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PERFORMANCE METRICS FOR ALGORITHMIC

TRADERS

DALE W.R. ROSENTHAL

Abstract. Portfolio traders may split large orders into smaller orders

scheduled over time to reduce price impact. Since handling many orders

is cumbersome, these smaller orders are often traded in an automated

(“algorithmic”) manner. We propose metrics using these orders to help

measure various trading-related skills with low noise. Managers may

use these metrics to assess how separate parts of the trading process

contribute execution, market timing, and order scheduling skills versus

luck. These metrics could save 4 basis points in cost per trade yielding

a 15% reduction in expenses and saving $7.3 billion annually for US-

domiciled equity mutual funds alone. The metrics also allow recovery of

parameters for a price impact model with lasting and ephemeral effects.

Some metrics may help evaluate external intermediaries, test for possible

front-running, and indicate sloppy or overly passive trading.

JEL: G12, G14, G23, G24

1. Introduction

Traders with a portfolio of orders often split and execute those orders

across time to hide alpha or reduce execution costs in light of market liquid-

ity. Berke (2010) estimates that over 30% of volume is the result of order

splitting. McPartland (2010) estimated that $13.4 billion would be spent

on trading infrastructure globally in 2010. Since the use of order splitting,
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smart order routing, and other algorithmic trading techniques is becoming

widespread, we can expect that a significant portion of spending on trading

infrastructure is for such tools. Indeed, Honoré (2009) estimated US finan-

cial firms would spend $1 billion on smart order routing alone (to access

superior prices) in 2010. For such a large amount of money spent, man-

agers must know the value of high-speed execution systems, market timing

models, and order schedulers.

In particular, we seek to distinguish if good trading performance is due

to execution skill, short-term market timing ability, skillful scheduling of

orders, or just luck. This article proposes metrics to help portfolio managers

measure these skills and reduce the noise of these measurements.

Significant savings may be achieved by application of the metrics we pro-

pose. In 2010, the assets under management in equity and hybrid mutual

funds was about $5.6 trillion in the US with the US comprising 48% of the

world market, according to the Investment Company Institute. Those funds

had about 64% turnover annually and expense ratios of 0.87% for equity

funds and 0.84% for hybrid funds. Simulation results with the proposed

metrics show possible savings of 2 basis points per trade for both trading

and order scheduling skills (a total of 8 bp from entry to exit of a position).

Given these figures, a typical fund could save 13 basis points per year. Across

US-domiciled equity mutual funds, expenses could thus be reduced by al-

most 15% leading to a savings of $7.3 billion annually.1 One could expect

even greater savings for pension funds and insurance companies.

High-speed smart order routing and execution management systems (EMS)

were ushered in by Reg NMS (in the US) and the MiFID directive (in the

EU). Reg NMS’s demand that each order be provided “best execution” could

1Bond funds and internationally-domiciled equity funds would also benefit from the metrics
proposed here; however, the benefit to those funds is more difficult to assess.
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be interpreted as the right to challenge any trade which did not achieve the

best price aross all venues at that time. While Reg NMS allows for other in-

terpretations of best execution, a best-price interpretation is the most likely

for small orders where liquidity is not a concern. If we expand the time

window of comparison, best execution would likely imply achieving a price

close to that achieved by others trading at about the same time. This com-

parison is one of the proposed metrics. Heston et al. (2010) suggested such a

measure relates to spreads and impact incurred only by an individual trader;

that suggestion is shown to be correct.

Under Reg NMS, larger orders might be challenged as being too large

to be executed at one time. This issue is typically handled by an order

management system (OMS) or trading engine which schedules (i.e. splits)

orders across time. There are many reasons to split the execution of large

orders. Splitting an order to hide alpha was studied by Kyle (1985). Bert-

simas and Lo (1998) examined order splitting to optimize execution costs.

Almgren and Chriss (2001) extended this to reduce the mean-variance cost

of trading and to create the idea of an efficient execution frontier. Engle and

Ferstenberg (2007) showed that combining the portfolio and order schedul-

ing optimization yields a better optimal portfolio. The failure to do so may

explain why portfolios frequently underperform the Sharpe ratios suggested

by standard portfolio optimizations. Therefore, the order scheduling opti-

mization must be an integral part of portfolio optimization if investment

managers are to get useful forecasts of Sharpe ratios. Metrics proposed here

may help investment managers by offering methods to estimate parameters

needed to combine the order splitting and investment optimizations.

When markets are stagnant and returns are low, small transactions costs

may consume a large fraction of returns or, even worse, result in negative

returns. For large endowments, pension funds, retirement plans, and mutual
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funds, these problems are particularly acute; the large portfolio trades they

execute may greatly strain market liquidity. Given the amount of money

involved and the liquidity strain, these portfolio trades must be handled with

the utmost skill and care: poor executions, lousy market timing, or careless

order scheduling may be very costly. Indeed, a cross-sectional comparison of

mutual fund performance by Fama and French (2010) shows that costs tend

to flow through to lower returns; however, they along with Puckett and Yan

(2011) also find that some funds have persistent outperformance. Puckett

and Yan relate this outperformance to trading skill.

We propose metrics which help portfolio managers measure various trad-

ing skills by isolating the effect of luck on a set of trades. Some metrics are

resistant to gaming and may be used to evaluate external traders. Two of

the metrics may even detect some basic forms of front-running or “trading

alongside.” Finally, many of the metrics here may be taken in isolation;

this allows academics and policy makers to study various aspects of market

quality across venues or time.

2. Developing the Metrics: Considering Counterfactuals

A rich literature exists on investment performance metrics. Yet despite

the increasing focus on trading, less work has been done on trading per-

formance metrics. We keep in mind the helpful guidelines set by Lehmann

(2003) and develop the metrics by asking counterfactual questions. In this

way, our reasoning is similar to that of another metric, the implementa-

tion shortfall of Perold (1988). The implementation shortfall compares the

average price achieved plus an estimate of opportunity costs to the initial

portfolio price. The metrics are therefore complementary to the implemen-

tation shortfall. The set of questions also results in many of the metrics

decomposing overall trading performance.
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2.1. Terminology. To discuss order splitting, we need clear terminology.

I follow Engle and Ferstenberg (2007) and call the order which is split the

parent order ; the orders generated by splitting I call child orders. A set of

parent orders executed together constitute a portfolio order.

I refer to metrics being suitable for internal or external use in the sense of

Lehmann (2003). Internal use presumes a performance auditor who does not

seek to distort or game metrics and who knows all investment and trading

decisions including actions considered but not taken. External use requires

that an auditor know only the investment decision and executions; however,

metrics for external use must be resistant to gaming.

Since the number of child orders generated by order scheduling may be

large, the trading process is often automated. Algorithmic trading is the

automated, often research-driven, creation and management of orders. Our

concern is mostly large algorithmically-traded portfolio orders with parent

orders split into many child orders. We examine child orders and executions

across instruments and days by splitting time into bins. While bins are

contiguous, their lengths of time may vary. Thus we can choose shorter bins

when volume or volatility is typically higher.

2.2. Parent Order Metrics. The first set of metrics are the parent order

metrics which ask the following questions:

• What if we began trading when somebody external knew of our order?

• What was the marginal (or incremental) cost of our last trade?

• What would the profit be for providing liquidity to that last trade?

• What is the lasting effect our trading had on prices?

• How much worse did we do than that lasting effect on prices?

The answers to these questions give us the parent order metrics which

decompose trading effects at an instrument level. We can answer the last



6 DALE W.R. ROSENTHAL

three questions by examining a period after trading: a parent order traded

over an entire day might use the following day for comparison.

Information leakage measures the instrument’s value drift between when

orders were revealed (perhaps via bidding for the portfolio of orders) and

when those orders began to be traded. An order revealed, even partially, for

pricing may be front run. This metric allows testing if order information is

leaking to the market.

Incremental impact measures the difference between the price at trading

end and the average execution price. That difference is the incremental effect

of additional trading on the average price. If there were no price impact due

to trading, this quantity would have expectation 0.

Decaying impact is the difference between the instrument price at the

end of trading and some fair price in the next period; since some impact

decays after trading, this measures the decay of non-temporary price impact

(realized implementation shortfall and incremental impact) over the post-

trading period. This is a proxy for what a market maker would earn by

providing liquidity for the last scheduled orders.2

Permanent impact is the difference between the price at the start of trad-

ing and the next period’s fair price; this measures the lasting price change.

To the extent a parent order contains economic information, we should be-

lieve that E(PI) > 0. Noise traders and liquidity providers may have ex-

pectationally negative permanent impact.

Adverse selection is the difference between the implementation shortfall

and the next period’s fair price; this is the cost which dissipates over the

2A market maker providing liquidity effectively trades against their client at the end of
trading. For example, a client making a large purchase might increase the price of a
security. A market maker could then provide liquidity or “facilitate” the trade by selling
short to the client for the last order. This might prevent the client from pushing prices
higher and thus is sometimes referred to as “price improvement.” Nonetheless, the market
maker is then short a security which is likely to decline in price. Some clients might view
this as an acceptable risk-shifting agreement; others are not so sanguine.
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next period. Thus this includes both price impact and poor child order

execution. Microstructure models suggest such costs are due in part to

market maker concerns about adverse selection. Without adverse selection,

we would expect a trading period fair price to be close to the next-period

fair price.

2.3. Intertemporal Metrics. The second set of metrics use individual exe-

cutions to build intertemporal metrics which answer the following questions:

• What if each child order had been filled at a fair price?

• What if each child order had been filled when it was scheduled?

• What if each child order were scheduled to match the typical distri-

bution of volume over time?

• What if each child order were scheduled to match the actual distri-

bution of volume over time?

These intertemporal metrics measure various skills and noise across time.

They do so by decomposing parent order performance by looking at child

orders and executions in the context of their respective time bins. The

first three metrics (trading, fill time, and ordertiming shortfalls) are the

most informative and correspond to separate decisions about how to trade,

how patient to be with limit orders or unsent trades, and how to schedule

child orders. These metrics also let us see if particular times of day are

troublesome.

Trading shortfall compares our average execution price in each bin to

a fair price for that bin. Thus the main determinant of trading shortfall

should be execution skill. This should reduce much of the noise in trading

performance and allow us to see execution quality more clearly. If we could

consistently achieve superior executions, we would expect a negative trading

shortfall. Algorithmic traders optimizing execution strategies should see the
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effects of those changes manifested in trading shortfall. The performance of

an EMS configured to execute trades in a short window of time would be

encapsulated by this metric.

Fill time shortfall measures the cost of foregoing immediate execution of

child orders, i.e. the cost of diverging from our execution plan. An EMS

or OMS configured to let orders sit passively in hopes of better prices is

essentially timing the market over a short horizon; thus the fill time shortfall

attempts to assess short-term market timing skill. This metric encapsulates

the “strategy deviations” discussed by Kissell and Malamut (2005), i.e. the

benefit of sacrificing execution immediacy for price sensitivity.

Order timing shortfall measures the cost of not trading according to the

average distribution of volume over time. A negative shortfall suggests a

strategy deviates from trading in line with expected volume when prices are

advantageous. The performance of an OMS, trading engine, or algorithmic

trader creating order schedules would be encapsulated by the order timing

shortfall. This metric can also be seen as capturing the performance of a

chosen point on the efficient frontier of trading (i.e. a chosen order schedule).

Volume shortfall measures the cost of volume distribution variation or

noise. This is done by comparing the cost of executing orders following

the average versus the actual volume distribution. Since the average volume

distribution is an (unconditional) expectation, we expect this metric to have

mean 0 (as is true for most noise terms).

Finally, the perfect VWAP shortfall measures the difference between the

price at the start of trading and a basic volume-weighted average price

(VWAP) strategy of splitting orders according to the average volume dis-

tribution. This does not answer one of the above questions — since it is

needed merely for the definition of the metrics.
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3. Mathematically Defining the Metrics

All decompositions assume we have no alpha or have pre-subtracted it.3

We also assume that, over short to intermediate time frames, the VWAP

is fair (i.e. unbeatable on average without alpha). From experience and

discussions with practitioners, this seems reasonable: No practitioners con-

sulted thought VWAP could be beat without alpha. Opiela (2006) quotes a

practitioner who found various trading algorithms missed VWAP by 1/4 of a

cent (about 1/2 bp) and that this is consistent with performance claimed by

other trading algorithm vendors. We later prove that, absent alpha, VWAP

is a fair price and use this to derive some basic asymptotic properties.

To rigorously define these ideas, we say that trading starts at time t = 0,

ends at time t = T , and:

q, q̃ = signed ordered, executed amount (e.g. shares);

p−, pt = price at first desire to trade, price at time t;

p̄T , p̌+ = average fill price, next-period fair price.

3.1. Defining the Parent Order Metrics. The parent order metrics offer

more insight into how well a parent order was traded beyond what the

realized implementation shortfall measures. These metrics are defined for a

parent order but examining them at a portfolio order level reduces noise.

To recap: Information leakage (IL) is the price change from order revela-

tion to trading start. Incremental impact (II) compares the average price to

the price at trading end. Decaying impact (DI) compares the price at trad-

ing end to the next-period fair price. Permanent impact (PI) compares the

starting price to the next-day fair price. Adverse selection (AS) compares

the average price to the next-period fair price. Table 1 gives the definitions

3If we expect prices to increase by 4 basis points over the period, a purchase with an
implementation shortfall of 10 basis points should only explain 6 basis points of shortfall.
However, a sale should explain 14 basis points of shortfall.
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of these metrics while Figure 1 illustrates them. Note that they yield two

equalities for the realized implementation shortfall RIS = q̃(p̄T − p0) of

Perold (1988):

RIS = PI +AS = PI +DI − II.(1)

The metrics are summarized in Table 1.

Metric Definition Concept
Information Leakage (IL) q(p0 − p−) Pre-trade price drift
Incremental Impact (II) q̃(pT − p̄T ) Marginal cost of last trade
Decaying Impact (DI) q̃(pT − p̌+) Profit of providing liquidity
Permanent Impact (PI) q̃(p̌+ − p0) Information dissemination cost
Adverse Selection (AS) q̃(p̄T − p̌+) Average price vs post-trade.

Table 1. Definitions and concepts for parent order metrics.
The realized implementation shortfall, RIS = q̃(p̄T − p0),
may be composed of these metrics via RIS = PI + AS =
PI +DI − II.
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Figure 1. Price versus time with parent order metrics.
Dashed lines show our average fill price and the next-period
fair price.
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3.2. Defining the Intertemporal Metrics. For more detail, we analyze

child order executions. This lets us answer how much of a parent order’s

metrics (from the preceding subsection) are due to luck versus different skills.

One caveat bears mentioning, however: While these metrics are defined on

a parent order level, care should be taken if they are examined below the

portfolio order level. Focusing on one securitiy in isolation may miss the

interaction of how parent orders across the portfolio of orders are scheduled

or traded. For example, a long-short portfolio might schedule its technology

buys and sells to stay balanced throughout the trading period.

To do these analyses, the trading period is partitioned into “bins” to

define the decompositions.4 As in the preceding subsection, we use a “fair”

price to assess execution quality — although we now do so for each time

bin. We then compare how we would have done had we (i) achieved fair bin

prices; (ii) executed all child orders when scheduled; (iii) traded in line with

the expected volume distribution; and (iv) predicted volumes correctly.

This more detailed decomposition requires more notation:

qj = child order quantity in bin j (q =
∑

j qj);

q̃j = child order quantity filled in bin j (q̃ =
∑

j q̃j);

Vj , V̄j = realized, average volume in bin j (V =
∑

j Vj);

Dj , D̄j = realized, average fraction of period volume in bin j;

p̌j = fair price in bin j; and,

p̄j = realized average price in bin j.

We again consider the realized part of the implementation shortfall of a

security, RIS =
∑

j q̃j p̄j − q̃p0. We take no position on whether this is an

appropriate execution benchmark nor does this choice affect decomposition

definitions.5 For a benchmark price of the starting price, p0, this is the

4The decompositions could also be defined using kernel estimators.
5Other possible benchmarks include VWAP and auction (open/close) prices.
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same as
∑

s κbs|qs| in Lehmann (2003). We then decompose the realized

implementation shortfall:

RIS =
∑

j

q̃j(p̄j − p̌j)

︸ ︷︷ ︸

Trading Shortfall

+
∑

j

(q̃j − q̃
qj
q
)p̌j

︸ ︷︷ ︸

Fill Time Shortfall

+
∑

j

q̃(
qj
q
− D̄j)p̌j

︸ ︷︷ ︸

Order Timing Shortfall

+

+
∑

j

q̃(D̄j −Dj)p̌j

︸ ︷︷ ︸

Volume Shortfall

+
∑

j

q̃(Dj p̌j − p0)

︸ ︷︷ ︸

Perfect VWAP Shortfall

(2)

Recapping these definitions: Trading Shortfall (TS) measures how we do

in each bin versus fair prices for those bins. Fill time shortfall (FTS) mea-

sures the cost of the realized versus desired execution timing.6 Order timing

shortfall (OTS) measures the cost of executing following the desired order

schedule versus the average volume distribution. Volume shortfall (V S)

measures the cost due to volume distribution noise by comparing the cost

of executing orders following the average versus the actual volume distribu-

tion. Perfect VWAP shortfall (PV S) measures the difference between using

a VWAP benchmark and the initial price; this is needed to define the other

metrics. Apart from the trading shortfall, the intertemporal metrics use the

fair price in each time bin (since that price is independent of trading skill).

Since these metrics are part of a decomposition, they are likely to be

inter-dependent (except for the volume shortfall which, by construction, is

orthogonal to the other metrics). However, the trading shortfall, fill time

shortfall, and order timing shortfall all correspond to products or decisions

made on a trading desk. EMS products such as Morgan Stanley’s SORT,

and Goldman Sachs’s Sigma X would affect the trading shortfall. They

could also affect the fill time shortfall if they were allowed to let orders sit

6We use qj/q for the desired execution timing distribution. This assumes orders are sent
when we desire executions.
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for more than a short period of time. OMS and trading engine products such

as Morgan Stanley’s Benchmark Execution Strategies (BXS) and Goldman

Sachs’s Algorithmic Trading (GSAT) would affect the order timing shortfall.

4. Analysis: Moments, Error, and Parameter Estimation

To explore the meaning and use of these metrics, we need a fair price for

each bin and a price impact model. Until now, we have used VWAP as a

fair price without justification. We now justify that usage so that we may

check our intuition and see how the metrics perform.

4.1. Fair Price for Comparison. Since a fair price should not be beatable

on average, a fair guess would be to use VWAP. To show this qualifies as

a fair price, we begin with a painless proof. We then show that attaining

VWAP may be difficult.

Proposition 1 (VWAP is Fair). Assume the price impact of trading is

arbitrage-free as in Huberman and Stanzl (2004); we have no alpha; and,

VWAP is measured with pre-specified begin and end times which coincide

with the period of trading. Then, a trader cannot expect to beat VWAP.

Proof. By Huberman and Stanzl, one trader cannot beat their average price

nor expect to make quasi-arbitrage profits.

Two traders active over the trading period cannot beat their average

prices nor make arbitrage profits knowing only their own trades (implied

by “no alpha”). Thus they cannot expect to beat the other’s average price.

Since VWAP is a trade-size-weighted average of unbeatable prices, neither

trader can expect to beat VWAP.

Finally, assume k traders cannot beat VWAP without alpha. For k + 1

traders, the k+1-st trader cannot make arbitrage profits nor beat the average

price of the first k traders without alpha. None of the first k traders can make
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arbitrage profits nor beat the average price of the k + 1-st trader without

alpha. Since none of the traders can expect to beat another’s average price,

none can expect to beat VWAP. �

Corollary 1 (VWAP May Be Unattainable). Under the setup for Proposi-

tion 1: Suppose one or more traders have alpha while the others do not. In

that case, the traders without alpha should expect to do worse than VWAP.

The proof is obvious given the proposition. From here forward, we assume

a fair price p̌j is the bin j VWAP and p̌+ is the post-trading period VWAP.

4.2. Dynamics. We use a model with three types of price impact: perma-

nent, decaying (to 0), and temporary (affecting only the generating trade).

These are parameterized by Greek letters π, δ, and (τ, φ).

As in Almgren and Chriss (2001) and Obizhaeva and Wang (2006), we

assume continuous trading at a rate q̃j/tj within a bin j. Trading induces

permanent impact (π) linear in quantity and decaying impact (δ) decreasing

geometrically from an initial impact linear in quantity. Temporary impact

(τ) is linear in the trading rate plus a fixed fee (φ) per trade.7 We can then

write the volume and price evolution equations:

Vj = νj + |q̃j | νj
indep∼ (µνj , σ

2
νj ) νj > 0(3)

pj+1,0 = p0 +

j
∑

k=1

[

σp,kZk + πq̃k
︸︷︷︸

permanent

+ δj+1−kq̃k
︸ ︷︷ ︸

decaying

]

Zk
iid∼ (0, 1)(4)

p̄j = p0 +

j
∑

k=1

[

σp,kZk + πq̃k
︸︷︷︸

permanent

+ δj+1−kq̃k
︸ ︷︷ ︸

decaying

]

+ τ
q̃j
tj

+ φ sgn(q̃j)

︸ ︷︷ ︸

temporary

(5)

where νj ⊥⊥ Zk for all j, k. No distributional assumptions are made on the

ν’s or Z’s beyond their support, mean, and variance.

7The decaying term is nearly equivalent to that in the model of Obizhaeva and Wang
(2006) and allows for price impact which dissipates after trading a parent order.
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These allow us to compute the bin VWAP and post-trade period VWAP:

p̌j = p0 +

j
∑

k=1

[

σp,kZk + πq̃k + δj+1−kq̃k

]

+ q̃j
τ
|q̃j |
tj

+ φ

Vj
,(6)

p̌+ = p0 + πq̃ +
n∑

j=1

Dj,+(σp,jZj + δj
n∑

k=1

δn+1−kq̃k

︸ ︷︷ ︸

decaying impact

).(7)

4.3. Analyzing Parent Order Metrics. We analyze the parent order

metrics along with the realized implementation shortfall for comparison.

To do this, we assume a probability triple at any time t (Ω,Ft,P) with

Ft’s encapsulating all information known at time t. This yields the results

in Table 2. We next make some assumptions about bin lengths and the

volume distribution to simplify the full equations and gain insight into the

price impact model parameters.

Metric E(·) Var(·)
IL|F− q(p0 − p−) = 0 q2σ2

p(t0 − t−)

RIS|F0
∑n

j=1

∑j
k=1

[
πq̃j q̃k

q̃ +
δj+1−k q̃j q̃k

q̃

]
∑n

j=1

(
∑n

k=j σp,kq̃k

)2

+ τ
q̃

∑n
j=1

q̃2j
tj

+ φ sgn(q̃j)

II|F0 π
∑n

j=1

∑n
k=j+1

q̃j q̃k
q̃

∑n−1
j=1

(
∑j

k=1 σp,kq̃k

)2

+δ
∑n

j=1

[

δn−j q̃j −
∑j

k=1
δj−k q̃j q̃k

q̃

]

− τ
q̃

∑n
j=1 q̃

2
j /tj − φ sgn(q̃j)

AS|F0
∑n

j=1

∑j
k=1

[
πq̃j q̃k

q̃ +
δj+1−k q̃j q̃k

q̃

]
∑n

j=2

(
∑j−1

k=1 σp,kq̃k

)2

+ τ
q̃

∑n
j=1 q̃

2
j /tj + φ sgn(q̃j)− πq̃ +q̃2

∑n
j=1

(
∑n

k=j σp,kD̄k

)2

−∑n
j=1 δ

jD̄j
∑n

k=1 δ
n+1−kq̃k

DI|FT
∑n

k=1 δ
n+1−kq̃k

(

1−
∑n

j=1 δ
jD̄j

)

q̃2
∑n

j=1

(
∑n

k=j σp,kD̄k

)2

PI|F0 πq̃ +
∑n

k=1 δ
n+1−kq̃k

∑n
j=1 δ

jD̄j q̃2
∑n

j=1

(
∑n

k=j σp,kD̄k

)2

+q̃2σ2
p

Table 2. Parent order metric expectations and variances.
The summations are over n child orders.
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We define time bins (via tj ’s) so all q̃j = q̃/n. (We assume this makes

σp,j = σp/
√
n to first order.) This simplifies the formulæ for realized imple-

mentation shortfall and incremental impact (RIS and II). If the expected

volume distribution is non-degenerate, we can also simplify the AS, DI, and

PI formulæ.8 The results of these simplifications are shown in Table 3.

Metric E(·) Var(·)
RIS|F0 πq̃ n+1

2n + q̃δ
n(1−δ) + τ q̃

n2

∑n
j=1

1
tj
+ φ sgn(q̃j) σ2

p q̃
2 5n2+6n+7

6n2

II|F0 πq̃ n−1
2n − τ q̃

n2

∑n
j=1

1
tj
− φ sgn(q̃j) σ2

p q̃
2 (n−1)(2n−1)

6n2

DI|FT
q̃δ

n(1−δ) σ2
p q̃

2 5n2+6n+7
6n2

PI|F0 πq̃ σ2
p q̃

2 11n2+6n+7
6n2

AS|F0
q̃δ

n(1−δ) − πq̃ n+1
2n + τ q̃

n2

∑n
j=1

1
tj
+ φ sgn(q̃j) σ2

p q̃
2 2n2+4

3n2

Table 3. Simplified parent order metric expectations and
variances. Expectation approximations are of O(1/n2) where
n is the number of child orders.

4.4. Analyzing Intertemporal Metrics. Intertemporal metrics depend

heavily on the strategies for creating and executing orders. Some intertem-

poral metrics are, expectationally, covariances and relate expected changes

in market conditions, order placement strategies, and order decisions as men-

tioned in Lehmann (2003). With that in mind, we examine the intertemporal

metrics in light of the impact model.

Trading Shortfall (TS) is the quantity-weighted sum of the difference

between our bin average prices and the bin VWAPs:

E(TS|F0) =
n∑

j=1

q̃j

(

τ
|q̃j |
tj

+ φ

)(

1− |q̃j |
|q̃j |+ µνj

)

,(8)

Var(TS|F0) =

n∑

j=1

q̃4j

(

τ
|q̃j |
tj

+ φ

)2 σ2
νj

(|q̃j |+ µνj )
4
.(9)

8Formally, we assume that D̄j = O(1/n) where n is the number of child orders.
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Trading shortfall is thus directly affected by temporary impact alone. This

corroborates findings by Heston et al. (2010).

Fill Time Shortfall (FTS) measures the cost of our orders being filled at

times different from when we send them:

E(FTS|F0) = q̃Cov(q̃·/q̃ − q·/q, p̌·),(10)

Var(FTS|F0) =
n∑

k=1

(
n∑

j=k

σp,k(q̃j − q̃
qj
q
)

)2

+
n∑

j=1

(q̃j − q̃
qj
q
)2(τ

|q̃j |
tj

+ φ)2q̃2j
σ2
νj

(µνj + |q̃j |)4
.

(11)

The expectation of fill time shortfall yields the relation between divergence

from an execution schedule and better prices. A positive covariance would

imply a tendency to have orders filled when prices are disadvantageous.

Order Timing Shortfall (OTS) measures the cost of sending orders ac-

cording to our desired schedule versus the average volume distribution:

E(OTS|F0) = q̃Cov(q·/q − D̄·, p̌·),(12)

Var(OTS|F0) = q̃2
n∑

k=1

(
n∑

j=k

σp,j(
qj
q
− D̄j)

)2

+ q̃2
n∑

j=1

(
qj
q
− D̄j)

2(τ
|q̃j |
tj

+ φ)2q̃2j
σ2
νj

(µνj + |q̃j |)4
.

(13)

The expectation of order timing shortfall is the covariance between prices

and the divergence of our planned execution schedule from the actual volume

distribution. A positive covariance implies a tendency to send orders when

prices are disadvantageous versus sending orders in line with trading volume.

The last two intertemporal metrics do not measure performance. The Vol-

ume Shortfall (V S) measures the cost due to divergence between the actual

and average volume distribution. If we take expectations, we may write it
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as the covariance between prices and differences of the realized and average

volume distribution. This term is random noise in the volume distribution

(hence Var(V S) is omitted). The Perfect VWAP Shortfall (PV S) measures

the cost of a VWAP benchmark versus the benchmark we instead chose.

This metric is merely needed for definition of the other decompositions.

4.5. Recovering the Price Impact Parameters. Using two parent order

metrics and the trading shortfall, we can recover the price impact model

parameters.

The permanent impact (PI) and decaying impact (DI) allow us to re-

cover the permanent π and decaying δ parameters by linear and nonlinear

regressions of PI and DI on executed quantities:

PI = β0,P I + πq̃ + ǫ(14)

DI = β0,DI +
δ

1− δ

q̃

n
+ ǫ.(15)

The O(1/n2) bias terms in the PI and DI equations should be small for

parent orders split into many child orders (i.e. n large). If we split orders

into differing numbers of n child orders, we can add the O(1/n2) terms to

the above regressions to correct for biases.9

We recover the temporary (τ, φ) parameters by linear regression of bin

trading shortfalls on bin executed quantities scaled by the fractions of bin

volume not due to our trading:

TSj = β0,TS + τ
q̃j |q̃j |
tj

(

1− |q̃j |
Vj

)

+ φq̃j

(

1− |q̃j |
Vj

)

+ ǫ.(16)

The β0 intercepts are nuisance parameters to correct for imbalances in

the data. No further intuition into the β0’s is warranted.

9Without varying n, we cannot identify the intercept versus the bias terms.
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5. Interpretation: Beyond the Counterfactuals

The preceding analysis illustrates the value of these metrics. We can

also answer questions beyond the counterfactuals which led to the metrics.

Finally, we can also consider to what extent the various metrics may be

gamed. This is critical if we are measuring external managers or traders.

The realized implementation shortfall is well-covered in Perold (1988)

and others. Worth noting, however, is that RIS depends on all three types

of price impact: permanent, decaying, and temporary. Since permanent

price impact is inescapable (by definition), IS is not a clean optimizable

measure of trading performance. Furthermore, the unrealized portion of the

implementation shortfall values unfilled shares at a price from one point in

time — often the end of trading. This makes the implementation shortfall

especially easy to game.

5.1. Interpreting Parent Order Metrics. Information leakage (IL) mea-

sures the cost of price drift from when we reveal order information to when

trading starts. Since portfolio orders may be submitted to multiple agents

to solicit execution pricing, the possibility for front-running exists.10 If the

IL were large, we might suspect front-running or “pre-hedging” of our order.

The expectation and variance under the null hypothesis of no information

leakage yield a sensible t-test for unusual price drift:

t =
sgn(q)(p0 − p−)

σp
√
t0 − t−

,(17)

with rejection suggesting front-running. To increase the test power, we could

look at this statistic on a portfolio order level. The test can be gamed by

claiming that trading started earlier than it actually did. Test failure is

10Bid submissions for portfolio orders may list standard metrics along with a few of the
instruments to be traded. Those characteristics may allow partial inference of the portfolio
order. Lucchetti (2005) describes these issues in greater depth.
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not evidence of front-running. However, it suggests further examination —

especially if some order information is revealed prior to trading.

The incremental impact (II) metric measures how far prices were pushed

beyond our average execution price. A high II might attract more traders

providing liquidity (by taking the opposite side of our trading) — since a

high II implies a rapid and recent change in price. A high II might also

suggest the final orders were traded too aggressively and should have been

spread over a longer time or that order completion should not have been

mandated.

The decaying impact (DI) metric measures cumulated decaying price

impact which depends on the order schedule. Consistently higher or lower

DI metrics indicate poor or excellent scheduling of child orders. A high DI

might also suggest a parent order was traded over too short a time period.

Since II and DI refer to prices at trading end, they can be gamed to

look artificially small by ceasing trading prior to the reported stop time.

This means II and DI are suitable for internal use but should not be used

to measure external traders unless the manager sees all executions with

timestamps and knows all were traded in the market. Even traders unaware

of these metrics might distort them unknowingly. For example, broker-

dealers who provide liquidity at the end of trading effectively stop trading

early; they reduce II and DI in attempting to profit from price reversion.

The permanent impact (PI) metric measures total permanent price im-

pact which is linear in the total quantity traded and is the change in equi-

librium price due to economic information in the order. This suggests PI is

unaffected by skill and should be fairly consistent over time.

The adverse selection (AS) metric measures some permanent as well as

decaying and temporary impact. Since classic microstructure models im-

pound fears of adverse selection into price impact, the composition of AS
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should come as no surprise. Costs beyond permanent impact suggest how

much execution suffered due to adverse selection. This could include costs

for execution immediacy, front-running beyond the pricing (pre-trade) pe-

riod, and trading against others with superior information.

Gaming the PI and AS metrics is more difficult since they do not refer

to prices from one moment in time. However, as with II and DI, liquidity

provision can skew PI and AS. For example, a broker providing liquidity at

trading period end and exiting that position in the following period essen-

tially shifts the last part of trading to the next period. Liquidity provision

biases the next period’s VWAP to make PI appear larger and AS appear

smaller. (This may also slightly reduce IS.)

For a parent order metric focused on optimizable aspects of trading, we

can examine AS+PI
2 (1+1/n). This yields a metric wholly based on decaying

and temporary impact — factors we can control through effective order

scheduling and trading acumen. However, the intuition behind this metric

is not clear nor is it immune from gaming: liquidity provision by an external

broker would reduce this metric, albeit less so than for either AS or PI alone.

5.2. Interpreting Intertemporal Metrics. Intertemporal metrics allow

us to distinguish between skill at executing trades, being suitably patient, or

scheduling child orders. If we can purchase these individual skills separately,

these metrics let us evaluate different managers for each task.

Trading shortfall is a function of temporary impact and, therefore, the

rate of trading q̃j/tj . A skilled trader probably adapts the rate of trading

to market conditions and should have a consistently small trading shortfall.

This small trading shortfall should be consistent across instruments, dates,

and intraday. Similarly, a trader who is disciplined but poor at execution

should have a consistently large trading shortfall.
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A trader who is neither disciplined nor skilled at execution should have

a noisy and inconsistent trading shortfall. This is crucial to discern: un-

predictability yields more orders filled at both poor and excellent prices.

Orders filled at excellent prices give inconsistent traders stories of seemingly

superior execution. These stories may sound convincing; but, with these

metrics, the lack of skill is apparent.

We can render TS uninformative by being all or none of the volume in a

bin: that bin’s trading shortfall is then 0. If we are most of the bin volume,

the shortfall will be close to 0. Very poor traders can mask their lack of

skill by only trading heavily at illiquid times. This would likely yield a poor

implementation shortfall but a small trading shortfall. Barring such blatant

manipulation, this metric should be valid for external use.

Trading shortfall also lets us extend the idea of information leakage to

the period during trading. If a front-runner is averse to liquidity risk, a

natural strategy is to front-run earlier in the period and exit the accumulated

position later in the period. This realizes profits and reduces liquidity risk

by trading against known liquidity (the remainder of the order).

The front-runner’s inventory accumulation and liquidation distorts our

executions versus fair prices. An order front-run in this manner should

exhibit large positive trading shortfalls in the beginning of the trading period

and small or negative trading shortfalls in the end of the trading period.

We can test if the shortfall pattern merits further attention by sorting

shortfalls and counting the number b in the worst half of performance and

the first half-trading period. The probability of b such “losing bins” is

P (b of worst half in first half-period) =

(
n/2

b

)
1

2n/2
.(18)
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A trader who places limit orders provides liquidity to the market and

sacrifices execution immediacy. A superior ability to be properly patient (a

“cool hand”) should yield a consistently negative fill time shortfall.

Overly passive traders are likely to receive superior prices for low amounts

early in the trading period and inferior prices later as they (aggressively)

“catch up” to the desired fill schedule. Thus overly passive traders should

have negative fill time shortfalls in earlier time bins and positive fill time

shortfalls in later bins. More sophisticated over-passive trader might “catch

up” periodically. If the order schedule is specified before trading, the fill

time shortfall should be valid for external use.

A trader who schedules child orders to achieve the lowest average execu-

tion cost should have a consistently small order timing shortfall. Traders

with a consistently large order timing shortfall should examine their sched-

uling of child orders. If the child order schedule is designed to match the

average volume D̄j , then the order timing shortfall is zero and cannot be

taken as informative. This metric may be used externally so long as the

child order schedule is not specified after trading.

A trader with a superior ability to predict the divergences from the aver-

age volume distribution should have a consistently small or negative volume

shortfall. However, these divergences are often caused by unpredictable

events such as news and large orders. This makes the volume shortfall noisy

and suggests separating it from the other metrics. Lacking an ability to

prediction these divergences, we should interpret this metric as noise.

6. Example Analysis

To clearly show the value of these metrics, we analyze two streams of

orders and trades. We choose a ten-bin day with each bin encompassing,

on average, 10% of the daily share volume. Prices are simulated with price



24 DALE W.R. ROSENTHAL

impact as in Section 4.2 due to buying and selling noise traders. Price impact

also occurs due to two strategic traders who split their net buy orders to

execute them over the day.

The example day is shown in Table 4. We can then see how the two

different traders perform across this day. While amounts that differ by

one share are unusual, we can merely consider these to be the number of

100-share lots traded with results differing only by a common constant of

proportionality.

Day 1 Day 1 Day 1 Day 2 Day 2 Day 2
Bin (j) Buy Sell VWAP Buy Sell VWAP

1 2,262 590 20.00288 2,290 4,387 19.97238
2 1,286 1,808 20.00508 1,165 1,149 19.97101
3 423 941 20.00323 5,084 3,811 19.97435
4 1,233 495 20.00503 5,468 7,697 19.97460
5 4,151 4,824 20.00462 2,432 1,756 19.97238
6 2,592 4,882 20.00091 3,919 4,131 19.97304
7 1,703 10,050 19.98758 270 2,604 19.97080
8 657 1,010 19.96862 1,574 3,368 19.96391
9 174 1,146 19.97139 2,215 1,137 19.96402
10 1,533 1,785 19.97230 3,682 1,306 19.97067

Table 4. Noise buying, noise selling, and volume-weighted
average prices (VWAPs) for ten time bins/day of trading.
On average, each bin contains D̄ = 10% of the day’s volume.

Next we consider the actions of our two traders who trade on day 1

(Table 5). Trader A hews closely to the given order schedule with some

mild “front-loading” (ordering more earlier). Trader B deviates aggressively

in an attempt to achieve better execution prices. Both are constrained to

fill the order in the ten periods.

We then calculate volumes (noise buy + noise sell + trader A buy + trader

B buy), average prices, and the day’s VWAP. We get that trader A’s average

price was $20.00416 and trader B’s average price was $20.00234. The day

1 VWAP was $19.99443 and the day 2 VWAP was $19.97181. From these
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Trader A Average Trader B Average
Bin (j) Orders Buys Price A Orders Buys Price B

1 130 130 20.01878 100 80 20.01444
2 125 120 20.00823 100 85 20.00678
3 120 125 20.01443 100 95 20.01219
4 115 105 20.01274 100 85 20.00669
5 110 115 20.01825 100 95 20.01744
6 100 100 20.00664 100 100 20.00247
7 90 95 19.99240 100 100 19.98409
8 80 75 19.97687 100 110 19.96689
9 70 75 19.97998 100 115 19.97636
10 60 60 19.97970 100 135 19.97726

Table 5. Trader A and B’s orders, buys, and average prices
for ten time bins on day 1. Trader A and B each purchase
1,000 shares over the ten periods. Trader B’s orders are as
per the average volume distribution (constant at D̄ = 10%).

we compute parent order metrics. These metrics (Table 6) show that trader

B has a lower implementation shortfall than trader A. Most analyses would

conclude that trader B is more skilled than trader A. However, trader A has

lower incremental and decaying impact than trader B, suggesting trader B

was more aggressive at the end of day 1.

Trader IS II DI AS PI
A $4.16 -$24.46 $7.89 $32.35 -$28.19
B $2.34 -$17.08 $13.45 $30.53 -$28.19

Table 6. Trader A and B’s parent order metrics (per share)
for ten time bins of trading in day 1 and ten time bins without
their trading in day 2.

We can get more information if we use the trade data to compute the

intertemporal metrics. In that case, we see where each trader is better and

worse. Table 7 shows that trader A traded slightly better than trader B

(TSA < TSB), that trader B was a better short-term market timer than

trader A (FTSB < FTSA), and that trader B is a better order scheduler

that trader A (OTSB < OTSA). Therefore, if we could split their duties,
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we might prefer to have trader B schedule orders, trader A trade the order

split according to that schedule, and trader B to advise trader A on when

to be patient with short-term market conditions.

Trader A Trader B
Bin (j) TSA

j FTSA
j OTSA

j TSB
j FTSB

j OTSB
j V Sj

1 1.42 0.00 600.09 0.92 -400.06 0.00 1427.85
2 -0.22 -100.03 500.13 0.14 -300.08 0.00 1383.62
3 0.77 100.02 400.06 0.85 -100.02 0.00 1704.12
4 0.29 -200.05 300.08 0.14 -300.08 0.00 1641.89
5 0.99 100.02 200.05 1.22 -100.02 0.00 283.14
6 0.07 0.00 0.00 0.16 0.00 0.00 565.48
7 -0.02 99.94 -199.88 -0.35 0.00 0.00 -233.47
8 0.24 -99.84 -399.37 -0.19 199.69 0.00 1651.32
9 0.27 99.86 -599.14 0.57 299.57 0.00 1715.42
10 0.14 0.00 -798.89 0.67 699.03 0.00 1341.44

Total 3.96 -0.08 3.12 4.14 -1.96 0.00 11480.80

Table 7. Trader A and B’s trading shortfalls, fill time short-
falls, and order time shortfalls along with the volume short-
falls (common to all traders) for ten time bins of trading.
Trader B’s orders are identical to the average volumed dis-
tribution which is constant at D̄ = 10%. Totals may differ
due to rounding.

If we regress trader A’s or trader B’s trading shortfalls on time, the slope

is not significant; however, the mean trading shortfalls are significantly dif-

ferent from zero for both traders. This suggests that they are not sloppy

traders but are disciplined. In this example, however, a t-test cannot reject

the null hypothesis that both traders possess similar skill at trading.

If we regress trader A’s order timing shortfall on time, the slope is highly

significant: -157.47 with t=8.8; trader A’s scheduling does better as the day

progresses. This suggests trader A might want to shift some trading from

the start of the day to the end. If we regress trader B’s fill time shortfall

on time, the slope is highly significant: 100.53 with t=6.8; trader B’s short-

term market timing skill decreases as the day wears on. Thus trader B might

want to limit market timing to the start of the trading day.
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Finally, we can note that the volume shortfall numbers dominate the other

metrics. This is because they are noise; and, their relative size shows the

noise reducing powers of these intertemporal performance metrics.

7. Conclusion

We have introduced metrics to augment the implementation shortfall.

These metrics offer more information for specialized applications, have sen-

sible and intuitive interpretations, and are based on parent and child orders.

Some metrics may be gamed and should only be used for internal perfor-

mance evaluation; others resist gaming and may be used to evaluate the

performance of external execution providers.

Gameable metrics can help in optimizing internal trading processes to

reduce execution costs. Gaming-resistant metrics can help money managers

reduce trading costs by choosing algorithmic trading software or external

traders which perform best at various skills. These metrics could also reveal

changes in those skills. In particular, intertemporal (child order) metrics let

us measure skills at execution, short-term market timing, and child order

scheduling. By examining the significance of these metrics, we can test if a

trader is sloppy or undisciplined in one of these areas or if two traders have

statistically discernable differences in skills. We can also measure how these

metrics vary with market conditions and time. While we assume no model

for such variation, we can still discern significant correlations between these

skills and advantageous prices. These correlations (or linear regressions of

shortfalls) may offer guidance as to how we can improve our overall per-

formance. The time trends of these metrics can also help detect the times

when a trader’s skill is strongest and traders who are overly passive.

Some metrics have clear relations to a price impact model with lasting and

various types of ephemeral price impact. Researchers may estimate these
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model parameters with the help of these metrics. Those parameters may

help traders to lower execution costs and academics to compare execution

quality across time or markets. Other metrics suggest basic tests of whether

someone is front-running or “trading alongside” our order.

Simulations suggest use of these metrics could yield savings of about 2

basis points per trade for both trading and order scheduling skills. For

typical turnover figures, a typical fund could save 13 basis points per year.

That amounts to almost a 15% reduction in expenses and, for US-domiciled

equity mutual funds alone, a savings of $7.3 billion annually. Were we to

consider international equity funds, bond funds, pension funds, and insur-

ance companies, the savings would be much larger.

Better execution also benefits the market overall. Hendershott et al.

(2011) show that increasing use of algorithmic trading has narrowed spreads,

reduced adverse selection, reduced trade-related price discovery and thus has

improved liquidity and made quotes more informative. Easley and O’Hara

(2010) note that the benefits of algorithmic trading may also increase in-

vestor participation in the market and lower the cost of capital for firms

accessing the capital markets. We would expect this to also increase alloca-

tive efficiency since risk capital can seek out ventures with less frictions.

Therefore, helping firms to trade better should benefit actors in both the

primary and secondary markets.
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