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Abstract

This paper proposed a new optimal design of Early Warning Systems (EWS) to detect
early warning signals of an impending financial crisis. The problem of EWS was formulated
from a policy maker’s perspective. Hence the probability threshold was obtained by
minimizing the policy maker’s welfare loss. This paper employed the state-of-the-art
Bayesian Quickest Change Detection (BQCD) as the methodology to detect the early
warning signals as soon as possible. We showed that the BQCD method outperformed
the Logit model used in traditional EWS models based on results of simulation exercise
and the out-of-sample predictions of the 1997 Asian financial crises. We found that not
only early warning signals were stronger prior to a crisis, but also stronger warning signals
appeared more frequently. The BQCD method was sensitive to the increase in frequency,

hence out-performed the traditional Logit-EWS model.

Keywords: early warning system, financial crisis, monetary policy, Bayesian quickest change
detection, optimal stopping
JEL code: E5, F3

1 Introduction

1.1 Motivation

In the past few decades, we saw a large number of financial disruptions often with devastating

economic and social consequences. As a result, international organizations begun to develop

*Department of Economics, University of Wisconsin-Madison, 1180 Observatory Dr. Madison, WI 53706-
1393, USA. Tel: 1-608-2620200. Email: hli26@Qwisc.edu

I am grateful to my main adviser Steven Durlauf for his advice and inspiration. I’d like to thank William
Brock and Noah Williams for their help and advice. The project benefited from suggestions from seminar
participants at UW-Madison. All mistakes are of the author. The latest version of this paper can be found in
the following link: http://dl.dropbox.com/u/22521981/Early_Warning_System_Working_ Edition.pdf



Early Warning System (EWS) models with the aim of anticipating whether and when a country
may be affected by a financial crisis. EWS models can have substantial value to policy makers
by allowing them to detect symptoms of financial disruptions sufficiently in advance to take
preemptive measures to reduce risks of financial crises. As stated in IMF (2010), the primary
purpose of EWS is to identify vulnerabilities that predisposes an economy to a crisis, so that
preemptive policies can be implemented. Hence such an alarm system constitutes a crucial part
of measures taken by authorities to prevent financial crises and facilitate financial stability.

Two main approaches are developed since the early contributions of EWS models by
Kaminsky et al. (1998) and Berg and Pattillo (1999): the leading indicators approach and
the discrete-dependent-variable approach.

The leading indicators approach developed by Kaminsky and Reinhart (1999) and Kamin-
sky et al. (1998) considers various indicators and transforms them into binary signals. For
example, when an indicator falls above a given threshold, this particular indicator will flash
a red light. The information from different indicators is aggregated into a composite measure
of probabilities of an impending crisis. The level of the threshold which is predetermined is
of great importance, since the lower the threshold, the more signals will this indicator send,
hence the cost of false alarm will increase.

Berg and Pattillo (1999) first popularized the discrete-dependent-variable approach. It
assumes the probability of an impending financial crisis depends on a non-linear function of
the indicators, i.e. Pr(Y =1) = F (X[). Then, one needs to specify a threshold 7" beyond
which the predicted probability can be interpreted as issuing an alarm of an impending financial
crisis. The key issue is how to determine the threshold. The lower it is, the more alarms will
be issued, hence, the cost of false alarm (Type 1 error) will increase. On the other hand, if it
is chosen too high, it will be more likely to miss crisis signals (Type 2 error). The trade-off
problem has been considered in the EWS literature. Criterion such as Noise-to-Signal Ratio
has been used. But this criterion is based on statistical measures, which do not represent the
cost of false alarm and delay detection. As Bussiere and Fratzscher (2008) and Candelon et
al. (2010b) pointed out that the threshold T is chosen with no explicit reasons in standard
EWS models.

In order to model costs of the two types of mistakes, the policy maker’s problem needs to
be considered in the optimal design of EWS. In other words, the problem of EWS should be
framed as the policy maker’s problem. Gramlich et al. (2010) pointed out that a critical element
of the optimal design of EWS model is the tight correspondence between the outcome of EWS
model and the objective of its user. Davis and Karim (2008) argued that it is important
to consider policy maker’s objective in the design of EWS model and determination of the
thresholds since there is trade-off between the two types of mistakes.

Bussiere and Fratzscher (2008) first explored issues of the optimal design of EWS models

from a policy maker’s perspective, since both the outcome of an EWS model and the policy



reaction are discrete events. The authors proposed a simple objective function of the policy
maker to demonstrate the necessity of incorporating policy maker’s preference in the optimal
design of EWS. The objective function took the following form: L (T) = 6p (T)+ (1 — 6) ¢ (T),
where p is the probability of a missed crisis and ¢ is the probability of issuing an alarm but
the crisis did not occur, 6 is the relative cost of missing a crisis. The authors also listed three
critical components of the optimal design of EWS: the degree of risk aversion 6 of missing
a crisis, the forecast horizon of the model, and the probability threshold T for issuing crisis
alarms. 6 is of fundamental importance, once it is determined, the threshold 7' is uniquely
determined, and it depends on the relative cost of a crisis and the policy maker’s preference.

This paper is considered as a continuation of Bussiere and Fratzscher (2008)’s effort. We
will frame the problem of early warning system models as the policy maker’s problem. The
policy maker will extract information from standard Logit-EWS models about the likelihood
of an impending financial crisis, and determine the timing to take preemptive actions. To
determine the optimal timing of preemptive actions, the policymaker will have to strike a
balance between costs of the two types of mistakes: false alarm and delay detection.

As we will argue later, to detect the vulnerability of the economy and determine the timing
of preemptive action to be taken is inherently a quickest change detection problem which has
been studied intensively in engineering and mathematics. We are going to adopt this method

to solve the policy maker’s problem.

1.2 Quickest Change Detection

Quickest change detection deals with the design and analysis of techniques for quickest detec-
tion of a change in the state of observed stochastic processes. More thorough review and list
of references can be found in Polunchenko and Tartakovsky (2011) and Zacks (1991). In many
problems, when the state representing the pattern of behavior of observed stochastic processes
undergoes a change, one is interested in detecting the change as soon as it happens.

In general, observations arrive sequentially, and if it is believed that the observations are
generated from the normal state, it is let to continue. If it is believed that the state has
changed, it is one’s interest to detect the change as soon as possible, so that an appropriate
response can be made in a timely manner. The decision needs to be made in real time with
available data. However, any detection policy will give rise to two types of mistakes: false
alarm and delay detection. The optimal detection policy will need to strike a balance between
costs of the two types of mistakes.

Quickest change detection has applications in many fields, such as signal processing, au-
tomatic control and so on. It started in the 1920-1930’s designed to deal with quality control
issues. Omne of pioneering work is Shewhart (1931), who popularized the Shewhart’s charts.

More efficient sequential detection procedures were developed later in the 1950-1960’s after



the emergence of Sequential Analysis(Wald, 1947). This leads to a large amount of literature
on both theory and practice of sequential change-point detection.

The Bayesian Quickest Change Detection problem was first proposed and solved by Shiryaev
(1963, 1978). Consider a random sequence {Zy,k = 1,2,...} with a random structural break
time 6, conditional on 0, {Zx,k =1,2,...} is an independent sequence with Z;...Zy_1 being
ii.d. with marginal distribution Qg and Zy, Zg,1, ... being i.i.d with marginal distribution Q1.
The objective is to find a stopping time T that solves the following problem:

%IéfT{P(T<9)+cE(T—0)+}. (1.1)

P (T < ) is the frequency of false alarm and E (T —6)" is the expected length of delay
detection. The optimal stopping time T™ must strike a balance between these two conflicting
objectives. The constant ¢ > 0 is the relative weight assigned to the expected length of delay
detection.

The monetary policy maker’s problem when facing an impending financial crisis, is in-
herently a quickest change detection problem. The behavior of the early warning signals X
changes prior to a crisis, indicating vulnerability of the economy. The policymaker needs to
detection the change as soon as it happens and take preemptive action to attenuate the risk

of an impending financial crisis.

2 The Model

2.1 The Stochastic Process

There are two regimes of the economy, the economy starts with the tranquil regime then
jumps into a financial crisis at some random and unobservable time v. Assume there is a

D-dimensional controlled stochastic process & with u; as the control. The process is given by
dft = k,y (€t7 ut) dt + O'th

with
0, t<v
’y:
1, t>v

There is a structural break in the controlled stochastic process at time v, v is a random variable

with probability measure ¢ as the prior:

¢ (v
¢ (v

0) = =
) = (1—me ™, A>0.

v



As assumed in the EWS literature, There is a collection of early warning signals, whose
behaviors will start to change h periods before v, where h is deterministic. Even though the
reasons that caused a financial crisis might be different from case to case, it might be possible
to identify a common pattern of the behaviors of the early warning signals that is detectable
prior to a financial crisis. Once the common pattern of the early warning signals starts to
show the vulnerability of the economy, it is in the policy maker’s interest to detect the change
in the pattern as soon as it appears and take preemptive action. Hence, it is assumed that the
joint distribution of the early warning signals will change at random and unobservable time

0 = v — h. More formally, the policy maker is conducting a hypothesis test sequentially™:
e HO: no financial crisis will happen within the following h periods
e H1: a financial crisis will happen within the following h periods.

It can be interpreted that at random time 6, the behaviors of the early warning signals will start
to support the alternative instead of the null. The policy maker will conduct the hypothesis
test sequentially. Once the alternative is accepted, the policy maker will take preemptive
actions to prevent the crisis. The policy maker will choose a stopping time T ex-ante to

determine the timing to take preemptive actions optimally.

2.2 The Sequential Decision Rule

It is conventional wisdom that commitment monetary policy making is superior to discre-
tionary monetary policy making. It has been standard to assume the central bank is com-
mitted to a policy rule once for all, assuming the model of the economy never change. How
to specify a commitment policy rule when the environment of the economy changes is an
important question.

In this paper, we assume the policy maker is committed to a sequential decision rule

(T, ur+), which is specified as follows

ug; before T declares stopping
UT’t = s (22)
uiy after T declares stopping

where
uy 4 after T declares stopping, before T-+h

ulfy after T+h

Where ug; is the policy rule that is appropriate when the economy is in the tranquil period,

once stopping time 1" declares that there is enough warning of a pending financial crisis, policy

*More detailed discussion can be found in Subsection 2.6



maker will take temporary preemptive policy rule u’lvt. After the preemptive action is taken,
policy rule u’2’7t will be adopted which is appropriate in the regime of post crisis.

The central bank is committed to a simple rule ug; first, but the life span of this commit-
ment is a random variable, the timing at which the central bank decides to switch to a different
policy regime is determined by newly arrived information and a principle that is chosen at
the beginning of the commitment optimally, i.e. the stopping time T'. The principle that the
central bank is committed to specifies a rule (7') that determines that should the central bank
continue the current commitment or switch to a new policy regime, given the information

available at the time.

2.3 The Probability Measure

Consider the following measurable spaces
1. (®,7) = (C[o, 00)? x (RY)? B (C[O,oo)D X (R+)2)),
2. (4,0) = (C[0,)” x R*, B((C[0,50)P) x R*)),

where C[0, 00) is the space of continuous functions. We consider the following filtration G; =
o{T <s,&,s <t} and J; = o{k,l,&,s <t}. J; is the information sets when the policy
maker has full information: they know the structure break happens at [, and policy regime
switches at k. G; is the information of the policy maker at .

Without loss of generality, assume ¢ = 1. For any given k € RTand [ € R™, here k
represents the realization of stopping time T and [ represents the realization of structure
break time . When k <[, define function

K (s) = ko (&6, 0t) Lisany + ko (€5, u1e) Lipesciony + k1 (s, u1e) Lignesys
when [ + h > k > [, define function
K (s) = ko (&6 u0r) Ligany + ko (€6 w1e) Lipes<iony + k1 (o, u10) Lignes)-
Given a probability space (€2, F, Py), and a D-dimensional Brownian motion
W= {Wt - (Wf”, ...,W}D)) LV FL0<t < oo}

defined on it with Py (W, = 0) = 1. We can define the following Radon-Nikondym derivative
and define the corresponding probability measure.
When k <, let

ClPk’l t 2 k.1, (d) 1/t 2
- = _ KR dW(d)—/ HK’“ H ds b - 2.3
= exp{ | R s awi [R5 o) (23)

d=1




when [ + h > k > [, define

aPyt ' & kL, (d) @ LN kP
i :exp{—/o ZK+ (s) dWy —2/0 HK_ (s)H ds p. (2.4)

For any k and [, define

dpkt  qpt dpt!
= ——lp<y + - Lasnsksn-
dPy ~ dp, =BT gp, =

The next thing we need is to average out [ and k, with prior ¢ and probability measure Py to
be defined below.
For a given stopping time T, define

We have that T,, is a stopping time and lim,,_,, T, = T™*. Define probability measure
Py (Th (w) = E|l) = PPl weN: T, (w)=k),

given a stopping time T', and correspondingly defined T),, Py, tells us the probability of
T, = k, when structure break happens at .

For any event A € A,

Ey (1ga)) = lim i {ngn (Tn (w) = 2%9) pEd (A)}.
m=0

PR (A) is the probability of observing event A, given structure break happens at [ and policy
switch at k. Ejy (1{A}) tells us, given stopping time 7', and structure break happens at [, the
probability of observing event A. Compare to P¥!(A), we just average out the randomness
in stopping time T'.

Py (A) = Eg {1(a}} (25)

Py (A) is the probability of A conditional on 6.

Now we can use the prior distribution for 6 to average out [, for any event A € A

P(A) = Ex (Eo (11a})) - (2.6)

*For more details, please see Problem 2.24 of Karatzas and Shreve (1991).




FE; is defined with respect to prior distribution ¢, expectation operator E is defined with
respect to probability measure P.
The existence of probability measure P under which the process & is Brownian motion is

guaranteed by Novikov condition*

E{exp <;/OtHKk’l(s)H2ds>} < 005
o (5 [ |8 o )} <

2.4 The Objective Function

Now consider k and [ are both deterministic, k is the time that policy maker choose to preempt,
l is the time that the behavior of the early warning signals start to change.

The pattern of early warning signals will change at [ indicating the vulnerability of the
economy, the policy maker tries to detect the change, and will switch policy regime once an
alarm is triggered. Once an alarm is issued, the policy maker will take temporary preemptive
action, which is a temporary policy rule that will last h periods, then he will switch to a policy
rule that is appropriate in the second regime. To do so, the policymaker will make two types
of mistakes: false alarm, that the policy maker respond before [, i.e. k <[; delayed detection,
that the policy maker respond after [, but before [ + h, i.e. [ <k <[4 h . [ is unobservable
in case k <[, since in general, once preemptive action is taken, the transition of the economy
from regime 1 to regime 2 might not be observable. If the policymaker fail to take preemptive
actions before [ + h, then the financial disruption will manifest itself, and it will be observable

when it happens.

v (k‘, l) = V_ (k, l) 1{k§l} + V4 (k, l) 1{l+h2k>l}

More precisely, in the domain of false alarm, when k£ <

k k+h
v_ (k1) = E_ {/O e_ptL(ft,uOt)dt+/k e—PtL(Et,u’u)dt}

l+h %)
o [ ety [ ienya)
k+h I+h
A&, = ko (&,uor) dt +odWy, t <k
d& = ko (&,ult)dt—l—ath, k<t<k+h
dft = ko(ft,u'{t)dt—{—oth,k‘—!—h<t§l—|—h
dft = k’l (ét,u/ft) dt + O'th, l -+ h < t.

*More details about this condition can be found in page 199 of Karatzas and Shreve (1991)



In the domain of delayed detection, when [ + h > k > [

k l+h oo
vy (k1) = E4 {/0 e UL (&, uot) dt + /k e PlL (&, u'lt) dt + /l e P'L (ft, u'llt) dt}

+h
d&y = ko (&, uor) dt +odWy, t < k

dé = ko (&, uyy) dt+odWy, k<t <Il+h
d{t =k (gt, Ulllt) dt + O'th, l+h<t.

The policy maker’s problem can be written as
inf £{v(T,0)—v(0,0
nf E{v(T,6) —v(6.0)}

Proposition 1. The policy maker’s objective function E{v(T,0) — v (6,0)} can be approxi-
mated by
E{=v"(0,0)(0 —T)" +1, (¢,0) hlirspy}.

Proof. Please see Appendix B. O

The policy maker’s problem can be approximated as

inf B{=0/(0.0)(6 =T)" + v/, (6/.0) higrag)}-

We can further simplify the objective:

E{(} (67,0) [(0 =T)" + hlirsey]) } -
Define probability distribution function

F) Uﬁr (0+7 9)

= B,
0 K 0

where K = v/ (§%,0) Py (Q). Based on Py, we can define expectation E, hence the problem

can be converted to

%Ielg_{E [c(0—T)*]| + P (T > 0)}, 2.7)
where
vl (0,0)
WL (61,0)

c is the relative cost ratio, it is the ratio of the speeds of increase in losses associated with
the two types of mistakes. When ¢ > 1, that means the increase in loss of false alarm is faster
than that of delay detection, hence higher weight should be put on the expected length of false

alarm.



Proposition 2. At any time t, given deterministic k and l, if the expected period loss function

can be written as
E{L; (1)} =L (Lgsky Lp=iy) »

then ¢ = —% is a constant.
+ b
Proof. Please see Appendix D. O

2.5 Discrete Time Version

In this subsection, we formulate the policy maker’s problem in discrete time analogous to that

of continuous time. The objective in continuous time has the same form as in discrete time

%relfT{E[c(e—T)ﬂ +P(T>9)},

where
o v-(0,0) —v_(0—1,0)
ST 010 v (6.0) (25)

we simply use growth rate to replace time derivative.

Assume geometric prior distribution

7 itk=0
p(@=k)= _ . (2.9)
(1—=m)p(1—p) itk=12..

Define m; = P (0 < t|F;), which is the posterior probability of structure break happening
before t.

Proposition 3. Assume E (0) and E (T) are finite, then

71
Elc(0-T)"+P(T>0) :E{ce— Zc(l—wm)—i-ﬂ;r_l}

m=0
Proof. Please see Appendix C. O

The next Proposition asserts that the relative cost ratio c is a constant under certain

conditions in discrete time.

Proposition 4. At any time t, given deterministic k and [, if the expected period loss function
can be written as
E{L; (k,1)} = L (Lgsry, Lpspy) »

v_(0,0)—v_(6—1,6) -
T (0+1,0)—vs (0,0) 1S O constant.

Proof. Please see Appendix E. O

then ¢ =

10



2.6 The Evolution of Posterior Probability

There are a collection of early warning signals X, the behavior of these early warning signs
are different prior to a financial crisis. This one of fundamental assumption in EWS literature
that the behavior of some particular variables is discernibly different in some periods before
a crigis from that in the tranquil periods. Our job is to detect the change in this behavior.

Consider the following two alternatives
e HO: no financial crisis will happen within the following h periods
e HI1: a financial crisis will happen within the following h periods.

Define dependent variable Y = 0 when the null is true, and Y = 1 when the alternative is

true. We will run a Logit model on historical data and obtain conditional probability:

1
Pr(Y; =11X;) =
r(¥e=11X:) 1 —exp (—X;0)
Pr(Y;=0|X;) = 1-Pr(Y;=1/X).

The likelihood ratio is defined as the probability of observing X; given the alternative is true
divided by the probability of observing X; given the null is true. Hence, by this definition

_ Prxvi=1)

LX) = Pr(X,|Y; = 0)
_ Pr(Yi=1X)Pr(¥i=0)
~ Pr(Y; =0[X;) Pr(Y; =1)

The unconditional probability Pr(Y; = 0) will be taken as the prior .

The posterior probability 7, = P (6 < k|Fy), k = 0,1, .. consists a sequence {m} evolves

according to the recursion

L (Xg) [mp—1 +p (1 — 1))
L(Xp) [me—1+p (1 —me-1)] + (L= p) (1 = mp—1)

T =

2.7 Solution Method

The policy maker’s problem has been converted to

TeT

T—1
inf E{ce— Zc(l—wm)+7TT_1}, (2.10)

m=0

the prior is given by Equation 2.9.

The solution of the discrete time version is similar to section 4.3 of Shiryaev (1978).

11



Let g(m) = m — ¢(1 —m), and define operator Q similar to equation (4.128) in Shiryaev
(1978)
Qlg(n) =min{g(n), 7 —c(l—7) + Exg (x')},m € [0,1].

Then the value function given 7 is
v(m) = lim Q"¢ ()
n—oo

v(m) =min{g(7), 7 —c(l—m)+ Ezv ()},

and the stopping time
T*=inf{n>0:v(m,) =m —c(l—m,)} (2.11)

is the optimal stopping time.

3 Quantitative Study

In this paper, we borrow Zampolli (2006)’s model to study currency crises. Zampolli (2006)
models large adjustments in asset prices with a Markov regime-switching model. There are
two regimes of the economy: bubble regime and no-bubble regime. When the economy is
the the bubble regime, exchange rate will experience sustained deviations from fundamentals.
When the economy is in the no-bubble regime, exchange rate fluctuates around its funda-
mentals. When the economy switches from bubble regime to no-bubble regime, the exchange
rate collapses and a currency crisis happens. The evolution over time of the two regimes is
described by a Markov chain.

In this paper, we borrow the idea of two regimes of the economy to model currency crisis,
in order to address the timing issue, we follow the construction of Shiryaev (1963)’s Bayesian
Quickest Change Detection problem. We assume the economy starts with the bubble regime,
and then the jumps into no-bubble regime at some random time v.

Zampolli (2006) modified Ball (1999)’s small open economy model:

Yer1 = oy — B (i —m) — xar + e (3.12)
1 = Ome+yye — f (ar —ag—1) + & (3.13)
ar = prag—1 + K (iy — m) + v (3.14)

where
po > 1 ift <w,

,01:0 ift > v.

12



Equation 3.12 is the open-economy IS curve, where y; is output gap, iy — 7 is real interest rate.
Equation 3.13 is the open-economy Phillips curve, where m; is inflation, a; is real exchange
rate. Equation 3.14 is the reduced form equation that relate the real exchange rate with real
interest rate and transitive shocks. When ¢ < v, the real exchange rate exhibits bubble like
behavior, this can allow the real exchange rate to grow away from it fundamental value, when
the regime switches, the real exchange rate collapses towards its fundamental value.

The policy rule can be specified as

it = fyys + frme + faap—1.

The objective of the policy maker is given by
Z B [var (m) + Avar ()] -
t=0

The economy starts with bubble regime, at time v, the real exchange rate will experience
abrupt reversion to its fundamental value. The policymaker is monitoring a set of indicators,
whose joint distribution will change at § = v — h, and determine the timing to take preemptive
action to reduce to risk of the pending financial disruption. Preemptive action is necessary in
this model since the policy effect is delayed.

Three elementary policy rules in the sequential decision rule is determined by the following
method. wug, is the optimal policy rule in regime 1, uf, is the optimal policy rule in regime 2,
uy, is the optimal policy rule given wug; and uf, and the timing of policy is set at one period
before the time of regime switch. up, and v}, are solved with the method provided by Zampolli

(2006) with the transition matrix
10
P = ,

where initial state set at 1 and 2 respectively.

With this model and the parameter values taken from Zampolli (2006), we can compute
¢ = 1.7857 according to Equation 2.8. The optimal stopping 2.10 can be solved with the
method presented is Subsection 2.7. The result can be presented in Figure 1. As is shown in
Figure 1, 7* is determined by the optimality condition 2.11. 7* separates the space of 7 into
two regions: continuation region and stopping region. The optimal stopping time is defined

as the first time m; jumps from continuation region into stopping region.

13
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Figure 1: Optimal Stopping

3.1 Data

Most of the data was extracted from IFS database, some are extracted from national banks
of the countries under analysis via Datastream™. It consists of monthly observations from Jan
1986 through Dec 1998 for 15 emerging countries!.

Following Candelon et al. (2010a), variables of interest include the annual growth rate of
international reserves, annual growth rate of imports, the annual growth rate of exports, the
ratio of M2 to foreign reserves, and the annual growth rate of M2 to foreign reserves, the
annual growth rate of M2 multiplier, the annual growth rate of domestic credit over GDP, real
interest rate and real exchange rate overvaluation. To reduce the impact of extreme values,

all variables are dampen using the formula f (z;) = sign (z;) In (1 + |z¢]).

3.2 Definition of Currency Crises

Following Candelon et al. (2010a), we use the KLR modified pressure index

DNent  0c Arpy

Oe .
+ 7Aln,t7
En,t Or Tngt g;

KLRm,,; =

where e, ; denotes the exchange rate, r,; denotes the foreign reserves of country n in period ¢,
while ¢, ; denotes the interest rate of country n at time t. o, denotes the standard deviation

of the growth rate of variable x, where = denotes the corresponding variable. A currency crisis

*Data is provided by Candelon et al. (2010a).
J(Argentina, Brazil, Chile, Indonesia, Israel, Malaysia, Mexico, Morocco, Peru, Philippines, South Korea,
Turkey, Thailand, Uruguay and Venezuela.

14



is defined as the pressure index exceed two standard deviation above the mean:

o 1, if KLRm,,; > 20 +
Crisis,; =
0, otherwise.

Using such definition is appropriate if one views crises from the standpoint of a policymaker,

who is interested in both successful and unsuccessful speculative attacks.

3.3 Repetition of Similar Early Warning Signals

Given an estimation of the Logit model Pr(Y|X;) = F (5X;) from historical data, suppose
we have received similar early warning signals continuously, that means we have received
similar observations X for several consecutive periods. This will give us the same estimated
probabilities for a number of consecutive periods.

Consider the following imaginary scenarios demonstrated in Figure 2. In Scenario 1, the
estimated probability remains at 20%, except a spike of 40%. In scenario 2, the estimated
probability remains at 40%. In scenario 1, the 40% estimated probability may be generated
by some random events. In scenario 2, the probability remains high at 40% consecutively.
The repetition of similar early warning signals may indicate some fundamental problems with
the economy. The alarming signal should be stronger as the repetition goes on. With the
traditional Logit-EWS models, the repetition is not taken in consideration so that the two
scenarios can not be distinguished. If the threshold is set above 40%, the warning signals will
be missed in both scenarios, no matter how many time the early warning signals are repeated.
If the threshold is set lower that 40%, then alarm will be issued in both scenarios. Neither
way is desirable.

The BQCD method can appropriately account for the repetition of early warning signals.
As can be seen in Figure 2, in Scenario 2, the posterior probability labeled by Bayesian Quickest
Change Detection is getting higher as long as we see the same warning signals repeatedly. An
alarm will eventually be issued. If the threshold is set higher, more repetitions will be needed.
Bayesian updating will enhance repetitive warning signals, which will make detecting the
warning signs easier. This is one of the reason why Bayesian Quickest Change Detection
method can perform better that traditional Logit-EWS models. One might ask why is being
sensitive to repetition important. Notice the aim of both methods is to detect the change
of the underlying data generating process of warning signals. If the data generating process
has changed, not only we will observe data that supports the alternative, but we will observe
that more often. The state-of-the-art BQCD method is keen to manifest the increase in the
frequency of data that supports the alternative. This ability does not render the BQCD
method perform marginally better, but it is of fundamental importance to the task of quickest

change detection.
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Figure 2: A Demonstration

4 Simulation Exercise

We will first resort to simulation exercises to compare the performance between the Logit-
EWS model and BQCD model. In this exercise, we simulate a random independent sequence
{Zk;k =1,2,...,200} with Z3, Zs, ..., Z100 being i.i.d. with marginal distribution A (0,0.9),
and {Z101, ..., Zogo} being i.i.d. with marginal distribution N (0.12,0.9). The marginal dis-
tribution of Zj change at 101. We create independent variable Y7 = 0, ..., Y190 = 0, Y101 =
1,..., Y500 = 1. We estimate the Logit model Pr (Y = 1) = F (Z3). With these simulations,
we compare the performance of the traditional EWS model and the BQCD model to identify
the structural break.

To evaluate the performances of the two methods, given a threshold, we record the length
of false alarm or the occurrence of delay detection. Notice, for each simulation, only one type
of mistake can be made. For each threshold given, we repeat the simulations a large number
of times and calculate the average length of false alarm and the proportion of delay detection.
The results are recorded in Table 1. As can be seen, the traditional EWS model results in
lengthy false alarms, where for BQCD, the average lengths of false alarms are much smaller
for all levels of thresholds.

Figure 3 shows us why BQCD model performs better. From the top panel of Figure 3, we can
see the signal is too noisy to make any decision sequentially. For a wide range of thresholds,
lengthy false alarms are inevitable. As can be seen from the lower panel of Figure 3, before
100, BQCD model filters out noisy signals, so the posterior probability remains low; after
100, the Logit model starts to show higher probability of the occurrence of the structural
break. We can see from the top penal, from 100-110, the estimated probability remains over

80 percent for about 10 consecutive observations. The traditional EWS model would miss that
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Table 1: Summary of Simulation Results
Logit-EWS BQCD

Average Length Proportion of

Average Length Proportion of

of False Alarm Delay Detection Welfare of False Alarm  Delay Detection Wellare
Threshold=0.5 98 0 175 17.14 0.72 31.36
Threshold=0.7 94.52 0 168.78 2.09 0.96 4.7
Threshold=0.8 82.53 0 147.37 1.26 0.98 3.23
Threshold=0.9 35.33 0.36 63.45 0 1 1
Threshold=0.95 18 0.8 32.94 0 1 1

“Welfare is weighted average of the Average Length of False Alarm and the Proportion of Delay Detection according
to Equation 2.7.

information, the BQCD model will pick that up quickly. So with a wide range of thresholds,
the BQCD model will issue alarms with delays less than 10 observations. With the welfare
measure proposed earlier in this paper, the BQCD model outperforms the traditional EWS

model quite convincingly in this simulation exercise.
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Figure 3: Simulation Result

5 Results

This section shows the results of this study. We evaluate the out-of-sample performance of the
Logit model and the BQCD method to predict 1997 Asian financial crises. The Logit model

is estimate with data cover from Jan 1986 through Apr 1995. The out-of-sample cover from
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May 1995 through Dec 1998. As it can be see in Figure 4, for appropriately chosen threshold,
both models can predict the crisis within 24 months in advance. But for the Logit model, if
the threshold is set above certain level, say 60%, then the warning signals in Malaysia and
Philippines will be entirely missed. If the threshold is set above 70%, then the warning signals
will be missed for all five countries under analysis. The reason for this is the repetition of
strong warning signals are not accounted. Just as we showed the in Figure 2, if the threshold
is set too high, the warning signals will be missed, no matter how many time the warning
signals are repeated, they will be missed altogether. On the other hand, this is not the case
for BQCD model, since the repetition of strong warning signals are accounted by Bayesian
updating, the posterior probability is driven up to almost 100% as it is closer to the financial
crises. In this case, no matter how high the threshold is, it is almost impossible to miss the
warning signal prior to the crises in all five countries under analysis. Given the uncertainty
involved in setting the threshold, this is a desirable feature. In some cases, alarm can be issued
earlier than the Logit model given the same threshold in certain countries.

We summarize some statistics in Table 2. We are particularly interested in the number
of months in advance of the actual crisis that the alarm is issued. As can be seen from the
table, when the thresholds are lower than 50%, both models can predict the crisis, but BQCD
model will trigger the alarm earlier for all five countries. Most importantly, if the threshold
is set above 60%, the Logit-EWS model will miss warning signals in Malaysia. Once the
threshold is set above 80%, the Logit-EWS model will fail to issue alarms in all five countries
in the analysis. In this regard, the BQCD model out-performs the Logit-EWS model. As
we argue before, the BQCD method is keen to detect the increase in the data that support
the alternative. This is very important to the design of EWS, since we are trying to detect
the vulnerability of the economy that will lead to speculative attacks. When the economy
has indeed became more vulnerable, the correctly chosen early warning signals will not only
become stronger, but stronger warning signals will also appear more frequently. This is indeed
what has happened before the 1997 Asian financial crises. As can be seen from the five Asian
countries in the analysis, prior to the crises, stronger warning signals do tend to appear more

often. To be able to detect the increase in the frequency is of fundamental importance.

6 Conclusion

In this paper, we consider the optimal design of Early Warning Systems form a policy maker’s
perspective. We assume the behavior of a collection of early warning signals changes prior to
a financial crisis. The policy maker’s problem is to detect the change as soon as possible and
take preemptive actions. We employ the state-of-the-art Bayesian Quickest Change Detection
method to solve the policy maker’s problem. Since the problem of EWS is framed from the

policy maker’s perspective, the probability threshold is determined by minimizing the welfare
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Table 2: Comparisons of Out-of-Sample Predictions Between Logit-EWS and BQCD

Threshold 0.5 0.6 0.7 0.8 0.9
L-EWS BQCD L-EWS BQCD L-EWS BQCD L-EWS BQCD L-EWS BQCD

Indonesia g% 9 2 8 0P 7 0 7 0 6
Korea 5 12 4 5 1 5 0 5 0 4
Malaysia 1 4 0 4 0 3 0 2 0 1
Philippines 5 5 1 4 0 4 0 4 0 3
Thailand 7 7 6 7 1 6 0 6 0 5
Average® 5.2 7.4 2.6 5.6 0.4 5 0 4.8 0 3.8

%This means the alarm is issued 8 months before the crisis.
b NN . . ..

Zeros indicate failures to issue alarms before the crisis.
“The average is takes across countries.

loss of the policy maker. We also argue that prior to a financial crisis, not only the warning
signals are getting stronger, but also stronger warning signals will appear more frequently.
The increase in frequency of early warning signals has been ignored in previous EWS models.
Increase in the frequency of the early warning signals contains important information about
the well-being of the economy: if the same warning signals appears more frequently, it is a
stronger indication that there are some fundamental problems with the economy. The BQCD
method can pick this information up appropriately. We compare the performance of the Logit-
EWS model and the BQCD model with simulation exercises and out-of-sample prediction of
the 1997 Asian financial crises, the results show that BQCD method outperform the traditional
EWS model.
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Figure 4: Predicted Probability of Crisis-Out-of-Sample with 7* = 0.82

B Appendix

Given deterministic k£ and [, let

v (k1) = v (k1) Lpaqy + o4 (B, 1) 1ggsgy

More precisely, in the domain of false alarm, when k£ < {
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k k+h
et = B { [ gt [ ergmal
0 k
I+h 00
+E_ {/ e_ptL(ftauzt)dtﬂL/ e_ptL(ft,Wt)dt}
k

+h I+h

A&, = ko (&, uoy)dt +odWy, t < k

A&, = ko (& ur)dt+odW, k<t<k+h
A&, = ko (S ug)dt +0dWy, k+h<t<Il+h
Ay = ki (& ug)dt +odWy, I+ h <t

In the domain of delayed detection, when [ + h > k > [

k I+h 00
vr (k1) = B { /0 UL (€4, uor) di + /k UL (€ uny) di + /l e_”tL(ft,ult)dt}

+h
dft = ko (&,uot) dt + O'th, t S k

d& = ko (ft,ult) dt+odWy, k<t <Il+h
dgt =k (&,u%) dt+ocdWi, Il +h <t

Where E_ and E are defined with respect to probability measure constructed through Radon-
Nikodym derivative (2.3) and (2.4) respectively. Next we need to linearized v (k,!) around
k =1+ 0, since vy (k,l) is defined on k > I, v_(l,1) is not defined. We need to choose
an approximation, let 6 > 0 be an arbitrarily small positive number, then vy (k,l) can be
linearized on [T =146, for k <i~.

Given 0 =l and § >0for [+ h >k > 1", and let [T =1+ J, we have*

vg (k1) —v_ (1,1) = vg (k1) — vy (I5,0) +op (I7,1) — o= (1,1)

v+(k,l)—v+ (lJr,l) ~ v (l

) (b 1)
vy (I7,0) —v_ (1,0 ‘(1 0

l)é,

Jr
)

Jr
)

l
<

hence we will have
vp (B, 1) — oo (L) = (IT5,1) (k= 17) T =, (1F,1) 6,

for k <, we have
v (k) —v_ (I, =o' (I,1) (k—=1)7T.

*r~ = —inf {z,0} and =t = sup {=, 0}.
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Hence,

vk, 0) —v- (L) = oo (k) — oo (LD Lgery + [og (B, 1) — o= (LD)] gy (2:15)
~ L (LD (= k)T (,0) (k=17 4+ (17,0) 01 gy (2.16)
= =L (L)1 -k +, (T 0) (k=07 (2.17)

When h = 1, then the above equation is equal to
v (k1) = (L) = =o' (1) (1= k)T + o) (I7,0) Lgsy-

where v’ (1,1) denote the left derivative of v_ (k,l) with respect to k evaluated at .
Given 60, and a stopping time 7" € T, where T is the class of all stopping times, define a

sequence of random times by

nw={ TW e T = o]
on's

on {w; B2 < T (w) < 2} ,

T, is a stopping time and lim, oo 1, = T™.
Without loss of generality, assume A = 1. Conditional on § = [ and given § > 0, we have

the following:

n—o0

Eo{v(T,))—v (D)} = lim i Py, (Tn - %u) [v (%Z) - v(l,l)]
m=0
~ 3 (5= 5) [ 00 (- 2) 0 000 1
= Ey[-v" (L) (I-T)" + o} (I,]) Lirsp]

where Fjy is expectation conditional on 6, and Py is the probability distribution given 6, defined
by (2.5).

EABp[v(T,1) —v (D]} =~ Ex{Eg [-oL (L)1 =T)" + (I",0) Lirsy ]}
E{v(T,0)—v(0,0)} ~ E{—v(0,0)(0—T)" +v, (67,0) 1y750} (2.18)

here F is the expectation under probability measure P, defined by (2.6). The left side of the
approximation is the policymaker’s objective as a function of stopping time, which can be

approximated by the left hand side of the approximation.

*Please see Problem 2.24 in Karatzas and Shreve (1991)
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C Appendix

Tuele{c 60— T) +1{T>9}}

Let E{(6 —T)"} = E{Cr}

Q2
I
NE
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NE

P (9 > m|.7:k)

3
I
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|
hE

[1— P (0 <m|Fy)]

m=k
00 k—1
= Y [1-PO<mF)] =D [1- PO <mF)
m=0 m=1
0o k—1
= Y P@O>m|F) - Y [1—P(6<m|F)
m=0 m=0
k—1 k—1
+ ) [D=PO<m[Fn)] - > [1-P(O<m|Fn)
m=0 m=0
k—1
= Zmp (O =m|F) = > [1= PO <mFn)+ N
m=0 m=0

we can show that

T-1
E{c(0-T)"} :E{CO— ZC(l—Wm)}

m=0
Since we have
E{l{r>0}

Let

Cr = E{lgsm}
k—1

= Z P (6 =m|Fy)

m=0

= PO<k—1F)+PO<k—1Fp1)—PO<k—1|Fp_1)
= M1 +PO<Ek—-1F)-PO<k—1F_1)
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The rest is easy to show that
E{lirso} = E{rr—1}

T-1
E {09 — Z c(1—mp) +7rT_1}
m=0

D Appendix
Given the condition in Lemma 2 is satisfied, the period loss function can then be expressed as
L (Lgsny Lisny) = Eo (Le (k1))

For k > 1T, where [T =1+,
(N (kﬁ, l) — U4 (l+, l) =

o0 o
{ / e P Ly (k1) dt — / e P L (1,1) dt}
0 0

E
= / eptl(l{tzk}’l{tzn)dt—/o e 'L Lz, Lpsyy) dt

I+h
= e PHIL(0,1) — L (1,1)] dt
k
e—p(l-l-h—k)
= [L (Oa 1) —L (17 1)]
—p
RGN b~ 0L
oy (IM)1) = kg?*m[ (0,1) =L (1,1)]
N L01)~L (1,1
= m( (0,1) —L(1,1)),
hence v/, (I7,1) is a constant. Similar result can be shown for v’ (1,1), hence ¢ = —% is

a constant.

E Appendix

Period loss function L (1{t2k}, 1{t21}), then

> 8L (Lzy Lisy) — L (Lpsimay Lpsy) }
t=0

vo (1) —v_ (I —1,1)

= A1 L L(0,0) — L(1,0)
N N e



vy (L4 1,0) —vy (L1) = Zﬁt {Li (Lgsizay: Lsiy) — Le (L Lpsny) }
=0

= B'{L(0,1) - L(1,1)}
Finally, we have
o (L) —v_(I-1,0)

U4 (l+ 171) - U+ (lal)

_ ~1L(0,0) — L(1,0)
= =F L(0,1)—L(1,1)

Clearly, c is not a function of [.

F Appendix

Table 3: Logit Maximum Likelihood Estimates

Variables Coefficient  t-statistics  t-probability
Constant -1.218744 -6.424941 0.000000
Growth of International Reserve -1.059737 -4.916337 0.000001
Growth of Imports 0.005356 0.016094 0.987162
Growth of Exports -0.529670 -1.348524 0.177673
Growth of Domestic Credit Over GDP 1.862253 6.982468 0.000000
Real Interest Rate 0.078776 1.894862 0.058283
M2 to Reserve 0.211484 12.094560 0.000000
Growth of M2 to Reserve -0.000751 -0.020199 0.983887
Real Exchange Rate -3.677564 -5.164558 0.000000
Real Exchange Rate Over-evaluation 3.655495 5.252078 0.000000
Exchange Market Pressure Index 1.667829 4.906118 0.000001
McFadden R-squared 0.2171
Estrella R-squared 0.2463
Log-Likelihood -759.5282
Nobs, Nvars 1680, 11
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