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MARKET STRUCTURE, COUNTERPARTY RISK, AND

SYSTEMIC RISK

DALE W.R. ROSENTHAL

Abstract. Networks modeling bilaterally-cleared and centrally-cleared

derivatives markets are shown to yield economically different price im-

pact, volatility and contagion after an initial bankruptcy. A large bank-

ruptcy in bilateral markets may leave a counterparty unable to ex-

pectationally prevent bankruptcy (checkmate) or make counterparties

push markets and profit from contagion (hunting). In distress, bilateral

markets amplify systemic risk and volatility versus centralized markets

and are more subject to crises with real effects: contagion, unemploy-

ment, reduced tax revenue, higher transactions costs, lower risk sharing,

and reduced allocative efficiency. Pricing distress volatility may suggest

when to transition to central clearing. The model suggests three met-

rics for the well-connected part of a market — number of counterparties,

average risk aversion, and standard deviation of total exposure — may

characterize its fragility. (JEL: G01, G28, D49 )

Systemic crisis is a recurring theme in finance. However, different markets

have been seen to respond differently to distress. Therefore, it is important

to study how these differences in distress might arise from differences in

market structure. That is the goal of this paper.
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Over the past fifteen years, crises at Askin Capital Management, Kidder

Peabody, Long-Term Capital Management, Bear Stearns, American Inter-

national Group, and Lehman Brothers have spread beyond those firms to

affect markets and firms worldwide. Of particular interest is the epidemic

nature of these crises: trouble at one firm spreads to other firms. Therefore,

it makes sense to consider counterparty risk. In a strict sense, this is the

direct risk to an institution due to a counterparty defaulting on a contract

with that institution. In a broader sense however, we can consider how

that default affects an institution indirectly (via other counterparties) or

the overall market. Such indirect effects are often thought of as contagion

and thus counterparty risk can lead to systemic risk.

Counterparty risk might seem to be a feature of over-the-counter (OTC)

markets; however, many bonds are traded OTC without any worry of coun-

terparty risk. Derivatives might seem to create counterparty risk since they

are agreements between two parties; however, futures and options are deriva-

tives and the CME and CBOE clearinghouses have never defaulted.

Two counterexamples to the above crises illustrate the difference. Refco

was one of the largest US futures brokers when it went bankrupt due to

fraud in 2005. MF Global was one of the largest futures broker-dealers in

the US, Europe, and Australasia when it went bankrupt due to perceived

risk of bets on Eurozone debt in 2011. Such bankruptcies would seem likely

to cause anxiety among counterparties; however, the increase in volatility

around these bankruptcies was small. Academics who study markets did

not even notice Refco: there are no academic finance or economics papers

discussing the failure. In contrast, the near-bankruptcy of Bear Stearns and

bankruptcy of Lehman Brothers in 2007 caused chaos and interruptions in

many OTC markets and are still being studied
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Why were Refco’s and MF Global’s bankruptcies comparatively placid?

Part of the answer seems related to their having traded mostly futures: all

the other crises mentioned involved OTC derivatives; and, in all of those

cases the OTC markets largely ceased trading. In 1994, mortgage-backed

securities largely ceased trading leading to the failure of a hedge fund (Askin)

and the near-bankruptcy of an investment bank (Kidder Peabody). In 1998,

the interest-rate swap spread and equity index volatility markets dried up

as another large hedge fund (LTCM) failed. In 2007, the markets for credit

default swaps and collateralized debt obligations ground to a halt as Bear

Stearns nearly failed and Lehman went bankrupt. In all of these systemic

crises, however, the CME, CBOE, and other futures and options exchanges

continued to trade without interruption.1

One difference between these markets is in whether they use a central

counterparty (CCP) or not. Many derivatives exchanges (including the CME

and CBOE) use a CCP; markets for swaps, swaptions, and the other instru-

ments mentioned above do not use a CCP. Acharya, Engle, Figlewski, Lynch,

and Subrahmanyam (2009) suggest that the lack of a CCP in these markets

exacerbated the subprime financial crisis. That markets with CCPs con-

tinued trading while many markets without CCPs ceased trading suggests

counterparty risk is a feature of market structure. Specifically: differences

in network structure connecting counterparties may multiply or reduce the

systemic effects of bankruptcy.

The importance of market structure with respect to systemic risk and

contagion has been studied before, most notably by Allen and Gale (2000,

2004) and Nier, Yang, Yorulmazer, and Alentorn (2007). They primarily

consider the interbank market and find that well-connected networks are

1For an example of the size of positions on one major futures exchange, Melamed (2009)
gives the notional of CME contracts held at the time of these incidents as $761 billion
(Bear) and $1.15 trillion (Lehman).
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more robust to shocks and less likely to exhibit contagion than sparse net-

works. Gai and Kapadia (2010) find that conditional on contagion, however,

well-connected networks may be more fragile and yield greater destruction.

As for markets with CCPs, Duffie and Zhu (forthcoming) find that more

than one CCP may be inefficient and systemically riskier.

That market structure affects market volatility, default probabilities for

counterparties, and the likelihood and perniciousness of contagion is of cen-

tral importance to asset pricing because both volatility and default are priced

risk factors. Increased volatility or volatility-induced losses may lead people

and companies to reduce their holdings of risky instruments and, instead,

horde cash. Increased volatility may widen bid-ask spreads, raising trans-

actions costs at precisely the time when many people want to rebalance

their portfolio. Increased volatility may also trigger the execution of limit

or stop-loss orders. Further, the reducton of risky positions when they are

likely to be undervalued may lock in losses. All of these situations also lead

to allocative inefficiencies.

Systemic crisis is also important to corporate finance because volatility

affects many decisions of the firm. Brunnermeier and Pedersen’s (2009)

model of the endogeneity of market and funding liquidity, verified by Boudt,

Paulus, and Rosenthal (2011), suggests increased volatility may trigger lower

market liquidity and thus a vicious cycle of decreasing market and funding

liquidity. This means that counterparty risk may bleed over into the funding

markets and affect non-financial businesses. This would affect firms’ capital

structures and, as a result, their taxation. Firms would also be more likely

to horde cash instead of distributing it to shareholders or reinvesting in the

firm.
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When counterparty risk induces an increase in follow-on bankruptcies, we

get contagion and systemic risk. These bankruptcies simultaneously unem-

ploy many people.2 This strains social welfare programs as those workers

apply for benefits from the state while the unemployment shock reduces

government revenue from payroll taxes and realized losses reduce corporate

tax revenues. Bernanke (1983) has shown that such effects on financial firms

may also lead to more expensive credit which affects non-financial firms and

can lead to economic contraction or even depression. Thus counterparty risk

and systemic crisis have economically significant real effects.

I use a two-period model to study the effects of a financial institution

bankruptcy in an economy with one risky asset. The approach is general

enough to be applied to any network structure and extended to multiple

periods. Thus the approach could be used to design markets which most

reduce the undesirable effects (externalities) studied here. The model is

applied to two market-based network structures which represent markets

with and without a central counterparty. Similar to Cifuentes, Ferrucci,

and Shin (2005), Nier, Yang, Yorulmazer, and Alentorn (2007), and Gai and

Kapadia (2010), I assume trading moves prices of the risky asset. However,

the model excludes the effects of adverse selection on price discovery. This

allows us to study differences in volatility and follow-on bankruptcies due

strictly to market structure.

For these network structures, the model suggests that a central counter-

party stabilizes the market by reducing post-bankruptcy volatility, undesired

exposure through broken contracts, and contagion (follow-on bankruptcies).

A central counterparty thus reduces systemic risk. This finding disagrees

2The effect of many people searching simultaneously for similar jobs can cause the labor
market to undergo a concurrent crisis: troubled firms reduce hiring in the face of their
own possible bankruptcy; and, stable firms wait to hire while the market price of that
available labor deflates.



6 DALE W.R. ROSENTHAL

with Allen and Gale (2000) and Nier, Yang, Yorulmazer, and Alentorn

(2007) due to their models precluding separation of buying and selling re-

hedgers post-shock.3 Our model also allows us to predict the differences in

systemic risk and distress responses between market structures for a given

initial bankruptcy. This can even be extended to characterize a market’s

susceptibility to follow-on bankruptcies (i.e. contagion or market “critical-

ity”). Thus this model implicitly suggests that reporting such data to a

market monitor is beneficial.

1. The Two-Period Network Model

The economy we study has one risky underlying asset. Financial institu-

tions (counterparties) trade OTC swaps on this asset. The only risk to the

n counterparties is that changes to the risky asset price affect the worth of

their swap contracts. The risk-free rate is assumed to be 0.

To simplify, we assume there is at most one contract between any two

counterparties. (This is akin to netting contracts between counterparties.)

The collection of counterparties and contracts defines a network: counter-

parties comprise the nodes of the network and contracts define its edges.

Counterparties are endowed with capital and risk aversion. For simplicity,

all counterparties start with the same capital K and risk aversion λ. Con-

tracts are endowed with signed sizes. These sizes may be constrained to give

the network a certain topology. Counterparties begin in equilibrium, hold-

ing their desired exposure to the risky asset, and will seek to return to this

exposure if perturbed from it. Contracts are continually marked-to-market:

All gains and losses are realized after each trade in the market. Thus any

cashflow which exceeds the remaining capital results in bankruptcy.

3The preclusion of separating buying and selling rehedgers is an artifact of their con-
structing well-connected networks from sparse networks, instead of vice versa as is done
here.
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What the exposures mean is important. While we examine only one risky

asset, a more complex world would have multiple risky assets. In that situa-

tion, we could view these exposures in two ways. If they are overall exposures

to risk, counterparties might not seek to return to equilibrium. If they are

positions in only one risky instrument, however, counterparties might hold

counterbalancing positions; in that case, returning to equilibrium might be

more natural. However, neither of these cases diminishes the seriousness of

a capital-depleting cashflow. Even a firm with a counterbalancing position

would surely see the dangers in matching the timing of such large cashflow

movements.

Each trade affects the market by moving prices. This is modeled by a

linear price impact model. For the duration of the modeled period, impact

is permanent. That impact may or may not revert after the period modeled

here. Neither of these would affect the results here. Thus one could view

this impact as a pure service fee or as a charge for the possibility of adverse

selection. A counterparty will therefore trade strategically given expected

price impact, trading costs, and variance reduction. In the extreme, we

can think of this as a no-seppuku rule: a counterparty will not rehedge

completely if that rehedging would push it into bankruptcy

Trading occurs in a random sequence within a period. Price impact im-

plies counterparties do not all rehedge at the same price. This leads to high

and low prices “during” each period as well as an increase in market volatil-

ity. These price movements may cause some of the initially-living n − 1

counterparties to go bankrupt.

All trading is done with a counterparty outside the network who has no

concerns about risk or bankruptcy. One could appeal to an influx of liquidity

providers in a crisis as justifying this approach. While it would be useful to
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have trades done with a market maker who learns and responds strategically,

this would likely obscure which effects are due solely to market structure.

The model is a two-period model with trading in periods 1 and 2. At time

t = 0, bankruptcy of the n-th counterparty occurs; n − 1 counterparties

survive. Some or all of the living counterparties may have one of their

contracts (connected edges) eliminated. At time t = 1, each counterparty

trades to maximize mean-variance utility given its desired exposure, the

volatility of the risky asset, and expectations of others’ actions. Follow-on

bankruptcies may occur in period 1. At time t = 2, all remaining exposures

due to the bankruptcy are hedged with trading again occurring in a random

order. While follow-on bankruptcies may occur in period 2, these may result

from the constraints inherent to a two-period model.

1.1. Notation. We introduce notation to express the dynamics of this model:

pt = price of the risky asset at end of period t;

rt = return of the risky asset in period t;

K = capital of each counterparty at start of period 0;

σ = volatility per period of the risky asset price; and,

qij = exposure of counterparty i via contract with counterparty j 6= i.

Worth noting is that the contract notation implies direction: qij = −qji.

The price impact model is linear in trade size so that it is as simple

as possible and arbitrage-free as per Huberman and Stanzl (2004). If we

assume price innovations are iid and have mean zero, we get the expected

price for a trade by counterparty i (absent other trading) as a function of

the quantity rehedged xi:

E(p(xi)) = p0 + πxi
︸︷︷︸

permanent

.(1)
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The price p1 at the end of period 1 is:

p1 = p0 + σZ1 + π
n−1∑

j=1

xj(2)

where Zt∈{1,2}
iid∼ (0, 1). While the end-of-period price is unaffected by the

ordering of trades within the period, bankruptcies do depend on the path

of prices in a period.

1.2. Network Topologies. While any network topology could be studied,

we consider two market-based extremes. A star network with n contracts

represents a market with a central counterparty; a complete network with

n(n− 1)/2 contracts represents a bilateral OTC market. Examples for four

counterparties are shown in Figure 1.
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Figure 1. The two network structures considered shown for
n = 4 counterparties: a star network connected via a central
counterparty (left) and a complete network (right).

The bankruptcy at t = 0 affects these two topologies in different ways. For

the star (centrally-cleared) network, the initial bankruptcy only invalidates

one contract with the central counterparty (CCP). For a complete (bilateral

OTC) network, the initial bankruptcy invalidates contracts with n−1 living

counterparties.
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2. Two-Period Analysis

With a few assumptions we can analyze the effect of the initial bankruptcy

for these two network types. Contract sizes are assumed to have a zero mean

and finite variance: qij
iid∼ (0, η2) for i < j in the complete network. The star

network has contract sizes equal to net exposures in the complete network.

Counterparty i has net exposure of Qi =
∑

j qij = qi,CCP . Net exposures

have expectation 0 and variance (n− 1)η2.

After the initial bankruptcy (t = 1), living counterparties in a star net-

work have no unwanted exposure; only the central counterparty has un-

wanted exposure to the risky asset. For a complete network, each living

counterparty i has unwanted exposure of −qin reflecting the subtraction of

the invalidated contract with the bankrupted counterparty.

Since the informational implications are different, we examine two cases:

small and large initial bankruptcies.

2.1. Small Bankruptcy. We first consider the bankruptcy of a small finan-

cial firm. The small size suggests other counterparties have less information

about the bankrupted firm. Thus bankruptcy may be due to market risk

or idiosyncratic (management-related) factors. This is manifested in the

capital at the start of period 1 being K for each living firm. The only infor-

mation living counterparties have about counterparty n’s market exposure

is their individual contracts with the bankrupted.

2.1.1. Star Network. In a star network, none of the living counterparties

has a broken contract. Therefore none of the living are directly affected by

counterparty risk nor need they rehedge. Since the living counterparties’

contracts incur no default, there is no early signal that any counterparty

has gone bankrupt.
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The central counterparty (CCP) takes on the bankrupted’s exposure at

time t = 1. If the CCP rehedges immediately, the permanent price impact

will be for a −Qn-sized trade: ∆p = −πQn.

The CCP has advantages over other counterparties: It knows all coun-

terparties’ positions and trades; and, it would have immediate evidence of

predatory trading by a living counterparty. This lets the CCP rehedge to

reduce price impact and avoid causing further bankruptcies.

Also relevant (but not in the model) are the CCP’s operating and contrac-

tual agreements. The CCP might have a contractual claim against counter-

parties if it goes bankrupt.4 The CCP can also dictate margin and mark-

to-market requirements to penalize large or risky positions. With these

agreements, living counterparties have even stronger incentives not to move

the market against the CCP. Thus while these details are outside the model,

they further justify the CCP’s trading to reduce price impact and contagion.5

Thus the CCP trades to maximize mean-variance utility:

UCCP (x) = −πx2
︸ ︷︷ ︸

period 1
impact

−λ
σ2

2
[Q2

n + (Qn + x)2]
︸ ︷︷ ︸

variance penalty

−πQn(Qn + x)
︸ ︷︷ ︸

period 2 impact

(3)

This yields an optimal period 1 trade size of:

xCCP =
−(π + λσ2)Qn

2π + λσ2
.(4)

Note that without price impact, the optimal policy is to rehedge com-

pletely in period 1 (xCCP = −Qn). As linear price impact π increases,

the optimal trade tends toward an equal split of rehedging between periods

1 and 2. As volatility (σ) increases, the optimal trade tends to rehedge

completely in period 1.

4The CME clearinghouse uses such a structure.
5Further research should examine when these incentives break down and members act
against a CCP.
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2.1.2. Complete Network. In a complete network, bankruptcy by counter-

party n invalidates n − 1 contracts. Each counterparty trades to rehedge

their eliminated contract by the end of period 2. Since the bankruptcy is

small, we ignore high and low prices triggering bankruptcies.

Each living counterparty chooses xi to maximize Markowitz mean-variance

utility. This is the same as minimizing price impact (affecting exposure and

the traded amount) plus the penalized variance of the unhedged exposure

(x− qin):

Ui(x) = −πx2
︸ ︷︷ ︸

period 1
impact

−λ
σ2

2
[q2in + (x− qin)

2]
︸ ︷︷ ︸

variance penalty

−πqin(qin − x)
︸ ︷︷ ︸

period 2 impact

(5)

When each counterparty knows nothing about the other counterparties’

exposures, the optimal period 1 trade size is

xi =
(π + λσ2)qin
2π + λσ2

.(6)

The sequencing of trades in periods 1 and 2 increases price volatility of the

risky asset. The price volatility in periods 1 and 2 comes from equation (1)

and the variation in contract sizes:

Var(pt∈(0,1]) = σ2 + π2(n− 1)

(
π + λσ2

2π + λσ2

)2

η2

︸ ︷︷ ︸

added variance

;(7)

Var(pt∈(1,2]) = σ2 +

︷ ︸︸ ︷

π2(n− 1)

(
π

2π + λσ2

)2

η2 .(8)

2.2. Large Market-Induced Bankruptcy. While the bankruptcy of a

large financial firm could come from mismanagement or fraud, we consider

bankruptcies known or suspected to arise from market risk. Bankruptcies

suspected of arising from market risk are also considered because strategic
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issues in exiting a large position cast doubt on legitimate claims of misman-

agement. (Living counterparties may suspect market risk is to blame despite

legitimate claims of mismanagement.)

2.2.1. Initial Bankruptcy. To study the effect of a market-induced bank-

ruptcy, we impose an exogenous market return shock in period 0, r0, such

that bankruptcy occurs for the most exposed counterparty (labeled counter-

party n for convenience). Mathematically, this means: K+Qnr0 ≤ 0 where

Qnr0 < Qir0 for all i < n. For ease of exposition, we assume Qn is positive

and r0 is negative.

While the results are the same, we can consider two perpectives on Qn.

If living counterparties do not know Qn, they can infer it from the market

return preceding counterparty n’s bankruptcy.6 With initial capital of K,

the living counterparties estimate Qn as Q̂n = E(Qn|K+Qnr0 ≤ 0). Evalu-

ating this expectation requires weak distributional assumptions and extreme

value theory. (Appendix A.1 gives the derivation of Q̂n.) Alternately, we

can endow all living counterparties with perfect information. In that case,

they do know Qn. We then view the use of Q̂n as merely studying the most

likely scenario for a given bankruptcy-inducing market return r0.

For iid normal Qi’s, we estimate the maximum-likelihood initial large

bankruptcy exposure as:

Q̂n = E(Qn|K +Qnr0 ≤ 0)(9)

=
−K

r0
+

η
√
n− 1

cn(1− e−e−cnκ1−dn )

∞∑

k=1

(−1)k+1e−k(cnκ1+dn)

kk!
(10)

where cn = 1√
2 log(n)

, dn =
√

2 log(n)− log log(n)+log(16 tan−1(1))

2
√

2 log(n)
, and κ1 is the

standardized maximum possible exposure of a living counterparty. If Qn is

not known, κ1 =
−K

r0η
√
n−1

.

6Till (2006) infers Qn, albeit using different methods.
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2.2.2. Follow-On Bankruptcies. Since the broken contract is large, trading

in periods 1 and 2 might cause follow-on bankruptcies. All broken contracts

must be (in expectation) rehedged, and counterparties’ mark-to-market pay-

ments depend on price impact and their positions subject to that impact.

Follow-on bankruptcies come from counterparties with exposures less than

κ1 =
−K

r0η
√
n−1

and greater than κ2(Q̂f ) which depends on the market struc-

ture. (Details are in Appendix A.2.)

We can then solve for the equilibrium distress pervasiveness b̂ (the num-

ber of follow-on bankruptcies) and the distress exposure Q̂f (the exposure

annulled by follow-on bankruptcies):

b̂ = E(b|K +Qnr0 ≤ 0)(11)

= (n− 1)

(

1− Φ(κ2)

Φ(κ2)

)

(12)

Q̂f = E(Qf |K +Qnr0 ≤ 0)(13)

=
(n− 1)3/2η

Φ(κ1)
(φ(κ2(Q̂f ))− φ(κ1))(14)

where Φ and φ are the standard normal cdf and pdf.

A natural question is how sensitive follow-on bankruptcies are to an ini-

tial bankruptcy. One measure of the market’s fragility or susceptibility to

distress is the sensitivity of distress exposure,
∂Q̂f

∂Q̂n
; another measure is the

sensitivity of distress pervasiveness, ∂b̂
∂Q̂n

.

A valid criticism of these sensitivities is that counterparties going bank-

rupt with very little exposure would require a very large drop in the price

of the risky asset — an unlikely event. To account for this, we can look at

sensitivities weighted by the likelihood of such a precipitating r0. Thus we

would examine the likelihood-weighted sensitivity of distress exposure to see

what size of initial bankruptcy is of greatest likely concern.
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2.2.3. Star Network. For a star network, only the CCP holds a broken con-

tract. Thus only the CCP learns immediately of default. While such a

default would become public knowledge quickly, the CCP also sees preda-

tory trading immediately and can punish it.

Since only the CCP must rehedge, we can ignore low prices due to rehedg-

ing volatility. The additional unwanted exposure incurred by all counter-

parties due to follow-on bankruptcies, Q̂f , then results from counterparties

with exposures between κ1 and κ2(Q̂f ) where

κ2(Q̂f ) =
−Kp0

η
√
n− 1(p0r0 − π(Q̂n + Q̂f ))

.(15)

Since there are no worries about low prices and the CCP trades a fraction

of the total trade ν = π+λσ2

2π+λσ2 ∈ [0, 1] in period 1, we may ignore the period

1 versus 2 distinction.

2.2.4. Complete Network. In a complete network, each living counterparty

immediately detects default. Thus each living counterparty must trade to

rehedge. This not only pushes the market further; the variation in rehedging

trades also increases the volatility of the risky asset. That volatility also

creates price extremes that are likely to be greater than the trading range

from the rehedging of a CCP. A comparison of possible price paths (Figure 2)

shows the difference in range.

We should expect more follow-on bankruptcies in complete networks for

three reasons. First, extreme prices beyond the CCP rehedging price range

will result in more counterparties being (expectationally) unable to pay

mark-to-market. Second, counterparties with a small exposure will be driven

by unwanted variance and may hedge completely in period 1. Third, the

fraction of hedging in period 1 ν enters κ2 and thus the follow-on exposure

equation (14) in a way that creates a Prisoner’s Dilemma situation.
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Figure 2. Possible price paths from $30 to $24 due to re-
hedging by a centralized counterparty (left) and bilateral
OTC market participants (right).

If the overall fraction of the total rehedge traded in period 1 is ν, the over-

all impact incurred for bilateral OTC markets will have three components.

Two components, ν/2 and (1 − ν)/2, are due to the random sequence of

trading in periods 1 and 2 implying that each counterparty expects half of

the other trades in that period to occur first. The third component, (1−ν)ν,

is due to the position to be hedged in period 2 which incurs all impact of

period 1 trading. The total impact is then 1
2 + ν − ν2 which varies between

1/2 (ν = 0 or 1) and 3/4 (ν = 1/2). If we assume risk aversion (λ > 0), we

would hope to be able to restrict our attention to the sub-interval ν ∈ [12 , 1].

Trading by multiple counterparties with differing exposures creates high

and low prices. Since we consider rehedgers who (net) sell, we estimate the

low price and see how that effects follow-on bankruptcies. The low price is

driven by the running sum of trades. That is approximated by a Brownian

bridge, a Brownian motion tied to end at −(Q̂n + Q̂f ) and can be handled

by time inversion. (See Appendix A.3 for details.)
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Thus the expected low quantity Sn−1 of cumulated trades over trading

periods 1 and 2:

E(Sn−1|Sn−1 = −(Q̂n + Q̂f )) =

− (Q̂n + Q̂f )− η
√
n− 12 tan−1(1)φ

(

Q̂n + Q̂f

η
√
n− 1

)

,
(16)

and κ2(Q̂f ) for this market structure:

κ2(Q̂f ) =
−Kp0/[η

√
n− 1]

p0r0 − πE(Sn−1|Sn−1 = −(Q̂n + Q̂f ))
.(17)

This allows us to determine Q̂f from (14).

If we were to solve the n−1-player game, we would have to solve an opti-

mization of each player’s mean-variance utility given the others’ trades. This

optimization then yields the period 1 fraction of trade ν. Initial simulations

suggest that heterogeneous rehedging needs — in particular the presence of

long and short rehedgers — can yield values of ν in excess of 1 and even of

the order ν = 1.5–2.

2.2.5. Destabilizing Phenomena. Such multi-player games reveal two phe-

nomena of interest. While one phenomenon is unfortunate, the other is

undesirable and may greatly destabilize the market. While these phenom-

ena are always possible, they may easily affect or become the equilibrium

solution in the large market-induced bankruptcy case.

The first of these phenomena is checkmate: when any action (or inaction)

by a counterparty cannot be expected to avoid bankruptcy. Checkmate is

unfortunate for the ensnared counterparty; they cannot hedge in such a way

as to expect to stay in business by the end of period 2. Since the checkmated

counterparty cannot expect to stay in business, it may be in their interest
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to do nothing in hopes of randomly avoiding period 2 bankruptcy.7 A nec-

essary condition for checkmate is that closing the position would result in

bankruptcy:

(18) −πQ2
n/p0 +K < 0 ⇔ Qn >

√

Kp0/π.

Proposition 1 (Checkmate). In a complete network, there is a Qn ∈ (0,∞)

such that for some k < n and any finite xk we expect bankruptcy in period

1: E(π
∑

j<n xjQk|F1) > K −Qkr0.

What Proposition 1 means is that a large enough initial bankruptcy may

result in an expected follow-on bankruptcy in period 1 despite the best

efforts of the checkmated counterparty. This implies that policies restricting

or taxing excess leverage might reduce distress (in this case, the number

of market participants operating in checkmate). Note, however, that the

leverage ratio implying checkmate varies with 1/
√
K.

The second phenomenon is hunting : when other counterparties expect to

profit by inducing follow-on bankruptcies. This means some counterparties

act to push prices further in a particular direction to make money. Normally,

this is not possible in a market with price impact as we assume here. The

invalidation of contracts with the bankrupted counterparty, however, makes

profits possible.

Proposition 2 (Hunting). In a complete network of 3 or more counterpar-

ties, there is a Qn ∈ (0,∞) such that for all exposures of Qn or greater,

bankruptcy has a positive expected payoff for two or more other counterpar-

ties.

A sketch of the proof for n = 3 offers insight into how hunting works.

7A checkmated counterparty might even seek to become “Too Big to Fail,” in effect taking
the market hostage to seek more favorable liquidation terms.
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Proof. Assume counterparty 3 is checkmated. Let Q1, Q2 < 0 < Q3 be such

that Q1 + Q2 = −Q3. Without loss of generality, we assume q13 = Q1,

i.e. counterparties 1 and 2 have no exposure to one another. For π > 0,

counterparties 1 and 2 trade Q1 and Q2 to replicate their counterparty 3

exposure, causing losses to counterparty 3: π(Q1+Q2)Q3/p0+K < 0. Note

that the market impact of trading by counterparties 1 and 2 is expected to

bankrupt counterparty 3.

The positive expected profit from such a strategy is due to the random

ordering of trading. The first “hunter” to trade receives a mark-to-market

profit due to the second hunter’s trading. The expected profit is E(PLi) =

πQ1+Q2

2p0
Qi. If counterparty 3 goes bankrupt, all contracts with counterparty

3 are canceled. The exposure of the hunting counterparties reverts from 2Qi

back to Qi.

If counterparty 3 does not go bankrupt, the hunting may continue or

hunters may unwind their trades at no cost (since the market impact model

is arbitrage-free). �

2.2.6. A Separating Equilibrium? We can also examine a complete network

from another perspective. Since we have multiple players, we can expect

that there are multiple equilibria for how people would trade. One possible

equilibrium is for rehedgers to separate themselves with buyers and sellers

trading in different periods. We can see this by considering a large market

drop which induces those who are long to sell.

Since the sellers are at risk of going bankrupt, they will sell in period

1 hoping to trade at the beginning of the period and not going bankrupt.

This generates the typical “race for the exits.” However, with only sellers in

period 1, those whose sales are executed at the end of the period are likely

to go bankrupt. Meanwhile, buyers wait to trade in period 2 at the lowest
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prices after sellers have bankrupted one another and pushed the market

down.

In the extreme case, the buyers in period 2 would not even need to trade:

bankruptcies in period 1 would annul their contracts and leave them flat.

This possibility alone might support such an equilibrium.

With these sorts of dynamics, the period 2 trade is difficult to calculate.

However, the result is the maximum distress in terms of volatility, low price,

and follow-on bankruptcies. Thankfully, we can find the low price with only

the net period 1 trade (which is easier to calculate).

We can think of the trades from buyers and sellers xi as adding up to

some total trade quantity Q̄ < 0. The question then is, what is the sum of

all the sell trades? Mathematically, we want to know:

E(

n−1∑

i=1

[xi]
−|

n−1∑

i=1

xi = Q̄ < 0).(19)

Unfortunately, this is a difficult question to answer. We approximate the

answer by finding the expected sum of the absolute value of n− 1 standard

normal variables for a distribution with mean µ = −Q̄/((n− 1)3/2η).

This is just (see Appendix A.5):

E(

n−1∑

i=1

[xi]
−|E

n−1∑

i=1

xi = Q̄ < 0). =(20)

=(n− 1)3/2ηφ(−µ) + Q̄(1− Φ(−µ)).(21)

Note that the expected total sell trades scale with the 3/2 power of the

number of living counterparties (i.e. super-linearly). This suggests that such

separating equilibria become destructive faster than a market’s growth rate

and that there might be a point where bilateral OTC markets transition

from being robust to distress to being fragile.



MARKET STRUCTURE, COUNTERPARTY RISK, AND SYSTEMIC RISK 21

3. Examples

To get an idea of what different bankruptcies look like, we consider a

market with n = 10 counterparties, each having capital K of $1 million.

Note that for a large bankruptcy these are very conservative assumptions:

a market with counterparties having large exposures is likely to have more

than 10 well-connected counterparties and, we generally expect trades to

incur temporary impact — which would exacerbate the price extremes.

The risky asset has a price of $50, daily price volatility of $0.95 (equivalent

to a 30% annual return volatility), and trades 5 million units daily. For the

risky asset’s price impact, we have that π = 2 × 10−6. Risk aversion is a

daily λ = 1 × 10−6. These parameter values are in line with examples in

Almgren and Chriss (2001).

3.1. Small Bankruptcy Example. To see the effect of a small bank-

ruptcy, we consider a market where counterparties hold contracts with ex-

posure standard deviations of $100,000.

In this case, the period 1 price impact is −$0.20 and the period 2 price

impact is −$0.17. The price volatility increases to $1.30 in period 1 and

$1.11 in period 2 . These are equivalent to return volatility increasing from

30% annualized to 41% and 35% annualized.

3.2. Large Bankruptcy Example. To get an idea of what a large financial

bankruptcy looks like, we consider an example for n = 10 counterparties,

each having capital K of $1 million. The counterparties hold contracts

equivalent to OTC contracts with a standard deviation η of (also) $1 million.

We assume the CCP trades ν = 0.5 of the expected rehedge in period 1;

however, for the CCP market structure, the results are not sensitive to ν.

The risky asset has a price of $50 and daily price volatility of $0.95 (equiv-

alent to a 30% annual volatility). For the risky asset’s cash market liquidity,
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we have that π = 2 × 10−6 and λ = 1 × 10−6. These parameter values are

in line with examples in Almgren and Chriss (2001).

This gives us the plot of follow-on bankruptcy exposure Q̂f due to initial

bankruptcy size Q̂n shown in Figure 3.

Figure 3. Follow-on bankruptcy exposure Q̂f (left) and

count b̂ (right) versus initial bankruptcy size Q̂n for n = 10
counterparties, each with capital K = $1 million, holding
equivalent contracts with sd(exposure) = $1 million. Line S
is for a bilateral OTC market separating equilibrium where
sellers and buyers trade in different periods. Line P is for
a bilateral OTC market with pooled buying and selling and
overtrading by an amount typical from simulations (1.75×).
Line C is for a market with central clearing.

We first consider the convex hull enclosing the central clearing market line

C and the bilateral OTC market lines P and S. If buyers and sellers in the

bilateral OTC market traded together and split their trades over periods

1 and 2 without trying to profit from one another (as for line P ), their

behavior would yield a line identical to C. However, simulations yielded

an equilibrium where individuals behaved in a way that would yield line P .

Thus we can think of the convex hull generated by lines C, P , and S as the

envelope of distress defining the space of possible distress equilibria.
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Since P results from one equilibrium and S results from another, we can-

not ignore the difference between bilaterally-cleared (OTC) and centrally-

cleared markets. Further, that C lies at the bottom of the envelope makes

clear that distress is more likely and more destructive in markets without a

central counterparty.

We can also note that the expected notional of contracts anulled by follow-

on bankruptcies, Q̂f , is not monotonically increasing for the separating

equilibrium S. This is because the total amount to be rehedged (i.e. in-

cluding Qn) is monotonically increasing; but, for larger bankruptcies, the

initial failure dominates the total annulled exposure. It also suggests that

for mid-sized bankruptcies, the uncertainty about the effect may increase

the expected amount to rehedge; however, for very large bankruptcies the

uncertainty about the net rehedge decreases.

While the separating equilibrium S yields much greater follow-on bank-

ruptcy exposure, it may well yield fewer expected follow-on bankruptcies

than for pooled trading P . This suggests a “boiled frog” scenario: traders

who panic may lose more in total; but, they may slightly increase their

probability of survival. Traders who panic less (trading in periods 1 and

2; line S) incur mark-to-market losses from period 1 trading and incur half

the losses (expectationally) in period 2. In other words, more traders may

find themselves checkmated in period 2. This seeming paradox also lends

support to the possibility of an equilibrium like that of line S.

From a policy perspective, we should consider the sensitivity of follow-on

bankruptcy exposure Q̂f to the initial bankruptcy Q̂n: i.e. ∂Q̂f/∂Q̂n. Fig-

ure 4 shows that both OTC market lines (pooled buyers and sellers, line P ;

separated buyers and sellers, line S) and the central counterparty line (C)

have intervals where they are greater than 1. In these intervals, a counter-

party who could affect the initial bankruptcy size would generate rehedging
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(due to follow-on bankruptcies) in excess of their effect on Q̂n. This suggests

that hunting is more than just an abstract or theoretical concept.

Figure 4. Sensitivity of distress exposure Q̂f (left) and dis-

tress pervasiveness b̂ (right) to an initial bankruptcy of size

Q̂n, i.e. ∂/∂Q̂n. Plot is for n = 10 counterparties each with
capital K = $1 million and positions equivalent to OTC con-
tracts with sd(exposure) = $1 million. Lines C, P , and S
correspond to a market with a central counterparty, pooled
OTC buyers and sellers, and separated buyers and sellers.

This plot suggests that distress (follow-on bankruptcies) are most likely to

be destructive for initial bankruptcies by counterparties having exposure of

$11–$14 million to one risky asset with a capital base of $1 million. While

few firms hold one asset, anecdotal accounts and conditional correlations

from Pesaran and Pesaran (2010) suggest some banks in the credit crisis

saw the correlation of their assets reach levels of 0.7 or more. A correlation

of 0.7 implies we can explain R2 = 0.72 = 0.49 (49%) of the variance. Thus

one risky asset having $11–$14 million of exposure could be thought of as

similarly destructive to assets of $22–$28 million which become correlated

at a level of 0.7. This suggests leverage ratios of 22–28 may be modal levels

at which financial distress occurs. That is especially troubling since most

investment banks have leverage ratios at least this great.
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This suggests that policies which restrict or tax leverage ratios beyond

22 (or so) may reduce distress and volatility externalities — even in mar-

kets with a central counterparty. Another possibility might be to auction

permits to exceed some base leverage ratio and then allow financial compa-

nies to trade these permits (as is done with emissions permits). Aggressive

investments banks with leverage ratios of 30–35 would thus be penalized

relative to banks which earn similar profits on lower leverage.

3.3. Why Complete Networks May Be Fragile. The preceding find-

ings contradict prior work on contagion in financial networks, in particular

Allen and Gale (2000) and Nier, Yang, Yorulmazer, and Alentorn (2007).

Those studies note that sparse networks are more fragile and exhibit greater

contagion than complete networks (which they characterize as robust). The

work here differs because the prior studies do not allow for the possibility

of buyer-seller separation.

In Allen and Gale (2000) and Nier, Yang, Yorulmazer, and Alentorn

(2007), a sparse (ring) network is compared to a complete network.8 How-

ever, both studies assume complete networks allow for the cost of contagion

to be spread among the other players. This implicitly assumes that all con-

tracts will incur similar losses of exposure when a given counterparty goes

bankrupt. (Nier, Yang, Yorulmazer, and Alentorn (2007) make this explicit

by dividing a node’s net exposure among all other counterparties.)

In the complete network analyzed here, broken exposures are not neces-

sarily all of the same sign. This means that some counterparties must buy to

rehedge while others need to sell. It is this division of rehedgers into buyers

8Both Allen and Gale (2000) and Nier, Yang, Yorulmazer, and Alentorn (2007) study the
interbank market for which a ring may mimic the lending agreements of banks in different
regions. For financial markets, however, a ring is a highly unlikely market structure.
Neither of these studies considers a central counterparty.
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and sellers that allows them to separate their rehedging intertemporally and

increases the severity of the crisis.

3.4. Real Effects of the Large Bankruptcy Example. We should also

consider some implications for the real effects of an example like this large

bankruptcy. In particular, we consider the effects of an initial bankruptcy

for exposure Q̂n of $10 million.

The effect on the risky asset price is stark. The market with a central

counterparty would see the risky asset drop in price from $50 to roughly

$20 (drop = π · $15 million = $30). In the bilateral OTC market with

pooled buyers and sellers, the risky asset would drop in price from $50 to

$29 (π · $15.5 million = $31). However, if buyers and sellers in the bilateral

market separate, the risky asset price will drop from $50 to $10 (π · $20

million = $40). Thus the risky asset drops in price 33% more than in a

market with a central counterparty.

The increase in volatility would persist for some time as suggested by

most GARCH models. The CCP market would see volatility increase due

to the period 1 return of -60%. The bilateral market with pooled buyers

and sellers would see intraday volatility increase from 30% (annualized) to

328% plus an effect from the period 1 (daily) return of -62%. The bilateral

market with self-separated buyers and sellers would see intraday volatility

increase from 30% (annualized) to 596% plus an effect from the period 1

(daily) return of -80%. Using an average persistence of 0.98 for variances

from Lamoureux and Lastrapes (1990), we can get the excess volatilities
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implied by the sum of (decaying) daily distress-elevated variances as

σ̃CCP =

√
√
√
√

∞∑

t=1

0.98t
0.62 − 0.32

250
= 0.23 = 23%(22)

σ̃bi,p =

√
√
√
√

∞∑

t=1

0.98t
3.282 − 0.32

250
= 1.43 = 143%(23)

σ̃bi,s =

√
√
√
√

∞∑

t=1

0.98t
5.962 − 0.32

250
= 2.66 = 266%.(24)

For an average risk aversion of λ̄ = 3 and a market size of 2(Q̂n +

Q̂f |Q̂n, s) = 2($10 + $10) million = $40 million, this implies an externality

distress cost of λ̄
σ̃2
CCP
2 × $40 million = $3.2 million for the CCP market.

Compare this to the externality cost of distress for the bilateral OTC mar-

ket with pooled buyers and sellers of $123 million. Worst is the externality

cost of distress for the bilateral market with segregated buyers and sellers:

$425 million. Thus we can estimate that, for this market, the marginal ex-

ternality cost of distress due to market structure is at least $120 million and

perhaps as much as $425− $3 = $422 million (3 to 11 times the size of the

market). Obviously, these results would be even more disturbing if scaled

up to sizes of markets which experienced recent distress. For a CDS market

with $2.6 trillion of net exposure (as per Phillips (2010)), this would imply

an externality cost of distress of up to $28.6 trillion. It is worth noting that

current figures for the cost of the financial crisis are of the same order of

magnitude.

These figures are only part of the story, however. If the externality cost

of volatility exceeds the benfit of trading in a market, we can expect that

market to cease trading. Although the model used here presumes all players

continue to trade, we can use the model-implied volatility effects to reveal
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when markets fail. Obviously, the distress from such failure would exceed

that predicted by the model.

A drop in allocative efficiency is another effect of systemic crisis. In the

pre-crisis state, the average investor (λ̄ = 3) assuming an 8% equity pre-

mium and the previously-mentioned 30% volatility would hold a portfolio

with 8%
λ̄σ2 = 30% in the risky asset. Post-crisis, an investor in the CCP mar-

ket would hold 8%
λ̄(σ̃2

CCP+σ2)
= 18.5% in the risky asset; an investor in the

bilateral OTC market with pooled buyers and sellers would hold 1.2% in

the risky asset; and, an investor in the bilateral OTC market with segre-

gated buyers and sellers would hold only 0.4% of their portfolio the risky

asset. If we believe holding 30% in the risky asset is allocatively efficient,

then crises have a real inefficiency cost by suggesting to investors that they

pay transactions costs to diverge (perhaps temporarily) from their pre-crisis

holdings. Even if we say that market structure risk matters and view all of

these holdings as allocatively efficient, we should still be surprised by dif-

ferent market structures suggesting holding anywhere from 18.5% to 0.4%

of the risky asset post-crisis. This would also seem to suggest that bilateral

OTC markets take longer to recover from crises since investors are more

dissuaded from holding risky assets after a bilateral market crisis.

While few markets consists of only ten firms, many are dominated by

about ten large intermediaries. In this case, a systemic crisis created by the

bankruptcy of one intermediary would be serious. Further, the sensitivity of

distress pervasiveness (Figure 4) suggests we could easily expect 2–3 follow-

on bankruptcies of such large intermediaries after a decline of $1 MM/$15

MM = roughly 7% in the value of all leveraged positions. Again, while we

cannot easily equate this model with the recent financial crisis, we can note

that after Lehman Brothers’ bankruptcy that Bank of America, Citigroup,
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and Goldman Sachs were thought to be near bankruptcy. Thus this model

does not disagree with recently observed effects.

Recent averages from Harper (2010) suggest such intermediaries (large

investment banks) each pay an average of $16.4 billion in compensation per

year and employ 134,000 people. Three bankruptcies (a major systemic

crisis) would unemploy about 400,000 employees and, assuming one year of

unemployment and 40% overall taxes, a loss of $19.7 billion in tax revenues.

Further costs would include unemployment benefits.

Moreover, these firms are not useless: they exist to do more than just

pay their employees. These firms provide services necessary for the smooth

functioning of capital markets and the macroeconomy. While the effects of

a crisis due to impairment of these firms may be more difficult to estimate,

we know that the effects are serious. Bernanke (1983) notes that such crises

may affect market making and information-gathering services provided by

these firms. That in turn reduces the efficiency of the financial sector and

may lead to expensive credit, economic contraction, and even depression.

4. Conclusion

We have shown that different network structures of exposures and mark-

to-market payments can yield different market effects when an exogenous

shock is introduced and trades have price impact. These effects are apart

from any concerns about adverse selection and are due strictly to market

structure.

The bankruptcy of a small non-financial firm increases the volatility of

a risky asset held by the failed firm. Further, we can model this increased

volatility as a function of exposures to the failed counterparty and market

impact parameters.
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The bankruptcy of a large financial firm is shown to be more destructive:

counterparties may be checkmated (unable to avoid expected bankruptcy),

and counterparties may hunt the weak (seek to bankrupt counterparties) for

positive expected profit. Thus counterparty risk becomes transmuted into

systemic risk. In the extreme case, buyers and sellers may separate when

they trade, causing greatly increased follow-on bankruptcies, market swings,

and volatility. This reduces market liquidity and could therefore touch of

a vicious cycle of reducing funding and market liquidities as suggested by

Brunnermeier and Pedersen (2009). This also suggests that complete net-

works have more potential for contagion than star networks and other sparse

networks — a result counter to Allen and Gale (2000) and Nier, Yang, Yorul-

mazer, and Alentorn (2007).

Both of these cases, small and large bankruptcies, have policy implications

for market structures. In the large bankruptcy case, one example suggests

that leverage ratios in the mid-20’s may be modal for distress and may cause

the most destruction relative to the size of the initial bankruptcy. This is

especially troubling since many investment banks have leverage ratios in the

20’s to low 30’s. Further, the number of bankruptcies implied by the model

allows us to guess at the unemployment caused by distress and the resulting

loss in tax revenues.

These models also show that distress and rehedging leads to increased

volatility. This increased volatility is clearly an externality. Using an ag-

gregate risk-aversion parameter, that externality may be priced to estimate

the cost of differing market structures under stress. The increased volatility

may lead investors to expend effort and cash to rebalance their portfolios

and creates allocative inefficiencies. Further, extreme volatility may pose

such high externality costs that markets cease to function.
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The results also suggest there is a benefit to trading on centrally-cleared

(and perhaps even exchange-traded) markets versus bilaterally-cleared OTC

markets. However, bilateral markets have small startup costs and are thus

important for financial innovation. If we could price the evolution of that

flexibility, we might know more about when to offer incentives for trading

to migrate from bilaterally-cleared to centrally-cleared markets. Given that

the recently-passed Dodd-Frank financial reform bill encourages such tran-

sitions, these findings may help policymakers determine when is the best

time to move markets to central clearing.

While monitoring exposures and capital levels is critical, it is not enough.

The models here show the value of monitoring the distribution of exposures,

how many players are in a network, and how connected the network is.

Obviously, this suggests a need for more financial transaction reporting.

However, whether such reporting will result from Dodd-Frank (via central

clearing of derivatives or formal reporting) is not yet clear.

We also see that the follow-on distress pervasiveness b̂ and exposure Q̂f

are useful metrics for how destructive a crisis might be and that their sensi-

tivities ∂b̂/∂Qn and ∂Q̂f/∂Qn are useful metrics of market fragility. When

∂Q̂f/∂Qn > 1, we should expect to see checkmate and hunting.

Hunting poses a Prisoner’s Dilemma situation: counterparties hurt them-

selves by rehedging to avoid losses from other rehedgers. This suggests a

reason for concerted action by market authorities in times of severe dis-

tress. One could view the Federal Reserve’s forcing 15 banks to collectively

takeover LTCM as such an action.

This model can be extended to further study counterparty and systemic

risks. Various fixes could be explored to the unsatisfactory assumption that

all trading occurs with an external counterparty outside the network. In

particular, we should study the marginal effect of adding a market maker
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concerned about adverse selection or even counterparty risk when trading;

and, we might consider analyzing other network structures and other net-

work metrics (such as minimum spanning trees). We should explore the

possibilities of counterparties trading collusively to trigger mark-to-market

profits or counterparties’ risk aversions changing when contagion occurs. We

could also examine the efficiency of capital usage if the CCP were endowed

with capital aside from having claims on members’ assets.9

Finally, we should consider how traders would react to these differing net-

work structures. Given the differences in systemic risk and, possibly, capital

charges (if we were to mimic how CCPs require posting margin), would the

networks of exposures be the same, similar, or very different?10 This would

require us to model network formation and to allow counterparties to enter

the network endogenously. The results here lack that endogeneity because

it is not necessary to study how market structures affect distress. While

network formation would rest on the results developed here, it is sufficiently

important to be an area of further study.

Appendix A. Large Market-Induced Bankruptcy Derivations

A.1. Expected Exposure for First Bankruptcy. We assume the Qi are

normally distributed and use the Gumbel extreme value distribution for the

9Recent work by Biais, Heider, and Hoerova (2011) suggests that a CCP is capital efficient;
however, that work is ongoing.
10I thank both Tim Johnson and Florian Heider for noting this important question.
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maximum (Qn) distribution. Since the Qi’s are iid we have

E(Qn|K +Qnr0 ≤ 0) = η
√
n− 1

∫∞
κ1

xcne
−cnx−dne−e−cnx−dn

dx
∫∞
κ1

cne−cnx−dne−e−cnx−dndx
(25)

= η
√
n− 1

∫∞
cnκ1+dn

u−dn
cn

e−ue−e−u
du

1− e−e−cnκ1−dn
(26)

=
η
√
n− 1

cn

(∫∞
cnκ1+dn

ue−ue−e−u
du

1− e−e−cnκ1−dn
− dn

)

.(27)

where κ1 =
−K

r0η
√
n−1

, cn = 1√
2 log(n)

, and11 dn =
√

2 log(n)− log log(n)+log(16 tan−1(1))

2
√

2 log(n)
.

The integral of u over the partial domain of the Gumbel distribution

cannot be found in closed form. Therefore, we note that

∫ ∞

a
ue−ue−e−u

du = γ −
∫ a

−∞
ue−ue−e−u

du = γ +

∫ ∞

e−a

log(v)e−vdv(28)

= γ − log(v)e−v ]∞e−a +

∫ ∞

e−a

e−v

v
dv(29)

= γ − ae−e−a
+ E1(e

−a)(30)

= γ − ae−e−a
+ (−γ − log(e−a)−

∞∑

k=1

(−1)ke−ka

kk!
)(31)

= a− ae−e−a −
∞∑

k=1

(−1)ke−ka

kk!
.(32)

11The arctangent function is used to preserve π for the permanent impact parameter. A
single appearance of a transcendental number should not curtail a convenient consonance.
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This then gives us

E(Qn|K +Qnr0 ≤ 0) =
η
√
n− 1

cn

(∫∞
cnκ1+dn

ue−ue−e−u
du

1− e−e−cnκ1−dn
− dn

)

(33)

=
η
√
n− 1

cn

(

a− ae−e−a
+
∑∞

k=1
(−1)k+1e−ka

kk! ]cnκ1+dn

1− e−e−cnκ1−dn
− dn

)

(34)

= η
√
n− 1

(

κ1 +

∑∞
k=1

(−1)k+1e−cnκ1−dn

kk!

cn(1− e−e−cnκ1−dn )

)

(35)

=
−K

r0
+

η
√
n− 1

cn(1− e−e−cnκ1−dn )

∞∑

k=1

(−1)k+1e−k(cnκ1+dn)

kk!
.(36)

A.2. Exposure to Follow-On Bankruptcies. The number of follow-on

bankruptcies b has expectation b̂ = E(b|K +Qnr0 ≤ 0) of:

(37) b̂ = (n− 1)

∫ κ1

κ2
φ(z)dz

∫ κ1

−∞ φ(z)dz
= (n− 1)

(

1− Φ(κ2)

Φ(κ1)

)

where κ2 =
−K/[η

√
n−1]

r0−π(Q̂n+Q̂f )(
1
2
+ν−ν2)

, and φ,Φ are the standard normal pdf and

cdf. The bounds κ1 and κ2 are assumed to be of the same sign — which fails

if the direction of aggregate trading is opposite that needed for aggregate

rehedging. This situation is ignored since such trading would be suboptimal.

We also have that the expected exposure of a bankrupted counterparty is

E(Q|K +Qnr0 ≤ 0) =
η
√
n− 1

∫ κ1

κ2
zφ(z)dz

∫ κ1

κ2
φ(z)dz

.(38)

The additional unwanted exposure, Q̂f = E(Qf |K + Qnr0 ≤ 0), due to

follow-on bankruptcies then follows from integration by parts and Wald’s
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Formula:

Q̂f = E(Q|K +Qnr0 ≤ 0)E(b|K +Qnr0 ≤ 0)(39)

=
η
√
n− 1

∫ κ1

κ2
zφ(z)dz

∫ κ1

κ2
φ(z)dz

(n− 1)

∫ κ1

κ2
φ(z)dz

∫ κ1

−∞ φ(z)dz
(40)

=
(n− 1)3/2η

Φ(κ1)

∫ κ1

κ2

zφ(z)dz =
(n− 1)3/2η

Φ(κ1)
(φ(κ2)− φ(κ1)).(41)

A.3. Expectation of Minimum Price. To find the maximum amount

sold, we note that each trade is normally-distributed in size. Also, the

order of trading is random, i.e. uniformly distributed across the (n − 1)!

different permutations. Let x′i be the i-th trade, or x′i = xρ(i) if ρ is a

permutation operator. Then, we let Sn′ =
∑n′

i=1 x
′
i, Sn = minn′∈{1,...,n} Sn′ ,

and Sn = maxn′∈{1,...,n} Sn′ .

Since the beginning and ending positions are constrained, we model the

sum of trades Sn as a Brownian bridge and use time inversion to handle

our ending position. Starting from Karatzas and Shreve (1991), equation

(4.3.40), we get

(42) P (Sn−1 ≥ m|Sn−1 = Q̂n + Q̂f ) = e
−2

m(m−(Q̂n+Q̂f ))

(n−1)η2 .

Integrating this gives us the expected exceedance of the high beyond an

ending trade of Q̂n+Q̂f . (This is the opposite of what we are doing; but, the

development here eases comparison with Karatzas and Shreve’s formula.)
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Thus we have that

E(Sn−1|Sn−1 = Q̂n + Q̂f )− (Q̂n + Q̂f ) =(43)

=

∫ ∞

Q̂n+Q̂f

e
−2

m(m−(Q̂n+Q̂f ))

(n−1)η2 dm(44)

=

∫ ∞

Q̂n+Q̂f

e
−2

m2−m(Q̂n+Q̂f )+(Q̂n+Q̂f )2/4−(Q̂n+Q̂f )2/4

(n−1)η2 dm(45)

= η
√
n− 1e

− 1
2

(

Q̂n+Q̂f
η
√
n−1

)2 ∫ ∞

Q̂n+Q̂f

e
−2

(

m−(Q̂n+Q̂f )

η
√
n−1

)2

dm(46)

= η2(n− 1)e
− 1

2

(

Q̂n+Q̂f
η
√
n−1

)2 ∫ ∞

0
e−2v2dv.(47)

This implies, via symmetry, that

E(Sn−1|Sn−1 = −(Q̂n + Q̂f )) =

−(Q̂n + Q̂f )− (n− 1)η22 tan−1(1)φ

(

Q̂n + Q̂f

η
√
n− 1

)

.
(48)

A.4. Derivatives of the Expected Utility Function. We first note that

∂κ2
∂xi

=
Kπ

(n− 1)η(r0 + π(xi + ŷi))2
, and(49)

∂κ2
∂ŷi

=
Kπ

(n− 1)η(r0 + π(xi + ŷi))2
(50)

We also note that

∂b̂

∂xi
= −(n− 1)

φ(κ2)

Φ(κ1)

∂κ2
∂xi

=
−Kφ(κ2)

ηπx2i
, and(51)

∂b̂

∂ŷi
= −(n− 1)

φ(κ2)

Φ(κ1)

∂κ2
∂ŷi

=
−Kφ(κ2)

ηπŷ2i
.(52)

For mathematical ease, we assumed Qn > 0 and r0 < 0; rehedgers must

sell to recreate canceled positions. Thus the sign of the b̂ derivatives makes

sense: more selling increases the expected number of follow-on bankruptcies.
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We can now find derivatives for Q̂f :

∂Q̂f

∂xi
= −(n− 1)2η

Φ(κ1)
κ2φ(κ2)

∂κ2
∂xi

(53)

=
πK2φ(κ2)

ηΦ(κ1)(r0 + π(xi + ŷi))3
(54)

and

∂Q̂f

∂ŷi
= −(n− 1)2η

Φ(κ1)
κ2φ(κ2)

∂κ2
∂ŷi

(55)

=
K2φ(κ2)π

ηΦ(κ1)(r0 + π(xi + ŷi))3
.(56)

Since r0 < 0, these derivatives are negative. Thus more selling will increase

the total exposure cancelled by follow-on bankruptcies.

Finally, we can differentiate player i’s expected utility function with re-

spect to period 1 trade xi:

∂Ûi

∂xi
=− λσ2

(

Q̂f

n− b̂− 1
− qin + xi

)



∂Q̂f

∂xi
+

Q̂f

n−b̂−1
∂b̂
∂xi

n− b̂− 1
+ 1





−π

(
ŷi
2
+ 2xi

)

−π

2

(

qin + ŷi − Q̂n − Q̂f
n− b̂

n− b̂− 1

)



∂Q̂f

∂xi
+

Q̂f

n−b̂−1
∂b̂
∂xi

n− b̂− 1
+ 1





−π

2



−∂Q̂f

∂xi
−

∂Q̂f

∂xi
− Q̂f

n−b̂−1
∂b̂
∂xi

n− b̂− 1





(

Q̂f

n− b̂− 1
− qin + xi

)

.

(57)
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Then we differentiate the expected other players’ utility with respect to

the expected period 1 net trade of others, ŷi:

∂Û(i)

∂ŷi
= −λσ2

(

Q̂n + Q̂f
n− b̂− 2

n− b̂− 1
+ qin + ŷi

)

·
(

∂Q̂f

∂ŷi

n− b̂− 2

n− b̂− 1
− Q̂f

(n− b̂− 1)2
∂b̂

∂ŷi
+ 1

)

− π
(xi
2

+ 2ŷi

)

− π

(

−∂Q̂f

∂ŷi

n− b̂− 3
2

n− b̂− 1
+

Q̂f

2(n− b̂− 1)2
∂b̂

∂ŷi

)(

Q̂n + qin + Q̂f
n− b̂− 2

n− b̂− 1
+ ŷi

)

− π

(

xi−qin
2

− Q̂n − Q̂f
n−b̂− 3

2

n−b̂−1

)(

∂Q̂f

∂ŷi

n− b̂− 2

n− b̂− 1
− Q̂f

(n− b̂− 1)2
∂b̂

∂ŷi
+ 1

)

.

(58)

A.5. Expectation of One-Sided Trade Quantities. We start with the

idea of finding the expected sell trades after rehedging a large bankruptcy

by a counterparty who was long the market. This can be thought of as

E(
n−1∑

i=1

[xi]
−|

n−1∑

i=1

xi = Q̄ < 0)(59)

where xi is the amount traded by counterparty i in period 1 and Q̄ is the

amount which would be rehedged if buyer and seller both traded anticipating

bankruptcies.

Instead of solving this, we solve a similar approximating problem:

E(

n−1∑

i=1

[xi]
−|E

n−1∑

i=1

xi = Q̄ < 0).(60)
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This is much easier if we let µ = − Q̄
(n−1)3/2η

:

E(

n−1∑

i=1

[xi]
−|E

n−1∑

i=1

xi = Q̄ < 0). =(61)

=(n− 1)
√
n− 1η

∫ ∞

0

z√
2π

e−
(z−µ)2

2 dz(62)

=(n− 1)3/2η

∫ ∞

−µ

w + µ√
2π

e−w2/2dw(63)

=(n− 1)3/2η

(
1√
2π

e−µ2/2 + µ(1− Φ(−µ))

)

.(64)
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