary paths that achieve the monopoly outcome

and on which firms share monopoly profits equally. We show that under both uniform pricing

rules, there is a range of discount factors for which capacity withholding is necessary for such

paths to be supported as perfect equilibrium paths.

4. Capacity withholding and market sharing

� In this section, we focus attention on a specific class of paths. We consider paths τ that are

stationary and on which the normalized payoffs satisfy
∑

i∈N
Vi (τ ) = pmd(pm) ≡ �m . We say that

such paths are perfectly collusive. In the remainder of this section, we also impose the condition

that πi (p, q) = �m

n
; that is, firms share monopoly profits equally. We call a path satisfying the

two conditions above a perfectly collusive stationary path with equal sharing. Note that on such

a path, sales are symmetric, although price-quantity pairs need not be.

Lemma 1 below is useful in characterizing the perfectly collusive stationary paths with

equal sharing on which firms’ incentives to deviate are minimized. Consider two profiles of

price-quantity pairs for firm i’s rivals, (p′
−i , q −i ) and (p−i , q −i ), such that for j �= i , firm j’s price

is no lower in (p′
−i , q −i ) than it is in (p−i , q −i ), but the ordering of the prices across firm i’s rivals,

as well as their quantity ceilings, are the same in both profiles. Lemma 1 states that firm i’s profit

from an optimal deviation when its rivals set (p′
−i , q −i ) cannot be lower than when they set (p−i ,

q −i ). Note that this result follows from the conditions imposed on the profiles (p, q) and (p′, q)

in the statement of the lemma, which are sufficient to guarantee that for every p, residual demand

at price p is at least as large when i’s rivals set (p′
−i , qi) as when they set (p−i , q i ).

Lemma 1. Suppose p = (p1, . . . , pn) and p′ = (p′
1, . . . , p′

n) satisfy the two following conditions:

for some i ∈ N , (i) ∀ j �= i , p′
j ≥ pj and (ii) ∀ j , h ∈ N\{i}, pj ≥ ph implies p′

j ≥ p′
h . Then for

any vector of quantities q = (q 1, . . . , qn), π ∗
i (p′

−i , q −i ) ≥ π ∗
i (p−i , q −i ).

Proof. Suppose that when the n − 1 remaining firms set (p−i , q −i ), firm i’s optimal deviation is

to undercut all n − 1 firms. Because for every j �= i , p′
j ≥ pj, firm i’s optimal deviation profit

under (p−i , q −i ) can also be obtained by undercutting all other firms when they set (p′
−i , q −i ).

Thus, its deviation profit cannot be lower in this case. Now suppose that if i’s rivals set (p−i , q −i ),

firm i’s optimal deviation consists of setting the residual demand monopoly price after a group

of l ≥ 1 firms have sold a quantity q, pr(q), to earn π
¯

(q). We show that i cannot obtain less than
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π
¯

(q) by deviating when its rivals set (p′
−i , q −i ). First, consider the difference in firm i’s residual

demand at a given price p when firms set (p′, q) and (p, q):

max

{

d(p) −
∑

j∈L−(p | p′,q)\{i}

q̂ j , 0
}

− max

{

d(p) −
∑

j∈L−(p | p,q)\{i}

q̂ j , 0
}

.

From conditions (i) and (ii) in the statement of the lemma, it follows that L−(p | p′, q) ⊆ L−(p | p,

q) and, thus,
∑

j∈L−(p | p′,q)\{i}
q̂ j ≤

∑

j∈L−(p | p,q)\{i}
q̂ j . Consequently, residual demand at p is weakly

larger when other firms set (p′
−i , qi) than when they set (p−i , q −i ). It follows that if ∄ j for which

p′
j = pr(q), then firm i obtains a deviation profit π ∗

i ≥ π
¯

(q) from setting exactly pr(q). If ∃ j such

that p′
j = pr(q), then i can obtain a payoff arbitrarily close to π

¯
(q) by infinitesimally undercutting

p′
j = pr(q). Therefore, we have shown that any deviation profit level firm i can guarantee itself

under (p−i , q i ) can also be obtained when the other firms set (p′
−i , q −i ). Q.E.D.

Lemma 2 characterizes all perfectly collusive stationary paths with equal sharing. Note that

the characterization is independent of the definition of the uniform price except for statement

(ii).

Lemma 2. Suppose k >
d(pm )

n
. In Ŵu(k, 0, δ), on every perfectly collusive stationary path with

equal sharing τ = ((p1, q 1), (p2, q 2), . . . , (pn, qn)), the following must hold: (i) Pu(p, q) = pm,

(ii) pi ≤ pm with equality for at least one firm if u = a, and (iii) for every firm i ∈ N , qi ≥ d(pm )

n
,

with equality if firm i sets pi < pm.

Proof. (i) and (ii) follow from the fact that there exists a unique maximizer to pd(p). Thus, if

industry profit is �m in every period, pm must be the uniform price in every period as well. It

is straightforward to see that if there exists a firm i for which pi > pm, then, either the uniform

price is strictly greater than pm, or firm i does not have any sales, a contradiction to Vi (τ ) = �m

n
.

Furthermore, if the uniform price is given by Definition 2, pm must also be one of the accepted

bids, thus at least one firm i ∈ N must set pi = pm. To prove (iii), note that it is clear that if

qi <
d(pm )

n
, then si <

d(pm )

n
, and thus Vi (τ ) < �m

n
. Hence, qi ≥ d(pm )

n
. To complete the proof of (iii),

consider first the Maximum Accepted Price rule. Suppose to the contrary that there exists a firm

i for which pi < pm and qi >
d(pm )

n
. From the definition of si, it is clear that the only time a firm’s

sales are strictly below its quantity ceiling occurs when it sells to all or a fraction of residual

demand. If this is the case, however, for firm i, then R(p | p, q) = 0 for every p > pi, which

implies that pm cannot be the uniform price, thus contradicting (i). Hence, it follows immediately

that if pi < pm, qi = d(pm )

n
. Consider now the Market Clearing Price rule and suppose that there

exists a firm i with pi < pm and qi >
d(pm )

n
. First, note that from Definition 1 and (i), if pj < pm,

∀ j , then it must be the case that
∑

h∈N
q̂h = d(pm). Otherwise, at least one firm must be setting

pm. Because we have established above that for every j, q j ≥ d(pm )

n
, it follows directly that if,

additionally, for every j , pj < pm, then
∑

j∈N
q̂ j > d(pm), so that the uniform price is not equal

to pm, a contradiction to (i). Suppose now that l firms, l ≥ 1, are setting pm. Because for every

firm j setting p j < pm, q j ≥ d(pm )

n
and there exists i for which qi >

d(pm )

n
, it follows that residual

demand at pm is strictly less than l

n
d(pm), so that sh <

d(pm )

n
for at least one firm h setting ph =

pm, a contradiction to the fact that Vh(τ ) = pmsh = �m

n
. Q.E.D.

Lemma 2 shows that there are essentially two ways in which firms can achieve a perfectly

collusive outcome with equal sharing on a stationary path. All firms may set the monopoly price

and offer the same quantity ceiling. In this case, the sales function prescribes that each firm will

obtain an equal share of demand at the monopoly price. Alternatively, a group of firms (possibly

empty under the Market Clearing Price rule) may set the monopoly price and share residual

demand after another group of (strictly lower-price) firms offer their share of the monopoly

output and sell their quantity. We show in the following sections that the crucial difference

between the Market Clearing Price and Maximum Accepted Price approaches is that if the former

is used, in sustaining collusion there can be as many as n low-price firms, whereas there must be

at least one firm setting pm under the latter.
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� The Market Clearing Price rule. Building on the insight from Lemma 2, we construct a

perfect equilibrium path τme and show that given the imposed stationarity and equal division, such

a path minimizes incentives to deviate for all firms among perfectly collusive stationary paths

achieving the same payoff per firm. To this effect, let qm
− = (n − 1) d(pm )

n
. τme is characterized as

follows.

pi = p
¯
(qm

− ) and qi =
d(pm)

n
,∀i ∈ N .

Lemma 3. Suppose k >
d(pm )

n
. In Ŵe(k, 0, δ), the path τme minimizes incentives to deviate in the

class of perfectly collusive stationary paths with equal sharing.

Proof. See the Appendix.

The path constructed in Lemma 3 is symmetric. Each firm withholds capacity and sets a

quantity equal to its share of the monopoly output and a price equal to the maximum price that no

firm would want to unilaterally undercut. From Definition 1, it is straightforward to check that the

uniform market price is then equal to the monopoly price. The proposition below shows that for

some discount factors, withholding is necessary to sustain perfect collusion with equal sharing

on a stationary path. The crucial effect of capacity withholding on collusion is that in markets

with a large aggregate capacity, it allows firms to set lower prices without affecting the uniform

price, thereby substantially reducing incentives to deviate for all firms.

It is important to note that setting pi = p
¯
(qm

− ) is not necessary to support this outcome. Every

path on which each firm offers exactly its share of monopoly output at a price less than or equal

to p
¯
(qm

− ), for example at the marginal cost of zero, yields the same outcome and exactly the same

incentives to deviate as τme.

Proposition 3. Suppose k >
d(pm )

n
. There exists a δ̄ < 1 such that in Ŵe(k, 0, δ), perfect collusion

with equal sharing is sustainable on a stationary path on which no firm withholds capacity if and

only if δ ≥ δ̄. Furthermore, there exists a δ
¯

e < δ̄ such that if δ ∈ [δ
¯

e, δ̄), perfect collusion with

equal sharing is sustainable on a stationary path and such a path requires that some subset of

the firms withholds capacity. If δ = δ
¯

e, perfect collusion with equal sharing is sustainable on a

stationary path and such a path requires that all firms withhold capacity.

Proof. See the Appendix.

Note that from Lemma 2, part (iii), δ̄ is the lowest discount factor such that for all δ ≥ δ̄,

the path on which all firms set the monopoly price pm and offer k can be supported in a perfect

equilibrium. Clearly, both δ̄ and δ
¯

e depend on the common capacity level k and the number of

firms n. In the continuation, as in Proposition 3, we will abuse notation by dropping the arguments

k and n.

� The Maximum Accepted Price rule. If the uniform price is defined as the maximum

accepted price, then the result is slightly different. The fact that the uniform price has to be one of

the submitted prices adds the extra constraint that one firm must set pm on the path. This clearly

increases incentives to deviate for low-price firms when compared to the path τme characterized

above.

Let τma
i be characterized as follows, ∀i ∈ N .

pi = pm and qi = k,

p j = p
¯
(qm

− ) and q j =
d(pm)

n
, ∀ j �= i .
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There exist n such paths corresponding to each of the n players with price pm. Note that on

any such path, τma
i , the maximum incentive to deviate across firms is the incentive to deviate of a

low-price firm.

Lemma 4. Suppose k >
d(pm )

n
. In Ŵa(k, 0, δ), paths of the form of τma

i minimize the maximum

incentive to deviate in the class of perfectly collusive stationary paths with equal sharing.

Proof. See the Appendix.

Lemma 4 shows that paths on which n − 1 firms withhold capacity to offer an equal share

of the monopoly output at a low price and one firm sets the monopoly price and offers its whole

capacity minimize the maximum incentive to deviate on paths in that particular class. The next

result shows that if n > 2 and capacity is large enough, by withholding output, firms can sustain

an equal division of the monopoly outcome for a strictly wider range of discount factors than by

offering full capacity.

Again, as for the Market Clearing Price approach, it is important to note that it is not

necessary that low-price firms set p j = p
¯
(qm

− ). Every path on which each firm j , j �= i , offers

exactly its share of monopoly output at a price less than or equal to p
¯
(qm

− ) yields the same outcome

and exactly the same incentives to deviate as τma
i .

Proposition 4. Suppose k >
d(pm )

n
. In Ŵa(k, 0, δ), perfect collusion with equal sharing is sustainable

on a stationary path on which no firm withholds capacity if and only if δ ≥ δ̄. Furthermore, suppose

n > 2 and k > 2

n
d(pm). Then there exists a δ

¯

a < δ̄ such that if δ ∈ [δ
¯

a, δ̄), perfect collusion with

equal sharing is sustainable on a stationary path and such a path requires that some subset of

the firms withholds capacity. If δ = δ
¯

a , perfect collusion with equal sharing is sustainable on a

stationary path and such a path requires that at least n − 1 firms withhold capacity.

Proof. See the Appendix.

Proposition 4 shows that for n > 2 and for sufficiently large capacity, withholding capacity

facilitates collusion. The intuition behind the dependence of the result in Proposition 4 on the

number of firms is as follows. For every n, on a perfectly collusive path with equal sharing that

does not feature withholding, an optimal deviation always consists of undercutting the monopoly

price to obtain pm min{k, d(pm)}. On τma
i , if there are only two firms in the industry, the single

low-price firm can always undercut the high-price firm, and offer and sell the minimum of demand

and its capacity. On the other hand, when there are more than two firms in the industry, an optimal

deviation takes one of two forms depending on k. For a range of relatively low capacity values, a

low-price firm offers and sells its capacity at a price below pm. In this case, because k is low, the

deviating firm does not affect the uniform price and receives pm for its capacity independently

of the price it sets as long as this price is below pm. However, this statement is only valid if

undercutting the low-price firms and offering capacity does not lower the market price. If k is

large enough that a deviating firm would have to withhold in order not to affect the uniform price

by expanding its quantity up to its capacity, the optimal deviation consists of pricing above the

low-price firms but below the high-price firm. For such values of k, a low-price firm’s deviation

profit is strictly below pm min{k, d(pm)}. Thus, k relatively large is required for withholding to

strictly relax incentive constraints as compared to paths on which no firm withholds.

Fabra (2003) analyzes the feasibility of collusion in a Bertrand-Edgeworth duopoly

supergame with the Maximum Accepted Price rule. In Fabra’s model, the two firms must offer

capacity at the price they set. She shows that to support a given level of industry profit, the

paths that minimize firms’ incentives to deviate are nonstationary. On such paths, firms alternate

between being high-price and low-price, so that only one firm, the high-price firm, has an incentive

to deviate in any given period. To support perfect collusion, the high-price firm’s incentive to

deviate on the nonstationary path is lower than that of the low-price firm on the stationary path τma
i

constructed in Lemma 4 in this article. Thus, perfect collusion can be supported for lower discount

factors on the nonstationary path with firms switching roles every period than on the stationary
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path with equal sharing. However, on the nonstationary paths, firms do not share industry profit

equally, so that the question of role selection in the first period arises. Moreover, to support perfect

collusion, such paths are feasible only if k < d(pm), because if k ≥ d(pm), the firms’ inability to

withhold capacity implies that to obtain industry profit equal to �m , each firm must set pm.5 The

latter observations are all the more relevant in the case n ≥ 3.6 Indeed, the range of capacities for

which alternating nonstationary paths with one high-price firm and no withholding are feasible,

k <
d(pm )

n−1
, shrinks as n increases. If k ≥ d(pm )

n−1
, we conjecture that nonstationary perfect equilibrium

paths with more than one high-price firm setting pm can be constructed for a range of discount

factors, but it is not clear that they minimize incentives to deviate.

We have focused on one possible division of monopoly profits, namely the symmetric

allocation, in which each firm receives an equal share of industry profit. Other allocations can

also be sustained as perfect equilibria. With symmetric firms and the Market Clearing Price rule,

equal sharing is optimal because on the path τme, all firms have the same incentive to deviate.

However, when the Maximum Accepted Price rule is used, equal sharing may not minimize the

critical value of the discount factor above which perfect collusion is sustainable. This is best

illustrated by considering the duopoly case. For d(p) = max{0, 1 − p} and k = 1

2
, Figure 2

shows the set of sustainable allocations for the low-price firm as a function of the discount factor

on perfectly collusive stationary perfect equilibrium paths similar to τma
i . On such paths, the

low-price firm obtains pmsm and the high-price firm obtains pm(d(pm) − sm). s
¯

m is the smallest

allocation and s̄m the largest allocation the low-price firm can obtain on such paths. Along the

curve s
¯

m , the low-price firm’s incentive constraint is binding, whereas along the curve s̄m , the

high-price firm’s constraint binds. At every allocation between s
¯

m and s̄m , both constraints are

slack. It is clear that the critical discount factor obtains at an allocation at which the low-price

firm receives a greater share of monopoly profits.

To summarize, there are two main insights to be gleaned from the analysis of the price-

quantity supergames in this section. First, capacity withholding facilitates collusion on stationary

paths no matter which uniform pricing rule is used. This is because it allows firms to set a price that

minimizes the other firms’ deviation profit without preventing the market price from remaining

at pm. Second, under the Market Clearing Price rule, the reduction in deviation profit achieved on

paths with withholding is larger than under the Maximum Accepted Price Rule because under the

former, no single firm is required to price at pm. Using these results, we now compare repeated

uniform price auctions to repeated discriminatory auctions.

� Uniform price and discriminatory auctions. Another commonly employed auction

mechanism is the discriminatory auction, in which each firm receives the price it bids for its

quantity. Propositions 3 and 4 provide a simple way to compare the two institutions. Recall that δ̄

is the critical value of the discount factor above which a path on which each firm sets the monopoly

price pm and offers its capacity in every period can be supported as a perfect equilibrium in the

repeated uniform price auction. In both the uniform price and the discriminatory auctions, an

optimal deviation from such a path consists of undercutting the monopoly price and offering

capacity. Therefore, δ̄ also represents the critical value of the discount factor above which a

perfectly collusive path with equal sharing is sustainable in the repeated discriminatory auction.

Theorem 1. Suppose k >
d(pm )

n
. Under both definitions of the uniform price, perfect collusion with

equal sharing is sustainable on a stationary path in the repeated uniform price auction whenever

it is sustainable on a stationary path in the repeated discriminatory auction. Moreover, if either (i)

u = e or (ii) u = a, n > 2, and k > 2

n
d(pm) hold, there exists a nondegenerate interval of discount

factors [δ
¯

u, δ̄) for which perfect collusion with equal sharing is sustainable on a stationary path

in the repeated uniform price auction, but not in the repeated discriminatory auction.

5 This is because if one firm sets pm and the other firm p < pm, then the price is equal to p.
6 Fabra (2003) only analyzes the duopoly.
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FIGURE 2

RANGE OF POSSIBLE DIVISIONS OF MONOPOLY OUTPUT FOR THE LOW-PRICE FIRM ON A

STATIONARY PERFECT EQUILIBRIUM PATH FOR d(p) = max{0, 1 − p} AND k = 1

2

Proof. In the discriminatory auction, it follows from a simple extension of Fabra’s (2003)

Proposition 3 to our price-quantity supergame with n symmetric firms that incentives to deviate

are minimized on symmetric paths on which firms set the same price, pm. Thus, the minimum

value of the discount factor for which a perfectly collusive stationary perfect equilibrium path

with equal sharing exists is obtained from a firm’s incentive constraint on a path on which all

firms offer capacity k at a price equal to pm and is given by δ̄. Hence the result follows from

Propositions 3 and 4. Q.E.D.

The results in Theorem 1 are illustrated for an example with linear demand in Figure 3. Let

d(p) = max{0, 1 − p}. In this case, pm = 1

2
, d(pm) = 1

2
, and yc = 1

n+1
. Suppose that k > yc.

Using the Market Clearing Price approach, the optimal deviation on τme yields profit equal to

FIGURE 3

CRITICAL VALUES OF THE DISCOUNT FACTOR AS A FUNCTION OF THE NUMBER OF FIRMS FOR

d(p) = max{0, 1 − p} and k = 1

2
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(n + 1)2

16n2 . Using the Maximum Accepted Price rule, it is simple to show that if n > 2, for j �= i , the

optimal deviation on τma
i is for j to undercut i but not h �= i , j . j’s deviation profit is then equal to

(n + 2)2

16n2 . Assuming k = 1

2
so that each firm’s capacity is sufficient to supply the monopoly output,

we obtain7

δ̄ =

{

2

3
if n = 2,

n−1

n
if n = 3, 4, . . . ,

δ
¯

e =

{

1

5
if n = 2,

(

n−1

n+1

)2
if n = 3, 4, . . . ,

δ
¯

a =

{

2

3
if n = 2,

4+n2

(n+2)2 if n = 3, 4, . . . .

Under the Maximum Accepted Price rule, as in Brock and Scheinkman (1985),8 the

relationship between the lower bound on the discount factor for which perfect collusion is

sustainable and the number of firms is always nonmonotonic.9 Therefore, when demand is linear,

the result that for sufficiently low capacity (such that minmax payoffs are strictly positive for

some n), decreasing the number of firms in the industry makes collusion more difficult continues

to hold in the repeated price-quantity uniform price auction. Furthermore, independent of k,

when the Maximum Accepted Price rule is used in the uniform price auction, the number of

firms at which the critical value of the discount factor is minimized is greater in the uniform

price auction than in the discriminatory auction. To see this, recall that in the linear demand case,

Brock and Scheinkman (1985) show that δ̄ is initially decreasing in n. This is because a decrease

in punishment payoffs more than offsets an increase in incentives to deviate for such values

of n. The same holds in the uniform price auction. However, note that d

dn
[ (n + 2)2

16n2 ] < 0, that is,

deviation profit decreases with n in the repeated uniform price auction, whereas deviation profit

is independent of n in the discriminatory auction. Therefore, δ
¯

a must decrease with n for a range

of values of n above the minimizer of δ̄.10 In the uniform price auction with the Market Clearing

Price rule, in our example, even at low values of n an increase in incentives to deviate is not offset

by a decrease in punishment value. Therefore, δ
¯

e increases in n for all n ≥ 2. However, this is not

generally true. The relationship between δ
¯

e and n depends on capacity, k. If k is sufficiently low,

then δ
¯

e decreases with n initially and the relationship between the critical discount factor and the

number of firms is again nonmonotonic.

In ending this section, we should note that, in the discriminatory auction, perfect collusion

with equal sharing cannot arise for a larger set of discount factors under proportional rationing

than under efficient rationing. Under proportional rationing, a firm’s incentive to deviate is still

minimized on a path on which each firm offers capacity at the monopoly price pm and, at this

minimum, the relevant payoffs are equal to those under efficient rationing. It follows that if

incentive constraints are to be relaxed under proportional rationing, it must be because firms

can be held to a payoff in the punishment phase that is lower than their security level under the

efficient rationing rule. However, it is straightforward to show that in the context of our model,

7 All formulas are derived from equations (A1), (A3), (A4), and (A8), which can be found in the Appendix. Figure 3

is drawn treating n as a continuous variable. For n ∈ [2, 3), the specific functional form for each critical value of δ can be

obtained from straightforward calculations.
8 See also Davidson and Deneckere (1984) and Lambson (1987) for analyses of discriminatory auctions in a

Bertrand-Edgeworth oligopoly supergame.
9 Brock and Scheinkman’s (1985) Figure 2 is drawn for 1 − δ

δ
.

10 In our example, the optimal number of firms is between two and three in both the discriminatory and the uniform

price auction. However, the same intuition as that outlined above also works at values of k for which the optimal number

of firms is greater than three.
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security-level payoffs are always at least as large as those under efficient rationing.11 Thus,

collusion under the proportional rationing rule can be no easier to sustain than under efficient

rationing. We argued in Section 2 that proportional rationing in a uniform price auction does

not affect the analysis under the Market Clearing Price rule and does not make sense under

the Maximum Accepted Price rule. Hence, to the extent that the rationing rule may be applied,

proportional rationing only reinforces the result of Theorem 1.12

5. Bid functions with an arbitrary number of steps

� In this section, we generalize the results obtained in the previous section to a setting in

which firms can submit bid functions with an arbitrary finite number of steps. In the one-shot

simultaneous move game Ŵu(k, 0, L), assume that a firm’s strategy is a vector of price-quantity

pairs defining an incremental bid function ((p
li
i , q

li
i ))

L i

li =1, L i ≤ L and p1
i < · · · < p

L i

i . L is a

finite number representing the maximum number of admissible steps in the (nondecreasing) bid

function of each firm. For each pair, the price p
li
i represents the minimum price at which firm i is

willing to sell the quantity increment q
li
i . We assume p

li
i ∈ R+ and

∑

li
q

li
i ≤ k. A strategy profile

is a vector of bid functions (p, q) = ((p
l1
1 , q

l1
1 )

L1

l1=1, . . . , (pln
n , q ln

n )Ln

ln=1). We denote by (p−i , q−i ) the

vector composed of firm i’s rivals’ bid functions.

Below we define residual demand and a firm’s sales at a given price in this setting. To this

effect, let li(p) be the index of the step associated with price p in firm i’s strategy, that is, if there

exists li such that p
li
i = p, then li(p) = li. Otherwise, define li(p) ≡ ∅. Let ps

i be the set of prices

submitted by firm i for each of its quantity increments, ps
i = {p ∈ R+ | li (p) �= ∅}, and let ps

i (p)

be the set of prices submitted by i that are less than or equal to p. That is, ps
i (p) = [0, p] ∩ ps

i .

Define qi(p) to be the quantity increment associated with price p in firm i’s strategy. Formally,

qi (p) =

{

q
li
i if li (p) = li ,

0 if li (p) = ∅,

so that firm i’s quantity supplied at p is
∑

z∈ps
i (p)

qi (z).

Define q̂i (p) = min{qi (p), d(0)}. Assuming efficient rationing and given a strategy profile

(p, q), residual demand at p is then easily defined as follows.

R(p | p, q) = max

⎧

⎨

⎩

d(p) −
∑

i∈N

∑

z∈ps
i (p)\{p}

q̂i (z), 0

⎫

⎬

⎭

.

Note that if the minimum price submitted by any firm is greater than or equal to p, then

R(p | p, q) = d(p). Given a strategy profile (p, q), firm i’s sales at a price p ∈ ps
i are equal

to

si (p | p, q) = min

{

q̂i (p),
q̂i (p)

∑

l∈N
q̂l(p)

R(p | p, q)

}

,

11 Note that for any value of the capacity parameter k, a firm can always set pr, its residual demand monopoly price

after its n − 1 rivals have sold their capacity under efficient rationing, and be certain to obtain at least pr [d(pr) − (n −

1)k], which is its minmax payoff under efficient rationing. It is possible to show that for a wide range of values of k, by

setting pr, a firm obtains a strictly higher payoff under proportional rationing than it does under efficient rationing.
12 The literature on electricity markets that has used the Bertrand-Edgeworth model to analyze both uniform price

and discriminatory auctions has often assumed box demand (see, for instance, Fabra, von der Fehr, and Harbord, 2006).

In this case, every commonly used rationing rule defines the same residual demand. Fabra (2003), Ubéda (2004), and,

in part of their analysis, Fabra, von der Fehr, and Harbord (2006) allow for a decreasing demand. In her analysis, Fabra

assumes efficient rationing, whereas Ubéda and Fabra, von der Fehr, and Harbord assume that even in the discriminatory

auction, every consumer pays the same price given by the market clearing price. Hence, in these studies, residual demand

again coincides with efficient rationing. Although we could find no evidence that efficient rationing has been used in

existing electricity markets, such as the UK pool, that were once organized as discriminatory auctions, as argued above,

the results in this article continue to be relevant even with random rationing. Finally, note that efficient rationing would

arise as the optimal choice of a price-taking system operator who maximizes efficiency with complete information of

consumers’ willingness to pay for each unit.
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so that firm i’s total sales amount to

si (p, q) =
∑

p∈ps
i

si (p | p, q)

and firm i’s profit is π i (p, q) = Pu(p, q) si (p, q), ∀u ∈ {e, a}. Finally, we let π ∗
i (p−i , q−i ) denote

firm i’s profit from an optimal deviation when its rivals play (p−i , q−i ).

The supergames obtained by repeating the component game above are defined in a similar

manner as the supergame with L = 1. We denote the supergame in which the number of admissible

steps is L by Ŵu(k, 0, δ, L), for u ∈ {e, a}. Lemma 5 below simplifies the analysis of the games

with L-step bidding functions by showing that, when compared to the price-quantity approach,

expanding the strategy space does not allow firms to obtain greater one-period deviation payoffs.

Lemma 5. For every k ∈ R+, L ≥ 1, u ∈ {e, a}, and i ∈ N in the game Ŵu(k, 0, L), π ∗
i (p−i , q−i ),

firm i’s optimal deviation payoff when its rivals set (p−i , q−i ) can be obtained by restricting its

response to bidding functions using a single step (L i = 1).

Proof. See the Appendix.

The extension of Lemmas 3 and 4 to the more general setting introduced above is relatively

straightforward. Statements similar to those in Proposition 2 and Lemmas 1 and 2 are valid.

Beginning with Proposition 1 and making use of Lemma 5, note that the pure strategy equilibria

for the simultaneous move game characterized for L = 1 are clearly equilibria of the simultaneous

move game with L ≥ 2 admissible steps. We hence have the following result.

Proposition 5. For every k ∈ R+, L ≥ 1, u ∈ {e, a}, and i ∈ N , there exists a pure strategy

equilibrium of the game Ŵu(k, 0, L) in which πi (p
∗, q∗) = π

¯
.

Allowing for L steps does not change a firm’s minmax profit π
¯

. This is because the worst

that can be imposed on a given firm i is obtained by maximizing i’s profit after its rivals have sold

their capacity at a price of 0. Therefore, Proposition 2 continues to hold when L ≥ 2 because

perfect equilibrium security-level punishments are attained with strategies using only one step.

The analog of Lemma 1 for the case L ≥ 2 states that if for some i ∈ N , (p, q) and (p′, q′)

satisfy the two following conditions: first, the total quantity put on the market by i’s rivals does

not change, and second, the residual demand faced by firm i at every p is no less when firms set

(p′, q′) than when they set (p, q), then firm i’s deviation profit under (p, q) is no greater than

under (p′, q′). Formally, these two conditions are
∑

j∈N\{i}

∑

p∈ps
j

q j (p) =
∑

j∈N\{i}

∑

p∈ps′
j

q ′

j (p)

and, for every p ∈ [0, p̄],
∑

j∈N\{i}

∑

z∈ps
j (p)\{p}

q j (z) ≥
∑

j∈N\{i}

∑

z∈ps′
j (p)\{p}

q ′

j (z).

To generalize Lemma 2, note that the requirements are that the uniform price be pm and that

si (p, q) = d(pm )

n
. Moreover, supply of lower-priced units should sum up to a quantity less than

d(pm),13 while still allowing firms that do not have pm in the support of their strategy to sell d(pm )

n
.

Thus, on a perfectly collusive stationary path with equal sharing,
∑

j∈N

∑

p∈ps
j (pm )\{pm }

q̂ j (p) ≤ d(pm) (2)

with a strict inequality if the uniform price is given by the Maximum Accepted Price rule.

Furthermore, if pm �∈ ps
h, then

13 This quantity must be strictly less than d(pm) if the uniform price is given by the Maximum Accepted Price rule.
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∑

p∈ps
h (pm )

q̂h(p) =
d(pm)

n
.

As before, when the uniform price is given by the Market Clearing Price rule, on the perfectly

collusive stationary path that minimizes incentives to deviate, the price will be set at pm by having

firms withhold their capacity to offer only d(pm )

n
each and set a price that minimizes deviation

profits. When the uniform price is given by the Maximum Accepted Price rule, the highest

accepted bid has to be pm so that at least one firm has to offer a positive quantity at pm.

� The Market Clearing Price rule. For every L ≥ 1, it follows from the above discussion

that a perfectly collusive stationary path that minimizes incentives to deviate is such that all firms

set p = p
¯
(qm

− ) and q = d(pm )

n
. Under the Market Clearing Price definition, one step is sufficient to

minimize incentives to deviate on perfectly collusive stationary paths with equal sharing. Thus,

we have Proposition 6.

Proposition 6. Suppose k >
d(pm )

n
. For every number of admissible steps L ≥ 1, in Ŵe(k, 0, δ, L),

the path τme minimizes incentives to deviate in the class of perfectly collusive stationary paths

with equal sharing. That is, the incentive to deviate is minimized over all possible finite step

functions by employing a simple (one-step) price-quantity strategy.

Theorem 2 below then follows directly from Propositions 3 and 6. It shows that a path on which

firms use a bidding function with only one step minimizes the critical value of the discount factor

above which a stationary perfect equilibrium path that achieves the monopoly outcome with equal

sharing exists.

Theorem 2. Suppose k >
d(pm )

n
. For every number of admissible steps L ≥ 1, in Ŵe(k, 0, δ, L),

perfect collusion with equal sharing is sustainable on a stationary path if and only if δ ≥ δ
¯

e. That

is, if the strategy space is extended to allow for arbitrary finite step functions, whenever perfect

collusion with equal sharing is sustainable using strategies involving more than one step, it is

sustainable employing simple one-step price-quantity strategies.

� The Maximum Accepted Price rule. The difference between the Market Clearing Price

rule and the Maximum Accepted Price rule is that under the latter, on a perfectly collusive path

with equal sharing, at least one firm must set p = pm, whereas this is not required in the former.

However, in contrast to the price-quantity supergame, a firm setting pm may also offer part of its

capacity at prices below pm. The main insight from Lemma 4, namely that incentives to deviate

are minimized when as much capacity as possible is offered at a sufficiently low price, applies

here as well. However, when L ≥ 2, we show that all firms offer some quantity at pm. Because in

our model nothing prevents firms from offering infinitesimally small quantities at a given price,

we conduct the analysis for a given aggregate quantity ǫ sold at pm and show that as this quantity

goes to zero, the lowest discount factor for which perfect collusion is sustainable on a stationary

path with the Maximum Accepted Price approach converges to that in the Market Clearing Price

approach, δ
¯

e. We may interpret ǫ as being part of the tacitly collusive agreement between the

firms.

Define qǫ
− ≡ (n−1)(d(pm )−ǫ)

n
and for a given minimum quantity agreement ǫ > 0, consider the

two-step bidding function (pǫ
i , qǫ

i ) for firm i ∈ N where

(

pǫ

i , qǫ

i

)

=

((

p
¯
(qǫ

−),
d(pm) − ǫ

n

)

,

(

pm, k −
d(pm) − ǫ

n

))

.

Let the path τ ǫ be such that firm i sets (pǫ
i , qǫ

i ), ∀i ∈ N . Proposition 7 shows that for a given

quantity agreement ǫ > 0, τ ǫ minimizes incentives to deviate in the class of perfectly collusive

paths with equal sharing. Therefore, in characterizing paths that minimize incentives to deviate

in the class of perfectly collusive stationary paths with equal sharing, two steps are sufficient.
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Proposition 7. Suppose k >
d(pm )

n
. For every number of admissible steps L ≥ 2 and quantity

agreement ǫ ∈ (0, d(pm)], in Ŵa(k, 0, δ, L), the path τ ǫ minimizes incentives to deviate in the

class of perfectly collusive stationary paths with equal sharing. That is, the incentive to deviate is

minimized over all possible finite step functions by employing a two-step strategy.

Proof. See the Appendix.

The intuition behind Proposition 7 is as follows. Suppose that the aggregate quantity offered

at a common price p < pm is d(pm) − ǫ, for some quantity agreement ǫ > 0, where p is

sufficiently low that no firm would ever undercut it. Then, if l firms each offer d(pm )

n
− ǫ

l
at p

and k − [ d(pm )

n
− ǫ

l
] at pm, while the remaining firms simply offer d(pm )

n
at p, the uniform price is

indeed pm and each firm earns pm d(pm )

n
. Furthermore, it is clear that the n − l low-price firms have

greater incentives to deviate than the high-price firms, because they face a strictly higher residual

demand at every price between p and pm. If k is sufficiently small that the price would remain

at pm if a low-price firm offered its capacity at p, then an optimal deviation consists of offering

capacity at p to earn pmk. Otherwise, the optimal deviation is to set the residual monopoly price

after n − 1 firms sell their quantity offered at p, where this quantity is equal to

(n − l − 1)
d(pm)

n
+ l

(

d(pm)

n
−

ǫ

l

)

= (n − 1)
d(pm)

n
− ǫ. (3)

Now suppose that l = n, so that all firms set k − [ d(pm )−ǫ

n
] at pm. Then each firm’s optimal deviation

is to either offer capacity at p or set the residual monopoly price after n − 1 firms sell their quantity

offered at p, where this quantity is equal to

(n − 1)

(

d(pm)

n
−

ǫ

n

)

= qǫ

−. (4)

Equation (4) is clearly greater than (3), so that a firm’s deviation profit is lowest when all firms

offer the same quantity both at the low price and the monopoly price. It follows that on a path

that minimizes incentives to deviate, all n firms will offer some quantity at pm. Thus all firms

will have two steps in their bidding function. One of the steps must be at a low price in order to

prevent rivals from undercutting and the quantity offered at that price must be the highest quantity

consistent with pm being the uniform price. The second step effectively sets the price at pm. To

sustain the perfectly collusive outcome, there is nothing to gain from being allowed to include

additional steps in the bidding functions. Theorem 3 below follows directly from Proposition 7.

Theorem 3. Suppose k >
d(pm )

n
. For every number of admissible steps L ≥ 2 and quantity

agreement ǫ ∈ (0, d(pm)], perfect collusion with equal sharing is sustainable on a stationary

path in Ŵa(k, 0, δ, L), if and only if τ ǫ is sustainable. Moreover, there exists δ
¯

a(ǫ) such that τ ǫ is

sustainable if and only if δ ≥ δ
¯

a(ǫ) and δ
¯

a(ǫ) ↓ δ
¯

e as ǫ → 0.

Apart from directly relaxing firms’ incentive constraints on perfectly collusive paths,

allowing for more than one step in a firm’s bidding function generates another interesting

difference as compared to the simple price-quantity approach. If L ≥ 2, on a perfectly collusive

stationary path that minimizes incentives to deviate, firms set identical two-step bidding functions.

This symmetry in firms’ actions is not a property of the most collusive path in the price-quantity

supergame, as a single firm must play the role of the high-price firm. This further implies that

under the Maximum Accepted Price rule, capacity withholding is effective in relaxing incentive

constraints even in a duopoly, while as we have shown in Proposition 4, this is not the case in the

price-quantity approach.

6. Conclusion

� We have examined the nature of collusive stationary perfect equilibrium paths in an infinitely

repeated multiunit uniform price auction with capacity-constrained firms. Under two different
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definitions of the market price in a uniform price auction, each appearing prominently in the

literature, we characterize the set of paths that minimize the incentive to deviate while supporting

the monopoly price with equal sharing of output. We then show that these paths can be supported

as stationary perfect equilibria for a wider range of discount factors than under a repeated

discriminatory price auction.

Using the Market Clearing Price rule to determine the uniform price, we show that extending

firms’ strategy spaces to allow them to place bids involving any finite number of price-quantity

pairs neither enhances nor hinders the firms’ ability to collude. Surprisingly, L-step bidding

functions, L ≥ 2, cannot improve upon the ability to collude with one-step bidding functions,

which involve the simple choice of a price-quantity pair, nor can they make collusion more

difficult to sustain. Because such step functions are quite common in electricity markets, our

analysis extends the analysis of collusion to these more complicated markets with step supply

functions.

Using the Maximum Accepted Price rule, the capacity withholding properties stated above

continue to hold, although with this rule, bidding functions that involve two steps (L ≥ 2) strictly

lower the incentive to deviate from the most collusive outcome when compared to the price-

quantity game (L = 1). Further increases in the number of steps in the bidding function provide

no advantage: collusive outcomes are no easier or harder to support when the strategy space is

extended to L = 3 than with L = 2. Hence, under the Maximum Accepted Price rule as well,

optimal collusion can be attained with a drastically restricted set of available step supply functions

requiring only two steps.

Appendix

� Proofs of Propositions 1, 3, 4, and 7 and Lemmas 3–5 follow.

Proof of Proposition 1. We first show that all strategy profiles described in (i)–(iii) of Proposition 1 form Nash equilibria

of the respective games Ŵu(k, 0), u ∈ {e, a}. For k ≤ yc, we show in (a) that Eu(k, 0) is a set of Nash equilibria for

u ∈ {e, a}. For k ≥
d(0)

n−1
and k ∈ (yc,

d(0)

n−1
), we show in (b) and (c), respectively, that Ea(k, 0) is a set of Nash equilibria

under both the Market Clearing Price and the Maximum Accepted Price rules. Finally, in (d), we show that for k > yc,

C(0) is an additional set of Nash equilibria under the Market Clearing Price rule. We complete the proof of the proposition

by demonstrating that for each u ∈ {e, a}, the sets of strategy profiles described in (i)–(iii) characterize the complete set

of Nash equilibria of Ŵu(k, 0).

(a) Suppose k ≤ yc. Note that in this case, all firms are capacity constrained at pr = p
¯

= P(nk). Furthermore, for

each u ∈ {e, a}, all strategy profiles in the statement of the proposition yield π i (p
∗, q∗) = P(nk)k, ∀i ∈ N . To prove

(i), we examine each definition of the uniform price separately. Consider first the Market Clearing Price rule or u = e.

Suppose that there exists a firm i such that ∀ j �= i , p∗
j ≤ P(nk), and q∗

j = k. We show that firm i’s best response to

(p∗
−i , q∗

−i ) is the set of price-quantity pairs (p∗
i , q∗

i ) such that p∗
i ≤ P(nk) and q∗

i = k. Let (pi
′, qi

′) be firm i’s strategy and

Pe ′ the resulting uniform price. Then we either have pi
′ > Pe ′, in which case firm i’s profit from (pi

′, qi
′) is equal to zero,

or pi
′ ≤ Pe ′. In the latter case, one can easily check that Pe ′ = max{pi

′, P((n − 1)k + qi
′)} and that firm i’s sales are

equal to min{qi
′, R(pi

′ | pi
′, qi

′, p∗
−i , q∗

−i )}. Furthermore, firm i’s payoff is equal to max{pi
′, P((n − 1)k + qi

′)} min{qi
′,

R(pi
′ | pi

′, qi
′, p∗

−i , q∗
−i )}, which is maximized by setting pi

′ ≤ P(nk) and qi
′ = k, at which firm i obtains a payoff equal

to P(nk)k > 0.

Consider now the Maximum Accepted Price rule or u = a. Suppose that there exists a firm i such that ∀ j �= i ,

p∗
j ≤ P(nk), and q∗

j = k. We show that firm i’s best response to (p∗
−i , q∗

−i ) is the set of price-quantity pairs (p∗
i , q∗

i ) such

that p∗
i ≤ P(nk) and q∗

i = k, unless p∗
j < P(nk), ∀ j �= i , in which case, p∗

i = P(nk) and q∗
i = k is firm i’s best response.

Let (pi
′, qi

′) be firm i’s strategy and Pa ′ the resulting uniform price. Again, if pi
′ > Pa ′, firm i obtains a profit of zero.

On the other hand, if (pi
′, qi

′) is such that pi
′ ≤ Pa ′, then firm i’s payoff from (pi

′, qi
′) is given by Pa ′ min{qi

′, R(pi
′ | pi

′,

qi
′, p∗

−i , q∗
−i )}. Because p∗

j ≤ P(nk), ∀ j �= i , if pi
′ > P(nk), Pa ′ = pi

′ and thus firm i’s payoff is equal to pi
′ min{qi

′,

R(pi
′ | pi

′, qi
′, p∗

−i , q∗
−i )} < P(nk)k. However, firm i could obtain P(nk)k by decreasing the price to P(nk) and offering

qi
′ = k instead. Furthermore, given any qi

′, firm i’s payoff from setting pi
′ < P(nk) can be no greater than P(nk)k because

k < yc implies p
¯

= P(nk) and p
¯
k = P(nk)k. So suppose p∗

j < P(nk), ∀ j �= i . If pi
′ < P(nk), it is clear that Pa ′ <

P(nk), in which case firm i obtains strictly less than P(nk)k, a payoff it could obtain by raising the price to P(nk) and

offering capacity. On the other hand, if there exists h �= i for which p∗
h = P(nk), then for any pi

′ ≤ P(nk), we have

Pa ′ = P(nk) and, thus, by setting qi
′ = k, firm i obtains exactly P(nk)k.

(b) Suppose k ≥
d(0)

n−1
. In this case, n − 1 firms can serve demand at a price equal to marginal cost. To prove

that all strategy profiles (p∗, q∗) ∈ Ea(k, 0) are equilibria, note that Pu(p∗, q∗) = 0 for every (p∗, q∗) ∈ Ea(k, 0) and
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u ∈ {e, a}. Hence πi (p
∗, q∗) = π

¯
= 0,∀i ∈ N . Because ∀h ∈ L(0 | p∗, q∗),

∑

l∈L(0 | p∗ ,q∗ )\{h}
q̂∗

l ≥ d(0), residual demand

is zero at every p ∈ (0, p̄]. It thus follows that no firm has a profitable deviation in this case.

(c) Suppose k ∈ (yc,
d(0)

n−1
). We show that strategy profiles in Ea(k, 0) are Nash equilibria under both rules. For u ∈

{e, a}, note that if y
¯

> d(pr ) − (n − 1)k (which we show below), all strategy profiles in Ea(k, 0) yield Pu(p∗, q∗) =

pr , π j (p
∗, q∗) = π

¯
and for every firm i �= j , π i (p

∗, q∗) = prk. By definition of p
¯
, firm j has no incentive to deviate from

(pr, q∗
j ). Moreover, a low-price firm, say i , i �= j , can neither increase its payoff by slightly undercutting other low-price

firms nor by setting a price in the interval (p
¯
, pr ), because in both cases it would obtain exactly prk. We now show that

such a firm i has no incentive to deviate to the residual demand monopoly price after n − 2 firms have sold k and firm j

has sold q∗
j . To this effect, define y

¯
as the unique solution in y to

π
¯

((n − 2)k + y) = pr k.

The uniqueness of y
¯

in the interval (−(n − 2)k, k) follows from π
¯

(0) = max{pm, P(k)} min{d(pm), k} ≥ P(k)k >

pr k, π
¯

((n − 1)k) < pr k, and the fact that π
¯

((n − 2)k + y) is continuous and strictly decreasing as a function of

y on the closed interval [−(n − 2)k, k]. Because π
¯

((n − 2)k + q∗
j ) is strictly decreasing in q∗

j , if q∗
j > y

¯
, then

pr k > π
¯

((n − 2)k + q∗
j ). Therefore, if q∗

j ≥ y
¯
, firm i prefers to obtain π i (p

∗, q∗) = prk rather than raising its price to

pr((n − 2)k + q∗
j ) and serving residual demand.

It remains to show that y
¯

> d(pr ) − (n − 1)k. By way of contradiction, suppose first that y
¯

< d(pr ) − (n − 1)k.

Let q∗
j = d(pr) − (n − 1)k. Then π

¯
((n − 2)k + q∗

j ) = maxq≤k{P(q + (n − 2)k + q∗
j )q} ≥ P(k + (n − 2)k + q∗

j )k =

P(d(pr ))k = pr k, a contradiction to q∗
j > y

¯
.

Now suppose, again by way of contradiction, that y
¯

= d(pr ) − (n − 1)k. Then (n − 2)k + y
¯

= d(pr ) − k, so that

π
¯

((n − 2)k + y
¯
) = π

¯
(d(pr ) − k). We now show that for k > yc, π

¯
(d(pr ) − k) > pr k holds, implying that to obtain

the equality π
¯

((n − 2)k + y
¯
) = pr k, we must have y

¯
> d(pr ) − (n − 1)k. To show that π

¯
(d(pr ) − k) > pr k holds,

suppose first that k > r (d(pr) − k). In this case, we have π
¯

(d(pr ) − k) = P(d(pr ) − k + r (d(pr ) − k))r (d(pr ) − k) >

P(d(pr ) − k + k)k = pr k. If k ≤ r (d(pr) − k) instead, then π
¯

(d(pr ) − k) = P(d(pr ) − k + k)k = pr k. However, we

show that k ≤ r (d(pr) − k) cannot arise for k ∈ (yc,
d(0)

n−1
). Indeed, k ≤ r (d(pr) − k) implies d(pr) ≤ d(pr) − k +

r (d(pr) − k). Because d ′(p) < 0, the last inequality implies pr ≥ P(d(pr) − k + r (d(pr) − k)) or pr((n − 1)k) ≥

pr(d(pr) − k). It thus follows from the fact that pr(q) is decreasing in q that (n − 1)k ≤ d(pr) − k, which in turn implies

nk ≤ d(pr). Because nk ≤ d(pr) is equivalent to k ≤ yc, however, we have a contradiction to k ∈ (yc,
d(0)

n−1
). Therefore,

y
¯

> d(pr ) − (n − 1)k. This completes our proof that for k ∈ (yc,
d(0)

n−1
), all strategy profiles in Ea(k, 0) are Nash equilibria

under both the Market Clearing Price and the Maximum Accepted Price rules.

(d) Consider the game Ŵe(k, 0). Define qc
− ≡ (n − 1)yc. For k > yc, we now show that any (p∗, q∗) where p∗

i ≤ p
¯
(qc

−)

and q∗
i = yc, ∀i , is a Nash equilibrium of Ŵe(k, 0). For such strategy profiles, the uniform price is equal to Pe(p∗, q∗) =

P(nyc) and each firm i’s payoff π i (p
∗, q∗) is equal to P(nyc)yc. By definition of p

¯
(qc

−), no firm has an incentive to undercut

any of its rivals’ prices and expand output above yc. Moreover, because yc is the unique Cournot equilibrium output,

pr(qc
−) = P(nyc) and π

¯
(qc

−) = P(nyc)yc, so that no firm has an incentive to set its price above P(nyc) (to sell strictly less

than yc) either. It follows that (p∗, q∗) is an equilibrium of Ŵe(k, 0).

In the remainder of the proof, we show that for u ∈ {e, a}, the equilibria characterized above are the only equilibria

of Ŵu(k, 0). In the analysis below, let (p∗, q∗) denote a pure strategy equilibrium and, for i ∈ N , let π̄i be firm i’s profit in

the equilibrium.

� Maximum Accepted Price rule

Lemma A1. Suppose k <
d(0)

n−1
; then, for every (p∗, q∗), p̄ > Pa(p∗, q∗) > 0 and p∗

i ≤ Pa(p∗, q∗), ∀i ∈ N .

Proof. It is clear that p̄ > Pa(p∗, q∗) > 0 because both Pa(p∗, q∗) = p̄ and Pa(p∗, q∗) = 0 imply π̄ j = 0, ∀ j . Because

k <
d(0)

n−1
, however, we have π

¯
> 0, a contradiction to π̄ j ≥ π

¯
in equilibrium. Finally, suppose there exists a firm i setting

p∗
i > Pa(p∗, q∗). Then firm i’s profit is equal to zero because its sales are zero. Hence, an argument similar to the above

applies. Q.E.D.

Lemma A2. If (p∗, q∗) is such that there exists a firm i ∈ N for which 0 ≤ p∗
i < Pa(p∗, q∗), then q∗

i = si(p∗
i | p∗, q∗) =

k.

Proof. The proof is in two parts. First we show that each firm i setting p∗
i < Pa(p∗, q∗) offers q∗

i such that q∗
i = k. Then,

we show that s∗
i = k follows. Suppose contrary to the statement of the lemma that there exists a firm i setting p∗

i < Pa(p∗,

q∗) and q∗
i < k. It is straightforward to show that for small enough ǫ > 0, Pa(p∗, q∗

i + ǫ, q∗
−i ) = Pa(p∗, q∗). However,

then Pa(p∗, q∗)(q∗
i + ǫ) > π̄i = Pa(p∗, q∗)q∗

i , a contradiction to (p∗
i , q∗

i ) being part of an equilibrium. Suppose now that

q∗
i = k > s∗

i . This can only be the case if firm i sells to residual demand at Pa(p∗, q∗). Then, however, by Definition 2, p∗
i

must be the uniform price, which contradicts p∗
i < Pa(p∗, q∗). Therefore, p∗

i < Pa(p∗, q∗) ⇒ q∗
i = si(p∗

i | p∗, q∗) = k.

Q.E.D.

Lemma A3. If (p∗, q∗) is such that Pa(p∗, q∗) > 0, then either (i) exactly one firm sets Pa(p∗, q∗), or (ii) si(p∗
i |

p∗, q∗) = k, ∀i ∈ N .
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Proof. Suppose contrary to the statement of the lemma that a group of l firms, l ≥ 2, tie at p = Pa(p∗, q∗) > 0. It

follows immediately that if firm h sets p∗
h = p, but sh(p | p∗, q∗) < k, then firm h can strictly increase its profit by slightly

undercutting firms setting p and offering capacity to earn:

p min{k̂, R(p | p∗, q∗)} > psh(p | p∗, q∗) = p min

{

q̂h,
q̂h

∑

j∈L(p) q̂ j

R(p | p∗, q∗)

}

.

This inequality and Lemma A2 imply that in equilibrium, either there is only one firm setting Pa(p∗, q∗) or si(p∗
i | p∗,

q∗) = k, ∀i ∈ N . Q.E.D.

Lemma A4. Suppose k ≤ yc; then in every equilibrium, Pa(p∗, q∗) = P(nk).

Proof. Suppose Pa(p∗, q∗) < P(nk). Then the (possibly multiple) firm(s) setting Pa(p∗, q∗) could increase profit strictly

by offering and selling capacity at P(nk) instead. Suppose Pa(p∗, q∗) > P(nk) > 0. In this case, from Lemma A3, there

can only be one firm, say i, setting the uniform price. As from Lemma A2, sj(p∗
j | p∗, q∗) = k, ∀ j �= i , it follows that

πi (p
∗, q∗) = Pa(p∗, q∗)si (p∗

i | p∗, q∗) < P(nk)k = π
¯

, a contradiction to equilibrium behavior. Q.E.D.

Lemma A5. Suppose k ≥
d(0)

n−1
; then in every equilibrium, Pa(p∗, q∗) = 0.

Proof. Suppose to the contrary that Pa(p∗, q∗) > 0. Then from Lemma A3 and k ≥
d(0)

n−1
, it must be the case that

there is a unique h setting p∗
h = Pa(p∗, q∗). However, from Lemma A2 and k ≥

d(0)

n−1
,
∑

j∈L−(Pa ) q̂ j = (n − 1) d(0)

n−1
= d(0),

contradicting the fact that residual demand is strictly positive at Pa(p∗, q∗) > 0 and, thus, the definition of the uniform

price. Therefore, Pa(p∗, q∗) = 0. Q.E.D.

The fact that the complete set of equilibria of Ŵa(k, 0) is given by (i)–(iii) follows from combining Lemmas A1–A5

and constructing strategy profiles that satisfy the properties in the lemmas. It is straightforward to show that the only such

strategy profiles from which no firm has an incentive to deviate are those characterized in Proposition 1. It is then clear

that all Nash equilibria of Ŵa(k, 0) are given by (i)–(iii).

Market Clearing Price rule. Lemma A6 below identifies the major difference between the two definitions of the uniform

price. When the Market Clearing Price rule is used, the uniform price may be a price not set by any firm. Lemma A6

identifies the properties that an equilibrium in which no firm sets the resulting uniform price must satisfy. It follows from

Lemma A6 that all such equilibria are given by strategy profiles we characterized and are contained in E e(k, 0) if k ≤ yc

and in C(0) if k > yc. In all other equilibria, at least one firm must set the uniform price and it is straightforward to show

that in this case, Lemmas A1–A5 derived for the Maximum Accepted Price rule apply to the Market Clearing Price rule

as well. Thus, all equilibria of Ŵe(k, 0) are characterized by (i)–(iii) in the statement of Proposition 1.

Lemma A6. If (p∗, q∗) is such that p∗
i �= Pe(p∗, q∗), ∀i ∈ N , then p∗

i < Pe(p∗, q∗) = P(n min{k, yc}) and q∗
i = si(p∗

i | p∗,

q∗) = min{k, yc}.

Proof. First, it is clear that Pe(p∗, q∗) > 0, because otherwise, it must be the case that there exists a firm j setting the uniform

price p∗
j = 0. Second, p∗

i < Pe(p∗, q∗) must hold for every i. If this were not the case, a firm setting its price strictly above

Pe(p∗, q∗) would obtain a payoff of zero, which is strictly less than what it would obtain by offering a positive quantity at

exactly Pe(p∗, q∗). It follows from the above arguments that p∗
i �= Pe(p∗, q∗), ∀i implies Pe(p∗, q∗) = P(

∑

i∈N q∗
i ). Now

suppose that k ≤ yc. Then it is clear that in equilibrium, Pe(p∗, q∗) = P(nk). Otherwise it must be the case that some

firm, say j, sets q∗
j < k, to earn P(

∑

i∈N q∗
i )q∗

j . However, k ≤ yc, such a firm could clearly increase its profit by offering k

at a price at or below the resulting uniform price to earn P(k +
∑

i∈N\{ j} q∗
i )k instead. Hence, we must have p∗

i < P(nk)

and q∗
i = si(p∗

i | p∗, q∗) = k.

Suppose now that k > yc. If an equilibrium (p∗, q∗) in which no firm sets the uniform price and at least one

firm does not offer the Cournot output exists, then, for i ∈ N , either q∗
i = k or q∗

i = r (
∑

h �=i q∗
h ). Equilibria with

q∗
i = k and p∗

i < Pe(p∗, q∗) ∀i ∈ N are not possible because each firm earns P(nk)k < π
¯

at such profiles.

Moreover, we can easily rule out more than one firm having q∗
i �= k. Now consider strategy profiles such that

there exists j for which q∗
j �= k and ∀i �= j , q∗

i = k. Then if p∗
h �= Pe(p∗, q∗) ∀h is to hold at such profiles, it

must be the case that q∗
j = r ((n − 1)k) = d(pr ) − (n − 1)k, p∗

i ≤ p
¯

∀i �= j , and Pe(p∗, q∗) = pr. If k ∈ (yc,
d(0)

n−1
),

it follows immediately from y
¯

> d(pr ) − (n − 1)k that a firm i for which q∗
i = k has an incentive to deviate from

such profiles. If k ≥
d(0)

n−1
, then pr = 0. Hence, p∗

i < pr = Pe(p∗, q∗) is not possible. This completes the proof of

Lemma A6. Q.E.D.

Finally, for both uniform price rules, simple computations show that for all values of capacity k and each firm

i ∈ N , there exists a pure strategy equilibrium in which firm i obtains its minmax payoff π
¯

. Q.E.D.

Proof of Lemma 3. To prove Lemma 3, we first show that τme satisfies the properties of a perfectly collusive stationary

path with equal sharing. From Definition 1, on τme, the assumption k >
d(pm )

n
implies that pi = p

¯
(qm

− ) < pm . Moreover,
∑n

i=1 qi = d(pm) implies that the uniform price is equal to pm. Because each firm sells its quantity ceiling of d(pm )

n
, its

one-period profit is equal to pm d(pm )

n
, as required on a perfectly collusive stationary path with equal sharing. We now
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show that there does not exist a perfectly collusive stationary path with equal sharing τ , τ �= τme, on which some firm i’s

incentive to deviate is strictly lower than it is on τme, i = 1, . . . , n.

Let τ be some perfectly collusive stationary path with equal sharing. Then τ must satisfy the properties stated in

Lemma 2.

(i) Suppose that on τ , some firms set their price equal to the monopoly price. We first show that the incentive to deviate

cannot increase for any of the firms if every firm i setting pi = pm also sets qi = k. To this effect, let l ≥ 1 be the number of

elements of L(pm). By (iii) in Lemma 2, for firms in L(pm), the residual demand is R(pm ) = d(pm) − (n − l) d(pm )

n
= l

d(pm )

n
.

Furthermore, equal sharing requires that if i ∈ L(pm), si = min{q̂i ,
q̂i

∑

j∈L(pm ) q̂ j
l d(pm )

n
} =

d(pm )

n
. However, then it is easy to

see that setting qi = k, ∀i ∈ L(pm) implies si =
d(pm )

n
. Hence every firm is selling its share of monopoly output at a

uniform price of pm. Moreover, the incentive to deviate of a firm in L(pm) cannot be larger than if qi < k, whereas the

incentive to deviate of a firm j setting pj < pm is unchanged.

(ii) We now show that if on some perfectly collusive stationary path with equal sharing τ , there exist i and j , i �= j ,

for which pi < pj < pm, then, if the path τ ′ differs from τ only insofar as pj is reduced to equal pi on τ ′, the incentive to

deviate of any firm cannot be greater on τ ′ than it is on τ . First, from Lemma 1, firm h’s deviation profit is weakly lower

on τ ′ than it is on τ , h = 1, . . . , n. Second, note that each firm’s one-period profit is the same on τ ′ as it is on τ . Because

firm h’s incentive to deviate on τ is given by the difference π ∗
h (p−h, q−h) − pm d(pm )

n
, π ∗

h (p′
−h, q−h) ≤ π ∗

h (p−h, q−h) implies

that, for every h = 1, . . . , n, the incentive to deviate on the perfectly collusive stationary path with equal sharing τ ′ is

weakly lower than it is on τ . It follows from the above arguments that in the remainder, we can restrict attention to paths

on which any firm setting its price equal to pm offers its capacity at that price and all firms setting price strictly below pm

all set the same price.

(iii) Next we show that on a perfectly collusive stationary path with equal sharing τ , a firm i’s incentive to deviate

is minimized when the remaining n − 1 firms set their price equal to p
¯
(qm

− ) (and thus offer exactly d(pm )

n
). In general,

by the definition of pr(q), the worst possible deviation profit firm i can guarantee itself when lower-price firms offer

q < d(0) is equal to

pr (q)[d(pr (q)) − q],

its residual demand monopoly profit after lower-price firms have sold their aggregate quantity. The above expression

is decreasing in q. Because on τ , every firm setting p < pm must offer d(pm )

n
, firm i’s worst possible deviation profit

is minimized when the number of low-price firms is the largest, that is, when the remaining firms’ aggregate quantity

offered is qm
−. In this case, firm i’s deviation profit is given by

pr (qm
− )[d(pr (qm

− )) − qm
− ] = π

¯
(qm

− ). (A1)

Note that it follows from k >
d(pm )

n
that p

¯
(qm

− ) ≤ pr (qm
− ) < pm . Furthermore, if on τ , each firm setting ph < pm sets

ph = p
¯
(qm

− ), then firm i’s profit from an optimal deviation is indeed equal to its worst possible deviation profit given

by (A1). It follows that if on the path τ , every firm sets its price equal to p
¯
(qm

− ) and offers d(pm )

n
, all firms have the

same incentive to deviate. Furthermore, each firm’s deviation profit is the lowest that can be obtained from a one-period

deviation on a perfectly collusive stationary path with equal sharing. Because τ = τme, we have shown that the path τme

minimizes all firms’ incentives to deviate in the class of perfectly collusive stationary paths with equal sharing. Q.E.D.

Proof of Proposition 3. We first characterize δ̄. From Lemma 2, it follows that the only perfectly collusive stationary path

with equal sharing on which every firm offers its capacity is τ sm, where on τ sm the price-quantity pairs for each firm are

as follows.

pi = pm and qi = k, ∀i .

From the definition of si, sales on τ sm are equal to k

nk
d(pm) =

d(pm )

n
and the uniform price is pm. Hence τ sm is a perfectly

collusive stationary path with equal sharing. From (1), on τ sm, the symmetric incentive constraints are

(1 − δ)pm

(

min{k, d(pm)} −
d(pm)

n

)

≤ δ

(

pm
d(pm)

n
− π

¯

)

. (A2)

Thus τ sm is sustainable if and only if (A2) holds. Solving for δ from (A2) satisfied with equality, we obtain

δ̄ =
pm min{k, d(pm)} − pm d(pm )

n

pm min{k, d(pm)} − π
¯

. (A3)

It follows from the above arguments that if perfect collusion with equal sharing is sustainable for δ < δ̄, it must be the

case that some firm withholds. Hence, for δ < δ̄, if perfect collusion with equal sharing is sustainable on a stationary

path, it must be the case that there exists N (δ) ∈ {1, . . . , n} such that on that path, N (δ) firms withhold capacity. We now

show that there exists δ
¯

e < δ̄ such that if δ ≥ δ
¯

e and n firms withhold capacity, then there exists a perfect equilibrium

stationary path that supports perfect collusion with equal sharing. To this effect, consider the path τme characterized in

Lemma 3. From Lemma 3, τme minimizes incentives to deviate. Furthermore, on τme, each firm’s deviation profit is given

by (A1). It thus follows that δ
¯

e is the value of δ that solves
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(1 − δ)

(

π
¯

(qm
− ) − pm

d(pm)

n

)

= δ

(

pm
d(pm)

n
− π

¯

)

.

After rearranging, we obtain

δ
¯

e =
π
¯

(qm
− ) − pm d(pm )

n

π
¯

(qm
− ) − π

¯

. (A4)

Because π
¯

(qm
− ) < pm min{k, d(pm)} holds for all values of k >

d(pm )

n
, δ

¯
e < δ̄ follows. We now show that the

maximum incentive to deviate on τme is strictly lower than on a perfectly collusive stationary path with equal sharing on

which no more than n − 1 firms withhold. Suppose τ ′′ �= τme is such a path. Then, on τ ′′, there must exist a firm i whose

deviation profit is greater than or equal to π
¯

(q), where q <
(n − 1)d(pm )

n
is the quantity offered by firm i’s rivals at prices

strictly below pm. Because qm
− =

(n − 1)d(pm )

n
and π

¯
(y) is strictly decreasing in y, qm

− > q implies π
¯

(qm
− ) < π

¯
(q). Hence, on

τ ′′, the maximum incentive to deviate is strictly greater than on τme. Hence, it follows that for δ = δ
¯

e, withholding by all

firms is required to sustain perfect collusion with equal sharing on a stationary path. Q.E.D.

Proof of Lemma 4. To prove Lemma 4, we first show that, for each i ∈ N , τma
i satisfies the properties of a perfectly

collusive stationary path with equal sharing. On τma
i , the assumption k >

d(pm )

n
implies that for j �= i, p j = p

¯
(qm

− ) < pm .

From Definition 2, pi = pm and
∑

j �=i q j = ( n − 1

n
)d(pm) implies that the uniform price is equal to pm. Because each

low-price firm sells its quantity ceiling of d(pm )

n
, its one-period profit is equal to pm d(pm )

n
. Moreover, firm i’s profit is equal

to pm(d(pm) − (n − 1)d(pm)/n) = pm d(pm )

n
as well. Hence, τma

i satisfies all of the requirements of a perfectly collusive

stationary path with equal sharing. We now show that there does not exist a perfectly collusive stationary path with equal

sharing τ on which the maximum incentive to deviate across firms is strictly less than on τma
i .

First, note that from Lemma 2, at least one firm has to set its price equal to pm. It follows from an argument similar

to (i) in the proof of Lemma 3 that if firm i sets pi = pm, then the incentive to deviate cannot increase for any of the firms

if qi = k. Arguments similar to (iii) in Lemma 3 establish that to minimize the incentive to deviate of a firm setting its

price equal to pm on the path, the remaining n − 1 firms should offer a total quantity equal to qm
− at prices no greater than

p
¯
(qm

− ).

Suppose l ≥ 1 firms set p < pm and offer d(pm )

n
each, as required by Lemma 2. Arguments similar to (ii) in the proof

of Lemma 3 imply that profits will not change for any of the firms, and incentives to deviate will be no higher, if each of

these firms sets its price equal to the minimum of the submitted prices. Furthermore, incentives to deviate cannot increase

for any of the firms, if the l low-price firms set p = p
¯
(qm

− ) rather than some p′ ∈ (p
¯
(qm

− ), pm). Suppose then that the l

low-price firms set p = p
¯
(qm

− ). It is straightforward to check that for such a firm, deviating from the path by undercutting

p
¯
(qm

− ) cannot be optimal if it results in the uniform price being reduced to p
¯
(qm

− ). If l = 1, the optimal deviation clearly

consists of undercutting pm and offering k, for every k. If l > 1 and firm j is a low-price firm, an optimal deviation takes

one of two possible forms depending on the value of k. Either firm j offers the minimum of k and a quantity infinitesimally

less than (n − l + 1)d(pm )

n
at any price at or below p

¯
(qm

− ) to obtain

pm min

{

k,
(n − l + 1)d(pm)

n

}

; (A5)

or firm j maximizes profit on residual demand after l − 1 low-price firms have sold their quantity d(pm )

n
to obtain

pr
(

q H
l

) [

d
(

pr
(

q H
l

))

− q H
l

]

, where q H
l ≡

(l − 1)d(pm)

n
. (A6)

Upon inspecting (A5) and (A6), it is clear that optimal deviation profits do not depend on p, the common price of the

low-price firms, as long as p ≤ p
¯
(qm

− ). Therefore, if each of the l firms sets p < p
¯
(qm

− ), incentives to deviate would not be

lower for any of the firms. If k ≤
(n − l + 1)d(pm )

n
, it is clear that pr(qH

l ) ≥ pm, and thus the deviation that yields (A6) is not

a possible deviation (as then the deviating firm would be setting a higher price than all n − 1 remaining firms). In this

case, firm j’s optimal deviation profit is given by (A5) and equals pmk. If (n − l + 1)d(pm )

n
< k ≤ r (q H

l ), then pr(qH
l ) = P(k +

qH
l ) < pm. In this case, firm j’s optimal deviation consists of selling its capacity at pr(qH

l ) < pm. Finally, if k > r (qH
l ),

pr(qH
l ) = P(r (qH

l ) + qH
l ) < pm and firm j’s optimal deviation consists of setting the residual demand monopoly price

after l − 1 firms have sold their quantity, and offering qj ∈ [r (qH
l ), k] for sale. It is clear that deviation profits in (A5) and

(A6) are nonincreasing in l. Therefore, they are minimized subject to the constraint that l ≤ n − 1, by setting l = n − 1.

It follows that on the path τma
i , all low-price firms have the same incentive to deviate. Moreover, it is straightforward to

check that this incentive to deviate is strictly higher than firm i’s. As we have argued that it is not possible to hold a firm

for which pj < pm to a lower incentive to deviate on a perfectly collusive stationary path with equal sharing, the proof of

Lemma 4 is complete. Q.E.D.

Proof of Proposition 4. For every k >
d(pm )

n
, it is clear that if no firm withholds output, perfect collusion with equal

sharing is sustainable on the stationary path if and only if the path τ sm defined in the proof of Proposition 3 is sustainable.

Hence, without any withholding, perfect collusion with equal sharing is sustainable on the stationary path if and only if

δ ≥ δ̄. A firm’s optimal one-period deviation profit on τ sm is equal to pm min{k, d(pm)}. From Lemma 4, on the path

that minimizes the maximum incentive to deviate, τma
i , the maximum incentive to deviate across firms, is the incentive to

deviate of any low-price firm j, for i , j ∈ N , j �= i . On τma
i , for j �= i , firm j’s optimal deviation profit is equal to either
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(A5) or (A6) above after substituting for l = n − 1. (A5) is then equivalent to pm min{k,
2d(pm )

n
}. It is clear that if n = 2 or

n > 2 and k ≤
2d(pm )

n
, for j �= i , firm j’s optimal deviation yields pmk, in which case τma

i does not strictly relax incentives

to deviate when compared to τ sm.

Now suppose n > 2 and k >
2d(pm )

n
. An argument similar to that made in the proof of Proposition 3 implies that

for δ < δ̄, if perfect collusion with equal sharing is sustainable on a stationary path, it must be the case that there exists

M(δ) ∈ {1, . . . , n} such that on that path, M(δ) firms withhold capacity. We now show that there exists δ
¯

a < δ̄ such that

if δ ≥ δ
¯

a and n − 1 firms withhold capacity, then there exists a perfect equilibrium stationary path that supports perfect

collusion with equal sharing. Indeed, consider the path τma
i . Because n > 2 and k >

2d(pm )

n
, on τma

i , for j �= i , firm j’s

payoff from an optimal deviation is given by (A6). Letting q H ≡
(n − 2)

n
d(pm), (A6) is equivalent to

π H ≡ pr
(

q H
) [

d
(

pr
(

q H
))

− q H
]

.

Because n > 2 and k >
2d(pm )

n
hold by assumption, P(k + qH ) < pm. Moreover, if k is such that pr(qH ) �= P(k + qH ),

then it is clear that because qH > 0, pr(qH ) < pm as well. Hence,

π H < pm min{k, d(pm)}. (A7)

Because Lemma 4 shows that τma
i minimizes the maximum incentive to deviate, if n > 2 and k >

2d(pm )

n
hold, δ

¯
a is the

solution in δ from any low-price firm’s incentive constraint satisfied with equality, which using (1) is given by

(1 − δ)

(

π H − pm
d(pm)

n

)

= δ

(

pm
d(pm)

n
− π

¯

)

.

After solving for δ in the above, we obtain

δ
¯

a =
π H − pm d(pm )

n

π H − π
¯

. (A8)

Using (A3) and (A8), it follows from (A7) that δ
¯

a < δ̄.

Finally, it is clear that the maximum deviation profit is strictly lower on τma
i than on any other perfectly collusive

stationary path with equal sharing on which no more than n − 2 firms withhold. Hence, for δ = δ
¯

a , withholding by at

least n − 1 firms is required to sustain perfect collusion with equal sharing on a stationary path and M(δ
¯

a) = n − 1.

Q.E.D.

Proof of Lemma 5. Let (pi , qi ) = ((p
li
i , q

li
i ))

L i

li =1 denote firm i’s strategy and let (p−i , q−i ) be a vector of firm i’s rival’s

strategies. We show that for both uniform price auction rules, π ∗
i = π ∗

i (p−i , q−i ) = sup(pi ,qi ) πi (pi , qi , p−i , q−i ) remains

the supremum of deviation payoffs when restricting firm i to strategies using a single step (L i = 1). Throughout the proof,

we ignore price steps li such that p
li
i is strictly greater than the uniform price. Such price steps are indeed irrelevant

because the quantity sold at such steps is equal to zero, so that firm i cannot increase its profit by including them in its

strategy. Let ps∗
i be the set of prices submitted by firm i and Pu∗ = Pu(pi, qi, p−i , q−i ) be the uniform price. First, Pu∗ = 0

is only possible if firm i’s residual demand at strictly positive prices is equal to zero. In this case, π ∗
i = 0 is independent

of firm i’s strategy and can therefore be obtained by using a single-step bidding function (for instance, offering k at pi =

0). Suppose that Pu∗ > 0. There are two cases: either Pu∗ ∈ ps∗
i or p

li
i < Pu∗, ∀li . Consider first the case Pu∗ ∈ ps∗

i . Under

both pricing rules, tying with a group of firms at Pu∗ cannot be optimal if si(P
u∗ | p, q) > 0 but s∗

i = si ((pi, qi), p−i , q−i )

< min{d(Pu∗), k}. Indeed, in this case, firm i could strictly increase its profit by slightly undercutting Pu∗. Suppose then

that s∗
i = min{d(Pu∗), k}. It is clear that s∗

i = d(Pu∗) is not possible if firm i is not the only firm setting the uniform price.

Suppose then that s∗
i = k. In this case, under both Definitions 1 and 2 for the uniform price, it is straightforward to show

that firm i can obtain π ∗
i = Pu∗k by using a one-step strategy (p, k), where p < Pu∗. The case in which Pu∗ ∈ ps∗

i and

si(P
u∗ | p, q) = 0 is similar to the case in which Pu∗ �∈ ps∗

i and is discussed below. We first address the case in which firm

i is the only firm with Pu∗ in its strategy. If firm i is the only firm with Pu∗ in its strategy, then

π ∗
i = Pu∗

⎡

⎣min

⎧

⎨

⎩

qi (P
u∗), d(Pu∗) −

∑

j∈N\{i}

∑

p∈ps
j

q j (p) −
∑

p∈ps∗
i \Pu∗

qi (p)

⎫

⎬

⎭

+
∑

p∈ps∗
i \Pu∗

qi (p)

⎤

⎦ .

Note that unless qi (P
u∗) = k < d(Pu∗) −

∑

j∈N\{i}

∑

p∈ps
j
q j (p) −

∑

p∈ps∗
i \Pu∗ qi (p) (in which case s∗

i = min{d(Pu∗), k}),

firm i would never set qi (P
u∗) < d(Pu∗) −

∑

j∈N\{i}

∑

p∈ps
j
q j (p) −

∑

p∈ps∗
i \Pu∗ qi (p). Thus

π ∗
i = Pu∗

⎡

⎣d(Pu∗) −
∑

j∈N\{i}

∑

p∈ps
j

q j (p)

⎤

⎦ .

However, this is exactly what firm i would obtain by setting the single step (Pu∗, q∗
i ), where q∗

i = d(Pu∗) −
∑

j∈N\{i}

∑

p∈ps
j
q j (p), instead. Finally, consider the case p

li
i < Pu∗, ∀li . Then, from Definitions 1 and 2, it must be

the case that π ∗
i = Pu∗s∗

i is independent of firm i’s prices p
li
i because p

li
i < Pu∗,∀li . A similar argument applies to the case

in which Pu∗ ∈ ps∗
i and si(P

u∗ | p, q) = 0, as the only price steps relevant to firm i’s sales are those for which p
li
i < Pu∗.

Therefore, in both cases, the single-step bidding function (p,
∑

z∈ps∗
i \{Pu∗}

qi (z)), where p < Pu∗, achieves a payoff equal

to π ∗
i . Q.E.D.

C© RAND 2007.
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Proof of Proposition 7. First, it is straightforward to show that τ ǫ is a perfectly collusive stationary path with equal

sharing. Furthermore, for ǫ ∈ (0, d(pm)], on τ ǫ , every firm has the same incentive to deviate in every period. It is simple

to check that if d(pm ) + (n − 1)ǫ

n
≥ k, a firm’s profit from an optimal unilateral deviation is obtained by expanding output up

to k at p
¯
(qǫ

−) and is equal to

π ∗
i = pmk. (A9)

If k >
d(pm ) + (n − 1)ǫ

n
, then profit from an optimal deviation is obtained by setting the residual demand monopoly price after

firm i’s rivals have sold qǫ
− and is equal to

π ∗
i = π

¯
(qǫ

−). (A10)

We now show that τ ǫ minimizes incentives to deviate in the class of perfectly collusive stationary paths with equal sharing.

First note that if ǫ = d(pm), then the quantity offered at the price pm must be no lower than d(pm). It follows immediately

that the path that minimizes incentives to deviate is τ ǫ , the path on which all firms offer their capacity at the monopoly

price in every period. In the remainder of the proof of Proposition 7, assume ǫ ∈ (0, d(pm)).

Because on a perfectly collusive stationary path with equal sharing it must be the case that Pa = pm, it is clear

that incentives to deviate cannot be lowered by moving some quantity offered at p
¯
(qǫ

−) to some price strictly between

p
¯
(qǫ

−) and pm. Furthermore, for every i, we can rule out steps such that p > Pa = pm and qi(p) > 0 because setting such

steps does not affect the outcome (because a firm’s sales are equal to zero at such prices), but may increase incentives to

deviate. Because on a perfectly collusive stationary path with equal sharing, for a given (p
li
i , q

li
i ) such that p

li
i < pm , p

li
i

affects neither firm i’s sales nor its profit, it follows that we can, without loss of generality, restrict attention to stationary

paths on which firms use at most two steps in their bidding function. Moreover, the analysis may be further restricted

to the two-step bidding functions that satisfy the following: if there exists an i and an li for which p
li
i ∈ ps

i is such that

p
li
i < pm , then p

li
i can be reduced to p = minh,lh {p

lh
h } with the corresponding quantity q

li
i provided at that p. Indeed, this

neither affects the profit obtained by any of the firms nor can it increase incentives to deviate. Hence all firms with a

step at a price strictly below pm may move all such steps to the common price p = minh,lh {p
lh
h } without affecting firm

profits or increasing the incentive of any firm to deviate. Furthermore, letting q−i =
∑

h �=i qh(p) be the total quantity

offered by firm i’s rivals at the common price p, the fact that firms have at most two steps in their strategy implies that

q−i is the quantity offered at every price in the interval [p, pm). It follows that, other things being equal, the maximum

incentive to deviate is minimized if p is set equal to pl = mini∈N {p
¯
(q−i )}, the highest price that no firm would want to

undercut. Additionally, for every firm j such that pm ∈ ps
j , setting qj(pm) = k − qj(pl) cannot increase any firm’s incentive

to deviate (as then, when firm j ties with a group of firms at pm, it cannot deviate by increasing its quantity offered at

pm without decreasing its quantity offered at pl). Finally, to minimize firm i’s deviation profit (and thus its incentive to

deviate), q−i , the quantity offered by firm i’s rivals at a price p strictly below pm, must be as large as possible. This quantity

must also satisfy
∑

h∈N qh(p) = q−i + qi (p) ≤ d(pm) − ǫ. Thus for every i, this maximum quantity is obtained when
∑

h∈N qh(p) = d(pm) − ǫ or, equivalently, q−i = d(pm) − ǫ − qi(p). It follows that the maximum incentive to deviate

is minimized at (q 1(p), . . . , qn(p)), satisfying q−i = d(pm) − ǫ − qi(p) = d(pm) − ǫ − qj(p) = q− j , ∀i , j , i �= j and
∑

h∈N qh(p) = d(pm) − ǫ. This is a system of n linear equations in n unknowns (qi(p) for i = 1, . . . , n). Solving the system

yields q1(p) = · · · = qi (p) = · · · = qn(p) =
d(pm ) − ǫ

n
. It then follows directly that to minimize the maximum incentive to

deviate, pl = p
¯
(qǫ

−) is sufficient, and that each firm must offer a quantity equal to k − [ d(pm ) − ǫ

n
] at pm. Q.E.D.
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