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PARTIAL IDENTIFICATION
OF THE DISTRIBUTION OF
TREATMENT EFFECTS AND
ITS CONFIDENCE SETS

Yangin Fan and Sang Soo Park

ABSTRACT

In this paper, we study partial identification of the distribution of
treatment effects of a binary treatment for ideal randomized experiments,
ideal randomized experiments with a known value of a dependence
measure, and for data satisfying the selection-on-observables assumption,
respectively. For ideal randomized experiments, (i) we propose nonpara-
metric estimators of the sharp bounds on the distribution of treatment
effects and construct asymptotically valid confidence sets for the
distribution of treatment effects; (ii) we propose bias-corrected
estimators of the sharp bounds on the distribution of treatment effects;
and (iii) we investigate finite sample performances of the proposed
confidence sets and the bias-corrected estimators via simulation.
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4 YANQIN FAN AND SANG SOO PARK

1. INTRODUCTION

Evaluating the effect of a treatment or a social program is important in
diverse disciplines including the social and medical sciences. The central
problem in the evaluation of a treatment is that any potential outcome that
program participants would have received without the treatment is not
observed. Because of this missing data problem, most work in the treatment
effect literature has focused on the evaluation of various average treatment
effects such as the mean of treatment effects. See Lee (2005), Abbring and
Heckman (2007), Heckman and Vytlacil (2007a, 2007b) for discussions and
references. However, empirical evidence strongly suggests that treatment
effect heterogeneity prevails in many experiments and various interesting
effects of the treatment are missed by the average treatment effects alone.
See Djebbari and Smith (2008) who studied heterogeneous program impacts
in social experiments such as PROGRESA; Black, Smith, Berger, and Noel
(2003) who evaluated the Worker Profiling and Reemployment Services
system; and Bitler, Gelbach, and Hoynes (2006) who studied the welfare
effect of the change from Aid to Families with Dependent Children (AFDC)
to Temporary Assistance for Needy Families (TANF) programs. Other
work focusing on treatment effect heterogeneity includes Heckman and
Robb (1985), Manski (1990), Imbens and Rubin (1997), Lalonde (1995),
Dehejia (1997), Heckman and Smith (1993), Heckman, Smith, and Clements
(1997), Lechner (1999), and Abadie, Angrist, and Imbens (2002).

When responses to treatment differ among otherwise observationally
equivalent subjects, the entire distribution of the treatment effects or other
features of the treatment effects than its mean may be of interest. Two
general approaches have been proposed in the literature to study the
distribution of treatment effects. In the first approach, the distribution of
treatment effects is partially identified, see Manski (1997), Fan and Park
(2007a), Fan and Wu (2007), Fan (2008), and Firpo and Ridder (2008).
Assuming monotone treatment response, Manski (1997) developed sharp
bounds on the distribution of treatment effects, while (i) assuming the
availability of ideal randomized data,! Fan and Park (2007a) developed
estimation and inference tools for the sharp bounds on the distribution of
treatment effects and (ii) assuming that data satisfy the selection-on-
observables or the strong ignorability assumption, Fan and Park (2007a)
and Firpo and Ridder (2008) established sharp bounds on the distribution
of treatment effects and Fan (2008) proposed nonparametric estimators of
the sharp bounds and constructed asymptotically valid confidence sets (CSs)
for the distribution of treatment effects. In the context of switching regimes
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Partial Identification of the Distribution of Treatment Effects 5

models, Fan and Wu (2007) studied partial identification and inference for
conditional distributions of treatment effects. In the second approach,
restrictions are imposed on the dependence structure between the potential
outcomes such that distributions of the treatment effects are point identified,
see, for example, Heckman et al. (1997), Biddle, Boden, and Reville (2003),
Carneiro, Hansen, and Heckman (2003), Aakvik, Heckman, and Vytlacil
(2005), and Abbring and Heckman (2007), among others. In addition to the
distribution of treatment effects, Fan and Park (2007c) studied partial
identification of and inference for the quantile of treatment effects for
randomized experiments; Fan and Zhu (2009) investigated partial identifi-
cation of and inference for a general class of functionals of the joint
distribution of potential outcomes including the correlation coefficient
between the potential outcomes and many commonly used inequality
measures of the distribution of treatment effects under the selection-on-
observables assumption. Firpo and Ridder (2008) also presented some
partial identification results for functionals of the distribution of treatment
effects under the selection-on-observables assumption.

The objective of this paper is threefold. First, this paper provides a review
of existing results on partial identification of the distribution of treatment
effects in Fan and Park (2007a) and establishes similar results for
randomized experiments when the value of a dependence measure between
the potential outcomes such as Kendall’s 7 is known. Second, this paper
relaxes two strong assumptions used in Fan and Park (2007a) to derive the
asymptotic distributions of nonparametric estimators of sharp bounds
on the distribution of treatment effects and constructs asymptotically valid
CSs for the distribution of treatment effects. Third, as evidenced in the
simulation results presented in Fan and Park (2007a), the simple plug-in
nonparametric estimators of the sharp bounds on the distribution of
treatment effects tend to have upward/downward bias in finite samples. In
this paper, we confirm this analytically and construct bias-corrected
estimators of these bounds. We present an extensive simulation study of
finite sample performances of the proposed CSs and of the bias-corrected
estimators. The issue of constructing CSs for the distribution of treatment
effects belongs to the recently fast growing area of inference for partially
identified parameters, see for example, Imbens and Manski (2004), Bugni
(2007), Canay (2007), Chernozhukov, Hong, and Tamer (2007), Galichon
and Henry (2006), Horowitz and Manski (2000), Romano and Shaikh
(2008), Stoye (2008), Rosen (2008), Soares (2006), Beresteanu and Molinari
(2006), Andrews and Guggenberger (2007), Andrews and Soares (2007), Fan
and Park (2007b), and Moon and Schorfheide (2007). Like Fan and Park
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6 YANQIN FAN AND SANG SOO PARK

(2007¢c), we follow the general approach developed in Andrews and
Guggenberger (2005a, 2005b, 2005¢, 2007) for nonregular models.

The rest of this paper is organized as follows. In Section 2, we review
sharp bounds on the distribution of treatment effects and related results for
randomized experiments in Fan and Park (2007a). In Section 3, we present
improved bounds when additional information is available. In Section 4, we
first revisit the nonparametric estimators of the distribution bounds
proposed in Fan and Park (2007a) and their asymptotic properties.
Motivated by the restrictive nature of the unique, interior assumption of
the sup and inf in Fan and Park (2007a), we then provide asymptotic
properties of the estimators with a weaker assumption. Section 5 constructs
asymptotically valid CSs for the bounds and the true distribution of
treatment effects under much weaker assumptions than those in Fan and
Park (2007a). Section 6 provides bias-corrected estimators of the sharp
bounds in Fan and Park (2007a). Results from an extensive simulation study
are provided in Section 7. Section 8 concludes. Some technical proofs are
collected in Appendix A. Appendix B presents expressions for the sharp
bounds on the distribution of treatment effects in Fan and Park (2007a) for
certain known marginal distributions.

Throughout the paper, we use = to denote weak convergence. All the
limits are taken as the sample size goes to oo.

2. SHARP BOUNDS ON THE DISTRIBUTION OF
TREATMENT EFFECTS AND BOUNDS ON ITS
D-PARAMETERS FOR RANDOMIZED EXPERIMENTS

In this section, we review the partial identification results in Fan and Park
(2007a). Consider a randomized experiment with a binary treatment and
continuous outcomes. Let Y| denote the potential outcome from receiving
the treatment and Y, the potential outcome without receiving the treatment.
Let F(y;, yo) denote the joint distribution of Y;, Y, with marginals F;(-)
and Fy(-), respectively. It is well known that with randomized data, the
marginal distribution functions Fi(-) and Fy(-) are identified, but the joint
distribution function F(y;, y¢) is not identified. The characterization
theorem of Sklar (1959) implies that there exists a copula® C(u, v):
(u, v)€[0,1]* such that F(y,, yo) = C(Fi(y1), Fo(1o)) for all y;, yo. Conversely,
for any marginal distributions Fi(-), Fy(-) and any copula function C, the
function C(Fi(y1), Fo()o)) is a bivariate distribution function with given



11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

Partial Identification of the Distribution of Treatment Effects 7

marginal distributions F;, Fy. This theorem provides the theoretical
foundation for the widespread use of the copula approach in generating
multivariate distributions from univariate distributions. For reviews, see Joe
(1997) and Nelsen (1999). Since copulas connect multivariate distributions
to marginal distributions, the copula approach provides a natural way to
study the joint distribution of potential outcomes and the distribution of
treatment effects when the marginal distributions are identified.

For (u,v) €[0,1]%, let C%u,v)=max(u+v—1,0) and CYu,v)=
min(u, v) denote the Fréchet-Hoeffding lower and upper bounds for a
copula, that is, C(u,v) < C(u,v) < CY(u,v). Then for any (yi, yo), the
following inequality holds:

CHF1(7), Foro)) < F(r1,30) < CU(F1(71), Fo(vo) )

The bivariate distribution functions C“(F(y,), Fo(3p)) and CY(F,(y,),
Fo(yy)) are referred to as the Fréchet-Hoeftfding lower and upper bounds for
bivariate distribution functions with fixed marginal distributions F; and Fj,.
They are distributions of perfectly negatively dependent and perfectly
positively dependent random variables, respectively, see Nelsen (1999) for
more discussions.

For randomized experiments, the marginals F; and F, are identified and
Eq. (1) partially identifies F(y;, yo). See Heckman and Smith (1993),
Heckman et al. (1997), Manski (1997b), and Fan and Wu (2007) for
applications of Eq. (1) in the context of program evaluation. Lee (2002) used
Eq. (1) to bound correlation coefficients in sample selection models.

2.1. Sharp Bounds on the Distribution of Treatment Effects
Let A= Y,—Y, denote the individual treatment effect and Fa(-) its
distribution function. For randomized experiments, the marginals F; and

Fy are identified. Given F; and F, sharp bounds on the distribution of A can
be found in Williamson and Downs (1990).

Lemma 1. Let

FL(6) = max (sup{Fl(y) — Fo(y — 0)}, 0) and
)

FY(6) = 1 + min (irzf{Fl(y) — Fo(y — 9)}, o>

Then FY(5) < Fa(0) < FY(9).
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8 YANQIN FAN AND SANG SOO PARK

At any given value of d, the bounds (F(5), FY(9)) are informative on the
value of Fx(d) as long as [FL(9), FY(5)] C [0, 1]in which case, we say F(d) is
partially identified. Viewed as an inequality among all possible distribution
functions, the sharp bounds F(d) and F"(9) cannot be improved, because
it is easy to show that if either F; or Fj is the degenerate distribution
at a finite value, then for all 6, we have F“(6) = Fx(d) = FY(). In fact,
given any pair of distribution functions F; and F,, the inequality:
FY(6)< FA(0)<FY(9) cannot be improved, that is, the bounds F(5)
and FY(9) for F,(d) are point-wise best-possible, see Frank, Nelsen, and
Schweizer (1987) for a proof of this for a sum of random variables and
Williamson and Downs (1990) for a general operation on two random
variables.

Let Zpgp and Zggp denote the first-order and second-order stochastic
dominance relations, that is, for two distribution functions G and H,

Gz rspH iff G(x) < H(x) for all x

G gsp H iff /

—00

X

G()dv < / " H(d)dv forall x

Lemma 1 implies: F*X pp FaZpsp FU. We note that unlike sharp
bounds on the joint distribution of Y7, Y, sharp bounds on the distribution
of A are not reached at the Fréchet—Hoeffding lower and upper bounds for
the distribution of Y;, Y. Let Y7, Y|, be perfectly positively dependent and
have the same marginal distributions as Y, Y,, respectively. Let
A" = Y| — Y{. Then the distribution of A" is given by:

1
Fy(d) = EI[Y| — Y} <8} = / HF () — Fy'(u) < 8}du
0

where 1 {-} is the indicator function the value of which is 1 if the argument
is true, 0 otherwise. Similarly, let Y7, Y{ be perfectly negatively dependent
and have the same marginal distributions as Y, Y, respectively. Let
A" = Y| — Y{. Then the distribution of A” is given by:

1
Fry(0) = EI{Y) — Y] <8} = / WF () — Fy'(1 — u) < 8)du
0

Interestingly, we show in the next lemma that there exists a second-order
stochastic dominance relation among the three distributions Fa, Fp/, Fpr.

Lemma 2. Let Fa,Fy,F, be defined as above. Then Fy Zggp
FaZgspFar
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Partial Identification of the Distribution of Treatment Effects 9

Theorem 1 in Stoye (2008b), see also Tesfatsion (1976), shows that
Fy ZsspFa is equivalent to E[U(A")] < E[U(A)] or E[U(Y,— Y] <
E[U(Y| — Yy)] for every convex real-valued function U. Corollary 2.3 in
Tchen (1980) implies the conclusion of Lemma 2, see also Cambanis,

Simons, and Stout (1976).

2.2. Bounds on D-Parameters

The sharp bounds on the treatment effect distribution implies bounds on the
class of “D-parameters” introduced in Manski (1997a), see also Manski
(2003). One example of “D-parameters” is any quantile of the distribution.
Stoye (2008b) introduced another class of parameters, which measure the
dispersion of a distribution, including the variance of the distribution. In
this section, we show that sharp bounds can be placed on any dispersion or
spread parameter of the treatment effect distribution in this class. For
convenience, we restate the definitions of both classes of parameters from
Stoye (2008b). He refers to the class of “D-parameters” as the class of
“D,-parameters.”

Definition 1. A population statistic  is a D;-parameter, if it increases
weakly with first-order stochastic dominance, that is, F 2z ¢, G implies
0(F) = 0(G).

Obviously if 6 is a Dj-parameter, then Lemma 1 implies: O(F%) >
O(F4) > O(FY). In general, the bounds 0(F"), 0(FV) on a D,-parameter may
not be sharp, as the bounds in Lemma 1 are point-wise sharp, but not
uniformly sharp, see Firpo and Ridder (2008) for a detailed discussion on
this issue. In the special case where 0 is a quantile of the treatment effect
distribution, the bounds O(FY),0(FY) are known to be sharp and can be
expressed in terms of the quantile functions of the marginal distributions of
the potential outcomes. Specially, let G~'(x) denote the generalized inverse
of a nondecreasing function G, that is, G~'(u) = inf{x|G(x) > u}. Then
Lemma 1 implies: for 0 < ¢ < 1,(FY)"(¢) < Fgl(q) < (FY(¢) and the
bounds are known to be sharp. For the quantile function of a distribution of
a sum of two random variables, expressions for its sharp bounds in terms
of quantile functions of the marginal distributions are first established in
Makarov (1981). They can also be established via the duality theorem,
see Schweizer and Sklar (1983). Using the same tool, one can establish the
following expressions for sharp bounds on the quantile function of the
distribution of treatment effects, see Williamson and Downs (1990).
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10 YANQIN FAN AND SANG SOO PARK

Lemma 3. For 0 < ¢ < 1,(FY) ' (¢) < F;'(¢) < (F*)"'(¢q), where

La—1 _ infue[q,l][Fl_l(u) - Fal(u - q)] if q7é0
FY @) = {Fll(O)—Fol(l) ifg=0
Uselon SuPue[o,q][Ffl(u) —Fy'(l+u—q) if g#1
i (q)_{Frl(u—Fa‘(m irg=1

Like sharp bounds on the distribution of treatment effects, sharp bounds
on the quantile function of A are not reached at the Fréchet-Hoeffding
bounds for the distribution of (Y, Y,). The following lemma provides
simple expressions for the quantile functions of treatment effects when the
potential outcomes are either perfectly positively dependent or perfectly
negatively dependent.

Lemma 4. For ¢e[0,1], we have (i) Fy'(¢)=[F'(¢9) — F;'(9)] if
[Fl_l(q)—Fg ()] is an increasing function of ¢; (ii) F&?(q):
[Fi(g) — Fy'(1 = g)l.

The proof of Lemma 4 follows that of the proof of Proposition 3.1 in
Embrechts, Hoeing, and Juri (2003). In particular, they showed that for a
real-valued random variable Z and a function ¢ increasing and left
continuous on the range of Z, it holds that the quantile of ¢(Z) at quantile
level ¢ is given by @(F'(q)), where F is the distribution function of Z.
For (i), we note that Fg/l (¢) equals the quantile of [Fl’l(U) — Fal(U)], where
U is a uniform random variable on [0,1]. Let ¢(U) =F(1(U)—F51(U).
Then FZ,I (@) = o(q) = FT'(q) — Fgl(q) provided that ¢(U) is an increasing
function of U. For (i), let qo(U):Fl_l(U)—Fa](l — U). Then Fg,}(q)
equals the quantile of ¢(U). Since @(U) is always increasing in this case,
we get Fi'(q) = ¢(q).

Note that the condition in (i) is a necessary condition; without this
condition, [F l_](q) - Fy '(¢)] can fail to be a quantile function. Doksum
(1974) and Lehmann (1974) used [F I_I(Fo(yo)) — Jp] to measure treatment
effects. Recently, [F Tl(q) —Fy !(¢)] has been used to study treatment effects
heterogeneity and is referred to as the quantile treatment effects (QTE), see
for example, Heckman et al. (1997), Abadie et al. (2002), Chernozhukov
and Hansen (2005), Firpo (2007), Firpo and Ridder (2008), and Imbens and
Newey (2005), among others, for more discussion and references on the
estimation of QTE. Manski (1997a) referred to QTE as AD-parameters
and the quantile of the treatment effect distribution as DA-parameters.
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Partial Identification of the Distribution of Treatment Effects 11

Assuming monotone treatment response, Manski (1997a) provided sharp
bounds on the quantile of the treatment effect distribution.

It is interesting to note that Lemma 4 (i) shows that QTE equals the
quantile function of the treatment effects only when the two potential
outcomes are perfectly positively dependent AND QTE is increasing in g¢.
Example 1 below illustrates a case where QTE is decreasing in ¢ and hence is
not the same as the quantile function of the treatment effects even when the
potential outcomes are perfectly positively dependent. In contrast to QTE,
the quantile of the treatment effect distribution is not identified, but can
be bounded, see Lemma 3. At any given quantile level, the lower quantile
bound (FY)7'(g) is the smallest outcome gain (worst case) regardless of the
dependence structure between the potential outcomes and should be useful
to policy makers. For example, (FU)~!(0.5) is the minimum gain of at least
half of the population.

Definition 2. A population statistic 0 is a D,-parameter, if it increases
weakly with second-order stochastic dominance, that is, F' = ¢, G implies
0(F) = 0(G).

If 0 is a Dy-parameter, then Lemma 2 implies O(Fy) < O(Fa) < O(Fp»).
Stoye (2008) defined the class of D,-parameters in terms of mean-preserving
spread. Since the mean of A is identified in our context, the two definitions
lead to the same class of D,-parameters. In contrast to Dj-parameters of the
treatment effect distribution, the above bounds on D,-parameters of the
treatment effect distribution are reached when the potential outcomes are
perfectly dependent on each other and they are known to be sharp. For a
general functional of Fj, Firpo and Ridder (2008) investigated the possibility
of obtaining its bounds that are tighter than the bounds implied by F*, FY.
Here we point out that for the class of D,-parameters of Fj, their sharp bounds
are available. One example of D,-parameters is the variance of the treatment
effect A. Using results in Cambanis et al. (1976), Heckman et al. (1997)
provided sharp bounds on the variance of A for randomized experiments and
proposed a test for the common effect model by testing the value of the lower
bound of the variance of A. Stoye (2008) presents many other examples of
Ds-parameters, including many well-known inequality and risk measures.

2.3. An lllustrative Example: Example 1

In this subsection, we provide explicit expressions for sharp bounds on the
distribution of treatment effects and its quantiles when Y| ~ N(u,,¢?) and
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12 YANQIN FAN AND SANG SOO PARK

YONN(,uO,o(%). In addition, we provide explicit expressions for the
distribution of treatment effects and its quantiles when the potential
outcomes are perfectly positively dependent, perfectly negatively dependent,
and independent.

2.3.1. Distribution Bounds
Explicit expressions for sharp bounds on the distribution of a sum of two
random variables are available for the case where both random variables
have the same distribution which includes the uniform, the normal, the
Cauchy, and the exponential families, see Alsina (1981), Frank et al. (1987),
and Denuit, Genest, and Marceau (1999). Using Lemma 1, we now derive
sharp bounds on the distribution of A = Y| — Y.

First consider the case oy =09=o0. Let ®(-) denote the distribu-
tion function of the standard normal distribution. Simple algebra
shows

SUp(F1(y) — Foly — 8)) = 20 (W) U for 5> 1, —
y

inf(F1(y) — Fo(y — 8)} = 20 (M> — 1 for d<puy — 1
.

20
Hence,
0, if o<py — po
Losy _ _ _
F=(0) = 2®<M) —1, ifd>pu -y (@)
20
0 — (1 —#0)> .
O ——| ifo<u —
FU(©) = ( 20 S 3)
L, O U )

When?® ¢ #ag, we get

suplFi() — Foy = ) = 0 T5= 52 05 =87) <1
.

1~ 90 01 — 0y

A1)~ oy = 0 = o (P55 — 0T3R4

1~ 0p 01 — 0y
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Partial Identification of the Distribution of Treatment Effects 13

where s =6 — (u; — i) and ¢ = \/s2 + (67 — 63) In(6}/a3). For any 4, one
can show that sup, {F(y) — Fo(y — )} >0 and inf,{F(y) — Fo(y — )} <0.

As a result,
18 — ool o1l — 0oS
F%é):@(%) +q><%) ~1
01— 9y 01— 0p

179

K t t
FU(5) = %%) +(D<%) L
g 01 O'O

For comparison purposes, we provide expressions for the distribution Fa
in three special cases.

Case 1. Perfect positive dependence. In this case, Y, and Y, satisfy
Yo=puy+ (O’g/()’])Y] - (G()/O’]),ul. Therefore,

g1 — 0y a .
Y —u; — f
A ( o ) 1+<Glu1 ,uo), it 01709

Ky — Hos if 61 =09

If o] = 0y, then

Oand 0 <u; — y
Fa0) = { land pu; —py <90 @)

If (o] ;ﬁ (Y then

FA(5) = (D<5 — (- Ho))

lo1 — ool

Case II. Perfect negative dependence. In this case, we have Y, =
Uy — (00/01)Y 1 + (00/01)u;. Hence,

o1+ 0o o
A=—Yi— (J—?#l‘*‘ﬂ())

[

FA(5) = (I)(5 — (= No))

g1+ 0o
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YANQIN FAN AND SANG SOO PARK

Case III. Independence. This yields

FA() = ®

0 — (U — o) (5)

/ 2 2
gy + op

Fig. 1 below plots the bounds on the distribution F, (denoted by F_L and
F_U) and the distribution F, corresponding to perfect positive dependence,
perfect negative dependence, and independence (denoted by F_PPD,
F_PND, and F_IND, respectively) of potential outcomes for the case
Y1~ N(2,2) and Yy~ N(1,1). For notational compactness, we use (F;, Fy) to
signify Y|~ F; and Yy~ F, throughout the rest of this paper.

First, we observe from Fig. 1 that the bounds in this case are informative
at all values of 6 and are more informative in the tails of the distribution Fj
than in the middle. In addition, Fig. 1 indicates that the distribution of the
treatment effects for perfectly positively dependent potential outcomes is
most concentrated around its mean | implied by the second-order stochastic

-~ F

F L 14 _

EU P

F_PPD . e

F IND ;L

F_PND 0.8+ ;s

- — ’ s

delta

| | | »
T T T v
4 6 8

Fig. 1.

Bounds on the Distribution of the Treatment Effect: (N(2,2), N(1,1).
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Partial Identification of the Distribution of Treatment Effects 15
N FA{-I}
8 =+
h
6+ 4
7
S
’ 4
s .
s 4
'/
q
f 4

FLA-1}

FUA 1)
F_PPD"[1)
F_INDA(-1}

Fig. 2. Bounds on the Quantile Function of the Treatment Effect: (N(2,2), N(1,1)).

relation F_PPD 2z ¢ F_IND = o, F_PPD. In terms of the corresponding
quantile functions, this implies that the quantile function corresponding to
the perfectly positively dependent potential outcomes is flatter than the
quantile functions corresponding to perfectly negatively dependent and

independent potential outcomes, see Fig. 2 above.

2.3.2. Quantile Bounds

By inverting Egs. (2) and (3), we obtain the quantile bounds for the case

0]y =00=0.
any value in (—oo, yt; — o] forg=20

Lyv—1,.\ _ 1
(F @) = (1 — 1) + 20 @7 (%) otherwise

(11— 1) +20 07 (2)

any value in [u; — pg,00) forg=1

(FY () = forg €[0,1)
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16 YANQIN FAN AND SANG SOO PARK

When o, # 0, there is no closed-form expression for the quantile bounds.
But they can be computed numerically by either inverting the distribution
bounds or using Lemma 3. We now derive the quantile function for the
three special cases.

Case 1. Perfect positive dependence. If o, = g, we get

any value in (—oo, i} — 1y) forg =0,
Fy'(q) = { any valuein [y — pg,00)  forg =1,
undefined for g € (0, 1).

When o, # 0, we get
Fi'(@) = (= #y) + lor — 00|®'(g) for ¢ € [0, 1]
Note that by definition, QTE is given by:
Fii(a) = Fo ' (@) = (1 = 1) + (01 = 50)@™ ()

which equals F gl(q) only if o;>0, that is, only if the condition of
Lemma 4 (i) holds. If ) <o, [F{'(q) — Fy ()] is a decreasing function of
¢ and hence cannot be a quantile function.

Case II. Perfect negative dependence.

Fil(q) = (1 = o) + (91 + a0) ' (g) for g € [0, 1]

Case III. Independence.
FX'(q) = (11 = no) + /o1 + 3@ () for ¢ € [0, 1]

In Fig. 2 below, we plot the quantile bounds for A (FL"{—1} and
FU"{—1}) when Y;~N(2, 2) and Yy~ N(1, 1) and the quantile functions
of A when Y, and Y, are perfectly positively dependent, perfectly
negatively dependent, and independent (F_PPD”{—1}, F PND"{—1}, and
F_IND"{—1}, respectively).

Again, Fig. 2 reveals the fact that the quantile function of A
corresponding to the case that Y; and Y| are perfectly positively dependent
is flatter than that corresponding to all the other cases. Keeping in
mind that in this case, o; > 0g,, we conclude that the quantile function of A
in the perfect positive dependence case is the same as QTE. Fig. 2 leads
to the conclusion that QTE is a conservative measure of the degree of
heterogeneity of the treatment effect distribution.
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Partial Identification of the Distribution of Treatment Effects 17

3. MORE ON SHARP BOUNDS ON THE JOINT
DISTRIBUTION OF POTENTIAL OUTCOMES AND
THE DISTRIBUTION OF TREATMENT EFFECTS

For randomized experiments, Eq. (1) and Lemma 1, respectively, provide
sharp bounds on the joint distribution of potential outcomes and the
distribution of treatment effects. When additional information is available,
these bounds are no longer sharp. In this section, we consider two types
of additional information. One is the availability of a known value of a
dependence measure between the potential outcomes and the other is the
availability of covariates ensuring the wvalidity of the selection-on-
observables assumption.

3.1. Randomized Experiments with a Known Value of Kendall’s t

In this subsection, we first review sharp bounds on the joint distribution of
the potential outcomes Y, Yy when the value of a dependence measure such
as Kendall’s 7 between the potential outcomes is known. Then we point out
how this information can be used to tighten the bounds on the distribution
of A presented in Lemma 1. We provide details for Kendall’s T and point out
relevant references for other measures including Spearman’s p.

To begin, we introduce the notation used in Nelsen, Quesada-Molina,
Rodriguez-Lallena, and Ubeda-Flores (2001). Let (X, Y;), (X5, Y>), and
(X3, Y3) be three independent and identically distributed random vectors
of dimension 2 whose joint distribution is H. Kendall’s 7 and Spearman’s p
are defined as:

© = Pr[(X1 — X2)(Y1 — Y2)>0] = Pr[(X) — X2)(Y1 — Y2)<0]

p = 3{Pr[(X1 — X2)(Y1 — Y3)>0] — Pr{(X, — Xo)(Y — Y3)<0]}
For any re[—1,1], let 7, denote the set of copulas with a common value ¢
of Kendall’s 7, that is,
T, ={C|C is a copula such that t(C) = 1}
Let T, and T, denote, respectively, the point-wise infimum and supremum

of 7T,. The following result presents sharp bounds on the joint distribution
of the potential outcomes Yy, Y. It can be found in Nelsen et al. (2001).
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18 YANQIN FAN AND SANG SOO PARK

Lemma 5. Suppose that the value of Kendall’s t between Y; and Y is ¢.
Then
T(F1(3), Foro)) < F(r1,50) < TdF1(31), Fo(yy))

where, for any (u, v)€[0,1]%;

Zt(u,v)zmax<0,u+v—1,%{(u+v)—\/(u—v)2+1—t])

T,(u,v):min(u,v,;[(u+v—l)+\/(u+v_1)2+1+l}>

As shown in Nelsen et al. (2001),

T,(u,v) = C-(u,v) if 1t €[-1,0]

T,(u,v) > Ct(u,v) ifte[0,1] (6)

and

T(u,v) = CYu,v) ifte]0,1]

T.(u,v) < CYu,v) ifre[—1,0]

Hence, for any fixed (¥, o), the bounds [T ,(F(y)),Fo(yy)),
T(F1(»)), Fo(yy))] are in general tighter than the bounds in Eq. (1) unless
t = 0. The lower bound on F(y;, y¢) can be used to tighten bounds on the
distribution of treatment effects via the following result in Williamson and
Downs (1990).

Lemma 6. Let Cy, denote a lower bound on the copula Cyy and Fy. y
denote the distribution function of X'+ U. Then

sup Cyy(F(0).G0)) = Fray(@) = inf_C(F().GO)

X+y=z
where Q){(Y(u, V) =u+v— Cyyu,v).

Let Yy = X and Yy = —Y in Lemma 6. By using Lemma 5 and the duality
theorem, we can prove the following proposition.

Proposition 1. Suppose the value of Kendall’s v between Y; and Y is ¢.
Then

AU :3
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Partial Identification of the Distribution of Treatment Effects 19

(i) sup,T_,(Fi(x),1 — Fo(x — 38)) < Fa(d) < inf T (Fi(x),1 — Fo(x — 9)),
where

T_(u,v)= max{O,u+ v+ 1,% {(u-q- V) — m}}
T (u,v) = max{u—i— v, 1,% {(u—i— V) + m] }

(i) SUPps (oo [F7 ') = Fo ' (1 = )] < F3' (@) < infru1-n=g[F7' (1)
—Fy 1 =)

Proposition 1 and Eq. (6) imply that the bounds in Proposition 1 (i) are
sharper than those in Lemma 1 if te[—1, 0] and are the same as those in
Lemma 1 if 7€[0, 1]. This implies that if the potential outcomes Y, and Y
are positively dependent in the sense of having a nonnegative Kendall’s t,
then the information on the value of Kendall’s © does not improve the
bounds on the distribution of treatment effects. On contrary, if they are
negatively dependent on each other, then knowing the value of Kendall’s t
will in general improve the bounds.

Remark 1. If instead of Kendall’s 7, the value of Spearman’s p between
the potential outcomes is known, one can also establish tighter bounds on
FA(z) by using Theorem 4 in Nelsen et al. (2001) and Lemma 6.

Remark 2. Other dependence information that may be used to tighten
bounds on the joint distribution of potential outcomes and thus the
distribution of treatment effects include known values of the copula
function of the potential outcomes at certain points, see Nelsen and
Ubeda-Flores (2004) and Nelsen, Quesada-Molina, Rodriguez-Lallena,
and Ubeda-Flores (2004).

3.2. Selection-on-Observables

In many applications, observations on a vector of covariates for individuals
in the treatment and control groups are available. In this subsection, we
extend sharp bounds for randomized experiments in Lemma 1 to take into
account these covariates. For notational compactness, we let n = n; +ng
so that there are n individuals altogether. For i =1, ..., n, let X; denote the
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20 YANQIN FAN AND SANG SOO PARK

observed vector of covariates and D; the binary variable indicating
participation; D; =1 if individual / belongs to the treatment group and
D; =0 if individual i belongs to the control group. Let Y, = Y;D; +
Yoi(1 — D;) denote the observed outcome for individual i. We have
a random sample {Y;, X;, D;}_,. In the literature on program evaluation
with selection-on-observables, the following two assumptions are often
used to evaluate the effect of a treatment or a program, see for example,
Rosenbaum and Rubin (1983), Hahn (1998), Heckman, Ichimura, Smith,
and Todd (1998), Dehejia and Wahba (1999), and Hirano, Imbens, and
Ridder (2003), to name only a few.

C1. Let (Y;, Yy, D, X) have a joint distribution. For all xe X (the support
of X), (Y1, Yy) is jointly independent of D conditional on X = x.

C2. For all xeX, 0<p(x)<1, where p(x) = P (D=1|x).

In the following, we present sharp bounds on the joint distribution
of potential outcomes and the distribution of A under (C1) and (C2). For
any fixed xeX, Eq. (1) provides sharp bounds on the conditional joint
distribution of Y, Y, given X = x:

CHF1(311x), Foolx) < F(r, 301x) < CY(F1(11), Fo(yolx))
and Lemma 1 provides sharp bounds on the conditional distribution of A
given X = x:
FE01x) < Fa(d]x) < FU(3])
where

FH(9|x) = sup max(F1(ylx) — Fo(y — 0lx), 0)

FY(S|x) = 1 +inf min(F;(y|x) — Fo(y — d]x),0)
)

Here, we use Fa(-|x) to denote the conditional distribution function of A
given X = x. The other conditional distributions are defined similarly.
Conditions (Cl) and (C2) allow the identification of the conditional
distributions Fi(y|x) and Fy(y|x) appearing in the sharp bounds on
F(y1,y0lx) and Fa(d|x). To see this, note that

Fiylx) =P(Y1 =yl X =x)=P(Y =ylX =x,D=1)
=PY<yX=x,D=1) (7
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Partial Identification of the Distribution of Treatment Effects 21

where (C1) is used to establish the second equality. Similarly, we get
Foylx) = P(Y < y|X =x,D =0) @®)

Sharp bounds on the unconditional joint distribution of Y;, Y, and the
unconditional distribution of A follow from those of the conditional
distributions:

E[CY(F (3|1 X), Fo(ol X)] < F(y1,30) < CU(F1(711X), Fo(yyl X))
E(F™(81X)) < Fa(8) = E(Fa(3|1X)) < E(FY(5|X))

We note that if X is independent of (Y7, Yy), then the above bounds on
F(y1, o) and FA(0) reduce, respectively, to those in Eq. (1) and Lemma 1.
In general, X is not independent of (Y7, Y,) and the above bounds are
tighter than those in Eq. (1) and Lemma 1, see Fan (2008) for a more
detailed discussion on the sharp bounds with covariates. Under the selection
on observables assumption, Fan and Zhu (2009) established sharp bounds
on a general class of functionals of the joint distribution F(y, yo) including
the correlation coefficient between the potential outcomes and the class of
D,-parameters of the distribution of treatment effects.

4. NONPARAMETRIC ESTIMATORS OF THE SHARP
BOUNDS AND THEIR ASYMPTOTIC PROPERTIES
FOR RANDOMIZED EXPERIMENTS

Suppose random samples {Y;};, ~ Fy and {Y,;};°, ~ Fy are available. Let
Y, and ), denote, respectively, the supports* of F; and F,. Note that the
bounds in Lemma 1 can be written as:

F6) = Sug{Fl(V) —Foy — 0L, FY©0) =1+ in7f2{F1(y) —Fo(y =9} 9
ye ye

since for any two distributions F; and Fy,, it is always true that
sup,cr {(F1(») — Fo(y — )} = 0 and inf,cr{Fi(y) — Fo(y — 0)} < 0.

When Y| = Yy =R, Eq. (9) suggests the following plug-in estimators of
F™(6) and FY(5):

F(9) = sup{F1,(3) = Fou(y = )}, F,)(9) = 1 + inf {F1,(») = Fou(y = 9)}

yeR
(10)
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22 YANQIN FAN AND SANG SOO PARK

where Fi,(-) and Fy,(-) are the empirical distributions defined as:

nj

1
Fa@)=2-3 10 =yl k=10

i=1

When either ), or ), is not the whole real line, we derive alternative
expressions for FY(9) and FY(5) which turn out to be convenient for
both computational purposes and for asymptotic analysis. For illustration,
we look at the case: ), = )Yy = [0, 1] in detail and provide the results for the
general case afterwards.

Suppose V1 = Yo =[0,1]. If 1 >6>0, then Eq. (9) implies:

FL(5)=maX{ sup {Fi(y) — Fo(y —9)}, sup {F1(y) — Fo(y —9)},

yelo,1] ye(—00,8)
ye(l,00)

sup {Fi(y) — Fo(y — 5)}}

yeld,1] y€(=00.9) re(l,00)

= {Sup{Fl(y) Fo(y —=90)}, sup Fi(y), sup {I—Fo(y—5)}}

ma {SUP{Fl(V) Fo(y — o)}, F1(5)1—F0(1—5)}

velo,1]

sup {Fi(y) = Fo(y — 9)} (11)

yelo.1]

and

FU) = 1mind i ()~ Faly =)o (Fi0) = Fay = )
il (F10) - Fals = 0
ye(l,00)
= ttmin{ int (F10) = Fo =00, inl | Fi0), nf (1= Folv -1}

=1+ min{ ,ir[ljf”{Fl(‘y) —Fo(y — 5)},0}
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Partial Identification of the Distribution of Treatment Effects 23
If —1<0<0, then

FL(5)=maX{ sup {Fi(y) — Fo(y —9)}, sup {Fi(y) = Fo(y — )},

y€[0,14-0] V€E(—00,0)

sup {Fl(y)—Fo(V—(S)}}

ve(149,00)

[0,146] Y€(—00,0)

= max{ sup {F1(y) — Fo(y — )}, sup {—Fo(y —9)},
ye

sup  {F(») — 1)}}

ve(149,00)

ZmaX{ sup {F1(V)—Fo(y—5)},0} (12)

[0,1+0]

and
FUG) =1+ min{ inf (1) — For— 0}, inf (F\() — Foly — )},
vel0,14-0] y€(—00,0)

inf  {F(y) — Fo(y — 5)}}

ye(l46,00)

=t mind_int (F0) = Fay =0, _int | (=Foly = O

ye(140,00)

=14 inf {F\(y)— Fo(y — )}
yel0,144]

inf {F1() - 1}}

Based on Egs. (11) and (12), we propose the following estimator
of FX(5):

FL(é) B Supye[(;’l]{F]”()/) — F(]n(y — 5)} if 1 > 0 > 0
n - maX{Sup},e[0’1+5]{F1,,(y) - F()n(y - 5), 0} lf - 1 E 5<0

Similarly, we propose the following estimator for EY(5):

FU(é _ 1 4+ min {infye[(s,l]{Fln(y) - FOn(y - 5)}, O} if 1 > 0 > 0
7O = 1 4 infyo.1a{F1n() — Fouly — 0)) it —1<8<0
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24 YANQIN FAN AND SANG SOO PARK

We now summarize the results for general supports V; and )y. Suppose
Vi =[a,b] and Yy =|[c,d] for a,b,c,d € R=RU{—o00,+00},a<b,c<d
with Fi(a) = Fo(c) =0 and F(b) = Fo(d) = 1. It is easy to see that

Fr0)=FY©)=0, ifd<a—d and F*©)=FY0) =1, ifé=b—c

For any d ela—d,b—c]NR let Vs =[a,b]N[c+J,d+ 5]. A similar
derivation to the case Yy = Yy = [0, 1] leads to

F:0) = max{sup{Fl(y) — Foy — )}, 0}

yeds

FYG)=1+ min{ m}g {(F1(y) — Fo(y — 5)},0}

which suggest the following plug-in estimators of F™(d) and FY():

Fr©o) = maX{sup{Fm(y) — Fou(y — 5)},0} (13)
yeVs
F©)=1+ min{ inf (F1,0) = Fou(y = 0)}, 0} (14)

By using F~() and FY(5), we can estimate bounds on effects of interest
other than the average treatment effects including the proportion of people
receiving the treatment who benefit from it, sce Heckman et al. (1997) for
discussion on some of these effects. In the rest of this section, we review
the asymptotic distributions of /71 (F5() — F(5)) and /m(FY () — FY(9))
established in Fan and Park (2007a), provide two numerical examples to
demonstrate the restrictiveness of two assumptions used in Fan and Park
(2007a), and then establish asymptotic distributions of /n1(F ,Ll(é) — FY9))
and /n(F 5(5) — FY(9)) with much weaker assumptions.

4.1. Asymptotic Distributions of F,E(é), FY(9)

Define
Vsup.s = arg sup{F1(y) — Fo(y — 0)}, Vint,s = arg inf {F1(y) — Fo(y — 9)}
vels yels

M(0) = sup{Fi(y) — Foly —9)}, m(d) = )}gs{Fl(y) — Fo(y —9)}

reds
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Mn(é) = Su)l?{Fln(y) - FOn(y - 5)}: mn(‘s) = }%n;)g {Fln(y) - FOn(y - 5)}
yeds €ys

Then

FY(8) = max{M,(9),0}, FY(5) = 1+ min{m,(5),0}

Fan and Park (2007a) assume that Yy, s and YVinrs are both singletons.

Let yup.s and yinrs denote, respectively, the elements of Vs and Vinrs.
The following assumptions are used in Fan and Park (2007a).

Al. (i) The two samples {Y;}iL, and {Y,;};2, are each ii.d. and are
independent of each other; (ii) n;/ny — A as nj — oo with 0 <A< oo.

A2. The distribution functions F; and F, are twice differentiable with
bounded density functions f; and f, on their supports.

A3. (1) For every ‘c> (,)’ Supyey,;:|yfysup_§|25{F1(y) _FO()f - 5)} <{F1)(ysup,(5)
_Fo(ysup,(5 - 5)}5 (ll)fl(ysup,é) _fO(ysup,é - 5) =0 and/l(ysup,é) _f(,)(ysup,é
—0)<0.

A4. (i) For every &> 0, inf_Veyo_:b,_ym|28{F1(y) — Fo(y = 0)} <{F1(Vinr,5)
f/F 0ines — 0 () f1inrs) =S 0Wings —0) =0 and [ (Vinrs) —
SoWines —6)>0.

The independence assumption of the two samples in (Al) is satisfied by

data from ideal randomized experiments. (A2) imposes smoothness
assumptions on the marginal distribution functions. (A3) and (A4) are
identifiability assumptions. For a fixed ¢ € [a — d,b — c] N'R, (A3) requires
the function y — {F|(y) — Fo(y — )} to have a well-separated interior
maximum at yg,s on Vs, while (A4) requires the function y — {F(y) —
Fo(y — 9)} to have a well-separated interior minimum at y;,¢5 on Vs. If Vs is
compact, then (A3) and (A4) are implied by (A2) and the assumption that
the function y — {F(y) — Fo(y — 9)} have a unique maximum at yg,, s and
a unique minimum at yj,rs in the interior of Vs.

35

37

39

The following result is provided in Fan and Park (2007a).
Theorem 1. Define

O-i = Fl(ysup,é)[l - Fl(ysup,é)] + iFO(ysup,ﬁ - 5)[1 - FO(ysup,5 - 5)] and

04 = Fi0ine )l = F1ing o) + AF0Wing s = A1 = FoVinrs — 9]
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26 YANQIN FAN AND SANG SOO PARK

(i) Suppose (A1)-(A3) hold. Forany é € [a—d,b—c]NR

N0, 0?), if M()>0
VilFy(0) = FH0)] = {max{N(O, 01),0} if M(8)=0

and Pr(F:(0) =0) — 1 if M(5)<0

(i1) Suppose (Al), (A2), and (A4) hold. Forany d e [a —d,b — c]NR,

N(0,07) it m(9)>0
U U
VL, (0) = FE(0)] = {min{N(O, a0), 0} if m(3) =0

and Pr(FY(0) = 1) — 1 if m(5)>0

Theorem 1 shows that the asymptotic distribution of F ,5(5)(F}1j(5))
depends on the value of M(9) (m(d)). For example, if 0 is such that M(d)>0
(m(0)<0), then F,%(é) (F},J((S)) is asymptotically normally distributed, but
if 0 is such that M(5)=0 (m(5)=0), then the asymptotic distribution of
FY(S)(FY(9)) is truncated normal.

Remark 3. Fan and Park (2007a) proposed the following procedure
for computing the estimates F 5(5),F}1j(5) and estimates of g7 and ¢ in
Theorem 1. Suppose we know Vs. If Vs is unknown, we can estimate it by:

Visn = [Y10)> Y1ep] N [Yo) + 0, Yogug) + 0]

where {Y )}/, and {Y@;}:2, are the order statistics of {Y;}i., and

{Yo@}i,, respectively (in ascending order). In the discussion below, Y,

can be replaced by Vs, if Vs is unknown.

We define a subset of the order statistics {Y(;)};L; denoted as {Y(»};L,, as
follows:

r| = arg miin[{Yl(i)}:l1 NYs;] and s = alrgmlax[{Yl(,-)};ll N Vsl

In words, Y, is the smallest value of {Y;}i, NY; and Yy, is the
largest. Then,

M, () = max{ni— Fou(Y16) — 5)} forie {ri,ri+1,...,s} (15)
i 1
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my(0) = min{ni — Fou(Y1) — 5)} forie {ri,ri+1,...,s1} (16)
i 1

The estimates F,I;((S), F}f(é) are given by: F,E(é) = max{M,(J),0},
FY(5) = 1 4+ min{m,(5),0}.
Define two sets I, and I, such that

Iy = {i = argmax{nl— Fo(Yi4) — 5)}} and
i 1

1, = {i = argmjn{’; — Fou(Y14) — 5)}}
i 1

Then the estimators o7, and o7;, can be defined as:

i I
ot = o <1 - nl) + Ao, (Y1) — 0)(1 — Fou(Y1) — 6)) and

=1 (1 _ nil) 4 AFou(Yig — )1 — Fou(Y1g) — )

for iely, and jel,,. Since I, or I, may not be singleton, we may have
multiple estimates of o7 or ¢,. In such a case, we may use i = min,{k €
Iy} and j = ming{k € 1,,,}.

Remark 4. Alternatively we can compute F,%(é), F 5(5) as follows. Note
that for 0<g< 1, Lemma 3 (the duality theorem) implies that the quantile
bounds (FV)"(¢) and (F£)~'(¢) can be computed by:

ED @) = inf [F) 00 — Fyl = g (F)) ()

uelq,

= sup [F,/ () — F,/ (1 +u— q)]
uel0,q]

where F 1’”1(~) and F(jnl(-) represent the quantile functions of Fy,(-) and
Fy,(+), respectively. To estimate the distribution bounds, we compute the
values of (F ,%)_1(q) and (F,LII)_I(q) a evenly spaced values of ¢ in (0, 1).
One choice that leads to easily computed formulas for (F,E)_l(q) and
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28 YANQIN FAN AND SANG SOO PARK
(F,[f)*l(q) is ¢=r/n; for r=1, ..., ny, as one can show that

_ r
(Fy) 1(—) = _min_min [Yige) — Yo (17)
ny I=r,...,(n —1) s=j,...,

where j = [no((I — r)/n)]+ 1 and k = [no((/ — r+ 1)/ny)], and

(F)™ ( ) = _nax = max [Y1(1+1) = Yo (18)
np 1=0,....(r—1) 5=,

where ;' = [no((n; + [ —r)/n)]+ 1 and k" = [no((n; + 1 — r+ 1)/ny)]. In the

case where n; =ng=n, Egs. (17) and (18) simplify:

.....

-
F, 71(*): max [Y Y -
(F)7{,) = m Y = Yoo+

The empirical distribution of (F,];)_l(r/m),r: 1,...,n, provides an
estimate of the lower bound distribution and the empirical distribution
of (F}f)’l(r/nl),rz 1,...,ny, provides an estimate of the upper bound
distribution. This is the approach we used in our simulations to compute
Fy(0), F})(9).

4.2. Two Numerical Examples

We present two examples to illustrate the various possibilities in Theorem 1.
For the first example, the asymptotic distribution of FL(é)(F (0)) is
normal for all . For the second example, the asymptotic distribution
of FL(5)(F Y(9)) is normal for some 6 and nonnormal for some other J.
More examples can be found in Appendix B.

Example 1 (Continued). Let Y; ~ N(u;,0;) for j=0, 1 with of #a;.
As shown in Section 2.3, M(5)>O and m(5)<0 for all 6 € R. Moreover,

0]S+O'10()l‘+ d als+alaot+
Yaps =— 5 5+ and Y5 =—>—>5THU
sup,o O_% _ 6(2) 1 inf,d O’% _ O'(% 1

are unique interior solutions, where s=0J — (y; —u,) and

\/52—1—2(01 — 03)In(o1/0p). Theorem 3.2 implies that the asymptotic
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distribution of FL(8)(FV(9)) is normal for all 6 € R. Inferences can be
made using asymptotic distributions or standard bootstrap with the same
sample size.

Example 2. Consider the following family of distributions indexed by
ae(0, 1). For brevity, we denote a member of this family by C(a). If
X~ C(a), then

1x2 if x €[0,4d] %x if x € [0,4d]
F(x) = 2 and f(x) = _
(x—1)7% . 2(1-x) .
1—(1_a) if x € [a,1] =) if x €[a, 1]

Suppose Y, ~ C(1/4) and Y, ~ C(3/4). The functional form of
Fi(y)—Fo(y—0) differs according to 6. For y € Vs, using the expressions
for Fy(y)—Fy(y—¢) provided in Appendix B, one can find yy,, s and M(9).
They are:

L T L, Sy
2 2
1+6 . 1
ysup,éz {0’T91+5} lfé:—1+§\/§
0.1+ ) it —1=o<—14+102
2 . 3
Ao+1P =1 i —1<o<—7
M= _252 if—%§6§—1+%f2

1
—%(5—1)2+1 if—1+§\/§§5§1

Fig. 3 plots ygup.s and M(J) against .

Fig. 4 plots Fi(y)—Fo(y—0) against ye[0, 1] for a few selected values of 9.
When o0 = —(5/8) (Fig. 4(a)), the supremum occurs at the boundaries of Vs.
When 6 = —1 4 (v/2/2) (Fig. 4(b)), {Vsupo} = {0, ((1 +0)/2), 1 + 6}, that is,
there are three values of yy,,s; one interior and two boundary solutions.
When 6> — 1 + (+v/2/2), Ysup,o becomes a unique interior solution. Fig. 4(c)
plots the case where the interior solution leads to a value 0 for M(6) and
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M(3) <0 T M(5)
— Ysup,s @t boundaries — Ysup,s
P
/”’ /&S’
e d
e
- delta
vl I i I i i i i i —»
1 0.8 0.6 -0.4 0.2 0.2 0.4 0.6 0.8 1
-0.5+
1+

Fig. 3. M(6) and yy5 : (C(1/4),C(3/4)).

Fig. 4(d) a case where the interior solution corresponds to a positive value
for M (0).

Depending on the value of §, M(6) can have different signs leading
to different asymptotic distributions for F,Ll(é). For example, when
0 =1—(+/6/2) (Fig. 4(c)), M(6) = 0 and for 6> 1 — (+/6/2), M(5)>0. Since
M(3) =0 when § =1 —(v/6/2), yps = 1 — (+/6/4) is in the interior, and
F10sups)— SoWsups —0) = —(16/3)<0, Theorem 3.2 implies that at
5 =1-(/6/2),

VAI[FE(9) — FY(9)] = max(N(0,07),0) where o7 = (1 :7»)
When 6 = 1/8 (Fig. 4(d)),
47 16

9 ) )
ySuPaé = 1_6’M(5) = % >Os fl(ysup,é) _fo(ysup,‘; — 5) = —? <0



11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

Partial Identification of the Distribution of Treatment Effects 31
delta = -5/8
| T F1(y)-FO(y-delta)
Common support(Ys)
0.5+
y
>
o1+
(a)
delta = -1+sqrt(2)/2
1 T F1(y)-FO(y-delta)
Common support(Ys)
0.5+
y
T T T T T T ! P
0.1 0.2 0.5 0.6 0.9
-0.5 +
-1+
(b)

Fig. 4. (@) [Fi(») = Fov+5/8); (b) [F1(0) = Foy +1=+2/2)L (¢) [Fi(»)—
Fo(y =1 =+/6/2)]; and (d) [F1(y) = Fo(y — 1/8)]-
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()

(d)

YANQIN FAN AND SANG SOO PARK

delta = 1-sqrt(6)/2
T F1(y)-FO(y-delta)

Common support(Ys)

0.5+
y
1 1 ‘ 1 ‘ 1 1 1 : »
~—04—67" 03 04 035 —6:6—087—T05 09
05 -
-1k
delta = 1/8
| T FL(y)-FO(y-delta)
Common support(Ys)
0.5 +
y
T } | | | | | | | }
01 02 03 04 05 06 07 08 09
-0.5 +

Fig. 4. (Continued)
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Theorem 3.2 implies that when 6 = 1/8,

7,007

JI[FY(0) — FX(8)] = N(0,61) where i = (1+1) 6864

We now illustrate both possibilities for the upper bound FY (9).
Suppose Y| ~ C(3/4) and Yy~ C(1/4). Then using the expressions for
Fi(y)—Fo(y—0) provided in Appendix B, we obtain

# if—lgéfl—g
1406 . V2
Vinf,s = {5,2,1} 1f5—1—7
1
{6,1} ifl—ix/zszgl
%(5+1)2—1 if—15551—§
2
m(0) = % ifl—?ség%
—4(1 —0)* +1 if%gé_l

Fig. 5 shows pisrs and m(6).

Graphs of Fi(y)—Fy(y—9) against y for selective ¢’s are presented in Fig. 6.
Fig. 6(a) and (b) illustrate two cases each having a unique interior minimum,
but in Fig. 6(a), m(d) is negative and in Fig. 6(b), m(d) is 0. Fig. 6(c) illustrates
the case with multiple solutions: one interior minimizer and two boundary
ones, while Fig. 6(d) illustrates the case with two boundary minima.

4.3. Asymptotic Distributions ofF,E(é), F}lj(é) Without (A3) and (A4)

As Example 2 illustrates, assumptions (A3) and (A4) may be violated.
Figs. 4 or 6 provide us with cases where multiple interior maximizers or
minimizers exist. In Fig. 6(b) and (c), there are two interior maximizers
when 6= (v/6/2)—1 or 6=1—-(+/2/2) with @) =3/4 and ay=1/4.
When 6 =(/6/2)— 1, M($)=(v6—2)*/2 and Yaps = {((6 — v6)/4),
(36 —6)/4)}.  When d=1-(v/2/2),M©)=(2-+2)%/2 and
Vaups = {((v/2+2)/4),((6 — 34/2)/4)}. Shown in Fig. 4(b) and (c) are
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1 .
/’/j
L
w// r"’
Yinf,5 - ,x/
MM/'/
e
e delta
et | | | | | | 3
-1 -0.8 0.6 04  -02 0.4 0.6 0.8
—— Vinfs at boundaries —|

m(d) >0

-1+

Fig. 5. m (9) and y;5: (C(3/4), Yo ~ C(1/4)).

cases with multiple interior minimizers for a; =1/4 and ay=3/4.
When & = (v/2/2) — Lm(8) = —(2 = v/2)*/2) and Yinrs = {(2 = v2)/4),
(3v2 —2)/4)). When 6 =1 - (v6/2),m(8) = —(+/6 — 2)*/2 and Viurs =
{(v/6 = 2)/4),((10 = 3V/6) /4)}.

We now dispense with assumptions (A3) and (A4). Recall that

Vsups =y € Vs : F1(y) — Fo(y — 9) = M(9)}
Vints =y € Vs : F1(y) — Fo(y — 9) = m(9)}

For a given 5>0, define

Vips = 0 € Vst Fi(y) — Foly — 8) = M(3) — b}

Vies = € Vst Fi(») — Fo(y — 8) < m(d) + b}

A3'. There exists K>0 and 0 <n <1 such that for all y € J)fupgé, for b>0

sufficiently small, there exists a yg,, 5 € Vsupo such that yg, 5 <y and
(y _ysup,é) = Kb,



11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

(b)

Partial Identification of the Distribution of Treatment Effects 35
delta = -1/8
ljj F1(y)-FO(y-delta)
Common support(Ys)
0.5+
y
4
1
delta = sqrt(6)/2-1
1 T F1(y)-F0(y-delta)
Common support(Yz)
05+
y
——"T] #ﬂ_l—ﬁ\ 1 W 4
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.5 +
-1+
6. (@) [Fi)—F+1/8) () [Fi()—Foly—~6/2+D (o)

Fig.

[F1(») = Fo(y = 1 +~/2/2)]; and (d) [F1(») = Fo(y = 5/8)].
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(c)

(d)

YANQIN FAN AND SANG SOO PARK

delta = 1-sqrt(2)/2
T F1(y)-Fo(y-delta)

Common support(Ys)

0.5 +
M
/ Y
‘ 1 | | | | | | | 4
01 02 03 04 05 06 07 08 09
-0.5 +
o1
delta = 5/8
1 T F1(y)-Fo(y-delta)
Common support(Ys)
.l /_\
‘ 1 | | | | | | | y}
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.5 +

Fig. 6. (Continued)
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Partial Identification of the Distribution of Treatment Effects 37

A4'. There exists K>0 and 0<n<1 such that for all y € yihnf,(i for b>0
sufficiently small, there exists a y;,rs € Vinrs such that y; s <y and

(Y = Vintp) < Kb".

Assumptions (A3)" and (A4) adapt Assumption (1) in Galichon and
Henry (2008). As discussed in Galichon and Henry (2008), they are very
mild assumptions. By following the proof of Theorem 1 in Galichon and
Henry (2008), we can show that under conditions stated in the theorem
below,

VmM () = M) = sup G(y,0), V/m[m(9) —m(d)] = inf G(y,0)

i
.}'.eysup.ri VE€Vint s

where {G(y,9) : y € Vs} is a tight Gaussian process with zero mean. Thus the
theorem below holds.

Theorem 2.
(i) Suppose (Al) and (A3) hold. For any defa—d,b—c]NR,
we have
Sup,ey,,., G, 0), it M(6)>0
VmIF5(0) — FL )] = { max{su;yewa(y, 9),0} if M(6)=0

and  Pr(FH(8) = 0) — 1 if M(5)<0

where {G(y,d):y e Ys} is a tight Gaussian process with zero
mean.
(i1) Suppose (Al) and (A4) hold. For any dela—d,b—c]NR,
we get
inf,ey, ., G, 0), if m(6)<0
U U J nf,d
VIIF,(0) = FY(0)] = {min{inf}yem G(r.6).0) if m(8)=0

and Pr(FU()=1) — 1 if m(8)>0

When (A3) and (A4) hold, Vs, s and Viyr s are singletons and Theorem 2
reduces to Theorem 1.
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5. CONFIDENCE SETS FOR THE DISTRIBUTION
OF TREATMENT EFFECTS FOR
RANDOMIZED EXPERIMENTS

5.1. Confidence Sets for the Sharp Bounds

First, we consider the lower bound. Let

Gu(y,0) = V/m[F1,(y) — F1(»)] = V/m[Fou(y — 6) — Fo(y — )]
Then
JmFy(8) — F(6)]
—max{sup{G (1,8) + IF1 () = Fo(y — O]}, 0} — max{/aTM(5),0)
= max{ sup[G(y,0) + hr(y,d)] + min{/ (5),0}, — max{/y (J),0} }(E WIL’(S)
VeYs
(19)
= max{ sup G(y,0)+ min{h(0),0}, — max{h_(J),0} }(E Wi’é) (20)
VE€Vsup.s

where  hpL(y,d) =lm /m[Fi(y) — Fo(y —0) — M) <0 and £ (0) =
lim[ /iy M (9)].
Define /j (0) = /m M ,(6)I{|M,(5)|>b,} and
hi (»,0) = Vm[F1u(y) = Fou(y — 0) — Mu(O){[F1,(y)
- FOnO’ - 5) - M11(5)]< - b;}

where b, is a prespecified deterministic sequence satisfying b,—0 and
Jnib, — oo and b, is a prespecified deterministic sequence satisfying
b, Inln ny + (Jmb')~ 1«/lnln ny — 0. In the simulations, we considered
by = en,0<a<(1/2),¢>0 and b = ;' 0<a'<1,¢'>0. For such
b, we have

,In In nl 1 In In n;
F c/ \/n_‘ll’

Based on Egs. (19) and (20), we propose two bootstrap procedures to
approximate the distribution of ,/nj [F,E(é) — FY()]. In the first procedure,

b Inln my + (Vuib) ™' /In In ny = ¢ -0
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Partial Identification of the Distribution of Treatment Effects 39

we approximate the distribution of WL o and in the second procedure,
we approximate the distribution of WL() Draw bootstrap samples with
replacement from {Y;}/, and {Y¢;}2,, respectively. Let F7,(»), Fg,(»)
denote the empirical dlstrlbutlon functions based on the bootstrdp samples,
respectively. Define

G, (y,0) = VmlF},(») = F1u)] — ml[Fg,(y — ) = Fou(y — 0)]

In the first bootstrap approach, we use the distribution of the following
random variable conditional on the original sample to approximate the
quantiles of the limiting distribution of ,/n[F L(§) — FL(9)):

WL s = max{sup{G*(y 0) + hi (v, 0)} + min{%j (9), 0}, — max{/] (), O}}
yels

In the second bootstrap approach, we estimate Yy, s directly and
approximate the distributions of Wy ;. Define

ynsup,é = {y, {Yll}n] 1 U {YOI}nO Mn(é) - (Fnl(yi) - Fn()(yi - 5)) = b;}
Then the distribution of the following random variable conditional on the

original sample can be used to approximate the quantiles of the limiting
distribution of /m[FX(5) — F*(9)]:

Wits = max{ sup  GX(»,9), —h;(é)} + min{/i} (9), 0}

YEVn sups

The upper bound can be dealt with similarly. Note that
VIIF,(0) = FY )]
= min{ inf {Gu(y,0) + hu(y, 0)} + max{hy(9), 0}, — min{/u (0), 0}}
yers

= min{ injg [G(y,d) + hu(y,0)] + max{hy(d),0}, — min{Ay(d), O}}(E W%J 5)
yeVs :

=min{ inf G(y,0) 4+ max{hy(d),0}, — min{hy(9), 0}}( w? Us)

y€Vints

where  hy(y,8) = lim /m[F1(y) — Fo(y —0) —m(8)] >0 and  hy(d) =
lim[/firm(o)].
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Define /{;(0) = /nim,(0)I{|m,(5)|>b,} and
h;(y, 5) = \/ﬁ;[Fln(Y) - F()n(y - 5) - mn(é)]l{[Fln(y) - FOn(y - 5) - 77711(5)] > b;,}

We propose to use the distribution of W (s or W”U s conditional on
the original sample to approximate the quantiles of the distribution of
N [F},J(é) FY(9)], where

Wi = min{ mf{G*(y d) + I (v, 8)) + max{h{;(5), 0}, — min{A};(9), 0}}

WU(S = mln{ 1J£1f Gr(»,9), hﬁ(é)} + max{h{;(9), 0}
YEVninfo
in which
ynmf 5§ = {J/, € {Yll} —1 ) {YOI mn((s) (Fnl(yi) - FnO(y,' - 5)) > _b;,}
Throughout the simulations presented in Section 7, we used Wﬁ‘&
and W{is

5.2. Confidence Sets for the Distribution of Treatment Effects

For notational simplicity, we let 6, = Fx (), 0, = F%(9), and 6y = FY(9).
Also let ® =0, 1]. This subsection follows similar ideas to Fan and Park
(2007c). Noting that

_ : 02 02
Oy = arg rgr;gl{(HL 0); + 0y — 0)~}

where (x)_ = min{x, 0} and (x)+ = max {x, 0}, we define the test statistic
T,(00) = m (01 — 00); + m(Ou — 60)> (21)
where 0 = F,%(é) and Oy = Fg(é). Then a (1—a) level CS for 6, can be
constructed as,
={0€®:T,(0) < c1-.0)} (22)
for an appropriately chosen critical value ¢;_, (0).
To determine the critical value ¢;_,, (0), the limiting distribution of 7,,(0)

under an appropriate local sequence is essential. We introduce some
necessary notation. Let

h(09) = — nli)ngo VL — 6] and  hY(6p) = nlgglo [0y — 0]
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Then /*(0y) > 0,h%(0y) = 0, and h“(0p) + hY(0y) = lim,,_, oo (v/7V), Where
V =0y — 6. is the length of the identified interval. As proposed in
Fan and Park (2007c), we use the following shrinkage ‘‘estimators” of
h(00) and KV (0,).

B (00) = —/n[01 — 00){[00 — 011> by}

1*(00) = /a0y — 00l{[0u — 00]> by}
It remains to establish the asymptotic distribution of 7,,(6)):
T,(00) = (Ym0 = 0u] — y/mlbo — 0.1 + (Vm[0u — Oul + Vrilfu — 6o’
= (Wi —h00)7 + (Wus — iV (00)2
Let
T3(00) = (Wi 5 = h-(00) + (W5 — hY(00)%

and cvj_ a(hL(Qo) hY(6y)) denote the 1—a quantile of the bootstrap
distribution of T7,(6y), where W7 ;5 and W7 ; are either WL(, and WU3 or
WzL*(; and W%J* s defined in the previous subsection. The following theorem
holds for a p € [0, 1].

Theorem 3. Suppose (Al), (A3)’, and (A4)" hold. Then, for « € [0, p],
lim inf  Pr(0y € {0: T,(0) < evi_, (W= (0),h7*(0)) = 1 —a

n1—00 0ye[0r,0u]

The coverage rates presented in Section 7 are results of the confidence sets
of Theorem 3 (i). The presence of p in Theorem 3 is due to the fact that
T,(0o) is nonnegative and so is cv{_,(h“*(0), h"*(0)). In Appendix A, we
show that one can take p as,

B:l—Pr[sup G(y,0) <0, 1nf G(y, 5)>01 (23)

Y€Vsup.s Y€Yinto

In actual implementation, p has to be estimated. We propose the
following estimator p:

= __21{ sup GP(p,8) <0, inf G§f>(y,5)zo}

yeynsup.zi yey/zinf,é

where G(b)(y 0) 18 Gy(y, o) from bth bootstrap samples.
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6. BIAS-CORRECTED ESTIMATORS OF
SHARP BOUNDS ON THE DISTRIBUTION
OF TREATMENT EFFECTS FOR
RANDOMIZED EXPERIMENTS

In this section, we demonstrate that the plug-in estimators F,E(é), F,EJ((S)
tend to have nonnegligible bias in finite samples. In particular, F,I;(é) tends
to be biased upward and F }Ij(é) tends to be biased downward. We show this
analytically when (A3) and (A4) hold. In particular, when (A3) and (A4)
hold, we provide closed-form expressions for the first-order asymptotic
biases of F ,5(5),F }3(5) and use these expressions to construct bias-corrected
estimators for F"(9) and FY(5). When (A3) and (A4) fail, we propose
bootstrap bias-corrected estimators of the sharp bounds F“(5) and FY(9).
Recall

F5(8) = max{M,(5),0} and F~(3) = max{M(5),0}
FY() = 1 + min{m,(5),0} and FY(0) = 1+ min{m(5),0}
where under (A3) and (A4), we have
V(M (8) = M(8)) = N(0,07) and /m(m,(6) — m(5)) = N(0,a7)
First, we consider the lower bound. Ignoring the second-order terms, we get:
E[F(8)] = E[My(8) 31,(5)=01]
oL
=E|SMO)+—Z ;1 oL/ JiZ> where Z ~ N(0, 1
H () NG } {M(5)+( /\/—)Z_O}} 0,1)

oL
= MO)EU (m6y+o1 ) ymz=0] + i E[ZI M) +o1 / yin 201

oL
= M(S)E (2> —( i forymon] + \/——E (212> —(ym ) yrmeon]

= M(é)/ P(z)dz + —/ zp(z)dz
—(/ni/oL)M(6) (/n1/aL)M(0)

= M(é){l - d)(—i——’L”M(é)) }

1 oL [% < 72 ( 22)
exp| —= |d| —=
VN R 2 2

_ Vi L (N,
= M(é)@( - M(5)> + W_lqs< (5))



11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

Partial Identification of the Distribution of Treatment Effects 43

Case I. Suppose M(9)>0. Then ignoring second-order terms, we
obtain

EIFL(3)] - FL(6) = M()® (f M(é)) J—;_lc/)(—aﬁ’fmé)) M)
_ vl N o M
_M(é){d)( r M(é)) 1} +ﬁ¢( r M(5)>
_ _m oLy (—m
_ M(é)d)( - M(5)> n ﬁ¢( o M(é))
_ oL {q; (_ @M(5)> — @M((s)cp (— @M(5)> }

\/a oL oL gL

> 0 (positive bias)

because

lim () — 3P~} = §(0) = J%

hm L {p(—x) —x®(—x)} = lim {p(x) +xD(x)} = lim E(%)
x——00\ X

%{(b(—x) — x®O(—x)} = —®(—x)<0forall x e R, N {0}

Case II. Suppose M (9)<0. Then ignoring second-order terms, we
obtain

E[F(0)] - F“(6) = M(3)® (ﬁ M(é)) + %y (— @M(fs))
oL S oL

- {¢ (‘é—’?M(&)) Ruper (“H—’TM((S)) }

_ j—;_l{¢<—{7——’L“|M(5>|> — |M(5)|®(—i—’z_‘ |M<5)|>}

> 0 (positive bias)
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Summarizing Case I and Case II, we obtain the first-order asymptotic bias
of FL(5):

I O e Gl Cl)

n n
-y (-2 o) |
gL, (28
regardless of the sign of M(d), an estimator of which is

Bias, = L {c/)(— I |M:(6)|) —@M(é)@(— I |M;:<5)|)}
m OLn OLn OLn

where M (0) = M ,(8)I{|M,(6)|>b,} in which b,—0 and ,/n/b, — oo.
We define the bias-corrected estimator of F(9) as,

max{F"(5) — Biasp, 0}

max{Fﬁ(é)—jﬁ%@( v |M*(5)|>

—J”—‘|M:<5>|<D(—ﬁ|M:<a>|) }o}
OLn OLn

< Fy(6)

Flic(6)

Now consider the upper bound. The following holds:
E[F;lqj((s)] =1+ E[m)z(5)1(711,,(5)§0}]
ou
=14 E|m(0)+—=Z Loy (o0 /S0y Z<
H (9) N } (m(@)+( /f)Z_O)]

ou
=1+m(0)Ell yus)+(ou ) yimz=<0}] +TE [Z1 i)+ (o )y z<0}]

(1 /ou)m(s) ou —( /11 [ou)m(d) 72
=14 m(é)/ ¢(2)dz +—— zexp| ——= |dz
«/_ Ny 2

_ _Jm _ L oy oo _\(-Z
_1+m(5)(l)( p m(o) NN R d 5

_ V6 = 2 (Y s
_l+m(5)<I)< p m((5)> ﬁ¢< p m(b))
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Case 1. Suppose m(5)<0. Then ignoring second-order terms, we obtain

EIFY(6)] — FU(6) = m(3) (— o m(é)) - (— %m(é)) —m(d)
= =m0 (L m(0) = S (L)
= —m(5)d <*/_ (b)) ﬁd) (*:—_'5 m(5))

=~ (5~ L) =L oo (L o))

< 0 (negative bias)

Case II. Suppose m(0)>0. Then ignoring second-order terms, we obtain

EIFY ()] = FU(0) = m(5)0 (_ I (5)> -y (_ NG

o)
== L)L)

< O(negative bias)

Therefore, the first-order asymptotic bias of F},J(é) is given by:

ELFY(@)]— FU(3) = - J—ZT(¢( ALY (6)|) C (5)@( @wwn))

regardless of the sign of m(d), an estimator of which is
piasy =~ 72 (o (=) - L oy (- L o )
\/ﬁf OUn OUn OUn

where n1,(0) = m,(6)I{|m,(6)| >b,}. A bias corrected estimator of FY(9) is
defined as,

U . Ursy . Rine 11 — 1 U OUn AT
F 5c(6)=min{F, (6) — Bias, 1} = mm{Fn (0) —i——\/a (qﬁ( p— |mn(5)|>
_m |m:(5)|<1>(——V”‘ |m:(5)|)>,1} > FY()

ou OUn

n

The bias-corrected estimators we just proposed depend on the validity
of (A3) and (A4). Without these assumptions, the analytical expressions
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derived for the bias may not be correct. Instead, we propose the following
bootstrap bias-corrected estimators. Define

B (b) B W(b)

Bias( (5)) = and B1as(F U((3)) =

where W(b)s(W(b)é) are W (WF 5) or Wi (Wi ;) from bth bootstrap
samples, where sz, Wi, ‘L‘(;, and W*U o are defined in the prev10us
subsections. The bootstrap bias-corrected estimators of F(5) and FY(5)

are, respectively,

Fr(9) = max{FL(6) — Bias(F5(5)),0) and
Fruo(8) = min{FY(9) — Bias(FY()), 1)

7. SIMULATION

In this section, we examine the finite sample accuracy of the nonparametric
estimators of the treatment effect distribution bounds, investigate the
coverage rates of the proposed CSs for the distribution of treatment effects
at different values of d, and the finite sample performance of the bootstrap
bias-corrected estimators of the sharp bounds on the distribution of
treatment effects. We focus on randomized experiments.

The data generating processes (DGP) used in this simulation study are,
respectively, Example 1 and Example 2 introduced in Sections 2.3 and 4.2.
The detailed simulation design will be described in Section 7.1 together with
estimates F and FY. Section 7.2 presents results on the coverage rates
of the CSs for the distribution of treatment effects and Section 7.3 presents
results on the bootstrap bias-corrected estimators.

7.1. The Simulation Design and Estimates F- and FY

The DGPs used in the simulations are: (i) (Case Cl) (Fy, Fo,0) =
(C(1/4),C(3/4),(1/8)); (i)  (Case C2) (Fy,Fo,0) = (C(1/4),C(3/4),
1 — (+/6/2)); (iii) (Case C3) (F1,Fo,d) = (C(3/4),C(1/4),(~/6/2) — 1); and
(iv) (Case C4) (F\, Fo,0) = (C(3/4),C(1/4),—(1/8)).
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(Case Cl) is aiming at the case where M(J)>0 with a singleton Vyyp s S0
that we have a normal asymptotic distribution for /ni(F ,];(5) — FY(9)). The
m(d) for this case is greater than zero so FY(5)=1 and Pr(F}f(é) =1)— 1.
In this case, Vinr,s consists of two boundary points of Vs.

In (Case C2), M(9) =0 and Vs is a singleton so we have a truncated
normal asymptotic distribution for /7 (FX(5) — F“(5)). The m(5), however,
is less than zero and has two interior maximizers. So the asymptotic
distribution of \/K(F}f(é) — FY(9)) is Supyey,, G, 0).

(Case C3) is opposite to (Case C2). In (Case C3), \/E(F,];(é) — FY(9)) has
an asymptotic distribution of sup,ey,,,, G0, 0) because M(0)>0 and Vs
has two interior points whereas /ni(F(0) — FY(5)) has a truncated
normal asymptotic distribution since m(d5) = 0 and YVinrs is a singleton.

Finally, (Case C4) is the opposite of (Case Cl1). In (Case C4), M(d)<0
so Pr(FL(6) =0)— 1 and m(5)<0 with Yyrs being a singleton so
JI(FY(0) — FY(5)) has a normal asymptotic distribution. Table 1
summarizes these DGPs.

We also generated DGPs for two normal marginal distributions. Table 2
summarizes the cases considered in the simulation. In all of these cases,
\/n_l(F,%(é) — FY9)) and N/ (F}f(é) — FY(5)) have asymptotic normal
distributions but we include these DGPs in order to see the finite sample

Table 1. DGPs (Case Cl)—(Case C4).

(Case Cl1) (Case C2)
1

(F1. Fo, 9) (C1/4).€(3/4).%) (c1/4).c(3/4),1 =)
F- M(d) = F“(6)~0.49 M) = F“(6)=0
Vsup,s Singleton, interior point Singleton, interior point
W6 N(0,0}) max{N(0, ¢}), 0}
FY m(0)~0.06, FY(6) = 1 1—-m(d) = FY(5)~0.9
Vint,s Two boundary points Two interior points
Wu.s Pr(FV(S) =1) — 1 infyey, ., G(y,9)

(Case C3) (Case C4)
(Fy, Fo, 8) (C(3 /4), C(1/4), 45 — 1) (CB/4),C(1/4), 1)
F- M(5) = FY(9)~0.1 M(5)~—0.06, FX(5) =0
Vsup.s Two interior points Two boundary points
Wis SUp,ey,,,, G, 6) Pr(FL(0) =0) — 1
FY 1-m (8) = FY) = 1 1—m(d) = FY(6)~0.51
Vint.s Singleton, interior point Singleton, interior point
Wu.s min{N(0, 53,), 0} N(0,0%))
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Table 2. DGPs (Case N1)—(Case NO6).

(Case N1) (Case N2) (Case N3)
(F1, Fo, 9) (N(2,2), N(1,1), 1.3) (N(2.,2), N(1,1), 2.6) (N(2.,2), N(1,1), 4.5)
F- M(d) = FY(6)~0.15 M(d) = FY(6)~0.51 M(d) = F“(6)~0.86
Vsup,s Singleton Singleton Singleton
Wis N(0,0}) N(0,0}) N(0,0})
FY 1—m(d) = FY(0)~0.97 1-m(8) = FY(0)~ 1 1—m(d) = FY(0)~1
Vint,s Singleton Singleton Singleton
Wus N(0,0%) N(0,07) N(0,0%)

(Case N4) (Case N5) (Case N6)
(Fy, Fo, 9) (N(2,2), N(1,1), =2.4) (N(2,2), N(1,1), =0.6) (N(2,2), N(1,1), 0.7)
Ft M(d) = FH6)~0 M) = FX5)~0 M(d) = F“(6)~0.04
Vsup,s Singleton Singleton Singleton
Wis N(0,0}) N(0,0}) N(0,0})
FY 1—m(d) = FY()~0.16 1—m(8) = FY(8)~0.49 1—m(d) = FY(0)~0.85
Vint,s Singleton Singleton Singleton
Wu.s N(0,0%) N(0,0%)) N(0, %)

performance of our bootstrap procedures for different values of F(5) and
FY(6). From (Case N1) to (Case N6), F(5) ranges from being very close to
zero to about 0.86 and FY(d) from 0.16 to almost 1.

We now present F ,L, and F nU for the normal marginals (DGPs (Case N1)—
(Case N6)) and C («) class of marginals (DGPs (Case Cl)—(Case C4)).
For each set of marginal distributions, random samples of sizes n; = ny =
n = 1,000 are drawn and F~ and FY are computed. This is repeated for 500
times. Below we present four graphs. In each graph, we plotted F5 and F\
randomly chosen from the 500 estimates, the averages of 500 FLs and FVs,
and the simulation variances of F- and FY multiplied by n. Each graph
consists of eight curves. The true distribution bounds F“ and FY are
denoted as F L and F"U, respectively. Their estimates (F and F!') are
Fn"L and Fn"U. The lines denoted by avg(Fn"L) and avg(Fn"U) show
the averages of 500 FLs and FVs. The simulation variances of F: and FV
multiplied by » are denoted as n*var(Fn"L) and n*var(Fn"U).

Fig. 7(a) and (b) correspond to (Case Cl)—(Case C4), while Fig. 7(c)
corresponds to (Case N1)—(Case N6). In all cases, we observe that Fn"L
and avg(Fn” L) are very close to F*L at all points of its support (the same
holds true for F”U). In fact, these curves are barely distinguishable from
each other. The largest variance in all cases for all values of ¢ is less than
0.0005.
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Avg(Fn’L)
Avg(Fn’l)

n*var(-ﬁl-’-‘f)-

(a)

nivar(fn’l)

(b)

Fig. 7. (a) Estimates of the Distribution Bounds: (C(1/4), C(3/4)); (b) Estimates of
the Distribution Bounds: (C(3/4), C(1/4)); and (c) Estimates of the Distribution
Bounds: (N(2,2), N(1,1).
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n?var(fn’l)

Fig. 7. (Continued)

7.2. Simulation Results for Coverage Rates

In this and the next subsections, we present simulation results for the
bootstrap CSs and the bootstrap bias-corrected estimators. For each DGP,
we generated random samples of sizes n; = ng = 300 and 1,000, respectively.
The number of replications we used is 2,500 and the number of bootstrap
repetitions is B=1,999 as suggested in Davidson and Mackinnon
(2004, pp. 163-165). The shrinkage parameters are: b, = nf(lm and
b =030, that is, c=1.0, a=1/3, ¢ =0.3, and « = 0.05 in the
expressions in Section 5.1. We used the second procedure based on W7 ; and
Wi We set o = 0.05 throughout the simulations.

Table 3 presents the minimum values of coverage rates of the CSs defined
in Theorem 3 (i) (FaA(d) columns) and the average values of p with DGPs
(Case C1)—(Case C4). a

The CSs for DGPs (Case C2) and (Case C4) perform very well. As n
grows, the coverage rates for DGPs (Case C2) and (Case C3) become closer
to the nominal level 1—a = 0.95. Considering that (Case C2) and (Case C3)
are cases where the estimator of one of the two bounds follows a normal
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Table 3. Coverage Rates and avg(p) for (Case Cl)~(Case C4).

(Case Cl1) (Case C2) (Case C3) (Case C4)

Fa(0)  avg(p)  Fa(®)  avg(p)  Fa(0)  avg)  Fa6)  ave)

n =300 0.9320 09220  0.9360 09762 09356 09766  0.9312  0.9203
n=1,000 09376 09228  0.9488 09780  0.9540  0.9786  0.9384  0.9213

Table 4. Coverage Rates and avg(p) for (Case N1)—(Case N6).

(Case N1) (Case N2) (Case N3)
FA(0) avg(p) Fa(0) avg(p) Fa(0) avg(p)
n =300 0.9304 0.9628 0.9252 0.929 0.9332 0.9007
n = 1,000 0.9536 0.9626 0.9508 0.9479 0.9492 0.9050
(Case N4) (Case NY) (Case N6)
FA(9) avg(p) FA(9) avg(p) FA(9) avg(p)
n =300 0.950 0.9182 0.9176 0.9717 0.9444 0.9629
n = 1,000 0.9492 0.9293 0.950 0.9869 0.9492 0.9643

distribution asymptotically but the estimator of the other bound violates
(A3) and (A4), our bootstrap procedure seems to perform very well. The
minimum coverage rates for (Case C1) and (Case C4) in which the estimator
of one of the two bounds degenerates asymptotically are about 0.93-0.94.
They improve slowly as the sample size becomes larger. When n = 1,000, the
coverage rates are still less than 0.94 but a little better than the coverage
rates with n = 300. The average p differs from DGP to DGP. (Case C1) and
(Case C4), where Fﬁ(é) or F E(éj has a degenerate asymptotic distribution,
have p as low as about 0.92. (Case C2) and (Case C3) have p about 0.98.
In both cases, p is far greater than o = 0.05. -

The coverage rates for DGPs (Case N1)—(Case N6) are in Table 4. Recall
that in all of these cases, \/E(F,%(é) — FY(9)) and \/E(FnU(é) — FY(9)) have
asymptotic normal distributions.

The coverage rates for Fa(J) increased from about 0.92-0.93 when
n = 300 to almost 0.95 when n = 1,000. For (Case N4) and (Case N6), the
coverage rates for n = 300 are already very good. As in DGPs (Case Cl1)-
(Case C4), the average p differs from DGP to DGP. Nonetheless, p is greater
than 0.05 for all cases. -
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7.3. Simulation Results for Bias-Corrected Estimators

In each replication, we computed the bvoLIjstrap biases and mean squared
errors of F& and FY as well as F, and F ., where we used the bootstrap
bias-correction with the second bootstrap procedure discussed in Section 5.1.
“Bias” and “4/MSE” in Table 5 represent the average bias and the square
roots of the mean squared errors (MSE).

The direction of the bias without correction is as expected. The bias
estimates are positive for F 5 and negative for F E for all DGPs except for the
cases that /nj(F=(0) — FX(8)) and /ni(F}(0) — FY(5)) degenerate asymp-
totically (Case Cl1 for F) and Case C4 for FY). The bias-correction took

Table 5. Bias and MSE Reduction for (Case C1)—(Case C4).

(Case Cl) (Case C2)
Fy/(9) Fc(0) Fy/(9) Fic(0)
n =300 Bias 0.0190 0.0003 0.0305 0.0142
MSE 0.0382 0.0352 0.0429 0.0263
n = 1,000 Bias 0.0095 —0.0009 0.0152 0.0066
MSE 0.0211 0.0197 0.0220 0.0130
FJ©) Flipc(9) F(9) Flipc(9)
n =300 Bias 0 0 —0.0292 —0.0064
MSE 0 0 0.0361 0.0253
n = 1,000 Bias 0 0 —0.0150 —0.0031
MSE 0 0 0.0187 0.0134
(Case C3) (Case C4)

F};(0) Flic(0) Fi(9) Flipc(9)

n =300 Bias 0.0292 0.0064 0 0

MSE 0.0348 0.0247 0 0

n = 1,000 Bias 0.0144 0.0024 0 0

MSE 0.0182 0.0131 0 0
F} () Fypc(9) F})(0) Fpc(9)
n =300 Bias —0.0306 —0.0141 —0.0192 —0.0004
MSE 0.0430 0.0265 0.0382 0.0349
n = 1,000 Bias —0.0159 —0.0070 —0.0099 0.0004
MSE 0.0228 0.0136 0.0211 0.0194
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effect with n = 300 quite dramatically already. In (Case CI1) for F,E and
(Case C4) for F }lj, where the asymptotic distributions of those estimators are
normal, the magnitude of the bias reduces to roughly about 1/50—1/60 of the
bias of F- or F\. For other DGPs, the magnitude of the bias-reduction is
not as great but still the biases reduced by roughly about 1/1.5-1/4.5 of the
bias of FL or F, U The relative magnitude of bias-reduction is similar in
n = 1,000 for (Case C2) or (Case C3). It is roughly about 1/2~1/5 of the
bias of F- or FY. The bias estimates of F,EBC for (Case Cl) and FnBC
(Case C4) changed sign when n = 1,000. The bootstrap bias-corrected
estimators work quite well and we can see huge reduction in bias and
changes of signs in (Case C1) for F,% and (Case C4) for F,EJ (where the
normal asymptotics holds). We will see the sign change with the DGPs
(Case NI)—-(Case NO6) as well. The bootstrap bias-corrected estimators
also Elave smaller MSE:s than F, L and F; U as shown in the table. The v/MSE
of F,pc and FnBC are roughly 2/3 of the v/MSE of FX and FV for (Case C2)
and (Case C3) but the reduction in ~/MSE is not as great in (Case C1) for F ,%
and (Case C4) for FY as in other DGPs.

Table 6 show that results for (Case N1)—(Case N6) are similar. The sign
change happened in all DGPs except for those in which F™(J)~0 or
FY(6)~ 1. The relative magnitude of the bias in F ,I;Bc(é) or I?;JBC((S) to the
bias in F,];(é) or F}f(é) ranges from 1/2 to 1/13. The reduction in ~/MSE
is not sizable.

8. CONCLUSION

In this paper, we have provided a complete study on partial identification
of and inference for the distribution of treatment effects for randomized
experiments. For randomized experiments with a known value of a
dependence measure between the potential outcomes such as Kendall’s t,
we established tighter bounds on the distribution of treatment effects.
Estimation of these bounds and inference for the distribution of treatment
effects in this case can be done by following Sections 4 and 5 in this paper.
When observable covariates are available such that the selection-on-
observables assumption holds, Fan (2008) developed estimation and
inference procedures for the distribution of treatment effects and Fan
and Zhu (2009) established estimation and inference procedures for a
general class of functionals of the joint distribution of potential outcomes



11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

54 YANQIN FAN AND SANG SOO PARK

Table 6. Bias and MSE Reduction for (Case N1)—(Case N6).

(Case N1) (Case N2) (Case N3)

FE@)  Fle®)  F5©)  Fiae®)  FRO)  Fipc(d)

n =300 Bias 0.0233 0.0023 0.0187 0.0011 0.0108 —0.0023
MSE 0.0397 0.0354 0.0376 0.0343 0.0226 0.0214
n = 1,000 Bias 0.0106 —0.0008 0.0088 —0.0011 0.0049 —0.0024
MSE 0.0207 0.0187 0.0205 0.0193 0.0121 0.0118

F}(9) Fipc(9) F}(9) Fipc©)  FJ©)  Fpc(d)

n =300 Bias —0.0182 0.0017 —0.0011 —0.0001 0 0
VMSE 0.0276 0.0207 0.0024 0.0005 0.0001 0
n = 1,000 Bias —0.0087 0.0024 —0.0005 0.0 0.0 0.0
MSE 0.0144 0.0120 0.0010 0.0001 0.0 0.0
(Case N4) (Case NY) (Case N6)

Fy©O)  Fpc@®)  Fy©0)  Fipc©®)  F©) Fiipc(9)

n =300 Bias 0.0 0.0 0.0013 0.0001 0.0192 —0.0009
MSE 0.0002 0.0 0.0026 0.0005 0.0286 0.0210
n = 1,000 Bias 0.0 0.0 0.0005 0.0 0.0089 —0.0021
MSE 0.0001 0.0 0.0005 0.0 0.0145 0.0118

FJ©)  Fpc®)  F©O)  Fpc®)  F©G)  Fpc®)

n = 300 Bias —0.0111  0.0024  —0.0195 —0.0017 —0.0229  —0.0019
VMSE 0.0228  0.0213 0.0381 0.0344 0.0385 0.0344

n = 1,000 Bias  —0.0055  0.0019  —0.0085 0.0014  —0.0104 0.0009
MSE 0.0127  0.012 0.02 0.0187 0.0209 0.0189

including many commonly used inequality measures of the distribution of
treatment effects.

This paper has focused on binary treatments. The results can be easily
extended to multivalued treatments. For example, consider a randomized
experiment on a treatment taking values in {0, 1, ..., T}. Define the treat-
ment effect between ¢ and # as A,, =Y, — Y, for any 1,/ € {0,1,...,T}
and 7#1¢. Then by substituting Y; with T, and Y, with Y,, the results in
this paper apply to Fa,,. The results in this paper can also be extended
to continuous treatments, provided that the marginal distribution of the
potential outcome corresponding to a given level of treatment intensity
is identified.
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NOTES

1. In the rest of this paper, we refer to ideal randomized experiments (data) as
randomized experiments (data).

2. A copula is a bivariate distribution with uniform marginal distributions on
[0,1].

3. Frank et al. (1987) provided expressions for the sharp bounds on the
distribution of a sum of two normal random variables. We believe there are typos
in their expressions, as a direct application of their expressions to our case would
lead to different expressions from ours. They are:

— — ool s—aoyt
FL((S):d)(iJ;S 7 ) +c1>(—“°; % ) —1
O'O—Gl 00—(71

U —015 + oot o0S + o1t
F (5)=c1>( " )+<1>< - 2)

0 1 0p — 01

4. In practice, the supports of F; and Fy may be unknown, but can be estimated
by using the corresponding univariate order statistics in the usual way. This would
not affect the results to follow. For notational compactness, we assume that they are
known.
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APPENDIX A. PROOF OF EQ. (23)

Obviously, one can take 1 — p = limy, -, infg,e[0, 0,1 Pr(00 € {0 : T,,(0) < 0)}.
Now,

nllgnoo ()Oel[gfou] Pr(0y € {6 : T,(0) <0)
= inf Pr[(W 15 — h™(00))% + (Wy,s + 1Y (0p))> = 0]
We need to show that

inf Pr{(Wys — h“(00)); + (Wu,s + h"(0y))> = 0]

=Pr| sup G(y,9) <0, inf G(y,5)>0

V€Vsup.s V€Y int o
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First, we consider the case with Wy s — hL(Ho) < 0. We have:

Wis—h"(0) <0

< max{ sup G(y,9), —hL(é)} < —min{hL(5),0} + h"(0p)

Y€Vsup.o

- max{ sup G(»,9), —hL((S)} < —h(0)+ lim /ATFA(9)

Ve, sup,o

- max{ sup G(y,0),— lim_ ﬁM(é)} < lim /i[Fa(0) = M(3)]

Y€Vsup.o

since

W (00) = = lim [arF(6) = /i)
= — lim [max{/mM(6), 0} — /i1 Fa(9)]

— max{ lim
ny— 00

() If FA(8) = FE(8) = 0> M(5),

Jn—lM(é),O} + lim_JHFAG)

then

maX{ sup G(y,9), = lim_/mM (5)} < lim /m[Fa(0) — M(9)]

yeysup,vi

c»max{ sup GQ},&),OO} <00

yeysup.(i

< sup G(y,0)<oo

VE€Vsup.s

which holds trivially.

(i) If FA(3) = FL(5) = 0 = M(5), then

max{ sup G(y, ), — lim_ Jn—lM(é)} < lim_/m[Fa(3) — M(9)

yeysup,vi

emax{ sup G(y,90),0

Y€YVsups

< sup G(,0) <0

VEVsup.s

b=o
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(ifi) If FA(3) = FL(5) = M(5)>0, then

m x{ sup G(y,0), — hm fM(é)} < lim /n[Fa(6) — M ()]
YE€Vsup,s =00

c»max{ sup G(y,é),—oo} <0

ye, sup,d

< sup G(y,0) <0

Y€YVsups

(iv) If FA(0) = F&(5) = 0> M(9), then

{ sup G(y,d), — lim fM(a)} < lim Jm[Fa®) — M()]

LEyiup 5

= max{ sup G(y,é),oo} < o0

yeysup.o'
< sup G(y,d)<o0
yEy\up.é

which holds trivially.
(v) If FA(8)>FX(6) = 0 = M(), then

m x{ sup G(y,0), — hm \/—M(é)} < li£11m¢n—1[FA(5)—M(5)]

VE€Vsup.s

V€YV sups

cmax{ sup G(y,é),O} < oo

< sup G(y,0)<o0

Y€YVsups

which holds trivially.
(vi) If Fo(8)> F~(5) = M(5)>0, then

'x{ sup G(y,0), — 11m \/_M(é)} < lil)nwﬁ[FA(é)—M(é)]

V€V sups

c»max{ sup G(y,é),oo} < o0

yEysup,:S

< sup G(y,0)<o0

Y€YVsups

which holds trivially.
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Summarizing (i)—(vi), we have

Wis—h"(00) < 0= sup G(1,0) <0

yeysup,é
if FA(0) = FX(5) = M(9) > 0; otherwise it holds trivially.
Similarly to the Wy s — hL(Ho) > 0 case, we get

Wy.s+hY(00) >0

- min{ inf G(,9), hU(é)} +max{hu(3),0} + 1Y (09) > 0

Y€Vints

c»min{ inf G(»,9), hU(é)}> —max{hy(9),0} - lim JI[FY(6) — Fa(d)]

}Eyml d

- min{ inf G(.),~ lim_ mm(a)} = — 1im [14m(3)— FA(9)]

Y€Vinf.s

since
7 (0) = Tim [/ FY(9) = /niFa(9)]
hm J—mln{m(é) O}+ hm J—(I—FA(é))

ny—

= min{/y(9),0}+ lim /m (1 — Fa(9))
() If 14+ m(0)>1= FY(5) = F(5), then

min{ inf G(y,0), — 11m fm(é)} > —”lgnw[l + m(d) — Fa(9)]

y€Vint.s
= min{ inf G(y, 5),—00} > —00
VE€Yint.
< inf G(y,0) > —o0

V€Vint o

which holds trivially.
(i) If 14 m(0) =1 = FY(5) = Fa(5), then

min{ inf G(y,9),— 11m fm(é)} > —nli_{nw[l + m(9) — Fa(9)]

= min{ inf G(y, 5),0} >0

V€Yinto

< inf G(»,0)>0

V€Vint.s
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(i) If 1>1 + m(d) = FY(6) = F(d), then

min{ inf G(y,0),— lim mm(a)} > — lim [1 +m(3) = F59)]

y€Vints

= min{ inf G(y,é),oo} >0
Y€Vinto
< inf G(y,6)>0
V€Vint o

(iv) If 1 +m(8)>1 = FY(S)> Fa(d), then

min{ inf G(y,0),— lim mm(a)} = — lim [1+m(3) — FA9)]

y€Vint o
= min{ inf G(y, 5),—00} > —00
YE€Vint,s

< inf G(y,0) > —o0

V€Vinto

which holds trivially.
(V) If 14+ m(d) = 1 = FY(8)> Fa(d), then

min{ inf G(y,0),— lim mm(a)} = — lim [1+m(3) — FA9)]

y€Vint s
= min{ inf G(y, 5),0} > —00
Y€Vinto
< inf G(1,8) > —o0

y€Vinto

which holds trivially.
(vi) If 1>1 4+ m(8) = FY(5)> F(6), then

min{ inf G(y,0),— lim mm(a)} = — lim [1+m(3) — FA9)]

V€Yint.o

= min{ inf G(y,é),oo} > —o0
y€Vints
< inf G(y,0) > —o0
y€Vinto
which holds trivially. Summarizing (i)—(vi), we get

Wus+hY(0)) = 0= inf G(»,d)=>0

V€Yint o

if 1> 14 m(d) = FY(9) = Fa(d); otherwise it holds trivially.
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Finally, we obtain:

inf Pr(Wys — h")(00); + (Wus + h"(0p)2 = 0]
= inf Pr[W s — h"(00) < 0, Wy, + hY(0) > 0]

=Pr| sup G(y,0) <0, inf G(y,0) >0

1€Vints y€Vints

APPENDIX B. EXPRESSIONS FOR yqup.6» Vint.o» 71(0)
AND m(5) FOR SOME KNOWN MARGINAL
DISTRIBUTIONS

Denuit et al. (1999) provided the distribution bounds for a sum of two
random variables when they both follow shifted exponential distributions or
both follow shifted Pareto distributions. Below, we augment their results
with explicit expressions for ygup.s, Vint,s» M(6), and m(6) which may help us
understand the asymptotic behavior of the nonparametric estimators of the
distribution bounds when the true marginals are either shifted exponential
or shifted Pareto.
First, we present some expressions used in Example 2.

Example 2 (continued). In Example 2, we considered the family of
distributions denoted by C(a) with a€(0,1). If X~ C(a), then

éxz if x €[0,d] %x if x €[0,d]
F(x)= 2 and f(x)= —
(x—1)y° . 2(1-x) .
10 if x e [a,1] T—a if x € [a,1]

Suppose Y~ C(x;) and Yoy~ C(oy). We now provide the functional form
of Fl(y)—Fo(y—é)

1. Suppose 6 <0. Then V5 =0, 1 + d].
(a) If qp+0<0<a;<1+9, then

2 BT
y__(l_u) ifo<y<a
ay (1 —ap)

Fi(y) = Fo(y —9) = 2 ’
(1 (V—l))_(l_M) ifa;<y<149o

(- (1 - ap)
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(b) If 0<ap+d<a;<1+9, then

2 2
y -9 ifO<y<ay+0o
ay [N
. 2 —5—1) .
Fi(y)—Fo(y —90) = Z—l—(l—(y(lf‘o)) ifay+o<y<a
-1 —0-1% . ,
(1=fr=an) - (=55ar) razrstes
(c) Ifaqp+0<0<1+<ay, then
2 517
F1@)—Fo@—5)=y——(1—7(y 0 )) if0<y<1+9
a (1 — ao)
(d) If 0<ap+d<1+d<ai, then
2 o2
Y _G=oy if0<y<ap+9o
Fip) - Foy—9)=3 5
1 — o - = 2 _5_12
y——<1—u> ifag+o<y<146
a (1 —ao)
() f 0<ay1<ap+d<1+9, then
2 _5)2
y___(y %) if0<y<a
ay [N
—1)? )— o) .
F](y)—Fo(y—é): (1_8—61?))_(}610) 1fa1§y§a0§5

=1’ =01\

2. Suppose 6=>0. Then YV;= [0, 1].
(a) If 0<ag+d<a;<1, then
(1) if a;#ay and 6 #0, then

2 52
y_b=or £6<y<aptd
ay ap

2 _5_1)2 )

Fi(y)—Fo(y —9)= Z—]—(l—(y(l_iao)) ifap+o<y=<a

-17° —o6—-1% .
(1-fr=an) - (=5 ==
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(i1) a; = ap = a and 6 = 0, then

Fi(y)— Foly —8) =0 for all yel0,1]

(b) If 0<a;1<ap+o<1, then
ﬁ_(}’—5)2

ay do
_12 _52
Fi(3) = Foly = 0) = Q—g_;»—@%)

=1’ =0-1% . ,
(]_(l—al))_(l_ T—a0) ) ifap+o<y=<l1

ifo<y<a

ifa+<y<ay <o

(c) f o<a;<1<ay+9, then

y_z_M ifd<y<a
Fio) - Foy—o)={ " o
1 — ol — = —_1)? _52 .
(d) If ay<d<ap+d<1, then
— 1) -5y .
Fiy) = Faly =) (1=ti=ay) 27 e
1) = Loly—0)= 12 s 2
(-422)- (-5 ey
(e) If ay<o<1<ay+9, then
— 1) -0 .
o) - R =0 = (1-3=0) - C20 i<y <

(Shifted) Exponential marginals. The marginal distributions are:

Fi(y)=1- exp(—y;—lgl> fory € [0),00) and

y— 0o

Fo(y)=1—exp (— ) for ye[0y,00), whereuay,0,0,00>0

Let 6. = (6; — 0y) — min{oy, zp}(In o; — In o).
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1. Suppose o <.
(a) If 0<06,,

FY(5) = max{M(5),0} =

0
o /(o1 — ) o0 /(011 —2t0) B _
where M(3) = ((“") - (ﬁ) ) exp <_ w) <0
23] o o] — o

oo (In oy — In o) + 0109 — 096y + 0010
o — o
FY(0) = 1 + min{m(9),0} = 1 + m(5)
where m(5) = min{exp <— max{0, — (0 + 90)’0}>

oo

( max{00+5—01,0}) }
—exp| — ,0

a1

and Vinf,s =

and yg,, s = max{0;,0p + 6} or oo (boundary solution)
(b) If 6>06,,
FY(8) = max{M(5),0} = M(5)>0

o+ 0 _Hl)andyinfa =00+
o] ’
FY(6) = 1 + min{m(9),0} = 1

since m(0) =0 and Ysup,s = 0

where M () = 1 — exp (—

2. Suppose o; = og = o. Then

FY(8) = max{M(9),0} = M(J)
0 if 0 < 01 — 0()

where M(@) =9 | _ ( W)w if >0, — 0,

if <0, — 0
and y; 5 = { any point in R if 6 = 0, — 0
O + 0 if 0>0; — 0

FY(3) = 1 +min{m(8),0} = 1+ m(5)

SEUELELE

" )—1<0 if 6<0, — 0,

where m(d) =
0 if 0 >0, -0,

91 if 5<91 — 90
and yg,, s = { any point in R if 6 =0; — J,

(o) if 5>91—90

(an interior solution)
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3. Suppose o; > ay.
(a) If 0<6e,

FL(é) = max{M($),0} =0, since M(5) =0 and Vint.s = 00
Fu(d) = 1 + min{m(o),0} = 1 + m(d)

01 — (64 0o)

where m(J9) = exp (— "
0

) - 1<07 ysup,(S = 01

(b) If 6>6,,
FY(6) = max{M(9),0} = M(9)

where M(0) = max{exp (—

( max{00+5—01,0}) }
—exp| — ,0

max{0; — (0 + 0p), 0}
oo )

o]
and y;,r s = max{0;,0p + 0} or oo (boundary solution)

FY =1 4+ min{m(5),0} = 1 4+ m(5)

a1 /(o1 —0%) oo /(o1 —2%) S— (0 —0
where m(0) = ((ZO) - (%) ) exp (— #) <0
1 1 1 — 0o

oporr(In oy — In o) + o010 — oy + oy

) . . .
and Vsup.s = (an interior solution)

o — %o

(Shifted) Pareto marginals. The marginal distributions are:

M *
F =1—-|— f € [0y, d
) (7»1+y—91> or ye 0,00 an
7\‘ o
Fow)zl—(xio> for ye[ly,00), where a,4i;,0;,4y,00>0
0o+y—16
Define

3e = (01 = 09) — (max{ia, 2o/ 0/ — 55/HD)
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1. Suppose 41 < 4.
(a) If 6 < 9., then

FY(8) = max{M(5),0} = M(5)

J(+1) /(a+1) /1?/(“1) — /18/(‘”1) *
here M(S) = (12D _ 2/ i 0
here MOY= o D S—doti—0+0,)

@+ 0 — Y 4 — 0/

and yjyp s = ,
R /(o+1) o/(a+1)
>\'l - )\,0

(an interior solution)

FY(0) = 1 4+ min{m(3),0} = 1 + m(d)

. 7\’0 ’
where m(d) = mm{ (7»0 +max{0; — 6 — 90,0}>

M
— 0
(Xl + max{0y + é — 91:0}) ' }

and yg,, s = max{0;,0) + 6} or oo (boundary solution)

(b) If 6>0,, then
FY(5) = max{M(9),0} = M(5)
2
A +0p+06—0,
FY(6) = 1 + min{m(9),0} = 1

since m(0) =0 and g, 5 = 00

where M(0) =1 — ( ) >0 and yyps =00+

2. Suppose 1} = Ap = 4. Then
FY(5) = max{M(5),0} = M(5)
0 if 6 <0, — 0
where M(d) = . ( p)
A+0— (01— 0p)
00 if 6<6; — 6

) 20 if(3>91—9()

and y;p s = { any pointin) if 6 =0 — 0

0o+ 0 if 6>0, — 0,
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FY(8) = 1 + min{m(5),0} = 1 + m(d)

) o
— | —1 ifdé<0, -0
where m(J) = (/1 —0+(0; — 90)) P
0 iféZ@]—eo
91 if5<91—90

and yg,,; = { any pointin Y if 6 =0, — 6y
o0 if >0, — 0()

3. Suppose ;> 4.
(a) If <0, then

FY(8) = max{M(3),0} = 0 since M(3) =0, and pj s = 00
FY() = 1 + min{m(5),0} = 1 + m(5)

Ao "
S — =
o+ 00 =5 90) =0 and ups =1

where m(0) = (
(b) If 6 > 9., then
FY(5) = max{M(5),0} = M(5)
Ao “
Ao +max{0; — 6 — 0y, 0}

_ A ! 0
A1 +max{0y + 6 — 01,0} ’

and y;,¢ s = max{0, 0y + d} or oo (boundary solution)
FY(8) = 1 + min{m(5),0} = 1 + m(d)
/10(/(“+1) _ }uac/(oHrl) o
1 0 0

where M(0) = max{ (

where m(9) = (7 **V = 47/ (5 —Jo+ 41— 01+ 09

(6 -+ 00 = 20)25 D + (i — 00)75/ "

Al /G (an interior solution)
‘1 0

and Ysup,s =
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