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Abstract 

In the context of the Cournot model a demand function parameter is treated as the dual of the 

firm’s profit. Following the demand theory’s duality approach it’s possible to introduce the 
concept of the compensated reaction function (or compensated best-response function), as well 

as the concepts of net strategic complementarity/substitutability. The firm’s reaction function is 
analysed into a type-1 and a type-2 effect, which are the counterparts, respectively, of the 

demand theory substitution and income effects. Further, new results are obtained regarding 

Cournot equilibrium in the case of profit functions which are homogeneous in their arguments.  

JEL classification: D43; L13  

Keywords: Cournot model; compensated reaction function; net strategic 

complementarity/substitutability 

1.1. Introduction 

Consider a Cournot duopoly of firms 1, 2, where the profit function is postulated as 

follows: 

πi 
= p(a, q

i
, q

j)·qi
 – c

i
(q

i), i = 1, 2, i ≠ j 

where p(a, q
i
, q

j
) is the inverse market demand function of the levels of output q

i
, q

j
 

of firms i, j and c
i
(q

i
) is the cost function of firm i. A change in firm j’s level of 

output, q
j, has an effect on the profit of firm i, πi

, which can be offset by a 

compensating change in the value of the inverse market demand parameter ‘a’. 
This implies that the profit of firm i remains unchanged whereas the value of ‘a’ 
varies with q

j. Solving the profit function above for ‘a’ shows that the latter is a 
function of q

i
, q

j
 and πi

, (a = a(q
i
, q

j, πi
)). For any output profile (q

i
, q

j
) the function 

a(q
i
, q

j, πi) determines the value of the parameter ‘a’ which is necessary for firm i 
to obtain a profit πi

. In the general case the value of a(q
i
, q

j, πi
) is different than the 
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actual value of ‘a’, thus indicating the need for a positive or negative 

compensation. 

We pose the question: Given the rival’s level of output qj
 which level of output q

i
 

allows firm i to earn a given profit πi
 under the minimum value of the parameter 

‘a’? In other words: 

   min. a(q
i
, q

j
, πi

)        

   {q
i
} 

The solution to this problem is given by the compensated reaction function 

   
i
 = h

i
(q

j
, πi

)  

On the other hand, firm i’s profit–maximisation problem can be posed as follows: 

   max. (p(a, q
i
, q

j)·qi
 – c

i
(q

i
))       

   {q
i
} 

yielding i’s reaction function 

   q
i*
 = b

i
(q

j
, a) 

and the maximum level of profits 

πi*
 = p(a, q

i*
, q

j)·qi*
 – c

i
(q

i*
)  

A change in the rival’s level of output to qjʹ  causes firm i to react, adjusting its 

own  profit-maximising level of output to q
i**with corresponding profit of πi**

. The 

reaction q
i**

 − q
i*
 can be analysed to two constituent effects:     

     

1) The value of ‘a’ can be compensated so that i’s profit is restored to πi*
 with a 

level of output determined by the compensated reaction function:   

   
i
 = h

i
(q

jʹ
, πi*

)  

The difference (
i
 – q

i*) is called the ‘type-1 effect’. 

2) Withdrawing the compensation causes a further change in i’s level of output 
equal to: 

   q
i**− 

i
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This is called ‘type-2 effect’. 

The central idea is to use established demand theory methods for the analysis of 

firm behaviour in a Cournot setting. This approach is based on a recognition of the 

fact that duality finds application on the Cournot model. An exploitation of this 

relation allows us to gain insight into the structure of firm interaction. 

Whereas demand theory treats the problem of the consumer from the viewpoint of 

both utility maximisation and expenditure minimisation, the problem of the firm is 

treated only from the viewpoint of profit maximisation. Oligopoly theory studies 

the questions of existence, uniqueness and stability of the Cournot equilibrium, as 

well as its comparative statics properties. In particular, Novshek [1985] furnishes 

an existence theorem and Kolstad and Mathiesen [1987] provide necessary and 

sufficient conditions for uniqueness of equilibrium. Hahn [1962] and Seade [1980] 

study the question of stability. Dixit [1986] studies comparative statics in a 

conjectural variations setting, whereas Bulow et al. [1985] introduced the concept 

of strategic complementarity/substitutability to study comparative statics in a 

multimarket setting. The present study extends the latter line of analysis by 

introducing the concepts of net strategic complementarity/substitutability.  

Concise presentations of Cournot theory are made by Martin [2002] and 

Mahzabeen [1993], among others. A classic presentation of the Hicks 

decomposition is made by Hicks [1939]. 

The basic framework of analysis is presented in section 1.2. The type-1 effect is 

analysed and the concepts of net strategic complementarity/substitutability are 

presented in section 1.3. The type-2 effect is analysed in section 1.4. In section 1.5. 

we deal with the question of choosing which parameter to compensate. The 

Cournot equilibrium is defined in terms of compensated reaction functions in 

section 1.6. Comparative statics are studied in 1.7. In section 1.8. we deal with the 

analysis of price-setting duopoly with differentiated products. The analysis is 

extended to two-stage models in section 1.9.  In the second part of the study 

homogeneous profit functions are introduced in section 2.1. and basic results are 

obtained in 2.2. The Cournot equilibrium is determined in 2.3. and the two-stage 

Cournot equilibrium with homogeneous profit functions is determined in 2.4. 

Finally, conclusions are presented in 2.5. 
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1.2.  Duality approach in the Cournot oligopoly model. 

Consider two firms i = 1, 2, with profit function 

i  
= p(q

i
 + q

j 
, a0)·qi  − c

i·qi   
,  i ≠ j,                                 (1.1) 

where p(Q, a0) stands for the inverse market demand function in industry output Q. 

The firms compete in output q
i
, taking the decision of the rival as given when 

making their own decision about output level. Decisions are taken simultaneously. 

For convenience we represent the profit function of firm 1 in generic form as 

1
 = f(q

1
, q

2
, a0 , c

1
 )    

             
 

Where a0 is considered to be the actual value of an inverse market demand 

parameter a. The profit function can then be written as 

1
 = f(q

1
, q

2
, a , c

1
 ) ,  where a = a0.                                      (1.2) 

The following assumptions are imposed on the profit function: 

I) Twice continuous differentiability in q
1
, q

2
, a, c

1
. 

II) Strict concavity w.r.t. q
1
, i.e. the second derivative   f11<0. 

III) Maximisation w.r.t. q
1
 yields interior solutions.  

IV) The partial derivative w.r.t. ‘a’ is strictly positive,  fa > 0. 

V) There are two possibilities about the partial derivative w.r.t. q
2 
, f2. 

a) f2<0, for every vector (q
1
, q

2
, a, c

1
). 

b) A saddle point (q
1*

, q
2*

) exists, f2(q
1*

, q
2*

, a, c
1
)  = 0.  

VI) The inverse of the profit function 

 a
 
= f 

−1
(q

1
, q

2
, 

1
, c

1
)          (1.3) 

 is a well-defined function. 
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For a given q
2
, firm 1 chooses a level of output q

1*
 which maximises its profit.  q

1* 

thus satisfies the first order condition 

      
1
 / ∂q1

 =   f1 (q
1*

, q
2
, a , c

1
) = 0,                  (1.4) 

Equation (1.4) determines 1’s reaction (best-response) function   

q
1*

 = b
1
(q

2
, a , c

1
)          (1.5) 

Substituting the reaction function from (1.5) 
  
into (1.2) yields the indirect profit 

function F(q
2
, a, c

1) which expresses 1’s maximum profits in terms of the rival’s 
output q

2
 and of the demand and cost parameters a , c

1
. 

  
1*

 = f(
 
b

1
(q

2
, a , c

1
), q

2
, a , c

1
 ) = F

1
 (q

2
, a , c

1
 )      (1.6) 

By the envelop theorem, assumptions (V), (IV) and eq.(1), 
1*   

is decreasing 

(nonincreasing) in q
2
, increasing in ‘a’ 

 and decreasing in c
1
. 

Substituting the inverse of the profit function (1.3) into (1.2), leads to the identity 

1
 ≡ f(q1

, q
2
, f 

−1
(q

1
, q

2
, 

1
, c

1
) , c

1
 )       (1.7) 

The following Lemmas will be used to prove the main results. 

Lemma. 

Under assumptions (I)-(VI) it holds that: 

1. d 
1
/dq

1
 ≡ f1(q

1
, q

2
, a , c

1
)  + fa(q

1
, q

2
, a , c

1
) ·  f 1−1

(q
1
, q

2
, 

1
, c

1) ≡ 0   (1.8) 

where f1(q
1
, q

2
, a , c

1
) is the partial derivative of f(q

1
, q

2
, a , c

1
) w.r.t. q

1 
and 

 f1
−1

(q
1
, q

2
, 

1
, c

1
) is the partial derivative of f 

−1
(q

1
, q

2
, 

1
, c

1
) w.r.t. q

1 
. 

2. d
2
 

1
/d(q

1
)

2
 ≡ f11(q

1
, q

2
, a , c

1
) + f1a (q

1
, q

2
, a , c

1)· f 1−1
(q

1
, q

2
, 

1
, c

1
) +  

(fa1(q
1
, q

2
, a , c

1
) + faa(q

1
, q

2
, a , c

1
) ·  f 1−1

(q
1
, q

2
, 

1
, c

1
)) ·  f 1−1

(q
1
, q

2
, 

1
, c

1
) + 

fa(q
1
, q

2
, a , c

1
) ·  f 11

−1
(q

1
, q

2
, 

1
, c

1)  ≡ 0,       (1.9) 

3. d
2
 

1
/(dq

1· dq
2
)

  ≡ f12(q
1
, q

2
, a , c

1
) + f1a (q

1
, q

2
, a , c

1)· f 2−1
(q

1
, q

2
, 

1
, c

1
) +  
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(fa2(q
1
, q

2
, a , c

1
) + faa(q

1
, q

2
, a , c

1
) ·  f 2−1

(q
1
, q

2
, 

1
, c

1
)) ·  f 1−1

(q
1
, q

2
, 

1
, c

1
) + 

fa(q
1
, q

2
, a , c

1
) ·  f 12

−1
(q

1
, q

2
, 

1
, c

1)  ≡ 0,       (1.10)  

where f2
−1

(q
1
, q

2
, 

1
, c

1
) is the partial derivative of f 

−1
(q

1
, q

2
, 

1
, c

1
) w.r.t. q

2
. 

4.  d 
1
/dq

2
 ≡ f2(q

1
, q

2
, a , c

1
)  + fa(q

1
, q

2
, a , c

1
) ·  f 2−1

(q
1
, q

2
, 

1
, c

1) ≡ 0  (1.11) 

where f2(q
1
, q

2
, a , c

1
) is the partial derivative of f(q

1
, q

2
, a , c

1
) w.r.t. q

2
. 

5. 1 ≡ fa(q
1
, q

2
, a , c

1
) · f −1

(q
1
, q

2
, 

1
, c

1
)      (1.12) 

6. (fa1(q
1
, q

2
, a , c

1
) +  faa(q

1
, q

2
, a , c

1
) · f 1−1

(q
1
, q

2
, 

1
, c

1
)) · f −1

(q
1
, q

2
, 

1
, c

1
)  + 

fa(q
1
, q

2
, a , c

1
) · f −1

(q
1
, q

2
, 

1
, c

1) ≡ 0,      (1.13) 

7. d 
1
/dc

1
 ≡ fc(q

1
, q

2
, a , c

1
)  + fa(q

1
, q

2
, a , c

1
) · f c−1

(q
1
, q

2
, 

1
, c

1) ≡ 0  (1.14) 

Proof. 

See Appendix A.    

We now turn to posing the dual problem: 

min.  f 
−1

(q
1
, q

2
, 

1
, c

1
)           (1.15) 

{ q
1
} 

 

s.t. 
1
 = 

1
0   , where 

1
0 is a given level of profit. 

The first order condition for this problem is 

f 1
−1

(q
1
, q

2
, 

1
0, c

1
)  = 0         (1.16) 

By equation (1.8) and assumption (IV), this condition is satisfied when the first 

order condition of the corresponding maximisation problem is. Notice also that, by 

equation (1.9) and assumption (IV), the second order condition of this problem is 

satisfied when the corresponding condition of the maximisation problem is. 

 Equation (1.16) determines firm 1’s compensated reaction (compensated best-
response) function 

      
1
 = h

1
 (q

2
, 

1
0, c

1
)       (1.17) 

http://en.wiktionary.org/wiki/q%CC%83
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Substituting (1.17) into the objective function (1.15) determines the minimum 

value of ‘a’ 
which is needed for firm 1 to realise a profit of 

1
0 . That is, 

     ã  = f 
−1

(h
1
 (q

2
, 

1
0, c

1
), q

2
, 

1
0, c

1
) = A(q

2
, 

1
0, c

1
)     (1.18) 

By the envelop theorem, assumptions (IV) and (V.a) (fa > 0, f2 < 0) and equations 

(1.11), (1.12), (1.1) and (1.14) the function A(q
2
, 

1
0, c

1
) is increasing in q

2 
, 

1
0  

and c
1 
. 

The compensated reaction function determines the level of output which allows 

firm 1 to realise a given profit under the minimum value of the inverse market 

demand parameter ‘a’.  

The relation of the solution of the maximisation problem to the solution of the 

minimisation problem is hereby presented (suppressing the term c
1
, which we take 

to be a constant). 

The profit-maximisation problem  

max. f(q
1
, q

2
, a)        (A)   

 {q
1
} 

 has the solution q
1*

 = b
1
(q

2
, a). Moreover,  

1*
 = f(q

1*
, q

2
, a)   

The problem of minimising the value of the parameter ‘a’ is 

 min. f
−1

(q
1
, q

2
, 

1*
)      (B)   

 {q
1
} 

is solved by 
1
 = h

1
(q

2
, 

1*
). 

The following proposition states that the two solutions coincide. 

Proposition. 

Assumptions: 

1) f(q
1
, q

2
, a)  is twice continuously differentiable in q

1
 and continuously 

differentiable in ‘a’. 

2) f
−1

(q
1
, q

2
, 

1*
) is a well-defined function. 
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3) Solutions to both maximisation and minimisation problems exist. 

4) fa > 0, for every (q
1
, q

2
, a). 

5) f11 < 0, for every (q
1
, q

2
, a). 

A. Profit maximisation implies ‘a’- minimisation. 

Suppose that the above assumptions hold. Then q
1* 

solves problem (B). 

Proof. 

Suppose not and let q
1ʹ  solve (B). Hence 

aʹ  = f
−1

(q
1ʹ , q

2
, 

1*
) < f

−1
(q

1*
, q

2
, 

1*
) = a 

thus f(q
1ʹ , q

2
, aʹ ) = f(q

1*
, q

2
, a) = 

1*
        (i) 

However, 

f(q
1*

, q
2
, a) > f(q

1ʹ , q
2
, a ) > f(q

1ʹ , q
2
, aʹ )     (ii) 

where the first inequality holds because q
1*

 solves problem (A) and the second is 

due to the assumption fa > 0 and aʹ  < a. (ii) contradicts (i).■ 

B. ‘a’-minimisation implies profit maximisation. 

Suppose that the above a
1
 solves problem (A). 

Proof. 

Suppose not, and let q
1ʹ  solve (A): 

π1ʹ  = f(q
1ʹ , q

2 1
, q

2
, a) = π1*

, thus 

f
−1

(q
1ʹ , q

2
, 

1ʹ ) = f
−1 1

, q
2
, 

1*
) = a,      (i)

 

However, 

f
−1 1

, q
2
, 

1*
) < f

−1
(q

1ʹ , q
2
, 

1*
) < f

−1
(q

1ʹ , q
2
, 

1ʹ )    (ii) 

where the first inequality results f
1
 as solution of (B) and the 

second from eq. (1.12) and fa > 0, resulting in fπ 
−1

 > 0, and considering that π1ʹ  > 

π1*
. (ii) contradicts (i). ■ 
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Thus an optimally chosen quantity can be expressed either as the solution of the 

profit maximisation problem or as the solution of the ‘a’-minimisation problem. 

The answer to these two problems is the same q
1
. This observation leads to the 

following identities: 

1) A(q
2
, F(q

2
, a0)) ≡ a0          (1.19) 

2) F(q
2
, A(q

2
, 

1)) ≡ 1
        (1.20)

 

3) b
1
(q

2
, a0) ≡ h1

(q
2
, F(q

2
, a0))       (1.19ʹ ) 

4) h
1
(q

2
, 

1) ≡ b1
(q

2
, A(q

2
, 

1
))        (1.20ʹ ) 

As in the general case A(q
2
, 

1
) ≠ a0, the actual value a0 is positively or negatively 

compensated in order to allow the firm to obtain a given level of profits at the 

minimal value of ‘a’.  Accordingly,  

M(q
2
, 

1
, a0) ≡  A(q

2
, 

1
) - a0          (1.21) 

is called the compensation function. 

An example is presented to clarify the relevant concepts. 

Example. 

Assume that the market demand function is: 

D(a, p) = a/p , 

and the cost function of duopolist 1 is: 

c(q
1) = c·q1

 

The profit function of firm 1, then, is: 

π1 
= (a·q1

)/(q
1
 + q

2) − c·q1
,       (i) 

Maximising the profit function w.r.t. q
1
 we get firm 1ʹ s reaction function: 

q
1*

 = [(a·q2
)

 
/c]

1/2
 – q

2
 ,        (ii) 

Turning now to the dual problem, we solve the profit function (i) for ‘a’: 
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a = (π1
 + c·q1)·(q1

+q
2
)/q

1
,        (iii) 

Minimising ‘a’ w.r.t. q1
 we get firm 1’s compensated reaction function: 

1
 = [(π1·q2

)/c]
1/2

,         (iv) 

Substituting (iv) in (iii) we get the minimum value of the demand parameter ‘a’ 
which allows firm 1 to obtain profits π1

 : 

 = [(π1
)

1/2
 + (c·q2

)
1/2

]
2
 

 

Theorem 1.1. 

Consider firm 1 as a Cournot duopolist with profit function (1.2), subject to 

assumptions (I) – (VI). 

The derivative of the compensated reaction function (type-1 effect) is determined 

by the following equation: 

∂ 1/∂q2 
= − f12/ f11+(f1a/ f11)·(f2/fa)        (1.22) 

where the derivatives are evaluated at (
1 
, q

2
, ã , c1

) = (q
1*

, q
2
, a0, c

1
). 

 Proof. 

See Appendix B. 

The above equation expresses the type-1 effect as the sum of the firm’s reaction 

and the type-2 effect. The reaction (∂q
1*/∂q2

), as expressed by the term (−f12/ f11), 

involves a change in profit. Consider the compensation (∂ã /∂q2
=(−f2/fa)·dq

2
) which 

is needed to restore firm 1’s profit to its initial level. The compensation causes firm 
1’s profit-maximising level of output to change by (−f1a/ f11·) (−f2/fa), thus arriving 

at (1.22). 

 Eq.(1.22) can be re-written as  

∂ 1/∂q2 
= (f1a·f2 – f12·fa)/(f11·fa)        (1.23) 

Taking into account that (−f12/ f11) = ∂q
1*/∂q2 

(see Appendix B), equation (1.22) 

can also be written as 

http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
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∂q
1*/∂q2 = ∂ 1/∂q2

 – (f1a/ f11)·(f2/fa )       (1.24) 

Equation (1.24) analyses a firm’s reaction according to the Hicks decomposition 
and forms the counterpart of the Slutsky equation. 

Equation (1.22) is derived from the equation  

   ∂ 1/∂q2
 =  ∂q

1*/∂q2
 + (∂q

1*/∂a )·( ∂ã /∂q2
 ) 

(see Appendix B) 

The LHS represents the type-1 effect, the first term of the RHS is the firm’s 
reaction and the second term is the type-2 effect.  

Corollary 

If the type-2 effect has a larger algebraic value than the type-1 effect, the reaction 

curve will be downward slopping.  If the type-2 effect has a smaller algebraic 

value than the type-1 effect, the reaction curve will be upward slopping.      

 Proof.  

By reference to the above equation. ■  

The RHS terms of the above equation can be observed or estimated. It’s, thus, 
possible to arrive at an estimate of the compensated reaction term. 

We can use the Hicks decomposition to analyse the firm’s reaction to a change in 
its cost structure. Even though there is no strategic interaction involved, type-1 and 

type-2 effects can still be defined and analysed according to a Slutsky equation, as 

above. In particular, differentiating totally the equation  

q
1*

 = b
1
(q

2
, A(q

2
, 

1*
, c

1
),  c

1
) ≡ h1

(q
2
, 

1*
, c

1
) = 

1    
    (1.25) 

 w.r.t. c
1
  we get 

∂q
1*/∂c1

 + (∂q
1*/∂a)·(∂ã/∂c1 

) = ∂ 1/∂c1
        (1.26) 

Totally differentiating (1.4) w.r.t. c
1 
while taking (1.5) into account yields 

f11(q
1*

, q
2
, a, c

1) · ∂q1*/∂c1
 + f1c(q

1*
, q

2
, a, c

1
) = 0, thus 

http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
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∂q1*/∂c1
 = − f1c(q

1*
, q

2
, a, c

1
)/ f11(q

1*
, q

2
, a, c

1
)      (1.27) 

Taking into account equations (1.14), (1.26), (1.27) and (iv) from Appendix B, we 

get 

∂ 1/∂c1 
= − f1c / f11 +  (f1a/ f11) · ( fc/fa)       (1.28) 

where the RHS derivatives are evaluated at (q
1*

, q
2
, a, c

1
). 

 It’s thus pointed out that it is possible to use the Hicks decomposition in order to 
analyse shifts of the reaction curve which are due to changes in parameters like the 

per unit costs.  

To acquire a better understanding of the analysis we turn to the study of each one 

of the two effects.  

1.3. Type-1 effect. 

It follows from equation (1.23) that the type-1 effect is equal to zero iff the 

following condition is met:  

f2/fa = f12/f1a      (1.29) 

where the derivatives are evaluated at (q
1*

, q
2
, a, c

1
). The compensation (da) which 

restores 1’s profit to its initial level also restores the optimality of q1*
. In particular, 

the type-1 effect is equal to zero iff the following system of equations holds: 

f2·dq2
 + fa·da = 0,  

so that 1’s profit does not change, and 

f12·dq2
 + f1a·da = 0,  

so that q
1*

 remains optimal. Under eq. (1.29) both equations hold, ensuring that the 

type-1 effect is equal to zero. 

Theorem 1.2. 

A class of profit functions which satisfy condition (1.29) is  

f(q
1
, q

2
, a) = g(q

1)·s(r(a, q
2
), q

1
)        (1.30) 

http://en.wiktionary.org/wiki/q%CC%83
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where the function f(q
1
, q

2
, a) is twice continuously differentiable 

 
in all the 

arguments and the function r(a, q
2
) is such that    

r2(a, q
2
) < 0   and,  ra(a, q

2
 ) >0, for every (a, q

2
).  

Proof. 

Checking whether the class of profit functions described by (1.30) satisfies 

condition (1.29): 

f2(q
1
, q

2
, a) = g(q

1)·s1(r(a, q
2
), q

1)·r2(a, q
2
) 

fa(q
1
, q

2
, a) = g(q

1)·s1(r(a, q
2
), q

1)·ra(a, q
2
), thus, 

f2 = (r2/ra)·fa .  

Considering that the r(a, q
2
) function is independent of q

1
, differentiating the above 

equation w.r.t. q
1
, yields  

f21 = (r2/ra)·fa1       

thus, condition (1.29) is satisfied by the profit function (1.30).■ 

Corollary  

The class of profit functions described by (1.30) has type-1 effect equal to zero. 

An important example is the following: 

A duopolist facing linear inverse market demand and constant per unit costs has a 

profit function which satisfies eq.(1.30).:  

Let the inverse market demand be: P = a − b·Q, 

where Q = q
1
 +  q

2. Firm 1’s profit function is: 
1
 = (a − b·(q1

+ q
2))·q1

 - c·q1
 = q

1·[(a − b·q2) − b·q1
 − c]    (A.1)  

which can be seen to have the structure of eq. (1.30). 

Maximising  
1 
w.r.t. q

1
 yields the reaction function  

q
1*

 = (a-c)/(2·b) - q2
/2         (A.2) 
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Solving equation (A.1) for ‘a’, we get: 

 a = 
1
/q

1
 + c + b·(q1

 +  q
2
)         (A.3) 

Minimising ‘a’ w.r.t. q1
  we get 1’s compensated reaction function h1

(
1
) 

1
 = (

1
/b)

1/2   
           (A.4) 

1
 does not depend on q

2
, consequently the type-1 effect is zero.  

1.3.1. The type-1 effect and the market demand function. 

It should be pointed out that the non-existence of the type-1 effect is due to the fact 

that the parameter ‘a’ does not affect the slope dQ/dP of the market demand curve. 
In other words, a market demand function D(P, a) will not give rise to a type-1 

effect if the slope dQ/dP = Dp(P, a) = v(P) is independent of the parameter ‘a’ for 
any price P. In such a case, the compensation of the parameter ‘a’ causes a parallel 
shift of the market demand curve at any price P, thus exactly off-setting the effect 

of dq
2
 on 1’s demand curve, i.e. Da(P, a)·da – dq

2
 = 0, for any P. The compensated 

demand curve of firm 1 coincides with its initial demand curve. Firm 1, facing the 

same demand conditions as before the change in q
2
, chooses the same level of 

output as initially. Thus the type-1 effect is zero. 

This insight leads to the following generalisation: 

Consider Cournot duopolists 1, 2, facing market demand D(P, a), which satisfies 

tha following assumptions: 1) D(P, a) has a well-defined inverse demand function 

P(Q, a), where Q is industry output. 2) Both D(P, a) and P(Q, a) are assumed to be 

twice continuously differentiable in their arguments. 3) Dp<0, Da>0 for any (P, a), 

where Dp and Da are the derivatives of the market demand function w.r.t. price P 

and the parameter ‘a’, respectively. 4) The cost function of firm 1, c(q
1
), is 

assumed to be twice continuously differentiable and satisfying the marginal cost 

non-negativity condition. Consequently, firm1’s profit function is: f(q
1
, q

2
, a) = 

P(q
1
+q

2, a)·q1
 - c(q

1
). 5) The profit function is assumed to be strictly concave in q

1
 

and to always admit interior solutions of the maximization problem. 

Theorem 1.3. 

Under the above assumptions, the type-1 effect is  

http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
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∂ 1/∂q2
 = −[Dpa(P(Q, a), a)·(q1

)
2
]/[(Dp(P(Q, a), a))

3·f11(q
1
, q

2, a)·fa(q
1
, q

2
, a)], (1.31)   

where Dpa is the market demand function’s second derivative w.r.t. P and ‘a’. The 

functions of eq. (1.31) are evaluated at (
1
, q

2
, ã) = (q

1*
, q

2
, a0), Q = 

1 
+ q

2
 =  

q
1*

 + q
2
. 

Proof. 

See Appendix C. 

Corollary 1. 

If parameter ‘a’ does not affect the slope of the market demand (Dpa = 0), the type-

1 effect is equal to zero. 

Corollary 2.  

If Dpa < 0, ∂ 1/∂q2
 > 0 i.e. the compensated reaction (best-response) curve is 

upward sloping. If Dpa > 0, ∂ 1/∂q2
 < 0, the compensated reaction (best-response) 

curve is downward sloping. 

Proof. 

Since  Dp < 0, fa = Pa · q1 
> 0 and f11 < 0, according to the above assumptions, it 

turns out that  

−[(
1
)

2
]/[(Dp)

3· f11· fa] < 0. ■ 

1.3.2. Net strategic complementarity/substitutability 

In this section we study the determinants of the slope of the compensated reaction 

curve and the relation they bear to the determinants of the corresponding reaction 

curve’s slope. In the course of studying these relations the concepts of net strategic 

complementarity/substitutability are introduced. 

In particular, substituting the expression of eq.(1.17) into eq.(1.16) we get: 

f 1
−1

(h
1
(q

2
, 

1
0, c

1
), q

2
, 

1
0, c

1) ≡ 0       (1.32) 

Totally differentiating throughout w.r.t. q
2
, we get: 

http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
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f11
−1 · h2

1
 + f12

−1
 ≡ 0, or   f11

−1 · (∂ 1/∂q2
) + f12

−1
 ≡ 0, thus 

∂ 1/∂q2 = − f12
−1

/ f11
−1 

         (1.33) 

The above equation determines the slope of the compensated reaction curve and is 

the counterpart of the equation for the slope of the reaction curve (∂q1*/∂q2
 = − f12/ 

f11). In order to express ∂ 1/∂q2
 in terms of the derivatives of the profit function we 

start with the relation of f12 to f12
−1

. Considering eq. (1.10) and eq. (1.16), we get a 

relation of f12 to f12
−1 

: 

f12(q
1*

, q
2
, a , c

1
) + f1a (q

1*
, q

2
, a , c

1)· f 2
−1

(
1
, q

2
, 

1
, c

1
)+fa(q

1*
, q

2
, a , c

1
)·f12

−1
(

1
, q

2
, 

1
, c

1)  ≡ 0,     

thus f 12
−1 = − (f12 + f1a · f 2−1

) / fa    

f12  represents the effect of a change in q
2 

on f1. However, the change in q
2
 causes a 

compensation (f 2
−1·dq

2) to be contributed, in order for the firm’s profits to be 
preserved. The compensation affects f1 through f1a, thus resulting in the numerator 

(f12 + f1a · f 2−1
) of the expression above, which represents the compensated value of 

f12.        

Taking eq.(1.11) into account, the above expression becomes 

f 12
−1 = −(f12 −f1a · (f 2/ fa)) / fa         (1.34) 

Turning to the relation of f11
−1 

to f11: 

From eq.(1.9) and the condition (1.16), we get: 

 f11
−1 = −f11/fa           (1.35) 

evaluated at (
1
, q

2
, a , c

1
). 

 

Considering eqs. (1.33), (1.34), (1.35) we get: 

∂ 1/∂q2 = −f12
−1

/ f11
−1 

= (f12
−1· fa)

 
/ f11 = (f1a ·( f 2/fa ) −f12)/f11 =  

=(f1a/f11)·(f 2/fa) −f12/f11 

 which is the equivalent of the Slutsky equation, as expressed in eq.(1.22). 

 Solving the above equation for f12
−1

 we get: 

http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
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f12
−1 

= [(f1a/f11)·(f 2/fa) − f12/f11]·(f11/fa)       (1.36) 

which shows that the basic difference of f12 w.r.t. f12
−1 

is due to the type-2 effect. 

Definition. 

The product of firm 1 is a net strategic substitute to the product of firm 2, iff an 

increase in q
2 

increases f1
−1

(q
1
, q

2
). In other words, the firm 1 product is a net 

strategic substitute to firm 2 product iff f12
−1

(q
1
, q

2
) > 0. Conversely, the firm 1 

product is a net strategic complement to firm 2 product, iff  f12
−1

(q
1
, q

2
) < 0. 

Eq.(1.36) shows that it is possible for the two products to be simultaneously both 

strategic substitutes and net strategic complements and vice-versa, depending on 

the algebraic value of f1a. If f1a = 0 (in which case the type-2 effect is eliminated) 

the same strategic complementarity/substitutability relationship is preserved in 

both the primal and the dual form. 

According to eq. (1.33), if the product of firm 1 is a net strategic substitute to the 

firm 2 product, firm 1’s compensated reaction curve is downward sloping, and if it 

is a net strategic complement to the firm 2 product the compensated reaction curve 

is upward sloping. In other words, in the case of net strategic substitutability, a 

more aggressive strategy by firm 2 makes it necessary for firm 1 to follow a less 

aggressive strategy in order to preserve a given level of profits under the minimum 

value of ‘a’. Conversely, 1’s compensated reaction to a more aggressive strategy 

by 2 is a more aggressive strategy of its own, in case of net strategic 

complementarity. 

 

1.4. Type-2 effect. 

If the type-2 effect is equal to zero throughout, the compensated reaction curve 

coincides with the reaction curve in the (q
1
, q

2
) space. According to equation (1.24) 

∂q
1*/∂q2 = ∂ 1/∂q2

 – (f1a/ f11 )·( f2/fa)          

The type-2 effect is eliminated either if f2=0, in which case the rival’s actions do 
not affect 1’s payoff, or in case f1a=0.  

http://en.wiktionary.org/wiki/q%CC%83
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In the case where f2=0, there is no compensation needed to restore 1’s profit to its 

initial level (dã = − (f2/fa)·dq2 
= 0) and, thus, there is no type-2 effect: 

 (f1a/ f11)·(f2/fa) = 0 

Player 1 nevertheless reacts to his rival’s action, because the type-1 effect operates.  

Theorem 1.4. 

If the class of profit functions  

π1 
= f(q

1
, q

2
, a) = g(t(q

1
, q

2
), a)        (1.37) 

which can be re-written as 

 π1 
= g(w, a),  w = t(q

1
, q

2
)        (1.38) 

satisfies the following assumptions: 

1)  ∂t(q1
, q

2)/∂q1
 =  t1(q

1
, q

2) ≠ 0, for every (q1
, q

2
) 

2) ga(w, a) > 0, for every (w, a) 

3) gww(w, a) < 0, for every (w, a) 

4) The inverse of the profit function, a = g
−1

(w,  π1
), is a function, 

then it exhibits the property f2(q
1*

, q
2
, a) = 0. 

Proof. 

In maximising 1’s profit, we have: 

∂π1/∂q1
 = f1 (q

1*
, q

2
, a) = gw(w

*, a) · t1(q
1*

, q
2
) = 0 => gw(w

*
, a) = 0, since t1(q

1*
, q

2
) 

≠ 0. Thus w* is a function of ‘a’: 

w* = z(a) = t(q
1*

, q
2
),          (1.39) 

which determines 1’s reaction function q1*
 = b

1
(q

2
, a). 

Second order conditions: f11 = gww· (t1)
2
 + gw · t11 = gww· (t1)

2
 <0, where the 

derivatives gw, gww are evaluated at (w*, a) and t1, t11 are evaluated at (q
1*

, q
2
). 

 It is the case that: 
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∂π1/∂q2 
= f2(q

1*
, q

2
, a) = gw(w

*, a) · t2(q
1*

, q
2
) = 0, as gw(w

*
, a) = 0.■ 

Alternatively, the type-2 effect is eliminated if f1a = 0. In this case the firm’s profit 
is affected by the rival’s action and a compensation is necessary in order to restore 
it to its initial level. However, withdrawing the compensation does not affect the 

firm’s choice. The type-2 effect is, thus, equal to zero. 

Theorem 1.5. 

The class of profit functions: 

π1
 = f(q

1
, q

2
, a, c

1
) = u(a)·g(q1

, q
2
, c

1
),       u > 0,  ua > 0, for every a,  (1.40) 

                                                      g > 0, g11 < 0, g2 < 0, gc < 0, for every (q
1
, q

2
, c

1
). 

exhibits the property: f1a(q
1*

, q
2
, a, c

1
) = 0. 

Proof. 

At the profit-maximising value of q
1
, q

1*
, it is: 

f1(q
1*

, q
2
, a, c

1) = 0 => u(a)·g1(q
1*

, q
2
, c

1
) = 0 => g1(q

1*
, q

2
, c

1
) = 0, u(a) > 0. 

Thus, 

f1a(q
1*

, q
2
, a, c

1
) = ua(a)·g1(q

1*
, q

2
, c

1) = 0 ■ 

Proposition. 

It holds that: 

fa1(q
1*

, q
2
, a , c

1
) = 0  <=>  fπ1

−1
(

1
, q

2
, 

1
, c

1
) = 0, or, 

f1a(q
1*

, q
2
, a , c

1
) = 0  <=>  f1π

−1
(

1
, q

2
, 

1
, c

1
) = 0  

Proof. 

According to the Lemma, eq.(1.13), and taking into account that f1
−1

(
1
, q

2
, 

1
, c

1
) 

= 0, we have: 

fa1(q
1*

, q
2
, a , c

1
) · f −1

(
1
, q

2
, 

1
, c

1
)  + fa(q

1*
, q

2
, a , c

1
) · f −1

(
1
, q

2
, 

1
, c

1) ≡ 0,   

Taking the Lemma, eq.(1.12) into account, we have: 

http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
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f
−1

(
1
, q

2
, 

1
, c

1
) = 1/fa(q

1*
, q

2
, a , c

1
) > 0, since fa(q

1*
, q

2
, a , c

1
) > 0     

The two equations in conjunction yield (eliminating the arguments for simplicity): 

fa1·(1/fa) + fa· f −1
 ≡ 0, fa > 0 

which proves the Proposition. ■ 

Accordingly, if the optimising condition of the primal problem, f1(q
1*

, q
2
, a , c

1
) = 0 

is not affected by a change in the parameter ‘a’, then the optimising  condition of 
the dual problem, f1

−1
(

1
, q

2
, 

1
, c

1
) = 0 is not affected by a change in  

1
. It 

follows that for profit functions described by eq.(1.40) the reaction curve is 

invariant to the parameter ’a’ and the compensated reaction curve is invariant to  
1
. 

1.5. Choosing the parameter to be compensated. 

An inverse demand function typically has a number of parameters. In choosing 

which parameter to compensate we are guided by the principle that an effect 

should be analysed in the way which involves the simplest structure. If, for ex., a 

given reaction is analysed into the type-1 effect only (type-2 effect = 0) when we 

compensate the demand parameter ‘a’, but both type-1 and type-2 effects arise as 

the result of compensating the parameter ‘b’, then we should choose to compensate 
the parameter ‘a’. 

In the case of linear demand function, for example, a duopolist’s profit function is: 

π1
 = f(q

1
, q

2
, a) = (a – b·(q1

+q
2))·q1

 − c·q1
,    a > c

  
  (B.1) 

We can compensate parameter ‘a’, or alternatively, parameter ‘b’. In order to find 
the type-1/type-2 effect structure resulting from the compensation of either 

parameter, we consider them in turn:  

Solving the profit function for ‘a’, we get: 

a = c + π1
/q

1
 + b·(q1

+q
2
)         (B.2)  

Minimising ‘a’ w.r.t. q1, for a given π1
, we have: 

∂a/∂q1
 = − π1

/(
1
)

2
 + b = 0 => 

1 
= (π1

/b)
1/2

       (B.3) 

http://en.wiktionary.org/wiki/q%CC%83
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S.O.C. can be checked to hold. 

The compensated reaction function is independent of q
2
. The type-1 effect, 

consequently, is equal to zero, ∂ 1 
/
 ∂q2

 = 0.  

Checking that the reaction is equal to the type-2 effect: 

The reaction term is: 

∂q1*/ ∂q2 = − f12/f11 , thus, 

∂q1*/ ∂q2
 = − (−b)/(−2·b) = − ½ 

According to eq.(1.24) the type-2 effect is: 

−(f1a/f11)·(f2/fa) = − (1/(2·b))·b = − ½ 

Consequently, the reaction is equal to the type-2 effect. 

The virtue of compensating the parameter ‘a’ is that it simplifies the type-1/type-2 

effect structure by eliminating the type-1 effect and reducing the reaction to be 

equal to the type-2 effect. 

Alternatively, compensating parameter ‘b’ generates both effects, thus 

complicating the analysis. In particular, we start by solving the profit function for 

(−b): 

−b = [ π1
/q

1
 +c − a]·(1/(q1

 + q
2
)) 

where q
1
 > π1

 /(a − c) to guarantee the negativity of the expression. (We choose 

(−b), rather than ‘b’ as the parameter to compensate because π1
 is an increasing 

function of  (−b), in accordance with ass. (IV).) 

Minimising the function for (−b) w.r.t. q1
 we get the compensated reaction 

function: 

1
 = [ π1

 + ((π1
)

2
 + (a − c)·π1 ·q2

)
1/2

 ]/(a − c) 

As q
2 1

 the type-1 effect exists. The type -2 effect also exists as f2 = −b·q1
 

≠ 0 and f1a = 1. 

http://en.wiktionary.org/wiki/q%CC%83
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 It’s, therefore, a more efficient line of analysis to compensate ‘a’, allowing us to 

explain the reaction in terms of only one effect (type-2). 

 

  

 

1.6.  Definition of Cournot equilibrium in terms of compensated reaction   

functions. 

Consider a duopoly i = 1, 2. The Cournot equilibrium is defined as a pair of output 

levels (q
1*

, q
2*

), which satisfy the equations of both reaction functions: 

 q
1*

 = b
1
(q

2*
, a0), 

 q
2*

 = b
2
(q

1*
, a0),  

the firms realising equilibrium profits πi*
 = F

i
(q

j*
, a0), i ≠ j. 

According to eq.(1.19ʹ ): 

q
i*
 = b

i
(q

j*
, a0) = h

i
(q

j*
, F

i
(q

j*
, a0)) = 

i
, i ≠ j. 

This equation, along with eq.(1.19), makes it possible to define the Cournot 

equilibrium in terms of the compensated reaction function: 

Definition. 

The Cournot equilibrium is defined as a pair of output levels (q
1*

, q
2*

), which 

satisfy the equations of compensated reaction functions and the relevant 

restrictions: 

q
1*

 = h
1
(q

2*
, π1*

), 

q
2*

 = h
2
(q

1*
, π2*

), 

a0 = A
1
(q

2*
, π1*

),  

a0 = A
2
(q

1*
, π2*

). 

where a0 is the actual value of the parameter ‘a’. ▄ 

http://en.wiktionary.org/wiki/q%CC%83


23 

 

Equilibrium is determined by a system of 4 equations in 4 unknowns (q
1*

, q
2*

, π1*
, 

π2*
). 

1.7. Comparative statics. 

The duality approach lends itself for the study of comparative statics as it 

facilitates the analysis of the effects of an exogenous change. The approach 

proposed can be used to determine the effect of a change in per-unit costs or the 

effect of a demand shock on equilibrium firm profits. 

Considering a Cournot duopoly as described in Section 1.2, we can determine the 

function A(q
2
, 

1
, c

1
), according to eq(1.18).The main result is summarized by the 

following Proposition. 

Proposition. 

Under assumptions (I) - (V.a) and (VI), the change in equilibrium profits due to a 

change in per-unit costs is determined as follows:  

d
1*

/dc
1
 = − [A2· (dq

2*
/dc

1
) + Ac]/Aπ  ,       (1.41) 

where A2, Aπ, Ac are the derivatives of the function A(q
2
, 

1
, c

1
) w.r.t. q

2
, 

1
, c

1
 

respectively and they are strictly positive (A2 >0, Aπ >0, Ac>0). 

Firm 2’s equilibrium reaction is:   

dq
2*

/dc
1 
= (b1

2·bc
1
)/(1 – b1

2·b2
1
)          (1.42) 

where b2
1
, bc

1
 are the derivatives of firm 1’s reaction function b1

(q
2
, a0, c

1
) w.r.t. q

2
 

and c
1
 respectively and b1

2
 is the derivative of firm 2’s reaction function b2

(q
1
, a0) 

w.r.t. q
1
. 

Proof. 

According to the above definition of the Cournot equilibrium in terms of 

compensated reaction functions and taking per-unit costs into account, we have: 

A(q
2*

, 
1*

, c
1
) = a0 

Differentiating totally w.r.t. c
1
 and rearranging terms yields eq.(1.41). 
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According to the Lemma, eq.(1.11), (1.12), (1.14), the envelop theorem, and 

assumptions (IV), (V.a) it holds: 

A2 = - f2/fa >0, Aπ
 
= 1/fa >0, Ac

 
= - fc/fa >0. 

At equilibrium it holds: 

q
2*

= b
2
(b

1
(q

2*
, a0, c

1
), a0, c

2
) 

Differentiating totally w.r.t. c
1
 and rearranging terms yields eq.(1.42).  ▄ 

Stability requires that the denominator of eq.(1.42) be positive.  

A Proposition similar to the above is the following one: 

Proposition. 

Under assumptions (I) - (V.a) and (VI) the change in equilibrium profits due to a 

change in a0 is determined as follows: 

d
1*

/da0 =  [1 − A2· (dq
2*

/da0)]/Aπ     

Proof. 

Differentiate   

A(q
2*

, 
1*

, c
1
) = a0   

totally w.r.t. a0 and rearrange terms.■ 

 

1.8. Price-setting duopoly with differentiated products. 

We consider a product which exists in two varieties 1, 2, produced by duopolists 

A, B respectively. The firms engage in price competition. Each firm chooses the 

price of its own variety which maximizes its profits, taking the rival’s price as 
given. Decisions are taken simultaneously. 

The demand structure is described by the system of inverse demand functions: 

p1 = a − b·q1 − θ·b·q2   ,         (1.43) 
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p2 = a − θ·b·q1 − b·q2   ,        (1.44) 

where pi, qi is, respectively, the price and quantity of variety i = 1,2. The parameter 

θ  takes values between 0 and 1 and measures the degree of differentiation. θ = 0 
implies full differentiation, whereas θ = 1 implies no differentiation. 

The system of demand functions corresponding to inverse demand functions (1.43) 

– (1.44) is: 

q1 = (a·(1 − θ) – p1 + θ·p2)/(b·(1− θ2
 ))      (1.45) 

q2 = (a·(1 − θ) – p2 + θ·p1)/(b·(1− θ2
 ))      (1.46) 

The quantity demanded of a variety is negatively related to its own price and 

positively related to the price of the other variety. 

Both varieties are produced at a constant cost ‘c’ per unit of output.  

The profit-maximisation problem of firm A is: 

Max πA
 = (p1 − c)·q1         (1.47) 

{p1} 

where q1 is given by (1.45). 

Firm A’s reaction function is specified in terms of prices: 

p1* = (½)·(a·(1 − θ) + θ·p2 +c)         (1.48) 

Firm A’s best response is an increasing function of p2. 

Turning to the dual problem we start by considering firm A’s profit function and 
solving for the demand parameter ‘a’.  

(1.45) combined with (1.47) yields: 

πA
 = [(p1 − c)·(a·(1 − θ) – p1 + θ·p2)]/(b·(1− θ2

 ))      (1.49) 

Solving for ‘a’ yields: 

a = (1/(1−θ))·[ πA·b·(1−θ2)·(1/(p1 − c)) +p1 − θ·p2]     (1.50) 
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Minimising the above function w.r.t. p1, we get firm A’s compensated reaction 
function: 

1 = c + (πA·b·(1−θ2
))

1/2
         (1.51) 

Notice that, as the compensated reaction of firm A is independent of p2, the type-1 

effect does not arise. 

According to eq. (1.22) it should be: 

f12/f11 = (f1a/f11)·(f2/fa) 

(The reaction, (−f12/f11), should be equal to the type-2 effect, −(f1a/f11)·(f2/fa)). 

To check whether it holds, we differentiate the profit function (1.49) to calculate 

f11 = ∂2πA/∂p1
2
 = (− 2)/(b·(1−θ2

)) 

f12 = ∂2πA/(∂p1·∂p2) =  θ/(b·(1−θ2
)) 

Thus, f12/f11 = − θ/2 ,        (1.52) 

Furthermore, 

f1a = ∂2πA/(∂p1·∂a) = (1 – θ)/(b·(1−θ2
)), 

f2 = ∂πA /∂p2 = ((p1− c)·θ)/(b·(1−θ2
)), 

fa = ∂πA /∂a = ((p1− c)·(1− θ))/(b·(1−θ2
)), 

Consequently, 

(f1a/f11)·(f2/fa) = ((1 – θ)·θ)/(−2)·(1 − θ) = − θ/2    (1.53) 

(1.52), (1.53) show that: 

f12/f11  = (f1a/f11)·(f2/fa) 

In other words, only the type-2 effect exists. A change of p2 is equivalent to a 

change in demand parameter ‘a’ so far as firm A’s maximisation problem is 
concerned. 
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1.9. Cournot competition in two stages 

It’s possible to extend our analysis to cover competition which takes place in two-

stages. Consider a Cournot duopoly where firms 1, 2 compete in variables (x
1
, x

2
) 

in the first stage and in variables (q
1
, q

2
) in the second stage. The profit function of 

firm i is:  

 i 
= f

 i
(x

i 
, x

j
 , q

i
, q

j
 , a),  i = 1, 2,     i ≠ j 

The following assumptions are imposed on the profit functions: 

VII)  Twice continuous differentiability in x
i 
, x

j
 , q

i
, q

j
 , a.  

VIII)  Strict concavity w.r.t. q
i
, for every (x

i 
, x

j 
) i.e. the second derivative  f

 i
qiqi < 0 

 for every (x
i 
, x

j 
), i = 1,2, i ≠ j.  

IX)  For every (x
i 
, x

j 
) profit maximisation w.r.t. q

i
 yields interior solutions .  

X)  The partial derivative w.r.t. parameter ´a´  
is positive (f

 i
a > 0), for every 

           vector (x
i 
, x

j
 , q

i
, q

j
 , a).  

XI)  The partial derivative w.r.t. q
j 
, f

 i
qj , j ≠ i, is either  

a)  f
 i

qj <0, for every  vector (x
i 
, x

j
 , q

i
, q

j
 , a), or     

b)  a saddle point (q
i*
, q

j*
) exists, in which case f

 i
qj(x

i 
, x

j
 , q

i*
, q

j*
, a) = 0.   

XII)  The inverse of the profit function 

  a
 
= f

 −1
(x

i 
, x

j
 , q

i
, q

j
 , 

 i
)          

is a well-defined function. (The superscript ´ i ´ of the profit function f i
 has 

been omitted for notational convenience). 

We study firm i´s maximisation problem starting at the second stage, considering 

first-stage variables (x
i 
, x

j
) as given.  

max.  f 
i
(x

i 
, x

j
 , q

i
, q

j
 , a) 

{q
i
} 



28 

 

Assumptions (VII) – (IX) ensure the existence of a solution which is described by 

the reaction function  

q
i
 = b

i
 (q

j
, x

i 
, x

j
 , a) 

The dual problem consists of the minimisation of the inverse profit function w.r.t. 

q
i
 , considering first stage variables (x

i 
, x

j
) as given.   

min. f
 −1

(x
i 
, x

j
 , q

i
, q

j
 , 

 i
)   

{q
i
} 

The second-stage compensated reaction solving this problem is given by the 

function 

i 
= h

i
(q

j
 ,x

i 
, x

j
 , 

 i
) 

The Slutsky equation holds for the second stage of a two-stage model in exactly 

the same manner it does for the single-stage Cournot competition. As the structure 

is the same in both cases the equation will be: 

∂ i/∂qj 
= − fqiqj/ fqiqi + (fqia/ fqiqi)·(fqj /fa) 

where the superscript ´ i ´ of the profit function f i
 has been omitted for notational 

convenience. 

The system of the reaction functions determines the second-stage equilibrium: 

q
i*
 = e

i
(x

i 
, x

j
 , a), i = 1, 2,     i ≠ j 

The second-stage equilibrium profit is given by the function E
i
(x

i 
, x

j
 , a), which is 

defined as follows: 

 i * 
= f

 i
(x

i 
, x

j
 , e

i
(x

i 
, x

j
 , a), e

j
(x

i 
, x

j
 , a), a) ≡ Ei

(x
i 
, x

j
 , a) ,  i = 1, 2,     i ≠ j 

We suppose that the functions E
i
(x

i 
, x

j
 , a), i = 1,2, i ≠ j, satisfy assumptions (I)-

(VI). At the first stage firm i chooses x
i
, given x

j 
, to maximise E

i
(x

i 
, x

j
 , a).  The 

corresponding reaction function is: 

x
i* 

= B
i
(x

j
 , a) , i = 1,2, i ≠ j 

http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
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P
i
 is the set of values of second-stage equilibrium profits which firm i can obtain 

under some profile (x
i
, x

j
) for some value of the parameter ‘a’. We can then define 

the inverse of the function E
i
: 

a = E
−1

(x
i 
, x

j
 , 

 i
), πi

 in P
i
 

(The superscript ´ i ´ of the profit function Ei
 has been omitted for notational 

convenience). 

Consequently, the first-stage compensated reaction function is determined by the 

solution of the problem: 

min. E
−1

(x
i 
, x

j
 , 

 i
) 

{x
i
} 

which yields 

i
 = H

i
(x

j
 , 

 i
)  

The Slutsky equation holds for the first stage of a two-stage model in exactly the 

same manner it does for the single-stage Cournot competition. As the structure is 

the same in both cases the equation will be: 

 ∂ i /∂xj 
= − Exixj/ Exixi + (Exia/ Exixi)·(Exj /Ea) 

To fix ideas the following example is presented, based on the 

d’Aspremont/Jacquemin model [1988]: 

Example. 

Consider a two-stage Cournot duopoly where firms choose R&D levels in the first 

stage and production levels in the second. The profit function is: 

i
 = [a – b ·Q]·qi

 – [A – x
i
 – β·xj]·qi

 – γ·((xi
)

2
/2), i = 1,2, i ≠ j   (C.1) 

a, b   0, 0   A  a, 0  β< 1, xi
 + β·xj

 ≤ A, Q≤ a/b 

where Q = q
i
 + q

j
, i.e. represents industry output , 

P = [a – b ·Q] is the inverse demand function· 

[A – x
i
 – β·xj

] is the cost of firm i per unit of output, where 
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β  is a spillover parameter which measures the effect of firm j’s R&D on the unit 

production cost of firm i. 

x
i
  is the R&D level of firm i, and 

γ·(xi
)

2/2  is the cost of firm i’s R&D. 

We start at the second stage. Conditional on x
i
, x

j
, firm i’s profit function is 

maximised w.r.t. q
i
, yielding the following reaction function: 

q
i*
  =  (a – A + x

i
 + β·xj)/(2·b) – q

j
/2,       (C.2) 

Correspondingly, the reaction function of firm j is: 

q
j* 

 =  (a – A + x
j
 + β·xi)/(2·b) – q

i
/2,       (C.3) 

The reaction function system of equations determines the second-stage Cournot 

equilibrium: 

q
i*
 = (a – A + (2–β) x

i
 + (2·β – 1)·xj)/(3·b)      (C.4) 

q
j*
 = (a – A + (2–β) x

j
 + (2·β – 1)·xi)/(3·b)      (C.5) 

Substituting the output equilibrium values into firm i’s profit function (C.1) we get 

i’s  profit at the second-stage equilibrium:  

i*
 = (a – A + (2–β) xi

 + (2·β – 1)·xj
)

2/(9·b) – γ·((xi
)

2
/2)    (C.6) 

Turning to the dual problem: 

The second-stage compensated reaction function of firm i determines the level of 

output which allows firm i to realise a given level of profits under the minimal 

value of the demand parameter ‘a’. Thus, solving profit function (C.1) for the 

parameter ‘a’, we get:  

a = 
i
 +γ·((xi

)
2/2)]·(1/qi

) + A – x
i
 – β·xj

 + b·Q, 

Minimising the above expression w.r.t. q
i
 , keeping 

i
 constant, we get: 

∂a/∂qi
 = – 

i
 +γ·((xi

)
2/2)]·(1/(qi

)
2
) + b = 0 =   

i
 = 

i
 +γ·((xi

)
2/2)]·(1/b)]1/2

        (C.7) 

http://en.wiktionary.org/wiki/q%CC%83
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(S.O.C. can be checked to hold ). 

The second-stage compensated reaction function of firm i is given by eq. (C.7). 

The type-1 effect is equal to zero as 
i
 is independent of q

j
. 

To find the first-stage compensated reaction function of firm i we solve the  

second-stage equilibrium profit function (eq. (C.6)) for the parameter ‘a’: 

a = [9·b· i* + γ·((xi
)

2
/2)]

1/2
 +A – (2–β)·xi

 – (2·β – 1)·xj
 ,     (C.8) 

In order to find the level of R&D which allows firm i to realise a given level of 

profit under the minimum value of the demand parameter ‘a’ we mimimise the 

above expression of  ‘a’ w.r.t. xi
: 

∂a/∂xi
 = 0,   

which yields the first-stage compensated reaction function of firm i: 

i
 = 6·(2 – β)·(b· i*

)
1/2/(γ2

 – 2·γ·(2 – β)2
)

1/2
      (C.9) 

(S.O.C. can be checked to hold.) 

It can be seen that the type-1 effect is equal to zero. 

 

 

 

Homogeneous profit functions 

2.1. Introduction 

It is possible to get additional results by imposing the assumption that profit 

functions are homogeneous in (q
1
, q

2
, a). This assumption holds in the case of 

profit functions resulting from linear demand functions and quadratic costs: 

π1
 = (a − b·(q1

 + q
2))·q1

 − c·(q1
)

2
 

Another class of profit functions which satisfy the homogeneity assumption is the 

one with unitary price elasticity demand functions and constant per-unit costs: 

http://en.wiktionary.org/wiki/q%CC%83
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π1
 = (a / (q

1
 + q

2))·q1
 − c·q1

 

This assumption has, consequently, a substantial field of application. This 

restriction on the structure of the profit function allows us to obtain closed form 

expressions for the equilibrium variables (q
1*

, q
2*

).  

2.2. Duality approach with homogeneous profit functions 

Euler’s formula allows us to present a homogeneous profit function of degree  L > 

1 in quadratic form.  

Let the profit functions of firms 1, 2 be: 

π1 
= f(q

1
, q

2
, a),  

π2 
= g(q

1
, q

2
, a),  

where f(q
1
, q

2
, a), g(q

1
, q

2
, a) satisfy assumptions (I)-(VI) and are homogeneous of 

degree L1, L2 ≥ 2, in (q1
, q

2, a). By Euler’s formula we get that for every (q
1
, q

2
, a):   

L1· f(q1
, q

2
, a) = f1(q

1
, q

2, a)·q1
 + f2(q

1
, q

2, a)·q2
 + fa(q

1
, q

2, a)·a   (2.1) 

(L1 - 1)·f1(q
1
, q

2
, a) = f11(q

1
, q

2, a)·q1
 + f12(q

1
, q

2, a)·q2
 + f1a(q

1
, q

2, a)·a  (2.2) 

(L1 - 1)·f2(q
1
, q

2
, a) = f21(q

1
, q

2, a)·q1
 + f22(q

1
, q

2, a)·q2
 + f2a(q

1
, q

2, a)·a  (2.3) 

(L1 - 1)·fa(q
1
, q

2
, a) = fa1(q

1
, q

2, a)·q1
 + fa2(q

1
, q

2, a)·q2
 + faa(q

1
, q

2, a)·a  (2.4) 

The profit function can be written in quadratic form:         

π1
 = (1/L1)·(1/(L1-1))·q·D2

f(q
1
, q

2
, a)·qT

,  

where q = [q
1
, q

2
, a], and D

2
f(q

1
, q

2
, a) is the Hessian matrix of the profit function. 

Properties of the Hessian matrix: 

1) At the profit–maximising level of output it holds that f1 = 0, thus the first row of  

the matrix  is othrogonal to the vector q
*T 

 and q
*
 is orthogonal to the first column   

when  the matrix  is evaluated at  q
*
 = [q

1*
, q

2
, a]. 
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2) By ass.(IV)  fa > 0 for every  [q
1
, q

2
, a]. Thus the product of the third row of the 

matrix times the vector q
T
 is strictly positive as is the product of q times its third 

column. 

 3) By ass. (II), f11 < 0. 

4) According to assumption (V. a.), f2 < 0, namely, the matrix evaluated at q =    

[q
1
, q

2
, a], is such that the product of vector q times the second column is negative 

for every q and, correspondingly,  the product of the second row times q
T
  is 

negative, for every q.  

According to assumption (V. b.) the profit function f(q
1
, q

2
, a) has a saddle point 

q
**

= [q
1*

, q
2*

, a], where f1 = 0,  f2 = 0. The matrix, evaluated at q
**

 , is such that the 

product of q
**

 times the first or second column is zero and, correspondingly,  the 

product of the first or second row times q
**T

  is zero. 

At the saddle point q** the type-2 effect is eliminated as f2 = 0. 

Furthermore, the determinant of the submatrix with the derivatives w.r.t. (q
1
, q

2
), 

evaluated at q
**

, is negative. 

The profit-maximising condition referred to in property 1 of the Hessian matrix is: 

 f11(q
1*

, q
2, a)·q1*

 + f12(q
1*

, q
2, a)·q2

 + f1a(q
1*

, q
2, a)·a = 0 

The strategic complementarity/substitutability of strategies q
1
, q

2
 is determined by 

the term f12. 

 In particular, we can state the following proposition.  

Proposition 

Under homogeneity of the profit function f(q
1
, q

2
, a) and assumptions (I) – (III), if 

f1a(q
1*

, q
2
, a) ≤ 0, then f12(q

1*
, q

2
, a) > 0. 

Proof. 

It follows from assumption (II)  (f11<0) and the above equation.■ 

In other words, if an increase in ‘a’ lowers f1, the relation of q
2
 to q

1
 is one of 

strategic complementarity. 
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Proposition 

Under homogeneity of the profit function f(q
1
, q

2
, a) and assumptions (I) – (III), for 

f12(q
1*

, q
2
, a) to be negative , f1a(q

1*
, q

2
, a) has to be positive. 

Proof. 

It follows from assumption (II)  (f11<0) and the above equation.■ 

Consequently, for q
1
, q

2
 to be strategic substitutes, f1a has to be positive.  

Proposition 

Under assumptions (I) – (III), if the second row or column of the Hessian matrix is 

collinear to the third one, then the type-1 effect is eliminated. 

Proof. 

The type-1 effect is eliminated as the condition 

f2/fa = f12/f1a 

is satisfied. This can be seen by taking the collinearity relation into account in 

connection to the equations  (2.3), (2.4) above.■ 

Theorem 2.1. 

Consider firm 1 with a profit function f(q
1
, q

2
, a)  satisfying assumptions (I)-(VI) 

and assumed to be homogeneous of degree L ≥ 2 in (q1
, q

2
, a). 

Then firm 1 has a reaction function implicitly determined by the equation:   

q
1*

 = − (f12(q
1*

, q
2, a)·q2

 + f1a(q
1*

, q
2, a)·a)/f11(q

1*
, q

2
, a)                      (2.5) 

Proof. 

 The profit-maximising condition  is: 

f1(q
1*

, q
2
, a) = 0, 

combined with Euler’s formula 

(L-1)·f1(q
1*

, q
2
, a) = f11(q

1*
, q

2, a)·q1*
 + f12(q

1*
, q

2, a)·q2
 + f1a(q

1*
, q

2, a)·a  
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gives 

 f11(q
1*

, q
2, a)·q1*

 + f12(q
1*

, q
2, a)·q2

 + f1a(q
1*

, q
2, a)·a = 0  

Solving the equation for q
1*  

proves the theorem.■ 

The function  

− (f12(q
1*

, q
2, a)·q2

 + f1a(q
1*

, q
2, a)·a)/f11(q

1*
, q

2
, a)  

is homogeneous of degree 1 in (q
1*

, q
2
, a), irrespectively of L. 

In case f1a = 0, (the type-2 effect is eliminated) the reaction function yields  

q
1*

/q
2
 = − f12/f11 = ∂q1*/∂q2

 

The compensated reaction function is determined by the following theorem. 

Theorem 2.2. 

Consider firm 1 with a profit function f(q
1
, q

2
, a)  satisfying assumptions (I)-(VI) 

and assumed to be homogeneous of degree L ≥ 2 in (q1
, q

2
, a). 

Then firm 1 has a compensated reaction function implicitly determined by the 

equation:  

  
1
 = [(f2·fa1 − f21·fa)·q2

 − L·π1·fa1]/(f11·fa )      (2.6) 

evaluated at (
1
, q

2
, f

−1
(

1
, q

2, π1
)).   

Proof. 

 By Euler’s formula we have: 

L·π1
 = f1(q

1
, q

2, a)·q1
 + f2(q

1
, q

2, a)·q2
 + fa(q

1
, q

2, a)·a, for every (q
1
, q

2
, a). 

Solving for ‘a’, we get: 

a = (L·π1
 - f1(q

1
, q

2, a)·q1
 - f2(q

1
, q

2, a)·q2
)/ fa(q

1
, q

2
, a)  

We take into account that: 

a = f
−1

(q
1
, q

2, π1
) 

http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
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and substitute it in the above equation, thus getting: 

a = (L·π1
 - f1(q

1
, q

2
, f

−1
(q

1
, q

2, π1))·q1
 - f2(q

1
, q

2
, f

−1
(q

1
, q

2, π1))·q2
)/ fa(q

1
, q

2
, f

−1
(q

1
, 

q
2, π1

))  

Differentiating throughout w.r.t. q
1
, we get: 

∂a/∂q1
 =  

[[-(f11+f1a· f1
−1

 )·q1
 - f1 - (f21 + f2a· f1

−1)·q2] ·fa - [L·π1
 - f1·q1

 - f2·q2]·(fa1+faa·f1
−1

)]/(fa)
2
 

Since at 
1 
it is the case that ∂a/∂q1

 =  f1
−1 

= 0, and by eq. (1.8), f1 = 0, the above 

expression becomes: 

∂a/∂q1
 = [[-f11· 1

 - f21 ·q2]·fa - [L·π1
 - f2·q2]·fa1]/(fa)

2 
= 0  

which yields 

[-f11· 1
 - f21·q2]·fa - [L·π1

 - f2·q2]·fa1 = 0, thus, 

1
 = [[f2·q2 

- L·π1]·fa1 - f21·q2·fa]/(f11·fa) = [(f2·fa1 - f21·fa)·q2
 - L·π1·fa1]/(f11·fa) 

Second order conditions are satisfied by assumptions (II), (IV) and Lemma 2■  

The compensated reaction function in the general case (L≠1) is not homogeneous 
in (q

1
, q

2, π1
). 

In case f1a = 0 (type-2 effect is eliminated) the compensated reaction function (2.6) 

yields  

1
/q

2
 = − f21/f11 = ∂ 1/∂q2

 , 

where the second equality is given by eq.(1.23). 

 

2.3. Cournot Equilibrium. 

Theorem 2.3. 

Consider Cournot duopolists 1, 2 with profit functions f(q
1
, q

2
, a) and g(q

1
, q

2
, a), 

respectively,  satisfying assumptions (I)-(VI) and assumed to be homogeneous of 

http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
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degree L1, L2 ≥ 2 in (q1
, q

2
, a). Then the Cournot equilibrium is implicitly 

determined by the equations: 

q
1*

                 (2.7)        

q
2*

=            (2.8) 

where, 

D = −(f1a /f11)·a + (f12 /f11)·(g2a /g22)·a       (2.9) 

Z = 1 − (f12 /f11)·(g21 /g22)          (2.10) 

K = −(g2a /g22)·a + (f1a /f11)·(g21 /g22)·a       (2.11) 

Proof. 

By analogy to firm 1 (Theorem (2.1)), the reaction function of firm 2 is implicitly 

determined by the equation: 

q
2*

 = −(g21·q1
 + g2a ·a)/g22          (2.12) 

evaluated at (q
1
, q

2*
, a). The equilibrium is determined by the system of eqs. (2.5), 

(2.12), namely:  

q
1*

 = − (f12·q2*
 + f1a·a)/f11                   

q
2*

 = −(g21·q1*
 + g2a ·a)/g22   

thus the equilibrium is: 

 q
1*

                                      

 q
2*

=             

where  

 D = −(f1a /f11)·a + (f12 /f11)·(g2a /g22)·a        

  

Z = 1 − (f12 /f11)·(g21 /g22)              
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 K = −(g2a /g22)·a + (f1a /f11)·(g21 /g22)·a       

            ▄  

For the equilibrium to exist it has to be Z ≠ 0. The functions D/Z and K/Z are 

homogeneous of degree 1 in (q
1
, q

2
, a). Consequently, the equilibrium levels of 

output (q
1* 

, q
2*) are homogeneous of degree 1 in the parameter ‘a’. The 

equilibrium profits of firms 1, 2 are homogeneous of degree L1, L2, respectively in 

the parameter ‘a’.  

2.4. Two-stage Cournot competition with homogeneous profit functions 

Consider a two-stage Cournot duopoly model where firms i = 1,2, have profit 

functions of the form: 

i
 = f

 i 
(x

i
, x

j
, q

i
, q

j, a), i = 1,2,  i≠j,       (2.13) 

where x
i
, x

j
, are the first-stage control variables and q

i
, q

j
, are the second-stage 

ones. 

We assume that the functions f
 i
(x

i
, x

j
, q

i
, q

j
, a), i = 1,2, i ≠ j, are homogeneous of 

degree Li ≥ 2 in (x
i
, x

j
, q

i
, q

j
, a).  

Theorem 2.4. 

Consider Cournot duopolists i =1, 2, with profit functions of the form described by 

eq.(2.13), assumed to be homogeneous of degree Li ≥ 2 in their arguments and 

satisfying assumptions (VII)-(XII). 

The second-stage Cournot equilibrium is implicitly determined by the equation: 

q
i*
 = [1/(1 – (f

 i
qiqj/ f

 i
qiqi)·(f j

qjqi/f
 j

qjqj))]·[ – R
i
 + (f

 i
qiqj/ f

 i
qiqi)·Rj

],  (2.14) 

where R
i
 = (f

 i
qixi/ f

 i
qiqi )·xi

 + (f
 i

qixj/ f
 i

qiqi)·xj
 + (f

 i
qia/ f

 i
qiqi)·a,  (2.15) 

R
j
 = (f

 j
qjxi/ f

 j
qjqj )·xi

 + (f
 j

qjxj/ f
 j

qjqj)·xj
 + (f

 j
qja/ f

 j
qjqj)·a,   (2.16) 

i = 1,2, i ≠ j. 
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Proof. 

See APPENDIX  D. 

Notice that the above equations (2.14) – (2.16) determine that q
i* 

is homogeneous 

of degree 1 in (q
i
, q

j
, x

i
, x

j
, a) independently of Li, Lj. Consequently, the second 

stage equilibrium values q
i*
, q

j*
 are homogeneous of degree 1 in (x

i
, x

j
, a). By 

Euler’s formula it holds: 

q
i*
 = (∂qi*/∂xi)·xi

 + (∂qi*/∂xj)·xj
 + (∂qi*/∂a)·a 

Comparing the above equation with the equations (2.14) – (2.16) allows us to 

calculate the intertemporal strategic term ∂qi*/∂xj
 : 

 ∂qi*/∂xj
 = [1/(1 – (f

 i
qiqj/ f

 i
qiqi)·(f j

qjqi/f
 j

qjqj))] [(f
 i

qiqj/ f
 i

qiqi)·(f j
qjxj/f

 j
qjqj) – (f

 i
qixj/ f

 i
qiqi)] 

 

Substituting the second-stage equilibrium functions q
i*
 = q

i
(x

i
, x

j
, a), i = 1,2, i ≠ j 

into the profit function (2.13) determines the second-stage equilibrium profits:  

E
i
(x

i
, x

j, a) ≡ f i(xi
, x

j
, q

i
(x

i
, x

j
, a), q

j
(x

i
, x

j
, a), a)    (2.17) 

The function E
i
(x

i
, x

j
, a) can be checked to be homogeneous of degree Li in (x

i
, x

j
, 

a) 

Theorem 2.5. 

Consider Cournot duopolists i =1, 2, with profit functions of the form described by 

eq.(2.17), homogeneous of degree Li
 ≥ 2 in their arguments and satisfying 

assumptions (I)-(VI). 

The first-stage Cournot equilibrium is implicitly determined by the equation: 

x
i*
 = [a/(1 – (E

i
 xixj/E

i
 xixi)·(Ej

xjxi/E
j
xjxj))]·[(Ei

 xixj/E
i
 xixi)·(Ej

xja/E
j
xjxj) – (E

i
 xia/E

i
 xixi)]  

Proof. 

See APPENDIX  E. 
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2.5. Conclusions 

The main point of this study is that demand theory methods find application in the 

Cournot model. In particular, firm behaviour can be analysed according to the 

substitution effect/income effect approach. The type-1 effect is the counterpart of 

the substitution effect and is motivated by the dual problem of minimising a market 

demand parameter subject to a given level of firm profits. This involves a positive 

or negative compensation in terms of the value of the market demand parameter. 

When withdrawing the compensation a further adjustment of firm output takes 

place which determines the type-2 effect. In more general terms, the type-1 effect 

is determined by the minimisation of a market demand parameter subject to a given 

level of firm profits, whereas the type-2 effect is associated to a change in firm 

profits. 

In examining the structure of the type-1 effect, Theorem 1.3. points out that 

separability (and not linearity) of the market demand function is the property 

which determines whether the type-1 effect arises or not. 

Net strategic complementarity/substitutability captures the effect of the rival’s 
action on firm 1’s marginal compensation (∂a/∂q1

) and determines the slope of the 

compensated reaction curve. 

The proposed approach finds broad application, both for the analysis of the 

behaviour of price-setting duopolists and on Cournot competition in two stages.  

Furthermore, results can be obtained under the assumption that the firms’ profit 

functions are homogeneous in the market demand parameter and their levels of 

output. This property can be exploited to implicitly determine the reaction 

functions of the firms and, consequently, the Cournot equilibrium.  
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APPENDIX  A. 

PROOF OF LEMMAS. 

1. Differentiating (1.7) w.r.t. q
1
 yields (1.8).  

2. Differentiating (1.8) w.r.t. q
1
 yields (1.9). 

3. Differentiating (1.8) w.r.t. q
2
 yields (1.10). 

4. Differentiating (1.7) w.r.t. q
2
 yields (1.11). 

5. Differentiating (1.7) w.r.t. 
 1
 yields (1.12).  
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6. Differentiating (1.12) w.r.t. q
1
 yields (1.13). 

7. Differentiating (1.7) w.r.t. c
1
 yields (1.14). 

 

 

APPENDIX  B. 

By duality  

q
1*

 = b
1
(q

2
,  A(q

2
, 

1*
, c

1
),  c

1
) ≡ h1

(q
2
, 

1*
, c

1
) = 

1   
    (i) 

where A(q
2
, 

1*
, c

1
) = ã 

 

Differentiating (i) totally w.r.t. q
2 
we get 

  dq
1* 

/ dq
2
 = ∂q

1*/∂q2
 + (∂q

1*/∂a)·(∂ã /∂q2
) = ∂ 1/∂q2

    (ii) 

To express equation (ii) in terms of profit function derivatives, we proceed as 

follows: 

Eq.(1.4) is totally differentiated  w.r.t. q
2 
while taking (1.5) into account,  

f11(q
1*

, q
2
, a, c

1) · ∂q1*/∂q2
 + f12(q

1*
, q

2
, a, c

1
) = 0, thus 

∂q1*/∂q2
 = - f12(q

1*
, q

2
, a, c

1
)/ f11(q

1*
, q

2
, a, c

1
)      (iii) 

Totally differentiating (1.4) w.r.t. a
 
while taking (1.5) into account yields 

 f11(q
1*

, q
2
, a, c

1) · ∂q1*/∂a + f1a(q
1*

, q
2
, a, c

1
) = 0, thus 

∂q1*/∂ a = - f1a(q
1*

, q
2
, a, c

1
)/ f11(q

1*
, q

2
, a, c

1
)      (iv)  

  

Evaluating (1.11) at 
1
 we get 

f2(
1
, q

2
, ã  , c

1
)  + fa(

1
, q

2
, ã , c

1
) ·  f 2−1

 (
1
 , q

2
, 

1*
, c

1
)  =  0 ,  

where ã 
= f 

−1
 (

1
 , q

2
, 

1*
, c

1
) = A(q

2
, 

1*
, c

1
) 

 

thus, f 2
−1

 (
1
 , q

2
, 

1*
, c

1
) =  ∂ã /∂q2 

= - f2(
1
, q

2
, ã , c

1
) / fa(

1
, q

2
,  ã, c

1
)   (v) 

http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
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By equations (i), (ii), (iii), (iv) and (v) we get 

∂ 1/∂q2 
= - f12/ f11+(f1a/ f11)·(f2/fa)          

where the derivatives are evaluated at  (
1 

, q
2
, ã, c

1
) = (q

1*
, q

2
, a0, c

1
), since 

1*  
is 

s.t.   

A(q
2
, 

1*
, c

1
) = ã  = a0. 

  

 

 

APPENDIX  C. 

 According to eq.  (1.23) 

∂ 1/∂q2 
= (f1a·f2 – f12·fa)/(f11·fa)    

 Considering firm 1’s profit function  

f(q
1
, q

2
, a) = P(q

1
+q

2, a)·q1
 - c(q

1
)  

 the relevant derivatives are: 

f 12  = PQQ · q1 
+ PQ          (i) 

f1a = PQa · q1
 + Pa         (ii) 

f2 = PQ · q1
          (iii) 

fa = Pa · q1
          (iv) 

where PQ is the derivative of the inverse market demand function w.r.t. Q, PQQ  is 

the second derivative w.r.t. Q, PQa is the second derivative w.r.t. (Q, a) and Pa is the 

derivative w.r.t. a. 

Taking eqs. (i) – (iv) into account,  

 f1a·f2 – f12·fa =  (PQa · q1
 + Pa) · (PQ · q1

) – (PQQ · q1 
+ PQ) · (Pa · q1

)  (v) 

Consider the identity  

http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
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Q ≡ D(P(Q, a), a)  

Differentiating throughout w.r.t. Q we get 

1 = Dp(P(Q, a), a) · PQ(Q, a)        (vi) 

Differentiating eq. (vi) throughout w.r.t. Q we get 

0 = Dpp(P(Q, a),a) · (PQ(Q, a))
2
 + Dp(P(Q, a), a) · PQQ(Q, a)   (vii) 

Differentiating eq. (vi) throughout w.r.t. the parameter ‘a’ we get 

0 = (Dpp(P(Q, a), a)·Pa (Q, a)+Dpa(P(Q, a), a))·PQ(Q, a) + Dp(P(Q, a), a)·PQa(Q, a)   

 (viii) 

Taking eqs. (vii)-(viii) into account, in substituting PQQ , PQa  into eq. (v) yields 

f1a·f2 – f12·fa =   

[(-(Dpp · Pa + Dpa) · PQ /Dp) · q1
+Pa]·(PQ·q1

) – [(-Dpp·(PQ)
2
 /Dp )· q1 

+ PQ]·(Pa·q1
)  

where the arguments are ignored to simplify the expression. 

Thus, doing the algebraic calculations and taking (vi) into account, we have 

  f1a·f2 – f12·fa   = - Dpa · (PQ · q1
)

2
/Dp  = - Dpa · (q1

)
2
/(Dp)

3
   

evaluated at (
1
, q

2
, ã) = (q

1*
, q

2
, a0), Q = 

1 
+ q

2
 = q

1*
 + q

2
.                

Eq. (1.23) in conjunction with the above equality proves the theorem. 

APPENDIX  D. 

Firm i’s profit function homogeneity implies, by Euler’s formula, that: 

(Li − 1)·fqi = fqixi·xi 
+ fqixj·xj

 + fqiqi·qi
 + fqiqj·qj

 + fqia·a, 

At the profit maximizing value of q
i
 it holds that fqi = 0. The above equation, thus, 

becomes: 

fqixi·xi 
+ fqixj·xj

 + fqiqi·qi
 + fqiqj·qj

 + fqia·a = 0 

Solving for q
i
, we get: 

http://en.wiktionary.org/wiki/q%CC%83
http://en.wiktionary.org/wiki/q%CC%83
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q
i
 = − (1/fqiqi)·( fqixi·xi 

+ fqixj·xj
 + fqiqj·qj

 + fqia·a) 

which implicitly determines firm i’s reaction function. 

Similarly for firm j: 

q
j
 = − (1/fqjqj)·( fqjxj·xj 

+ fqjxi·xi
 + fqjqi·qi

 + fqja·a) 

which implicitly determines firm j’s reaction function. 

Solution of the system of the two reaction function equations yields: 

q
i*
 = [1/(1 – (f

 i
qiqj/ f

 i
qiqi)·(f j

qjqi/f
 j

qjqj))]·[ – R
i
 + (f

 i
qiqj/ f

 i
qiqi)·Rj

],   

where R
i
 = (f

 i
qixi/ f

 i
qiqi )·xi

 + (f
 i

qixj/ f
 i

qiqi)·xj
 + (f

 i
qia/ f

 i
qiqi)·a,   

R
j
 = (f

 j
qjxi/ f

 j
qjqj )·xi

 + (f
 j

qjxj/ f
 j

qjqj)·xj
 + (f

 j
qja/ f

 j
qjqj)·a,   

i = 1,2, i ≠ j.     ■ 

APPENDIX  E 

The homogeneity of E
i
(x

i
, x

j, a) implies, by Euler’s formula, that: 

(Li – 1)·Ei
 xi = E

i
 xixi·xi

 + E
i
 xixj·xj

 + E
i
 xia·a, 

At the profit maximizing value of x
i
 it holds that E

i
 xi = 0. The above equation, 

thus, becomes: 

E
i
 xixi·xi

 + E
i
 xixj·xj

 + E
i
 xia·a = 0 

Solving for x
i
, we get: 

x
i
 = – (1/E

i
 xixi)·(Ei

 xixj·xj
 + E

i
 xia·a), i =1,2, i ≠ j 

which implicitly determines firm i’s first stage reaction function. 

Similarly, j’s reaction function is implicitly determined by the equation: 

x
j
 = – (1/E

j
 xjxj)·(Ej

 xjxi·xi
 + E

j
 xja·a), 

Solution of the system of reaction function equations for the two firms yields: 

x
i*
 = [a/(1 – (E

i
 xixj/E

i
 xixi)·(Ej

xjxi/E
j
xjxj))]·[(Ei

 xixj/E
i
 xixi)·(Ej

xja/E
j
xjxj) – (E

i
 xia/E

i
 xixi)]  
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which implicitly determines the first-stage Cournot equilibrium. ■ 

  

 

  

 

 

 


