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Abstract

This paper presents a sequential search model where consumers look for several

products among competitive multiproduct �rms. In a multiproduct search mar-

ket, both consumer behavior and �rm behavior exhibit di¤erent features from the

single-product case: a consumer often returns to previously visited �rms before

running out of options; and prices can decrease with search costs and increase

with the number of �rms. The framework is then extended in two directions.

First, by introducing both single-product and multiproduct searchers, the model

can explain the phenomenon of countercyclical pricing, i.e., prices of many retail

products decline during peak-demand periods. Second, by allowing �rms to use

bundling strategies, the model sheds new light on how bundling a¤ects market

performance. In a search environment, bundling tends to reduce consumer search

intensity, which can soften competition and reverse the usual welfare assessment

of competitive bundling in a perfect information setting.
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1 Introduction

Consumers often look for several products during a given shopping process. For exam-

ple, during ordinary grocery shopping they buy food, drinks and household products;

in high street shopping they purchase clothes, shoes and other goods; in the Christmas

season they often look for several presents. Sometimes a consumer seeks electronic com-

binations such as computer, printer and scanner; when furnishing a house they need

several furniture items; when going on holiday or attending a conference they book

both �ights and hotels; and for new parents they look for many baby products. On

the other side of the market, there are many multiproduct �rms such as supermarkets,

department stores, electronic retailers, and travel agencies which often supply most of

the products a consumer is searching for in a particular shopping trip. Usually the

shopping process also involves non-negligible search costs. Consumers need to reach

the store, �nd out each product�s price and how suitable they are, and then may decide

to visit another store in pursuit of better deals. In e¤ect, in many cases a consumer

chooses to shop for several goods together to save on search costs.

Despite the ubiquity of multiproduct search and multiproduct �rms,1 the search

literature has been largely concerned with single-product search markets. There are

probably two reasons why multiproduct search is under-researched. First, as I will

discuss in more detail later, a multiproduct search model is less tractable than a single-

product one. Second, people may also be concerned regarding how useful a multiprod-

uct search model will be. This paper develops a tractable model to study multiproduct

search markets. I �nd that multiproduct consumer search actually has rich market

implications, and the developed framework can be used to address several interesting

economic issues. First, a multiproduct search market exhibits some qualitatively dif-

ferent properties compared to the single-product case. For example, in a multiproduct

search market, prices can decline with search costs and rise with the number of �rms.

Second, the multiproduct search model can explain the phenomenon of countercyclical

pricing, i.e., prices of many retail products fall during high-demand periods such as

weekends and holidays. Third, the multiproduct search model provides an appropriate

setting for studying bundling in search markets, and sheds new light on how bundling

a¤ects market performance.

The basic framework of this paper is a sequential search model in which consumers

look for several products and care about both price and product suitability. Each �rm

supplies all relevant products, but each product is horizontally di¤erentiated across

�rms. By incurring a search cost, a consumer can visit a �rm and learn all product and

price information. In particular, the cost of search is incurred jointly for all products,

and the consumer does not need to buy all products from the same �rm, i.e., they can

mix and match after sampling at least two �rms (if �rms allow them to do so).

1Multiproduct search is also relevant in the labor market, for example, when a couple, as a collective

decision maker, is looking for jobs. See Guler, Guvenen, and Violante (2011) for a recent exploration

on this topic.
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In the basic model, I assume linear prices are used, i.e., �rms set separate prices

for each product. A distinctive feature of consumer behavior in multiproduct search is

that a consumer may return to previously visited �rms to buy some products before

running out of options. While in a standard single-product sequential search model,

a consumer never returns to earlier �rms before having sampled all �rms. As far as

pricing is concerned, with multiproduct consumer search, if a �rm lowers one product�s

price, this will induce more consumers who are visiting it to terminate search and buy

some other products as well. That is, a reduction of one product�s price also boosts the

demand for the �rm�s other products. I term this the joint search e¤ect. As a result,

even independent products are priced like complements.

Due to the joint search e¤ect, prices can decline with search costs in a multiproduct

search market. When search costs increase, the standard e¤ect is that consumers will

become more reluctant to shop around, which will induce �rms to raise their prices.

However, in a multiproduct search market, higher search costs can also strengthen the

joint search e¤ect and make the products in each �rm more like complements, which

will induce �rms to lower their prices. When the latter e¤ect dominates prices will fall

with search costs. A related observation is that prices can rise with the number of �rms.

This is because when there are more �rms, it becomes more likely that a consumer will

return to previous �rms to buy some products when she stops searching. This weakens

the joint search e¤ect and so the complementary pricing problem.

Another prediction of our model is that �rms set lower prices in the multiproduct

search environment than in the single-product case. This is for two reasons: �rst,

due to economies of scale in search, consumers on average sample more �rms in the

multiproduct search case than in the single-product search case, which tends to increase

each product�s own-price elasticity; second, multiproduct search causes the joint search

e¤ect, which gives rise to the complementary pricing problem and so increases products�

cross-price elasticities. There is a substantial body of evidence that prices of many retail

products drop during high-demand periods such as weekends and holidays.2 Our model

can o¤er a simple explanation for this phenomenon of countercyclical pricing. Suppose

there are both single-product searchers and multiproduct searchers in the market, and

suppose a higher proportion of consumers become multiproduct searchers during high-

demand periods (e.g., many households conduct their weekly grocery shopping during

weekends). Then the above result implies that prices will decline when demand surges.

The second part of this paper allows �rms to engage in bundling (i.e., selling a

package of goods in a particular price). Bundling is a widely observed multiproduct

pricing strategy in the market. For example, many retailers o¤er a customer a dis-

count or reward (e.g., free delivery) if she buys several products together from the same

store. Bundling is usually explained as a price discrimination or entry deterrence de-

vice,3 but in a search environment it has a new function: it can discourage consumers

2See section 3.4 for related literature and other possible explanations for countercyclical pricing.
3See, for instance, Adams and Yellen (1976), and McAfee, McMillan, and Whinston (1989) for the

view of price discrimination, and Whinston (1990) and Nalebu¤ (2004) for the view of entry deterrence.
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from exploring rivals� deals. This is because bundling reduces the anticipated bene-

�t from mixing-and-matching after visiting another �rm. As such, �rms may have a

greater incentive to adopt the bundling strategy in a search market. Moreover, this

search-discouraging e¤ect works against the typical pro-competitive e¤ect of competi-

tive bundling in a perfect information scenario (see the related literature below).4 When

search costs are relatively high the new e¤ect can be such that bundling bene�ts �rms

and harms consumers.5

Since the seminal work by Stigler (1961), there has been a vast literature on search,

but most papers focus on single object search. There is a small branch of literature

that investigates the optimal stopping rule in multiproduct search. In Burdett and

Malueg (1981) and Carlson and McAfee (1984), consumers search for the lowest price

of a basket of goods among a large number of stores. The former mainly deals with

the case of free recall and the latter deals with the case of no recall. In both cases

the optimal stopping rule possesses the reservation property.6 Gatti (1999) considers a

more general setting with free recall in which consumers search for prices to maximize an

indirect utility function. He shows that the reservation property holds in multiproduct

search if the indirect utility function is submodular in prices, i.e., if a better o¤er in

one dimension (weakly) reduces the search incentive in the other dimension. (The

often adopted additive setting is a special case of that.) This branch of literature

has emphasized the similarity between single-product and multiproduct search in the

sense that in both cases the stopping rule often features the static reservation property.

However, I argue that despite this similarity, consumer search behavior still exhibits

substantial di¤erences between the two cases.

More importantly, the above works do not consider an active supply side, and the

price (or surplus) distribution among �rms is exogenously given. According to our

knowledge, the only genuine equilibrium multiproduct search model is McAfee (1995).7

4In di¤erent settings, Carbajo, de Meza and Seidmann (1990) and Chen (1997) argue that (asym-

metric) bundling can create �vertical� product di¤erentiation between �rms, thereby softening price

competition.
5The European Commission has recently branded all bundled �nancial products as anti-competitive

and unfair. One of the main reasons is that the practice reduces consumer mobility. See the consultation

document �On the Study of Tying and Other Potentially Unfair Commercial Practices in the Retail

Financial Service Section�, 2009.
6However, with free recall consumers purchase nothing until search is terminated, while with no

recall consumers may buy some cheap goods �rst and then continue to search for the other goods.
7Lal and Matutes (1994) also present a multiproduct search model where each product is homoge-

nous across �rms and each consumer needs to pay a location-speci�c cost to reach �rms and discover

the price information. Their setting is subject to the Diamond paradox. That is, no consumers will

participate in the market given that they expect each �rm is charging the monopoly prices. Lal and

Matutes argue that �rms can avoid the market collapse by employing loss-leading strategy, i.e., by

advertising (and committing to) low prices of some products to persuade consumers to visit the store.

However, in equilibrium each consumer still only samples one �rm. Shelegia (2009) studies a multi-

product version of Varian (1980) in which for some exogenous reasons one group of consumers visits

only one store while the other visits two. The presence of heterogeneously informed consumers can be a
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It studies multiproduct price dispersion by extending Burdett and Judd (1983) to the

multiproduct case. Each product is homogenous across stores, and by incurring a search

cost a consumer can learn price information from a random number of stores. In par-

ticular, some consumers only learn information from one store while others learn more.

As a result, similar to the single-product case, �rms adopt mixed pricing strategies,

re�ecting the trade-o¤ between exploiting less informed consumers and competing for

more informed consumers. However, multiproduct search generates multiple types of

(symmetric) equilibria. In particular, there is a continuum of equilibria in which �rms

randomize prices on the reservation frontier such that one product�s price decline must

be associated with the rise of some other prices.8 Although the model o¤ers inter-

esting insights, both the multiplicity of equilibria and the complication of equilibrium

characterization restrict its applicability. Our paper develops an alternative multiprod-

uct search framework with di¤erentiated products where the symmetric equilibrium is

unique. I do not aim to address price dispersion. Instead, I use the developed frame-

work to address other important economic issues such as countercyclical pricing and

bundling in search markets.

In terms of the modelling approach, our paper is built on the single-product search

model with di¤erentiated products. That framework was initiated by Weitzman (1979),

and later developed and applied to a market context by Wolinsky (1986) and Ander-

son and Renault (1999). Compared to the homogeneous product search model, models

with product di¤erentiation often better re�ect consumer behavior in markets that

are typically characterized by nonstandardized products. Moreover, they avoid the

well-known modelling di¢culty suggested by Diamond (1971), who shows that with

homogeneous products and positive search costs (no matter how small) all �rms will

charge a monopoly price and all consumers will stop searching at the �rst sampled

�rm. So rivalry between �rms has no impact on price. In search models with product

di¤erentiation, there are some consumers who are ill-matched with their initial choice

of supplier and then search further, so that the pro-competitive bene�t of actual search

is present.9 Recently this framework has been adopted to study various economic is-

sues such as prominence and non-random consumer search (Armstrong, Vickers, and

Zhou, 2009), �rms� incentive to use selling tactics such as exploding o¤ers and buy-now

consequence of rational search, but without an explicit search model the main insights from our paper

are absent there. Rhodes (2010) proposes a multiproduct monopoly model in which each consumer

knows her private valuations for all products but needs to incur a cost to reach the �rm and learn

prices. He shows that selling multiple products can solve the Diamond hold-up problem which would

unravel the market in a single-product case with inelastic consumer demand.
8In the other type of equilibria, �rms randomize prices over the acceptance set (not just on its

border). They are, however, qualitatively similar to the single-product equilibrium in the sense that

the marginal price distribution for each product is the same as in the single-product search case, and

so is the pro�t from each product.
9In the homogeneous product scenario, the main approach to avoid the Diamond paradox is to

introduce heterogeneously informed consumers. See, for example, Burdett and Judd (1983) and Stahl

(1989), where price dispersion arises endogenously and so consumers have incentive to search.
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discounts (Armstrong and Zhou, 2010), how the decline of search costs a¤ects prod-

uct design (Bar-Isaac, Caruana, and Cuñat, 2009), and attention-grabbing advertising

(Haan and Moraga-González, 2011). This paper extends the basic framework in this

literature to the multiproduct case.

Last but not least, this paper contributes to the literature on competitive bundling.

Matutes and Regibeau (1988), Economides (1989), and Nalebu¤ (2000) have studied

competitive pure bundling, and Matutes and Regibeau (1992), Anderson and Leruth

(1993), Thanassoulis (2007), and Armstrong and Vickers (2010) have studied duopoly

mixed bundling.10 One important insight emerging from all these works is that bundling

(whether pure or mixed) has a tendency to intensify price competition, and under the

assumptions of unit demand and full market coverage (which are also retained in this

paper) it typically reduces �rm pro�ts and boosts consumer welfare.11 This paper

is the �rst to study bundling in a search environment. Our �ndings indicate that

assuming away information frictions (which usually do exist in consumer markets) may

signi�cantly distort the welfare assessment of bundling. In particular, when search costs

are relatively high, bundling may actually bene�t �rms and harm consumers. As such,

our work complements the existing literature.

The rest of the paper is organized as follows. Section 2 presents the basic model

with linear pricing and analyzes consumer search behavior. Section 3 characterizes

equilibrium linear prices in a duopoly and conducts comparative statics analysis, and

an application to countercyclical pricing is then discussed. Section 4 studies bundling

in a search market and examines its welfare impacts relative to linear pricing. Section

5 discusses the case with more �rms and other extensions, and section 6 concludes.

Omitted proofs and calculations are presented in the Appendix.

2 A Model of Multiproduct Search

There are a large number of consumers in the market, and the measure of them is

normalized to one. Each consumer is looking for a number of products. For example,

a consumer who is furnishing her house may need to buy several furniture items; a

high-street shopper may be looking for both clothes and shoes. For simplicity, let us

assume that each consumer needs two products 1 and 2, and they have unit demand for

each product. There are n � 2 multiproduct �rms in the market, each supplying both
products at a constant marginal cost which is normalized to zero. Suppose each product

is horizontally di¤erentiated across �rms. For example, di¤erent �rms may supply

di¤erent brands of furniture or clothes and shoes with di¤erent styles, and consumers

often have idiosyncratic tastes. I model this scenario by extending the random utility

model in Perlo¤ and Salop (1985) to the two-product case. Speci�cally, a consumer�s

10Most of these studies adopt the two-dimensional Hotelling setting and assume that consumers are

distributed uniformly on the square and have unit demand for each product. Armstrong and Vickers

(2010) consider a fairly general setting with arbitrary distributions and elastic demand.
11The welfare impact of bundling in the monopoly case is ambiguous (e.g., Schmalensee, 1984).
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valuations for the two products in each �rm are randomly drawn from a common joint

cumulative distribution function F (u1; u2) de�ned on [u1; u1] � [u2; u2] which has a
continuous density f(u1; u2). The valuations are realized independently across �rms and

consumers (but a consumer may have correlated valuations for the two products in the

same �rm). For simplicity, I assume that the two products are neither complements nor

substitutes, in the sense that a consumer obtains an additive utility u1 + u2 if product

i has a match utility ui, i = 1; 2. (See a discussion about intrinsic complements in

section 5.5.) Let Fi(ui) and Hi(uijuj) denote the marginal and conditional distribution
functions; fi(ui) and hi(uijuj) denote the marginal and conditional densities.
Following Perlo¤ and Salop (1985), I assume that in equilibrium all consumers buy

both products, i.e., the market is fully covered.12 (This is the case, for example, when

consumers have no outside options or when they have large basic valuations for each

product on top of the above match utilities.) However, consumers do not need to

purchase both products from the same �rm. This possibility of multi-stop shopping is

realistic and also important for our model. Otherwise, the multiproduct search model

would degenerate to a single-product one with a composite product with match utility

u1+u2. In the basic model, �rms must charge a separate price for each product. I refer

to this case as �linear pricing� henceforth. (I will consider bundling in section 4.)

I introduce imperfect information and consumer search as Wolinsky (1986) and

Anderson and Renault (1999) did in a single-product framework. Initially consumers are

assumed to have imperfect information about the (actual) prices �rms are charging and

match utilities of all products.13 But they can gather information through a sequential

search process: by incurring a search cost s � 0, a consumer can visit a �rm and �nd

out both prices (p1; p2) and both match utilities (u1; u2). At each �rm (except the last

one), the consumer faces the following options: stop searching and buy both products

(maybe from �rms visited earlier), or buy one product and keep searching for the other,

or keep searching for both products. The cost of search is assumed to be the same

no matter how many products a consumer is looking for, which re�ects economies of

scale in search. I also assume away other possible costs involved in sourcing supplies

from more than one �rm. Finally, following most of the literature on consumer search, I

suppose that consumers have free recall, i.e., there are no extra costs in buying products

from a previously visited store.

Both consumers and �rms are assumed to be risk neutral. I focus on symmetric

equilibria in which �rms set the same (linear) prices and consumers sample �rms in

12The assumption of full market coverage is often adopted for simplicity in oligopoly models. In this

paper, neither the joint search e¤ect nor the e¤ect of bundling on consumer search incentive relies on

this assumption, so the main insights can carry over even without this assumption (though the analysis

will become more involved).
13In the markets (e.g., the grocery market) where consumers shop frequently, some consumers should

be able to learn both price and product information if they do not vary over time. However, in reality

both prices and product variants in many retailers change over time such that imperfect information

might be a plausible presumption.
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a random order (and without replacement).14 I use the perfect Bayesian equilibrium

concept. Firms set prices simultaneously, given their expectation of consumers� search

behavior. Consumers search optimally, to maximize their expected surplus, given the

match utility distribution and their rational beliefs about �rms� pricing strategy. At

each �rm, even after observing o¤-equilibrium o¤ers, consumers hold the equilibrium

belief about the unsampled �rms� prices.15

I have made several simplifying assumptions to make the model tractable.

Economies of scale in search. Our assumption that the cost of search is independent

of the number of products a consumer is seeking is an approximation when the search

cost is mainly for learning the existence of a seller or for reaching the store. In the other

polar case where the cost of search is totally divisible among products (so no economies

of scale in search at all), the multiproduct search problem degenerates to two separate

single-product search problems. In reality, most situations are in between (e.g., a typical

shopping process involves a �xed cost for reaching the store and also variable in-store

search costs for �nding and inspecting each product). Our simpli�cation is both for

analytical convenience and for highlighting the di¤erence between multiproduct and

single-product search.

Free recall. Free recall is often assumed in the consumer search literature. It could

be appropriate, for instance, when a consumer can phone previously visited �rms (e.g.,

furniture stores) to order the products she decides to buy, or when shopping online a

consumer can leave the browsed websites open. Sometimes we also assume no recall at

all (especially in the job search literature). In most consumer markets, however, there

are usually positive returning costs but they are not so high that returning is totally

banned. I choose to assume free recall both for tractability,16 and for facilitating the

comparison between our model and the corresponding single-product search model in

Wolinsky (1986) and Anderson and Renault (1999) (both of which assume free recall).

I will discuss how costly recall or no recall could a¤ect our results in section 5.3.

14As usual in search models, there exists an uninteresting equilibrium where consumers expect all

�rms to set very high prices which leave them with no surplus, consumers do not participate in the

market at all, and so �rms have no incentive to reduce their prices. I do not consider this equilibrium

further. In addition, there may also exist asymmetric equlibria with active search, and I will discuss

this issue in section 5.1.
15This o¤-equilibrium belief is reasonable because in our setting there are no correlated economic

shocks (e.g., aggregate cost shocks) across �rms and so their pricing decisions are independent to each

other. In an alternative setting, say, with correlated cost shocks, a consumer who observes a low

price in one �rm may infer that other �rms also have low costs and so anticipate that they are also

charging low prices. See, for instance, Bénabou and Gertner (1993) for such a learning model in the

single-product search scenario.
16According to my knowledge, Janssen and Parakhonyak (2010) is the only paper in the economics

literature which studies the optimal stopping rule in the single-product search case with costly recall.

They �nd that when there are more than two (but a �nite number of) �rms, the stopping rule is

non-stationary and depends on the historical o¤ers in an intricate way. The optimal stopping rule in

multiproduct search with costly recall and an arbitrary number of �rms is still an open question.
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Two-stop shopping costs. Even if search costs and returning costs are absent, trans-

acting with two �rms may involve some other costs (e.g., the cost of paying two bills).

But in many retail markets, this kind of two-stop shopping costs seem less important

than search costs. I will discuss the di¤erence between this market friction and search

friction in section 5.4. (Two-stop shopping costs are also similar to the joint-purchase

discount I will examine in the bundling part.)

2.1 The optimal stopping rule

I �rst derive the optimal stopping rule (which has been proved in Burdett and Malueg,

1981, or Gatti, 1999 in a price search scenario). The �rst observation is that given the

indivisible search cost and free recall a consumer will never buy one product �rst and

keep searching for the other. Hence, at any store (except the last one) the consumer

faces only two options: stop searching and buy both products (one of which may be

from a �rm visited earlier), or keep searching for both.

Denote by

� i(x) �
Z ui

x

(ui � x)dFi(ui) =
Z ui

x

[1� Fi(ui)]dui (1)

the expected incremental bene�t from sampling one more product i when the maximum

utility of product i so far is x. (The second equality is from integration by parts.) Note

that � i(x) is decreasing and convex. Then the optimal stopping rule in a symmetric

equilibrium is as follows.

Lemma 1 Suppose prices are linear and symmetric across �rms. Suppose the maxi-

mum match utility of product i observed so far is zi and there are �rms left unsampled.

Then a consumer will stop searching if and only if

�1(z1) + �2(z2) � s : (2)

The left-hand side of (2) is the expected bene�t from sampling one more �rm given

the pair of maximum utilities so far is (z1; z2), and the right-hand side is the search

cost. This stopping rule seems �myopic� at the �rst glance, but it is indeed sequentially

rational. It can be understood by backward induction. When in the penultimate �rm,

it is clear that (2) gives the optimal stopping rule because given (z1; z2) the expected

bene�t from sampling the last �rm is E[max (0; u1 � z1)+max (0; u2 � z2)], which equals
the left-hand side of (2). (Note that I did not assume u1 and u2 are independent of each

other. The separability of the incremental bene�t in (2) is because of the additivity

of match utilities and the linearity of the expectation operator.) Now step back and

consider the situation when the consumer is at the �rm before that. If (2) is violated,

then sampling one more �rm is always desirable. By contrast, if (2) holds, then even

if the consumer continues searching, she will stop at the next �rm no matter what

she will �nd there. So the bene�t from keeping searching is the same as sampling one

more �rm. Expecting that, the consumer should actually cease her search now. (This

stopping rule also carries over to the case with an in�nite number of �rms.)
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Figure 1 below illustrates the optimal stopping rule.

z1

z2

A

B

a1

a2

z r r

r

z _ u

u

z2 = �(z1)

Figure 1: The optimal stopping rule in multiproduct search with perfect recall

A is the set of (z1; z2) which satis�es (2) and let us refer to it as the acceptance set.

Then a consumer will stop searching if and only if the maximum utility pair so far

lies within A. De�ne the border of A as z2 = �(z1), i.e., (z1; �(z1)) satis�es (2) with

equality, and call it the reservation frontier. One can show that A is a convex set, and

the reservation frontier is decreasing and convex.17 Let B be the complement of A.

Note that ai on the graph is just the reservation utility level when the consumer is only

searching for product i. It solves

� i(ai) = s ; (3)

and satis�es �(a1) = u2 and �(u1) = a2. This is because when the maximum possible

utility of one product has been achieved, the consumer will behave as if she is only

searching for the other product.

It is worth mentioning that from (1) and (2), one can see that only the marginal

distributions matter for the expected bene�t of sampling one more �rm. This implies

that if the marginal distributions are �xed, the correlation of the two products� match

utilities does not a¤ect the reservation frontier.

Search behavior comparison. It is useful to compare consumer search behavior be-

tween single-product search and multiproduct search. The early literature has empha-

sized that in both cases (given additive utilities in the multiproduct case) the optimal

stopping rule possesses the static reservation property. Despite this similarity, con-

sumers� search behavior exhibits some di¤erences between the two cases, which have

not been discussed before.

17From the equality of (2), we have

�0(z1) = �
1� F1(z1)
1� F2(�(z1))

< 0 ;

and this derivative increases with z1.
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In single-product search with perfect recall, the stopping rule is characterized by a

reservation utility a. When a consumer is already at some �rm (except the last one),

she will stop searching if and only if the current product has a utility greater than

a. Previous o¤ers are irrelevant because they must be worse than a (otherwise the

consumer would not have come to this �rm). As a result, a consumer never returns to

previously visited �rms until she �nishes sampling all �rms. In particular, if there are

an in�nite number of �rms, the consumer actually never exercises the recall option.

However, in multiproduct search, a consumer�s search decision may depend on both

the current �rm�s o¤er u and the best o¤er so far z. This can be seen from the example

indicated in Figure 1, where the current o¤er u lies outside the acceptance set A but

the consumer will stop searching because z_u 2 A (where _ denotes the �join� of two
vectors). As a result, in multiproduct search (even with an in�nite number of �rms),

although a consumer will buy at least one product at the �rm where she stops searching,

she may return to a previous �rm and buy the other product even if there are �rms left

unsampled. In the above example, the consumer will go back to some previous �rm to

buy product 2.

These di¤erences will complicate the demand analysis in multiproduct search. In

particular, unlike the single-product search case, considering an in�nite number of �rms

does not simplify the analysis (mainly because various types of returning consumers

still exist). However, the complication can be avoided if there are only two �rms.

Moreover, as I will discuss in section 5.2, such a simpli�cation does not lose the most

important insights concerning �rm pricing in a multiproduct search setting. Hence,

in the following analysis, I mainly deal with the duopoly case. (A detailed analysis

of the general case with more than two �rms is provided in the online supplementary

document at https://sites.google.com/site/jidongzhou77/research.)

3 Equilibrium Prices

3.1 The single-product benchmark

To facilitate comparison, I �rst report some results from the single-product search

model (see Wolinsky, 1986 and Anderson and Renault, 1999 for an analysis with n

�rms). Suppose the product in question is product i, and the unit search cost is still s.

Then the reservation utility level is ai de�ned in (3), and it decreases with s. That is,

in a symmetric equilibrium, a consumer will keep searching if and only if the maximum

match utility so far is lower than ai, and a higher search cost will make the consumer

less willing to search on. In the following analysis, I will mainly focus on the case with

a relatively small search cost:

s < � i(ui), ai > ui for both i = 1; 2 : (4)

(Remember that � i(ui) is the expected bene�t from sampling another product i when

the current one has the lowest possible match value.) This condition ensures an active

11



search market even in the single-product case.

The symmetric equilibrium price p0i is then determined by

1

p0i
= fi(ai)[1� Fi(ai)] + 2

Z ai

ui

fi(u)
2du

| {z }
�0

: (5)

(Its intuition will be clear soon.) It follows that p0i increases with the search cost s (or

decreases with ai) if

fi(ai)
2 + f 0i(ai)[1� Fi(ai)] � 0 :

This condition is equivalent to an increasing hazard rate fi=(1�Fi). Then we have the
following result (Anderson and Renault, 1999 have shown this result for an arbitrary

number of �rms).

Proposition 1 Suppose the consumer is only searching for product i and the search

cost condition (4) holds. Then the equilibrium price de�ned in (5) increases with the

search cost if the match utility has an increasing hazard rate fi=(1� Fi).

3.2 Equilibrium prices in multiproduct search

I now turn to the multiproduct search case. Let (p1; p2) be the symmetric equilibrium

prices. For notational convenience, let (u1; u2) be the match utilities of �rm 1, the �rm

in question, and (v1; v2) be the match utilities of �rm 2, the rival �rm. In equilibrium, for

a consumer who samples �rm 1 �rst, her reservation frontier u2 = �(u1) is determined

by

�1(u1) + �2(�(u1)) = s ; (6)

which simply says that the expected bene�t of sampling �rm 2 is equal to the search cost.

Note that �(u1) is only de�ned for u1 2 [a1; u1] (see Figure 2 below). For convenience,
let us extend its domain to all possible values of u1, but stipulate �(u1) > u2 for u1 < a1.

Instead of writing down the demand functions and deriving the �rst-order conditions

for the equilibrium prices directly, I use the following economically more illuminating

method. Starting from an equilibrium, suppose �rm 1 unilaterally decreases p2 by a

small ". How will this adjustment a¤ect �rm 1�s pro�ts? Let us focus on the �rst-order

e¤ects. First of all, �rm 1 su¤ers a loss from those consumers who only buy product 2

from it because they are now paying less. Since in equilibrium half of the consumers buy

product 2 from �rm 1 (remember the assumption of full market coverage), this loss is

"=2. Second, �rm 1 gains from boosted demand: (i) For those consumers who visit �rm

1 �rst, they will be more likely to stop searching since they hold equilibrium beliefs that

the second �rm is charging the equilibrium prices. Once they stop searching, they will

buy both products from �rm 1 immediately. (ii) For those consumers who eventually

sample both �rms, they will be more likely to buy product 2 from �rm 1due to the

price reduction. In equilibrium, the loss and gain should be such that �rm 1 has no

incentive to deviate, which generates the �rst-order condition for p2.

12



Now let us analyze in detail the two (�rst-order) gains from the proposed small

price reduction. The �rst gain is from the e¤ect of the price reduction on consumers�

search decisions. How many consumers who sample �rm 1 �rst will be induced to stop

searching by the price reduction? (Note that the consumers who sample �rm 2 �rst

hold equilibrium beliefs and so their stopping decisions remain unchanged.) Denote by

�(u1j") the new reservation frontier. Since reducing p2 by " is equivalent to increasing
u2 by ", �(u1j") solves

�1(u1) + �2(�(u1j") + ") = s ;

so �(u1j") = �(u1) � " according to the de�nition of �(�). That is, the reservation
frontier moves downward everywhere by ", and the stopping region A expands (i.e.,

more consumers buy immediately at �rm 1) as illustrated in the �gure below.
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A(")
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u2 = �(u1)

u2 = �(u1j")
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p
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Figure 2: Price deviation and the stopping rule

For a small ", the number of consumers who switch from keeping searching to buying

immediately at �rm 1 (i.e., the probability measure of the shaded area between �(u1)

and �(u1j")) is
"

2

Z u1

a1

f(u; �(u))du : (7)

(Remember that half of the consumers sample �rm 1 �rst. The integral term is the line

integral along the reservation frontier in the u1 dimension.)

What is �rm 1�s net bene�t from these marginal consumers? Realize that these

marginal consumers now buy both products from �rm 1 for sure, while before the price

deviation they only bought each product from �rm 1 with some probability less than one

(i.e., when they search on but �nd worse products at �rm 2). To be speci�c, consider

a marginal consumer on the reservation frontier with match utilities (u1; �(u1)). If she

chooses to sample �rm 2, then she will �nd a worse product 1 at �rm 2 (i.e., v1 < u1)

with probability F1(u1), in which case she will return to �rm 1 and buy its product

1. Similarly, if she continues to sample �rm 2, she will �nd a worse product 2 at �rm
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2 (i.e., v2 < �(u1)) with probability F2(�(u1)), in which case she will return to �rm 1

and buy its product 2. Hence, the net bene�t from inducing this marginal consumer

from searching on is p1[1 � F1(u)] + p2[1 � F2(�(u1))]. We then sum this bene�t over

all marginal consumers on the reservation frontier. By using (7), this total bene�t is

"

2

Z u1

a1

fp1[1� F1(u)] + p2[1� F2(�(u1))]g f(u; �(u))du : (8)

The second gain is from those consumers who have sampled both �rms because they

will now buy product 2 from �rm 1 more likely due to the price reduction. Consider

�rst a consumer who visits �rm 1 �rst and �nds match utilities (u1; u2) 2 B("). She
will then continue to visit �rm 2, but will return to �rm 1 and buy its product 2 if

v2 < u2 + ". The probability of that event is F2(u2 + ") � F2(u2) + "f2(u2). So the

small price adjustment increases the probability that this consumer buys product 2

from �rm 1 by "f2(u2). Then the total increased probability from all such consumers

is "
2

R
B(")

f2(u2)dF (u) � "
2

R
B
f2(u2)dF (u). (Since B(") converges to B as " ! 0, we

can discard all higher order e¤ects.) Similarly, one can show that the gain from those

consumers who sample �rm 2 �rst and then come to �rm 1 is "
2

R
B
f2(v2)dF (v). Adding

these two bene�ts together gives us the second gain which is

p2"

Z

B

f2(u2)dF (u) : (9)

In equilibrium, the (�rst-order) loss "=2 from the small price reduction should be

equal to the sum of the two (�rst-order) gains in (8) and (9). This yields the �rst-order

condition for p2:

1 = 2p2

Z

B

f2(u2)dF (u) + p2

Z u1

a1

[1� F2(�(u))]f(u; �(u))du
| {z }

standard e¤ect

(10)

+ p1

Z u1

a1

[1� F1(u)]f(u; �(u))du
| {z }

joint search e¤ect

:

The �rst two terms on the right-hand side capture the standard e¤ect of a product�s

price adjustment on its own demand: reducing p2 increases demand for product 2.

(This is similar to the right-hand side of (5) in the single-product search case.) The

last term, however, captures a new feature of the multiproduct search model: when

�rm 1 reduces p2, more consumers who sample it �rst will stop searching and buy

both products, which increases the demand for its product 1 as well. This makes the

two products supplied by the same �rm like complements even if they are physically

independent. This e¤ect occurs because each consumer is searching for two products

and the cost of search is incurred jointly for them, and so I refer to it as the joint search

e¤ect henceforth. Also notice that the size of the joint search e¤ect (which determines

the degree of �complementarity� between the two products in each �rm) relies on the

mass of marginal consumers on the reservation frontier, i.e., (7). It depends not only on
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the density function f but also on the �length� of the reservation frontier as indicated in

Figure 2. For example, in the uniform distribution case, when the search cost increases,

the reservation frontier becomes longer such that the mass of marginal consumers rises

and so the two products become more like complements. As we shall see below, this

observation plays an important role in �rms� pricing decisions.

Similarly, one can derive the �rst-order condition for p1 as:

1 = 2p1

Z

B

f1(u1)dF (u) + p1

Z u2

a2

[1� F1(��1(u))]f(��1(u); u)du (11)

+ p2

Z u2

a2

[1� F2(u)]f(��1(u); u)du ;

where ��1 is the inverse function of �. I summarize the results in the following lemma.18

Lemma 2 Under the search cost condition (4), the �rst-order conditions for p1 and p2
to be the equilibrium prices are given in (10) and (11).

Both (10) and (11) are linear equations in prices, and the system of them has a

unique solution. Thus, the symmetric equilibrium, if it exists, will be unique.19 Notice

that if �rms ignored the joint search e¤ect, then the pricing problem would be actually

separable between the two products. A special case is when s = 0 (so ai = ui and

B equals the whole match utility domain). Then the e¤ect of a price adjustment on

consumer search behavior (i.e., (8)) disappears, and the �rst-order conditions simplify

to
1

pi
= 2

Z ui

ui

fi(u)
2du :

In this case, the multiproduct model yields the same equilibrium prices as the single-

product model.

18One can also derive the �rst-order conditions by calculating the demand functions directly. For

example, when �rm 1 unilaterally deviates to (p1 � "1; p2 � "2), the demand for its product 1 is

1

2

Z u1

u
1

[1�H2(�(u1j")ju1)(1� F1(u1 + "1))] dF1(u1) +
1

2

Z u1

u
1

H2(�(v1)jv1)(1� F1(v1 � "1))dF1(v1) ;

where " = ("1; "2), �(u1j") = �(u1 + "1)� "2 is the reservation frontier associated with the deviation,
and Hi(�j�) is the conditional distribution function. Consumers who sample �rm 1 �rst will buy its

product 1 if they stop searching immediately or if they search on but �nd �rm 2�s product 1 is worse.

Consumers who sample �rm 2 �rst will purchase �rm 1�s product 1 if they come to �rm 1 and �nd �rm

1�s product 1 is better. The deviation demand for product 2 is similar. However, this direct method

will become less applicable in the case with more products, more �rms, or mixed bundling.
19In my multiproduct search model, it is rather complicated to investigate the second-order condition

in general. However, in the online supplementary document, I show that in the case with two symmetric

products, each �rm�s pro�t function is locally concave around the prices de�ned in (10) and (11) under

fairly general conditions. In the uniform and exponential examples (which use for illustration below),

one can numerically verify that a �rm�s pro�t function is also globally concave such that the �rst-order

conditions are su¢cient for the equilibrium prices.
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In the following analysis, I will often rely on the case of symmetric products. Slightly

abusing the notation, let the one-variable functions F (�) and f(�) denote the common
marginal distribution function and density function, respectively. Let a be the com-

mon reservation utility in each dimension. In particular, with symmetric products, we

have f(u1; u2) = f(u2; u1) and the reservation frontier satis�es �(�) = ��1(�), i.e., it is
symmetric around the 45-degree line in the match utility space. If p is the equilibrium

price of each product, then both (10) and (11) simplify to

1

p
= 2

Z

B

f(ui)f(ui; uj)du+

Z u

a

[1� F (�(u))]f(u; �(u))du
| {z }

standard e¤ect: �

(12)

+

Z u

a

[1� F (u)]f(u; �(u))du
| {z }

joint search e¤ect: �

:

Before proceeding to the comparative statics analysis, let us �rst study two exam-

ples.

The uniform example: Suppose u1 and u2 are independent, and ui s U [0; 1]. Then

� i(x) = (1 � x)2=2. So a = 1 �
p
2s and the search cost condition (4) requires

s � 1=2. The reservation frontier satis�es

(1� u)2 + (1� �(u))2 = 2s ;

so the stopping region A is a quarter of a disk with a radius
p
2s. Then (12)

implies20

p =
1

2� (�=2� 1)s ;

where � � 3:14 is the mathematical constant.

The exponential example: Suppose u1 and u2 are independent, and fi(ui) = e
�ui

for ui 2 [0;1). Then � i(x) = e�x. So e�a = s and the search cost condition (4)
requires s � 1. The reservation frontier satis�es

e�u + e��(u) = s ;

so �(u) is one branch of a hyperbola. Then (12) implies21

p =
1

1 + s3=6
:

20The standard e¤ect is � = 2 � s�=2: the �rst term in (12) is 2
R
B
du, so it equals two times the

area of region B, i.e., 2(1� s�=2) = 2� s�; and the second term is
R 1
a
[1��(u)]du, which is the area of

region A and so equals s�=2. The joint search e¤ect is � =
R 1
a
(1�u)du = s according to the de�nition

of a.
21One can check that the standard e¤ect is � = 1 and the joint search e¤ect is � = s3=6.
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The prices in these two examples are depicted as the thick solid curves in Figure 3

below. The price increases with search costs in the uniform example, but it decreases

with search costs in the exponential example. As we will see below, the result that prices

can decline with search costs is not exceptional in our multiproduct search model.
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(a) uniform example
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(b) exponential example

Figure 3: Prices and search costs (symmetric products)

3.3 Search cost and price

This section investigates how search costs a¤ect prices in our multiproduct search model.

When search costs rise, there are two e¤ects. First, consumers will become more reluc-

tant to shop around, and so fewer of them will sample both �rms (i.e., the region of

B shrinks), which always induces �rms to raise their prices. Second, when search costs

rise, the mass of marginal consumers who distribute on the reservation frontier also

changes. This is another determinant for prices. In particular, if the mass of marginal

consumers increases with search costs (which occurs more likely in the multiproduct

case than in single-product case because the reservation frontier often becomes �longer�

as search costs rise in the permitted range of (4)), �rms have an incentive to reduce

their prices. This incentive is further strengthened in the multiproduct case due to

the joint search e¤ect (i.e., stopping a marginal consumer from searching on can boost

demand for both products). The �nal prediction depends on which e¤ect dominates.

Our �rst observation is that if the joint search e¤ect were absent, then the marginal-

consumer e¤ect would be usually insu¢cient to outweigh the �rst. Denote by ~pi, i = 1; 2,

the hypothetical equilibrium prices if �rms ignore the joint search e¤ect (i.e., they solve

(10) and (11) without the second line of each equation). (All omitted proofs can be

found in Appendix A.)

Lemma 3 Suppose the search cost condition (4) holds and

hi(uijuj)
1� Fi(ui)

increases with ui for any given uj. (13)

Then ~pi; i = 1; 2; weakly increase with the search cost.
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That is, without the joint search e¤ect, the relationship between prices and search

costs would be actually similar to that in the single-product scenario. (Note that the

condition (13) is just the standard increasing hazard rate condition if the two products

have independent match utilities.) For instance, in the uniform example, we have

~pi = 1=(2� �s=2) which increases with s; and in the exponential example which has a
constant hazard rate, we have ~pi = 1 which is independent of s (so pi decreasing with

s in this case is purely due to the joint search e¤ect).

However, taking into account the joint search e¤ect will qualitatively change the

picture. I pursue this issue by considering two cases.

Symmetric products. Suppose �rst the two products are symmetric, and so the

equilibrium price p is given in (12). Lemma 3 implies that the standard e¤ect � indicated

in (12) usually decreases with s. However, the joint search e¤ect � can vary with s in

either direction even under the regularity condition. If � also decreases with s, then the

joint search e¤ect will make the price increase with search costs even faster. Conversely,

if � increases with s, then the joint search e¤ect will mitigate or even overturn the usual

relationship between price and search costs. As shown in the proof of next proposition,

d�

ds
= f(a; u)�

Z u

a

h0(uj�(u))f(�(u))du : (14)

This derivative is positive, for example, when the (conditional) density function is

weakly decreasing. This is true in both the uniform and exponential example.

As a result, the standard hazard rate condition is no longer enough to ensure that

prices increase with search costs in our model. The following result gives a new condi-

tion.

Proposition 2 Suppose the search cost condition (4) holds, and the two products are

symmetric. Then the equilibrium price p de�ned in (12) increases with the search cost

if and only if

Z u

a

f(�(u))

1� F (�(u)) ff(u)h(uj�(u)) + [2� F (u)� F (�(u))]h
0(uj�(u))g du > f(a; u) (15)

for all a. If the two products further have independent valuations, a su¢cient condition

for (15) is that the marginal density f(u) is (weakly) increasing.

Condition (15), however, can be easily violated by some distributions having a

decreasing or non-monotonic density (but still having an increasing hazard rate).22 As

well as the exponential case, other relatively simple examples include: the distribution

with a decreasing density f(u) = 2(1� u) for s 2 [0; 1=3]; and the logistic distribution
f(u) = eu=(1 + eu)2 for s less than about 1.

22One may wonder, if f(a; u) is bounded away from zero, whether the condition always fails to hold

as a ! u (i.e., as s ! 0). This is not true because f(�(u))
1�F (�(u)) may converge to in�nity at the same

time. For example, in the uniform case, the left-hand side is equal to �
2 � 1 > 0, independent of a.
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On the other hand, if �rms supply (and consumers need) more products, the joint

search e¤ect could have an even more pronounced impact such that prices fall with

search costs more likely. I can extend the two-product model to the case with m prod-

ucts (see the details in Appendix A). In particular, in the uniform case, the equilibrium

price p has a simple formula:

1

p
= 2� Vm(

p
2s)

2m| {z }
standard e¤ect

+
(m� 1)Vm(

p
2s)

2m�1�| {z }
joint search e¤ect

; (16)

where s 2 [0; 1=2] and Vm(
p
2s) is the volume of an m-dimensional sphere with a radiusp

2s.23 One can check that p increases with s if and only if m < 1 + �=2 � 2:6. Then
we have the following result.

Proposition 3 Suppose the search cost condition (4) holds, and each �rm supplies m

symmetric products with independent valuations ui s U [0; 1]. Then the equilibrium

price p de�ned in (16) increases with s if m � 2 and decreases with s if m � 3.

In this example, if the joint search e¤ect were absent, the price would increase with

the search cost for any m. But its presence makes the price decline with search costs

whenever consumers are searching for more than two products.

Asymmetric products. Another force which could in�uence the relationship between

prices and search costs is product asymmetry. Intuitively, when one product has a lower

pro�t margin than the other, the joint search e¤ect from adjusting its price is stronger

(i.e., reducing its price can induce consumers to buy the more pro�table product). Then

this product�s price may go down with the search cost. I con�rm this possibility in a

uniform example in which product 1 is a �small� item and has match utility uniformly

distributed on [0; 1], and product 2 is a �big� item and has match utility uniformly

distributed on [0; 4]. Figure 4 below depicts how p1 (in the left panel) and p2 (in the

right panel) vary with search costs. This example suggests that when the two products

are asymmetric, search costs can a¤ect their prices in di¤erent directions.

23The volume formula for an m-dimensional sphere with a radius r is Vm(r) =
(r
p
�)m

�(1+m=2) , where �(�)
is the Gamma function. One can show that for any �xed r, limm!1 Vm(r) = 0. Then as m goes to

in�nity, p will approach the perfect information price 1=2. This is because for a �xed search cost, if

each consumer is searching for a large number of products, they will almost surely sample both �rms.
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Figure 4: Prices and search costs (asymmetric products)

Discussion: larger search costs. The analysis so far has been restricted to relatively

small search costs such that it is even worthwhile to search for one good alone. I now

discuss the case with higher search costs beyond condition (4). (In some circumstances,

a consumer conducts multiproduct search maybe just because it is not worthwhile to

search for each good separately.) As we shall see later, this discussion will also be useful

for understanding the results in the bundling case. For simplicity, let us focus on the

case of symmetric products. Suppose the condition (4) is violated such that s > � i(u)

and a < u. (But s cannot exceed 2� i(u) in order to ensure an active search market.)

Then the reservation frontier is shown in Figure 5 below, where c = �(u).

u1

u2

A

B

c

c

u2 = �(u1)

Figure 5: The optimal stopping rule for a large search cost

The key di¤erence between this case and the case of small search costs is that now the

frontier becomes �shorter� as search costs go up. This feature has a signi�cant impact

on how prices vary with search costs. For example, in the uniform case, a higher search

cost now leads to fewer marginal consumers on the reservation frontier, which provides
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�rms with a greater incentive to raise prices. (In this case, the joint search e¤ect

strengthens the usual relationship between prices and search costs.)

In general, the following result suggests that prices often increase with search costs

when they are beyond the condition (4). (The equilibrium price formula is given in the

proof.)

Proposition 4 Suppose the two products are symmetric and have independent match

utilities, and search costs are relatively high such that � i(u) < s < 2� i(u). Then the

equilibrium price p increases with search costs if each product�s match utility has a

monotonic density and an increasing hazard rate.

For example, in the exponential example, we now have p = 1=(4=3 � s3=6) for
s 2 (1; 2), which increases with s.

3.4 Price comparison with single-product search

As the end of this section, I compare the multiproduct search prices in section 3.2

with the single-product search prices in section 3.1, and discuss one possible empirical

implication of the result.

Proposition 5 Suppose the search cost condition (4) and the regularity condition (13)

hold. Then pi � p0i ; i = 1; 2; i.e., each product�s price is lower in multiproduct search
than in single-product search.

This result is intuitive. In our model, there are economies of scale in search, i.e.,

searching for two products is as costly as searching for only one, so more consumers

are willing to sample both �rms in multiproduct search, which intensi�es the price

competition. On top of that, the joint search e¤ect gives rise to a complementary

pricing problem and induces �rms to further lower their prices. This result is illustrated

in Figure 3 where the thin solid curves represent p0i and the thick solid curves represent

pi (they coincide only when s = 0). For example, in the uniform case with s = 0:1,

the multiproduct search price is 0:51, lower than the single-product search price 0:64

by 20%. I want to emphasize that even if economies of scale in search are weak (e.g.,

when multiproduct search is more costly than single-product search), the joint search

e¤ect can still induce substantial price reduction. For instance, in the uniform case, if

single-product search is half as costly as two-product search (i.e., if its search cost is

s=2), then the single-product search price becomes 1=(2�ps), depicted as the dashed
curve in Figure 3(a). The multiproduct search price is still signi�cantly lower than

that. For example, when s = 0:1, the new single-product search price is 0:59, and the

multiproduct search price is still lower than it by 13:5%.

If we extend the basic model by allowing for both single-product and multiproduct

searchers in the market, the above result implies that market prices will decline when

a higher proportion of consumers become multiproduct searchers, which is perhaps

the case during high-demand periods such as weekends and holidays. For example,
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many households conduct their weekly grocery shopping during weekends, and more

people buy multiple gifts in Christmas season.24 Thus, the multiproduct search model

can provide a possible explanation for the phenomenon of countercyclical pricing, i.e.,

prices of many retail products fall during demand peaks such as holidays and weekends.

(See relevant empirical evidence documented in Warner and Barsky (1995), MacDonald

(2000), Chevalier, Kashyap, and Rossi (2003) and others. All these paper use data from

multiproduct retailers such as supermarkets and department stores.)25

4 Bundling in Search Markets

Bundling is a widely used multiproduct pricing strategy. In practice, the most often

adopted form is that alongside each separately priced product, a package of more than

one product is sold at a discount relative to the components. For example, retailers

such as electronic stores, travel agencies and online book shops often o¤er a customer

a discount or reward (e.g., free delivery) if she buys more than one product from the

same store.26 This is termed mixed bundling. Another less often adopted form, termed

pure bundling, is that the �rm only sells a package of all its products, and no product

is available for individual purchase.

Consumer search is clearly relevant in various circumstances where �rms use bundling

strategies, and could have a signi�cant in�uence on �rms� incentive to bundle and the

welfare impacts of bundling. However, the existing literature on competitive bundling

assumes perfect information in the consumer side and has not explored this issue. This

section intends to �ll this gap by allowing �rms to adopt bundling strategies in the

multiproduct search model presented in section 3. I continue to focus on the duopoly

setting with two products. The rest of this section is organized as follows. I will �rst

consider how bundling a¤ects consumers� search incentive, which is the driving force

behind the main result in this section. I will then show that starting from the linear

pricing equilibrium, each �rm does have an incentive to introduce bundling. After that,

24Another possible justi�cation is that the demand �uctuations may also arise endogenously: an-

ticipating �rms� pricing pattern, consumers may strategically accumulate their demand for various

products and shop intensively during low-price periods, which in turn justi�es �rms� pricing strategies.
25Warner and Barsky (1995) have much earlier suggested such a possible explanation based on

consumer search for countercyclical pricing, though they did not develop a formal search model. Their

idea is wholly based on economies of scale in search, while my model suggests that even if economies

of scale in search are weak, the joint search e¤ect can still induce multiproduct �rms to reduce their

prices substantially. There are of course other existing explanations for countercyclical pricing. For

example, it may be due to the dynamic interaction among competing retailers who are more likely to

have a price war during demand booms (Rotemberg and Saloner, 1986). It may also be a consequence

of a rise of demand elasticity caused by more price advertising during high-demand periods (Lal and

Matutes, 1994).
26In a multiproduct environment, a two-part tari¤�a �xed fee plus separate prices for each product�

can also be regarded as a mixed bundling strategy. A typical example in the retail market is that the

shipping fee is often independent of the number of products (e.g., furniture items) in the same order.
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I will characterize bundling equilibrium and examine the welfare impacts of bundling

relative to linear pricing.

4.1 Bundling and consumer search incentive

I �rst examine how bundling might a¤ect consumers� search incentive. In the linear

pricing case, given match utilities (u1; u2) at �rm 1, the expected bene�t from sampling

�rm 2 is

E
�
max

�
0;
P2

i=1(vi � ui); v1 � u1; v2 � u2
��
: (17)

(This merely rewrites the left-hand side of (6). The expectation operator is over (v1; v2).)

If both products at �rm 2 are a worse match, the consumer will return and buy at �rm

1 and so the gain from the extra search will be zero; if both products at �rm 2 are a

better match, the consumer will buy at �rm 2 and gain
P2

i=1(vi � ui); if only product
i at �rm 2 is the better match, she will mix and match and the gain will be vi � ui.
Suppose now both �rms adopt the mixed bundling strategy and charge the same

prices. Let p̂i denote the stand-alone price for product i and P̂ denote the bundle price.

In the meaningful case, the bundle should be cheaper than buying the two products

separately (i.e., P̂ � p̂1 + p̂2). (Otherwise, no consumers will opt for the package and
we go back to the linear pricing case.) Let � � p̂1 + p̂2 � P̂ denote the joint-purchase
discount. The bundle is also usually more expensive than each single product (i.e.,

P̂ > p̂i for i = 1; 2). (If the bundle is cheaper than either single product, �rms are in

e¤ect using the pure bundling strategy.) Then, conditional on (u1; u2), the expected

bene�t of sampling �rm 2 becomes

E
�
max

�
0;
P2

i=1(vi � ui); v1 � u1 � �; v2 � u2 � �
��
: (18)

If the consumer buys both products from �rm 2, the gain is the same as before (since

the bundle price is the same across �rms); but if she sources supplies from both �rms,

she must forgo the joint-purchase discount �, which is the cost of mixing-and-matching.

(Note that for consumers this tari¤-intermediated cost plays the same role as an exoge-

nous cost involved in dealing with multiple �rms.) This bene�t is clearly lower than

(17), i.e., mixed bundling reduces a consumer�s search incentive. (Pure bundling will

lead to an even lower search incentive.27) In other words, when both �rms bundle,

consumers become more likely to stop at the �rst sampled �rm. As I will demonstrate

below, this may induce �rms to compete less aggressively and reverse the usual welfare

impacts of competitive bundling in a perfect information setting.

27The exact search incentive with pure bundling depends on whether consumers can buy both bundles

and mix and match. If this is permitted, the expected bene�t of sampling �rm 2 is E[max(0;
P2

i=1(vi�
ui); v1�u1�P; v2�u2�P )], since it now costs a bundle price P for a consumer to mix and match. If this
is not permitted (e.g., if pure bundling introduces the compatibility problem), the expected bene�t is

E[max(0;
P2

i=1(vi�ui))], since the consumer has totally lost the opportunity of mixing-and-matching.
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4.2 Incentive to bundle

Before proceeding to the equilibrium analysis with bundling, I �rst investigate, starting

from the linear pricing equilibrium, whether a �rm has a unilateral incentive to bundle.

I suppose that �rms choose their bundling strategies and prices simultaneously, and

both choices are unobservable to consumers until they reach the store. I will focus on

the incentive to employ mixed bundling. (A similar result as below can be established

for pure bundling if it is the only possible bundling strategy and if, once a �rm bundles,

consumers cannot mix and match.) First of all, given the rival�s linear prices, introduc-

ing mixed bundling cannot make a �rm worse o¤ since it can at least set linear prices

(by setting � = 0). What I will show below is that each �rm has a strict incentive to

choose � > 0.

Suppose �rm 2 sticks to the linear equilibrium prices (p1; p2). Consider the following

deviation for �rm 1: p̂1 = p1 + ", p̂2 = p2 + ", and P̂ = p1 + p2, where " > 0. That is,

�rm 1 raises each stand-alone price by ", but keeps the bundle price unchanged. I will

examine the impact of such a deviation on �rm 1�s pro�t as " approaches zero. First,

the consumers who originally bought a single product from �rm 1 now pay more, which

of course brings �rm 1 a bene�t.

There are also two demand e¤ects. First, for those consumers who sample �rm 1

�rst, due to the joint-purchase discount, more of them will stop searching and buy both

products immediately. More precisely, given (u1; u2), the expected bene�t of sampling

�rm 2 now becomes E[max(0;
P2

i=1(vi� ui); v1� u1� "; v2� u2� ")], since mixing and
matching involves an extra outlay ". This is clearly lower than the search incentive

in the linear pricing case. (Note that in this model even increasing prices can reduce

consumers� search incentive.28) Consumers who switch from keeping searching to buying

immediately will make a positive contribution to �rm 1�s pro�t.

Second, for those consumers who eventually sample both �rms, the introduced joint-

purchase discount will make them buy from the same �rm (but not necessarily �rm 1)

with a higher probability. Firm 1 gains from those consumers who switch from two-stop

shopping to buying both products from it, but su¤ers from those who switch to buying

both products from �rm 2. However, I show in the proof of the following proposition

that as " � 0 the pros and cons just cancel out each other, such that this second demand
e¤ect has no �rst-order e¤ect on �rm 1�s pro�t. Therefore, the proposed deviation is

strictly pro�table at least when " is small.

Proposition 6 Starting from the linear pricing equilibrium, each �rm has a strict in-

centive to introduce mixed bundling.

In other words, if bundling is permitted and is costless for �rms to implement,

then any symmetric equilibrium (if exists) must involve both �rms using bundling

strategy. Note that our argument works even if the search cost is zero (then the second

28The increased stand-alone price is paid only when a consumer returns to �rm 1 and buys a single

product, so it generates a returning cost for consumers who want to mix and match.
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e¤ect disappears). That is, each �rm has a strict incentive to bundle even in a perfect

information scenario.29 Costly search provides �rms with an extra incentive to do so.

4.3 The welfare impacts of bundling

I now investigate the welfare impact of bundling relative to linear pricing in a search

environment. The �rst observation is that total welfare�de�ned as the sum of industry

pro�t and consumer surplus�must fall with bundling. With the assumption of full

market coverage, consumer payment is a pure transfer and only the match e¢ciency

(including search costs) matters. Bundling reduces e¢ciency because it not only results

in insu¢cient consumer search (i.e., too few consumers search beyond the �rst sampled

�rm due to the joint-purchase discount) but also induces too many consumers who have

sampled both �rms to buy both products from the same �rm than is e¢cient. This

result holds no matter whether information frictions exist or not.

In the following, I focus on the impacts of bundling on industry pro�t and consumer

surplus, which, however, depend on information frictions. To this end, I �rst need

to characterize equilibrium prices when both �rms bundle. However, the equilibrium

analysis with mixed bundling and costly search is fairly intricate. By contrast, pure

bundling is easier to analyze and can capture the key insight. Therefore, I will start

with analyzing the pure bundling case.

4.3.1 Pure bundling

As a pricing strategy, pure bundling is less often observed than mixed bundling. But it

may become relevant when implementing the mixed bundling strategy is rather costly

for �rms (e.g., when the number of products is large). In the following analysis, I

assume that when both �rms bundle, consumers buy only one of the two bundles, i.e.,

they will not buy both bundles to mix and match. This is the case, for instance, when

pure bundling introduces the compatibility problem, or when the equilibrium bundle

price is so high that it is not worthwhile to buy both bundles.30 (Nalebu¤, 2000, makes

the same assumption in studying competitive pure bundling.)

Equilibrium prices with pure bundling. When both �rms bundle, consumers face a

single-product search problem: �rm 1 o¤ers a composite product with a match utility

U = u1+u2 and �rm 2 o¤ers another one with an independent match utility V = v1+v2.

Both U and V belong to [U = u1 + u2; U = u1 + u2]. Let G(�) and g(�) denote their
common cdf and pdf, respectively. Denote by b the reservation utility level in this search

29Armstrong and Vickers (2010) have shown a similar result in the Hotelling setting with perfect

information.
30For example, in the uniform example below, when the search cost is relatively high, the bundle

price is greater than 1. Then even for a consumer who values �rm 1�s products at (1; 0) and �rm 2�s

products at (0; 1), it is not worthwhile to buy both bundles.
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problem. It satis�es Z U

b

(U � b)dG(U) = s : (19)

The left-hand side is the expected bene�t from sampling the second bundle given the

�rst one has a match utility b. Hence, in a symmetric equilibrium a consumer will

visit the second �rm if and only if the �rst bundle has a match utility below b. Since

pure bundling reduces consumers� search incentive, the acceptance set expands, i.e.,

b < u1 + �(u1) for u1 2 [a1; u1]. Figure 6 below illustrates this change in the consumer
stopping rule, where the linear line is the reservation frontier in the pure bundling case

and the new acceptance set is A plus the shaded area.

Let P be the equilibrium bundle price. Then, similar to (5), P is determined in

1

P
= g(b)[1�G(b)] + 2

Z b

U

g(U)2dU : (20)

P increases with the search costs provided that U has an increasing hazard rate, which

is true if each ui has an increasing hazard rate and is independent from uj (see, for

instance, Miravete, 2002).
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Figure 6: The optimal stopping rule�linear pricing vs pure bundling

Comparison with linear pricing. When information is perfect, Matutes and Regibeau

(1988), Economides (1989), and Nalebu¤ (2000) have shown in the two-dimensional

Hotelling setting (with full market coverage) that pure bundling typically lowers price

(and pro�t) and boosts consumer welfare. This is mainly because pure bundling makes

a price reduction doubly pro�table, thereby intensifying price competition (the so-called

�Cournot e¤ect�).31

31This intuition is, however, incomplete because bundling also a¤ects the extent of product di¤er-

entiation (see also Economides, 1989). For example, in our random utility setting, the bundle�s match
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The same argument applies in our setting when the search cost is zero.32 Suppose

the two products are symmetric. Then from (12) and (20) we can see that at s = 0 (so

a = u and b = U) pure bundling results in a lower bundle price (P < 2p) if and only if

Z u

u

f(u)2du < 2

Z U

U

g(U)2dU : (21)

If the two products� valuations are independent, one can check that this condition holds

for a variety of distributions such as uniform, normal and logistic. But it does not always

hold. For instance, as we will see below, in the exponential case the equality of (21)

holds.33

When search is costly, the pro-competitive e¤ect of pure bundling still applies among

the consumers who sample both �rms. However, pure bundling weakens consumers�

search incentive and so reduces the number of informed consumers in the �rst place,

which has a tendency to soften price competition. The net e¤ect hinges on the relative

importance of these two forces. Intuitively, when the search cost is higher, there will

be fewer fully informed consumers and the �rst e¤ect will appear less important. Then

pure bundling may lead to a higher bundle price. This intuition is con�rmed in the

following examples.34

The uniform example: Suppose u1 and u2 are independent, and ui s U [0; 1]. To

facilitate the comparison with linear pricing, we keep the search cost condition

s � 1=2. One can show that G(U) = U2=2 and g(U) = U if U 2 [0; 1], and
G(U) = 1 � (2 � U)2=2 and g(U) = 2 � U if U 2 [1; 2]. According to (19),

the reservation utility b satis�es (2 � b)3=6 = s (so b � 1) if s 2 [0; 1=6], and
1� b+ b3=6 = s (so b < 1) if s 2 [1=6; 1=2]. Then (20) implies

P =

8
>>>><

>>>>:

1

4=3� s if s 2 [0; 1=6)

1

b3=6 + b
if s 2 [1=6; 1=2]

:

One can check that P increases with s, but the speed is much faster when s > 1=6.

(The upward sloping curve in Figure 7(a) below depicts how P � 2p varies with
search costs.) This is because in the range of s 2 [0; 1=6), b > 1 and so as

s increases, the reservation frontier gets �longer� (i.e., there are more marginal

utility has a greater variance than a single product, which usually softens price competition. Therefore,

even with perfect information, whether pure bundling increases or decreases market price depends on

a delicate interplay of these two e¤ects. This accounts for why pure bundling does not always lead to

lower prices even in the perfect information setting (see, for example, the exponential example below).
32With perfect information our random utility model can be converted into a two-dimensional

Hotelling model.
33The opposite can also occur, for example, for a Weibull distribution f(u) = kuk�1e�u

k

with k less

than but close to one.
34We can verify in both examples that (20) is also su¢cient for the equilibrium price.
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consumers), which mitigates �rms� incentive to raise prices. By contrast, after s

exceeds 1=6, b < 1 and so the reservation frontier gets �shorter� as s increases,

which strengthens �rms� incentive to raise prices. In other words, when the reser-

vation frontier is still getting longer in the linear pricing case, it already starts

to get shorter in the bundling case. In particular, when the search cost exceeds

roughly 0:26, the bundle price is higher in the pure bundling case than in the

linear pricing case.

The exponential example: Suppose u1 and u2 are independent, and fi(ui) = e
�ui

for ui 2 [0;1). Then G(U) = 1 � (1 + U)e�U and g(U) = Ue�U . (Note that U
has a strictly increasing hazard rate, though ui has a constant one.) According to

(19), the reservation utility b satis�es (2 + b)e�b = s. Substituting G and g into

(20) yields

P =
2

1� e�2b ;

which increases with s and is always greater than the bundle price 2p in the linear

pricing case (except P = 2p at s = 0). (The upper curve in Figure 7(b) depicts

how P � 2p varies with search costs in this example.) With pure bundling, as s
increases the reservation frontier always gets �shorter� in the exponential case,

which explains why pure bundling reverses the relationship between price and

search costs.
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Figure 7: The impacts of pure bundling

Let us turn to welfare impacts. First, each �rm earns a higher pro�t whenever pure

bundling leads to a higher bundle price (given the assumption of full market coverage).

Hence, given that total welfare always falls with bundling, consumers must become

worse o¤ if the bundle price rises in the pure bundling case. But things are less clear

when the bundle price falls because consumers also end up consuming less well matched

goods. In the uniform example, as indicated by the downward sloping curve in Figure

7(a) which represents the impact of pure bundling on consumer surplus relative to linear

pricing, pure bundling bene�ts consumers when the search costs are lower than about
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0:24; while it harms consumers when the search costs exceed that threshold. In the

exponential case, pure bundling always harms consumers since it (weakly) raises the

bundle price for any search cost level. This is indicated by the lower curve in Figure

7(b).35 (Calculating consumer surplus directly in our multiproduct search framework

is complicated. I develop a more e¢cient indirect method in the Appendix B.)

In sum, in a search environment pure bundling can generate a signi�cant competition-

relaxing e¤ect such that relative to linear pricing it can bene�t �rms and harm con-

sumers, in contrast to the perfect information case.36

4.3.2 Mixed bundling

I aim to deliver a similar message as in the pure bundling case: since mixed bundling also

reduces consumers� search incentive (and expands the stopping region), the reservation

frontier starts to become shorter with search costs earlier than in the linear pricing

case. As a result, when search costs are relatively high, prices with mixed bundling

may increase with search costs much faster than in the linear pricing case. This in turn

may lead to a positive impact of bundling on pro�ts but a negative one on consumer

surplus.

The details of characterizing the symmetric equilibrium prices (p̂1; p̂2; �) are rele-

gated to the online supplementary document. Unlike the linear pricing or pure bundling

case, no analytical solution appears to be available even in the uniform or exponential

example. Here I report the main numerical observations from the uniform example:

(i) The joint-purchase discount � decreases with search costs but it does not vary too

much. When s increases from 0 to 0:5, � decreases from 0:333 to about 0:294. (ii) Both

the stand-alone prices and the bundle price increase with s. (iii) As depicted in Figure

8 below, relative to linear pricing, mixed bundling has a qualitatively similar impact

on industry pro�t (the upward sloping curve) and consumer surplus (the downward

sloping curve) as pure bundling. That is, when the search costs are relatively small,

mixed-bundling harms �rms but bene�ts consumers, while the opposite is true when

the search costs are relatively high. However, since mixed-bundling is less able to deter

consumers from searching than pure bundling, as we can see (by comparing Figures

7(a) and 8) higher search costs are needed to reverse the welfare impacts and the sizes

35A more extreme example is when the two products are symmetric and have perfectly negatively

correlated valuations. Then in the pure bundling case, the two bundles are in e¤ect homogenous.

With perfect information, we have the Bertrand competition and price will be equal to marginal cost,

which is often better than linear pricing for consumers; while with costly search, we have the Diamond

paradox in which all consumers stop at the �rst sampled �rm (if the �rst search is costless) and the

price will be the monopoly price (in our setting the consumer�s willingness to pay), which is of course

worse than linear pricing for consumers.
36Nevertheless, the search-based anti-competitive e¤ect of bundling is most pronounced when the

number of goods a consumer is looking for is relatively small. For a given search cost, if a consumer

is looking for a large number of goods, she will almost surely sample both �rms and the situation will

then be close to the perfect information case. In that case, as shown in a previous version of this paper,

under a regularity condition (f is logconcave), pure bundling bene�ts consumers and harms �rms.
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of impacts are also smaller.
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Figure 8: The impact of mixed bundling (uniform example)

5 Discussions

5.1 Asymmetric equilibria

The analysis so far has been con�ned to symmetric equilibria. Here I discuss the possi-

bility of two types of asymmetric equilibria in the duopoly model with linear pricing. In

one possible case, one �rm sells both products cheaper than its rival, and expecting that

all consumers choose to visit it �rst. This type of equilibria could be sustained because

consumers� non-random search order reveals information about their preferences�they

visit the second �rm only when they are unsatis�ed with the �rst �rm�s products�

and thereby the second �rm indeed has an incentive to charge relatively high prices.

However, an analytical investigation of this kind of equilibria is rather involved (mainly

because the reservation frontier in equilibrium becomes now price dependent), and the

existence of this kind of equilibria also relies on coordinated consumer expectation.

In the other possible case, �rms may put di¤erent products on sales but consumers

still search randomly. For example, in the case with two symmetric products, one �rm

charges price pL for its product 1 and price pH > pL for its product 2, and the other

�rm sets prices in the opposite way. However, as shown in the Appendix, this kind of

equilibria cannot be sustained under a regularity condition.

5.2 More �rms

Considering an arbitrary number of �rms entails a more intricate analysis (see the online

supplementary document for the details). But the main insights from the duopoly case

can survive.

Search cost and price. In the linear pricing case, when a �rm lowers one product�s

price, more consumers who are currently visiting it for the �rst time will stop searching,

which boosts the demand for its both products. So the joint search e¤ect is still present.

However, a subtle di¤erence emerges: for those consumers who stop searching at some
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�rm (except at the �rst one), they now do not necessarily buy both products from

that �rm. Instead, some of them may go back to a previous �rm to buy one product.

This tends to weaken the joint search e¤ect, but does not eliminate it. For instance,

in the exponential example with more �rms prices can still decline with s (though not

necessarily everywhere on [0; 1]).37

Bundling. Bundling still reduces the anticipated bene�t from mixing-and-matching

after sampling more �rms, and so restrains consumers� search incentive. However, a new

opposite force will come into play when n � 3�bundling now also restricts mixing-and-
matching among previous o¤ers and so lowers the maximum utility so far (except at

the �rst �rm), which can increase consumers� search incentive.38 We can compare the

expected search times and the bundle price between linear pricing and pure bundling

in the uniform example. (Analyzing mixed bundling with more than two �rms appears

rather intractable.) I �nd that consumers search more intensively in the pure bundling

case only if n is su¢ciently large and s is su¢ciently small. In particular, even if

n = 1, we need s to be lower than about 0:03. This suggests that the new force may
be relatively weak most of the time. Consequently, pure bundling can still lead to a

higher bundle price (and lower consumer surplus). For example, when n = 1, this is
true at least when s is greater than about 0:38.

The number of �rms and price. The general model with n �rms also allows us

to examine how the number of �rms a¤ects market prices in a multiproduct search

environment. In the single-product case, Anderson and Renault (1999) have shown

that the equilibrium price decreases with n under the regularity condition. But this

is no longer true in our multiproduct case. Although an analytical investigation is

infeasible, numerical simulations suggest that prices can increase with n. For instance,

in the uniform example with s = 0:5, the duopoly price is 0:583 while the price for

n = 1 is 0:602. (More examples are provided in the supplementary document.) The

intuition is that when there are more �rms, it becomes more likely that a consumer,

when she stops searching, will return to previously visited �rms to buy some products.

This weakens the joint search e¤ect and so the complementary pricing problem such

that �rms may raise their prices.

5.3 Costly recall

When recall is costly, the optimal stopping rule has a new feature: when one product

is a good match and the other is a bad match, a consumer may buy the well matched

product �rst (to avoid paying the returning cost) and then continue to search for the

other. As a result, each �rm will (endogenously) face both single-product searchers

(who have bought one product from some previous �rm) and multiproduct searchers.

37When n =1, if prices tend to zero at s � 0, then they cannot decrease with s at least when s is
small. However, the perfect-information prices for n = 1 may not be equal to zero, for example, in

the exponential case.
38For example, when the �rst �rm o¤ers (0; 1) and the second �rm o¤ers (1; 0), linear pricing obvi-

ously leads to higher maximum utilities so far than pure bundling.
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The joint search e¤ect survives, but the e¤ect of bundling on consumer search can be

di¤erent. For instance, in the polar case with no recall, since consumers cannot return

to mix and match anyway, bundling does not reduce consumers� search incentive any

more. However, in a more reasonable case where recall is costly but not totally banned,

the search-discouraging e¤ect of bundling, though reduced, will persist.

A complete analysis with costly recall is beyond the scope of this paper. In e¤ect,

when the returning cost is mild (such that returning consumers exist), the optimal

stopping rule does not have a simple characterization even in the duopoly case.

5.4 Search costs vs shopping costs

Search costs usually mean the costs incurred to �nd and evaluate a new option. The

literature sometimes also considers shopping costs. Literally, shopping costs should

include all costs except payment involved in a shopping process, so search costs (if

they exist) should be part of it. In a single-product case, these two terms are often

used exchangeablely, because if there are any shopping costs they are usually related

with search activity. However, in a multiproduct case, even if information is perfect

(e.g., when �rms advertise both product and price information), there may still exist

substantial shopping costs (e.g., the costs of conducting extra transactions) when the

customer sources supplies from more than one �rm (see, for instance, Klemperer, 1992,

and Armstrong and Vickers, 2010). This type of shopping costs can cause a similar

e¤ect as our joint search e¤ect, i.e., it renders two independent products in each �rm

complements and so has a tendency to intensify price competition. Nevertheless, there is

an essential di¤erence between search costs and this kind of shopping costs. Search costs

always have their own anti-competition e¤ect since they reduce consumers� incentive

to shop around, while shopping costs in a perfect information setting are usually pro-

competitive. In e¤ect, shopping costs are similar to the joint-purchase discount in

the mixed bundling scenario. If information is initially perfect, shopping costs tend

to intensify competition and reduce market prices. While if information is initially

imperfect and consumers need to conduct costly search, as we have learned from the

bundling exercise shopping costs (which is similar to the joint-purchase discount) can

work in the opposite way by reducing consumers� search incentive. Therefore, how

(search unrelated) shopping costs a¤ect competition may crucially depend on whether

search costs are present or not in the same time.

5.5 Intrinsic complementary products

In reality the products a consumer is looking for in a particular shopping trip are rarely

entirely independent as I assumed in the model. In many circumstances (e.g., when

shop for clothes and shoes), they are more or less intrinsic complements in the sense

that a higher valuation for one product increases the consumer�s willingness to pay for

the other (e.g., the utility function takes the form of u1 + u2 + �u1u2 with � > 0). I

assumed independent products mainly for tractability. (However, with the assumption
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of full market coverage, we can actually regard the two products in the model as perfect

complements, i.e., only consuming the two products together can generate utility.)

If we consider intrinsic complements in the multiproduct search framework, then the

reservation frontier may no longer be decreasing in the utility space.39 This is because

now �nding a better matched product 1 may strictly increase a consumer�s incentive

to �nd a better matched product 2. This will greatly complicate calculation (e.g.,

when the utility function takes the form of u1 + u2 + �u1u2, I am unable to �nd an

analytically tractable example). When there are more than two �rms, considering

intrinsic complements will render the optimal stopping rule non-stationary (see Gatti,

1999 for a related discussion), which will further complicate the analysis. However, the

joint search e¤ect and the e¤ect of bundling on consumer search incentive should be

still present, and so our main results may hold qualitatively.

Another point deserves mentioning is that intrinsic complementarity is di¤erent from

the complementarity caused by the joint search e¤ect. The latter means that reducing

the price of a �rm�s one product will stop more consumers from searching on and so

increase the demand for the same �rm�s other product as well. However, if information

is perfect and the two products are intrinsic complements, then making a �rm�s one

product cheaper will not in�uence the consumer decision of where to buy the other

product. Hence, considering a perfect information setting with intrinsic complements

cannot reproduce the main results in this paper.

6 Conclusion

This paper has explored a multiproduct search model and shown how consumers and

�rms may behave di¤erently compared to a single-product search framework. In par-

ticular, the presence of the joint search e¤ect may induce prices to decline with search

costs and to rise with the number of �rms. The developed framework has also been

used to address other economic issues such as countercyclical pricing and bundling, and

new insights emerged. For instance, I �nd that compared to the perfect information

scenario, the welfare assessment of competitive bundling can be reversed in a search

environment.

Our multiproduct search framework has other possible applications including the

following.

Multiproduct vs single-product shops. In the market, large multiproduct sellers often

coexist with smaller competitors (e.g., specialist shops). We can modify the basic model

to investigate this kind of market structure. Consider a market with three asymmetric

39For example, when the utility function takes the form of u1 + u2 + �u1u2, one can check that in

the duopoly case the reservation frontier satis�es

1

2
(1� u1)2 +

1

2
(1� u2)2 +

�

4

�
(u1 � u2)2 + (1� u1u2)2

�
= s ;

and it is not a monotonically decreasing curve in the (u1; u2) space if � > 0.
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�rms: �rm 1 supplies two products (say, clothes and shoes), while �rms 2 and 3 are

two single-product shops (say, �rm 2 is a clothes shop and �rm 3 is a shoe shop).

Suppose the costs of reaching any �rm are identical for all �rms, and consumers visit

�rm 1 �rst (which can be rational in equilibrium). After visiting the multiproduct

�rm 1, a consumer will continue to visit �rm 2 (�rm 3) if and only if �rm 1 o¤ers

unsatisfactory clothes (shoes). In this simple setting, changing the clothes price will no

longer a¤ect a consumer�s decision whether to visit the shoe shop, so the joint search

e¤ect disappears and �rms have two separate competitions for each product. However,

other interesting insights will emerge. Given all consumers visit �rm 1 �rst, their search

order reveals information about their preferences: a consumer will visit a single-product

shop only if she is unsatis�ed with the product in the multiproduct shop. This gives

the single-product shop extra monopoly power and induces it to charge a higher price.40

Therefore, this variant can explain why multiproduct shops often set lower prices than

their smaller competitors, without appealing to other exogenous reasons such as the

multiproduct shop�s economies of scale in operations or its advantage in bargaining

with manufacturers.

Advertising and loss leaders. In the case of asymmetric products, we have found

that �rms have an incentive to sacri�ce the pro�t from some small item to induce

more consumers to buy the more pro�table big item. This opens up the possibility of

using the loss-leading strategy, but I have not found an example with some product

being priced below its cost. Allowing for price advertising, however, may generate

real loss leaders (see Lal and Matutes, 1994, for instance). Reducing a product�s price

(privately) can only stop some consumers who are already in the store from searching

on, but advertising this price cut can increase the store tra¢c in the �rst place. This

suggests that �rms may compete intensely via advertised prices to attract consumers,

and compensate the possibly resulted loss by charging high prices for unadvertised

products (which can be sustained because of costly search). Compared to Lal and

Matutes (1994), our richer setting may better predict which products will be sold as

loss leaders. This remains another interesting future research topic.

Appendix A

Proof of Lemma 3: I only prove the result for ~p2 (the proof for ~p1 is similar). The

price ~p2, when both �rms ignore the joint search e¤ect, is given by

1

~p2
= 2

Z

B

f2(u2)dF (u) +

Z u1

a1

[1� F2(�(u1))]f(u1; �(u1))du1 (22)

=

Z u1

u
1

(

2

Z �(u1)

u
2

f2(u2)h2(u2ju1)du2 + [1� F2(�(u1))]h2(�(u1)ju1)
)

dF1(u1) :

40See a similar logic in Armstrong, Vickers, and Zhou (2009) where a prominent �rm which is

always sampled �rst by consumers in a single-product search scenario charges a lower price than its

non-prominent rivals.
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(Note that for u1 < a1, �(u1) is independent of s and 1�F2(�(u1)) = 0.) The regularity
condition (13) implies f2(x)h2(xju1) + [1� F2(x)]h02(xju1) � 0. Then the bracket term
in (22) is an increasing function of �(u1). Moreover, �(u1) is the only element related

with s and it decreases with s.41 Therefore, (22) decreases with s, i.e., ~p2 increases with

s.

Proof of Proposition 2: In the case of symmetric products, from (12) we know the

standard e¤ect is

� = 2

Z

B

f(ui)dF (u) +

Z u

a

[1� F (�(u))]f(u; �(u))du

=

Z u

u

(

2

Z �(u)

u

f(ui)h(uiju)dui + [1� F (�(u))]h(�(u)ju)
)

dF (u) :

(Note that for u < a, �(u) is independent of a and 1�F (�(u)) = 0.) Using the notation

�(xju) � f(x)h(xju) + [1� F (x)]h0(xju) ; (23)

we have

d�

ds
=

Z u

a

d�(u)

ds
�(�(u)ju)dF (u)

=

Z u

a

�0(u)

1� F (u)�(�(u)ju)dF (u)

= �
Z u

a

f(�(x))

1� F (�(x))�(xj�(x))dx :

The second step used

d�(u)

ds
= � 1

1� F (�(u)) ; �
0(u) = � 1� F (u)

1� F (�(u)) ; (24)

which are both derived from the de�nition of �(�) in (6). The last step is from changing
the integral variable from u to x = �(u) and using the symmetry of �(�).
The joint search e¤ect is � =

R u
a
[1� F (u)]f(u; �(u))du, and so

d�

ds
= f(a; u)�

Z u

a

d�(u)

ds
[1� F (u)]h0(�(u)ju)f(u)du

= f(a; u)�
Z u

a

[��0(u)]h0(�(u)ju)f(u)du

= f(a; u)�
Z u

a

h0(xj�(x))f(�(x))dx :

41From the de�nition of �(�) in (6), we have d�(u1)
ds = � 1

1�F2(�(u1)) < 0 for u1 > a1, i.e., the

reservation frontier moves downward as the search cost rises; and �(u1) > u2 for u1 < a1 and is

independent of s.
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The �rst step used da
ds
= �1=[1� F (a)], the second step used (24), and the last step is

again from changing the integral variable from u to x = �(u). Therefore, p = 1=(�+�)

increases with s if and only if d�
ds
+ d�

ds
� 0 or the condition (15) in the main text holds.

Now suppose the two products have independent valuations and the marginal density

satis�es f 0(u) � 0. Then

�d�
ds

=

Z u

a

f(�(x))

1� F (�(x))ff(x)
2 + [1� F (x)]f 0(x)gdx

�
Z u

a

f(�(x))

1� F (�(x))f(x)
2dx

� f(a)

1� F (a)

Z u

a

f(x)2dx

� f(a)2

1� F (a)

Z u

a

f(x)dx = f(a)2 ;

and

�d�
ds

=

Z u

a

f 0(x)f(�(x))dx� f(a)f(u)

� f(a)[f(u)� f(a)]� f(a)f(u) = �f(a)2 :

Therefore, d�
ds
+ d�

ds
� 0, i.e., p increases with s.

Proof of Proposition 3: I �rst derive the �rst-order conditions for the linear pricing

case with m products. Let u�i � (uj)j 6=i 2 Rm�1. In a symmetric equilibrium, without
loss of generality the reservation frontier can be de�ned as um = �(u�m), where �(u�m)

satis�es
m�1X

i=1

� i(ui) + �m(�(u�m)) = s :

As in the two-product case, let A denote the acceptance set and B denote its comple-

ment. Suppose �rm 2 sticks to the equilibrium prices, and �rm 1 lowers pm by a small

". Following the same logic as in the two-product case, we have the �rst-order condition

for pm:

1 = 2pm

Z

B

fm(um)dF (u) + pm

Z

A�m

[1� Fm(�(u�m))]f(u�m; �(u�m))du�m
| {z }

standard e¤ect

+
m�1X

i=1

pi

Z

A�m

[1� Fi(ui)]f(u�m; �(u�m))du�m
| {z }

joint search e¤ect

: (25)

This can be understood as follows. First of all, the price reduction leads to a loss "=2

since the half consumers who buy product m from �rm 1 now pay less. The gain from

this price reduction consists of three parts. (i) The consumers who sample both �rms
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will buy product m from �rm 1 more likely, and this bene�t is "=2 times the �rst term

in (25). (ii) Some consumers who sample �rm 1 �rst will switch from searching on to

buying at �rm 1 immediately. More precisely, the reservation frontier moves downward

by " along the dimension of um. Denote by A�m the projection of A on an (m � 1)-
dimensional hyperplane with a �xed um. Then the measure of these marginal consumers

is
"

2

Z

A�m

f(u�m; �(u�m))du�m :

For a marginal consumer with (u�m; �(u�m)), she would come back to buy product m

with a probability Fm(�(u�m)) even if she searched on. So the net bene�t from the

increased demand for product m is "=2 times the second term in (25). (iii) Similarly,

the net bene�t from the increased demand for all other products is "=2 times the third

term in (25), which is the joint search e¤ect.

Now consider the uniform case with m symmetric products and independent valu-

ations. Then the �rst integral in (25) measures the volume of solid B, and so it equals

one minus the volume of solid A. Since A is 1=2m of an m-dimensional sphere with a

radius
p
2s, we get

1� Vm(
p
2s)

2m
:

(See the expression for Vm(�) in footnote 23.) The second integral equals
Z

A�m

[1� �(u�m)]du�m =
Vm(

p
2s)

2m
;

since it just measures the volume of A. Finally, the third integral equals

Z

A�m

(1� u1)du�m =
Vm(

p
2s)

2m�1�
: (26)

(This equality has no straightforward geometric interpretation. See its proof below.)

Then (16) in the main text follows.

Proof of (26): For m = 2, A�m = [a; 1] and (26) is easy to be veri�ed. Now consider

m � 3. Let A�1;m(u1) be a �slice� of A�m at u1. Then we have
Z

A�m

(1� u1)du�m =
Z 1

a

(1� u1)
 Z

A�1;m(u1)

du�1;m

!

du1 :

SinceA�1;m(u1) is 1=2
m�2 of an (m�2)-dimensional sphere with a radius r =

p
2s� (1� u1)2,

the internal integral term equals

Vm�2(r)

2m�2
=
�(m�2)=2 � rm�2
2m�2�(m=2)

;
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where �(�) is the Gamma function. Hence,
Z

A�m

(1� u1)du�m =
�(m�2)=2

2m�2�(m=2)
�
Z 1

a

(1� u1)
�p

2s� (1� u1)2
�m�2

du1

=
�(m�2)=2

2m�2�(m=2)
�
�p
2s
�m

m

=
Vm(

p
2s)

2m�1�
:

The second step used a = 1�
p
2s and the fact that the integrand is the derivative of

1
m
(
p
2s� (1� u1)2)m with respect to u1. The last step used the expression for Vm(�)

and the fact x�(x) = �(x+ 1).

Proof of Proposition 4: In the case with two symmetric products, if the search costs

satisfy � i(u) < s < 2� i(u), the equilibrium price p is given by

1

p
= 2

Z

B

f(ui)dF (u) +

Z c

u

[1� F (�(u))]f(u; �(u))du
| {z }

standard e¤ect: �

+

Z c

u

[1� F (u)]f(u; �(u))du
| {z }

joint search e¤ect: �

;

where c = �(u). This is the same as (12), except the domain of �(�) is now di¤erent
(see Figure 5). Following the same logic as in the proof of Proposition 2, one can verify

that
d�

ds
= � f(c; u)

1� F (c) �
Z c

u

f(�(u))

1� F (�(u))�(uj�(u))du

and
d�

ds
= �f(c; u)�

Z c

u

h0(uj�(u))f(�(u))du ;

where �(�) is de�ned in (23).
I aim to show d�

ds
+ d�

ds
� 0 under the proposed conditions. Independent valuations

and increasing hazard rate imply �(uj�(u)) � 0. So it su¢ces to show

f(c)f(u)
2� F (c)
1� F (c) +

Z c

u

f 0(u)f(�(u))du � 0 : (27)

If f 0 � 0, (27) is obviously true. Now suppose f 0 < 0. Since f 0 � � f2

1�F
(which is

implied by the increasing hazard rate condition), the second term in (27) is greater

than

�
Z c

u

f(u)2

1� F (u)f(�(u))du � � f(c)

1� F (c)

Z c

u

f(u)f(�(u))du

� �f(c)f(u)
1� F (c)

Z c

u

f(u)du

= �f(c)f(u)
1� F (c) F (c) :
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The �rst inequality used increasing hazard rate, and the second one used f 0 < 0. Hence,

we only need [2� F (c)]� F (c) � 0, which is always true.

Proof of Proposition 5: Recall ~pi is product i�s price if both �rms ignore the joint

search e¤ect, and pi � ~pi. So it su¢ces to show ~pi � p0i . Let us consider product 2 (the
proof for product 1 is similar). The price ~p2 is de�ned in (22). We have known that

under the regularity condition (13), the bracket term in (22) is an increasing function

of �(u1). Since �(u1) � a2, it is greater than

2

Z a2

u
2

f2(u2)h2(u2ju1)du2 + [1� F2(a2)]h2(a2ju1) :

Realizing
R u1
u
1

h2(xju1)dF1(u1) = f2(x), we obtain

1

~p2
�

Z u1

u
1

(

2

Z a2

u
2

f2(u2)h2(u2ju1)du2 + [1� F2(a2)]h2(a2ju1)
)

dF1(u1)

= 2

Z a2

u
2

f2(u2)
2du2 + [1� F2(a2)]f2(a2) =

1

p02
:

Proof of Proposition 6: Following the argument in the main text, I only need to

show that the second demand e¤ect has no �rst-order impact on �rm 1�s pro�t. Given

that �rm 2 sticks to the linear prices (p1; p2) and �rm 1 deviates to p̂i = pi + " and

P̂ = p1 + p2, a consumer�s demand pattern after sampling both �rms (conditional on

the match utilities at the �rst sampled �rm) is depicted in Figure 10 below, where

the dashed lines indicate the boundaries in the linear pricing equilibrium and the solid

lines indicate the boundaries after �rm 1 deviates. It is clear that more consumers now

buy both products from the same �rm. For a consumer who samples �rm 1 �rst and

then visits �rm 2 (so she must have u 2 B(") which converges to B as " ! 0), the

shaded areas in Figure A1(a) represent the probability (conditional on (u1; u2)) that

she switches from two-stop shopping to buying from the same �rm. The pros and cons

of such a change for �rm 1 are also indicated in the �gure. For example, �rm 1 gains p2
from a consumer who originally only bought product 1 from �rm 1 but now buys both

products from it, indicated by �+p2� in the left shaded strip. A similar change occurs

to a consumer who samples �rm 2 �rst and then visits �rm 1 (so she must have v 2 B).
This is depicted in Figure A1(b). Due to the symmetry of �rms (i.e., for every u 2 B in
Figure A1(a), there is a corresponding v 2 B in Figure A1(b)) and the random search

order, one can see that all e¤ects in these two �gures just cancel out each other.

39



v1

v2

u2 + "
u2

u2 � "

u1 � "

u1

@
@
@

u1 + "

buy both at 2buy 1 at 1

buy 2 at 1
buy both at 1

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

�
p1

p p p p p p p p p

p p p p p p p p p+p2

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

+
p1

pppppppppp

pppppppppp �p2

u1

u2

v2 + "
v2

v2 � "

v1 � "

v1 v1 + "

@
@
@

buy both at 1buy 2 at 1

buy 1 at 1
buy both at 2

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

+
p1

p p p p p p p p p

p p p p p p p p p�p2

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

�
p1

pppppppppp

pppppppppp +p2

(a): Sample �rm 1 �rst (u1; u2) (b): Sample �rm 2 �rst (v1; v2)

Figure A1: Demand pattern after sampling both �rms

About asymmetric equilibria in the duopoly model: This part aims to show

that in the duopoly setting with two symmetric products and independent valuations,

under the regularity condition that the marginal densify f is logconcave, there do not

exist asymmetric equilibria in which one �rm, say, �rm 1, charges (pL; pH) and �rm 2

charges (pH ; pL) with pL < pH and consumers search in a random order. To this end,

I will argue that starting from a hypothetical asymmetric equilibrium as above, it is a

pro�table deviation for �rm 1 to set prices (pL + "; pH � ") with a small " > 0, given
that �rm 2 sticks to the equilibrium strategy and consumers hold the equilibrium belief.

For notational convenience, let � � pH � pL > 0.
Consider the above hypothetical asymmetric equilibrium. Denote by ��(u1) the

reservation frontier for those consumers who sample �rm 1 �rst. It satis�es

�(u1 +�) + �(��(u1)��) = s:

(Charging a price lower/higher than its rival by � is equivalent to supplying a product

with match utility higher/lower than its rival by �.) Then

��(u1) = �(u1 +�) +�: (28)

Relative to the reservation frontier �(�) in the symmetric equilibrium with � = 0,

the new reservation frontier ��(�) has shifted leftward by � and then upward by �.

Similarly, for those consumers who sample �rm 2 �rst, their stopping rule can be char-

acterized by ��(v2) which solves �(��(v2)��)+ �(v2 +�) = s. The following graphs
illustrate the reservation frontiers (the thick lines) in the hypothetical equilibrium, rel-

ative to those (the feint lines) in the symmetric equilibrium.
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Figure A2: Asymmetric pricing and the stopping rule

It is ready to see a1(�) = �(u��)�� (if u =1, a1(�) = a��) and a2(�) = a+�.
Notice that ��(�) is no longer symmetric around the 45-degree line, and if u <1, it also
has a �at segment on the interval [u � �; u] (which has not been precisely indicated
in the above graphs). In the following, for notational simplicity, I will restrict the

discussion to the case with u =1.
Now I start to derive the �rst-order e¤ects of the small deviation (pL+ "; pH � ") on

�rm 1�s pro�ts. Denote by Qi the number of consumers who buy product i from �rm

1 in the hypothetical equilibrium.

(i) The �rst-order e¤ects of lowering �rm 1�s pH by " (but keeping pL unchanged). I

follow the same logic as that used in the main text of the paper to derive the �rst-order

conditions for the symmetric equilibrium. The direct loss from this deviation is "Q2.

But it also leads to two gains. First, those consumers who sample �rm 1 �rst will stop

searching more likely (the reservation frontier shifts downward by "), which generates

a gain

"

2
pH

Z 1

a��

[1�F (��(u1)��)]f(u1; ��(u1))du1+
"

2
pL

Z 1

a��

[1�F (u1+�)]f(u1; ��(u1))du1:

Recalling ��(u1) = �(u1 + �) + � from (28) and changing the integral variable from

u1 to u = u1 +�, we can rewrite the above expression as

"

2
pH

Z 1

a

[1� F (�)]f(u��; �+�)du+ "
2
pL

Z 1

a

[1� F (u)]f(u��; �+�)du: (29)

(The dependent variable in �(u) has been suppressed.) Second, for those consumers

who sample both �rms, they will buy product 2 from �rm 1 more likely, which generates

a gain
"

2
pH

�Z

B

f(u2 ��)dF (u) +
Z

B̂

f(v2 +�)dF (v)

�
: (30)

(Here B(B̂) is the non-stopping region for those consumers who sample �rm 1(2) �rst

as illustrated in Figure A2.)
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(ii) The �rst-order e¤ects of raising �rm 1�s pL by " (but keeping pH unchanged).

The direct gain from this deviation is "Q1. But it also causes two losses. First, those

consumers who visit �rm 1 �rst will continue to search more likely (the reservation

frontier shifts rightward by "), which leads to a loss

"

2
pH

Z 1

a+�

[1�F (u2��)]f(��1� (u2); u2)du2+
"

2
pL

Z 1

a+�

[1�F (��1� (u2)+�)]f(��1� (u2); u2)du2:

By changing the integral variable from u2 to u = �
�1
� (u2)+� (and so u2 = ��(u��) =

�(u) + �), we can rewrite it as

"

2
pH

Z 1

a

[1�F (�)]f(u��; �+�)(��0)du+ "
2
pL

Z 1

a

[1�F (u)]f(u��; �+�)(��0)du:
(31)

Second, for those consumers who sample both �rms, they will buy product 1 from �rm

1 less likely, which leads to a loss

"

2
pL

�Z

B

f(u1 +�)dF (u) +

Z

B̂

f(v1 ��)dF (v)
�

(32)

I claim the following result, which completes the argument.

Claim 1 Suppose the two products have independent valuations, i.e., f(u1; u2) = f(u1)f(u2),

and the marginal density f is logconcave. Then the sum of all gains from the deviation,

i.e., "Q1+(29)+(30), is greater than the sum of all losses, i.e., "Q2+(31)+(32).

Proof. First, Q1 > Q2 since product 1 is cheaper but product 2 is more expensive

at �rm 1 than at �rm 2. So the gain "Q1 from raising pL by " is greater than the loss

"Q2 from lowering pH by ". Second, the symmetry of the setting implies
Z

B

f(u2 ��)dF (u) =
Z

B̂

f(v1 ��)dF (v);
Z

B

f(u1 +�)dF (u) =

Z

B̂

f(v2 +�)dF (v):

Thus, the gain in (30) is greater than the loss in (32).

Finally, I show that the gain in (29) is also greater than the loss in (31) if the two

products have independent valuations and the marginal density f is logconcave. Notice

that
Z 1

a

[1� F (�)]f(u��; �+�)(��0)du =
Z 1

a

[1� F (u)]f(u��; �+�)du:

(Recall ��0 = 1�F (u)
1�F (�)

.) Then it su¢ces to show that

pH

Z 1

a

[F (u)� F (�)]f(u��; �+�)du

� pL

Z 1

a

[1� F (u)]f(u��; �+�)(��0 � 1)du

= pL

Z 1

a

[F (�)� F (u)]f(u��; �+�)(��0)du

= pL

Z 1

a

[F (u)� F (�)]f(���; u+�)du: (33)
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(The last step is from changing the integral variable.)

I �rst argue that
R1
a
[F (u)� F (�)]f(u��)f(�+�)du > 0 if f is logconcave. Let

û solve u = �(u). Then the left-hand side equals

Z û

a

[F (u)� F (�)]f(u��)f(�+�)du+
Z 1

û

[F (u)� F (�)]f(u��)f(�+�)du

=

Z 1

û

[F (�)� F (u)]f(���)f(u+�)(��0)du+
Z 1

û

[F (u)� F (�)]f(u��)f(�+�)du

>

Z 1

û

[F (�)� F (u)]f(���)f(u+�)du+
Z 1

û

[F (u)� F (�)]f(u��)f(�+�)du

=

Z 1

û

[F (u)� F (�)][f(u��)f(�+�)� f(���)f(u+�)]du: (34)

(The �rst equality is from changing the integral variable. The inequality is because

� < u and ��0 2 (0; 1) for u 2 (û;1).) If f is logconcave, then we have

ln f(�+�)� ln f(���) � ln f(u+�)� ln f(u��)

given � < u and � > 0, which implies that (34) is positive.

Then to have (33), it remains to prove

Z 1

a

[F (u)� F (�)][f(u��)f(�+�)� f(���)f(u+�)]du � 0:

This can be done by dividing the integral interval into [a; û] and [û;1] and then applying
the same logic as in showing (34) to be positive.

Appendix B: Calculating Consumer Surplus

In our search model (especially in the case of linear pricing or mixed bundling), it

is complicated to calculate consumer surplus directly. Here I develop a more e¢cient

indirect method (which also carries over to the case with more than two �rms).

For any given symmetric price vector p (which can a linear pricing, pure bundling,

or mixed bundling scheme) and search cost s, consumer surplus is

v(sjp) = sup
�2�

[U(�jp)� s � t(�)] ; (35)

where � is the (well-de�ned) set of all possible stopping rules, U(�jp) is the expected
match utility minus payment if the consumer chooses a particular stopping rule �, and

t(�) is the expected search times. Let �(sjp) be the optimal stopping rule associated
with p and s. Since the objective function in (35) is linear in s, v(sjp) is convex in s
and so is di¤erentiable almost everywhere. Then the envelope theorem implies that

v0(sjp) = �t(�(sjp)) � �t̂(sjp) :

43



If p is an equilibrium price vector, then t̂(sjp) is just the corresponding equilibrium
number of searches. (In the duopoly case, it equals two minus the measure of the

stopping region.) We can then decompose consumer surplus into two parts:

v(sjp) = v(0jp)�
Z s

0

t̂(xjp)dx ; (36)

where the �rst term captures the surplus when the information is perfect (but given

prices p), and the second term re�ects the ine¢ciency caused by imperfect information

and costly search.

We can apply the general formula (36) to any case discussed in this paper. For

example, in the linear pricing case with two �rms, v(0jp) =
P2

i=1 (E[max (ui; vi)]� pi),
and the optimal stopping rule is independent of p and so t̂(x) = 2� A(x), where A(x)
is the measure of the acceptance set when the search cost is x. In the pure bundling

case, v(0jp) = E[max (U; V )]�P and t̂(x) = 1+G(b(x)). However, the implementation
in the mixed bundling case is slightly more complicated. First, the joint-purchase

discount � a¤ects the optimal stopping rule and so the equilibrium number of searches.

Second, how to calculate v(0jp) is now not so straightforward. Realize that in the mixed
bundling case with p = (p̂1; p̂2; �), we have

v(0jp) = E [max (u1 + u2 + �; v1 + v2 + �; u1 + v2; v1 + u2)]| {z }
w(�)

� (p̂1 + p̂2) :

The expectation is taken over all random variables ui and vi. Although w(0) =
P2

i=1 E [max (ui; vi)] is straightforward to calculate, w(�) for � > 0 is not. In the

following, I explain how to derive a formula for w(�). Realize that

w0(�) = 2 �Q12(�) = 1� 2 �Q1(�) ;

where 2 �Q12(�) is the probability that a consumer buys both products from the same

�rm in the perfect information case (i.e., the probability that either of the �rst two

terms in w(�) dominates), and 2 �Q1(�) is the probability of a consumer mixing and

matching (i.e., the probability that the third or fourth term in w(�) dominates). The

�rst equality is because when the joint-purchase discount � is increased by a small ", a

consumer will bene�t " when she buys both products from the same �rm, which occurs

with a probability 2 �Q12(�). (Of course, the change of � also a¤ects which term in w(�)

dominates, but that e¤ect on w(�) is of second order when " is small.) Thus, we obtain

w(�) = w(0) +

Z �

0

[1� 2 �Q1(z)]dz :
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