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Abstract

This paper considers a strategic game in which two players, with unequal prospects of

winning the game, decide simultaneously and secretly to use performance-enhancing

drugs before they compete. In the mixed strategy equilibrium, the favorite player

is more likely to take these drugs than is the underdog, yet, for some parameter

values, he is less likely to win the game with doping opportunities than without.

The paper then analyzes the anti-doping regulations adopted by the International

Olympic Committee, comparing its rules with a ranking-based sanction scheme. Two

results emerge from this comparison: First, while IOC regulations cannot satisfy

participation and incentive compatibility constraints and implement the no-doping

equilibrium in all circumstances, a more effective ranking-based sanction scheme with

these properties exists. Second, ranking-based punishment schemes are less costly to

implement than are IOC regulations because fewer tests are needed to attain the

no-doping equilibrium.
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‘‘Winning isn’t everything, it is the only thing’’

1 Introduction

The use of performance-enhancing drugs in sports (doping) has a long history.2 The first

recorded instances were noted by Philostratus and Galerius in the 3rd century B.C. at

the ancient Olympic Games. An large number of small statues of Jupiter, found around

ancient sports arenas, bear witness to a desire to obtain divine pardon for contravention

of the rules and indicates the scale of the phenomenon. In modern times, the first doping

fatality occurred in the Bordeaux-Paris bicycle race in 1879, when an English cyclist,

Linton, died after being doped with tri-methyl. Around 1910, we find a fashion to use

oxygen by Belgian and English football teams. Later, boxers used strychnine and mixtures

of brandy and cocaine. More recently, in 1988, the famous 100-m runner, Ben Johnson,

lost the gold medal he had won at the Olympics in Seoul after being found guilty of using

an anabolic steroid.

In 1963, the European Parliament, responding to growing concern about the use of

drugs in sports, proposed the first legal definition of doping as “the administration or use

of exogenous substances in an abnormal form or way to healthy persons where the only goal

is to achieve an artificial and unfair improvement of the performance of the athlete” (Reiter

1994). Following the legal definition of the European Parliament, enforcement institutions

were established at the national and international levels in all major sports (Bird and

Wagner 1997). These institutions rely without exception on a regulatory framework that

is based on a negative list enumerating all banned substances. The negative list is usually

enforced by random blood or urine tests of performing athletes. The sanctions imposed

are exclusion from the game and suspension from competition for some length of time.3

The surge in doping cases in the late 1990’s suggests that anti-doping regulations do

2The quote above, the folk theorem of sports, has been attributed to Red Sanders of Vanderbuilt

University (Bird and Wagner 1997). The historical episodes recounted here are taken from De Merode

(1999).
3In 1999, the IOC proposed two penalty schemes for first-time offenders: a) If the substance used is

ephedrine, phenylpropanolamine, pseudoephedrine, caffeine, strychnine or a related substance the offender

will receive either i) a warning; ii) a ban on participation in one or several sports competitions; iii) a fine

of up to $100,000; or iv) suspension from any competition for a period of one to six months. b) If the

substance used is one other than those referred to in paragraph a) above the offender will receive either i)
a ban on participation in one or several sports competitions; ii) a fine of up to $100,000; or iii) suspension

from any competition for a period of two years.
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not attain their goal of achieving a drug-free environment in sports.4 This paper, therefore,

proposes a ranking-based punishment scheme that changes the athletes’ incentives towards

the no-doping equilibrium. A ranking-based sanction scheme is developed that implements

the no-doping equilibrium in all circumstances - a property not attained by the sanction

scheme of the International Olympic Committee (IOC). Moreover, it is shown that ranking-

based sanctions are more cost effective than IOC regulations because fewer doping tests

are needed to attain the no-doping equilibrium.

To analyze the doping problem, the paper considers a strategic game where two athletes

simultaneously and secretly decide to use a performance-enhancing drug before competing.

In the existing literature, the doping problem is considered to be a prisoner’s dilemma

(Breivik 1987, Wagner 1993, Bird and Wagner 1997). It is shown that this is only true

if the players have equal prospects of winning. With unequally talented players, however,

mixed-strategy equilibria exist that exhibit interesting properties. Perhaps surprisingly, for

some parameter values, the favored player (the player who wins the game with probability

  1
2
) is more likely to use performance-enhancing drugs than is the underdog, yet he is

less likely to win with doping opportunity than without.

The model suggests three justifications for implementing anti-doping measures: First,

doping never increases welfare; rather, for a large set of parameter values welfare is lower

with doping opportunities than it is without. Second, and even worse, there exists no

equilibriumwhere the expected payoff of any competitor is larger with a doping opportunity

than without. Third, the “wrong” player may win the game because doping changes the

probabilities of winning.

While the model provides a clear case for anti-doping regulations, the major problem of

implementation is that doping tests sometimes provide faulty information. Occasionally,

tests indicate that the athlete is not doped when he or she is or that an athlete is doped

when he or she is not.5 In the model this problem is taken into account. Moreover, following

4The most prominent recent offender is Marco Pantani, an Italian cyclist who won the Tour de France
in 1998 and was the leader at the Giro d’Italia in 1999 before he was disqualified next to the last day of the

race. The most reliable data available at present to assess the use of performance-enhancing drugs are the

statistics of the IOC. Currently, 24 IOC-accredited laboratories analyze more than 100,000 samples from

athletes, of which more than 40% are out-of-competition samples. The total rate of positive cases is around

1.6%. Anabolic steroids have the highest incidence, at around 65% of the positive cases. Stimulants (20%)

and diuretics (4%) follow (Segura 1999).

5Testing is most problematical when a substance is also naturally produced by the body. For example,

pharmaceutical forms of growth hormone (GH), erythropoietin (EPO), and human chorionic gonadotrophin

(hCG) are usually identical to natural forms already present in the body. This means that the tests should

differentiate between the two forms, but they cannot (De Merode 1999, Segura 1999).
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IOC regulations, I impose the rule that an athlete who tests positive is excluded from the

ranking and has to pay a fine. Departing from IOC rules, I allow for a ranking-based

punishment.

The paper’s topic is related to the theory of contests and tournaments, which studies

the effort choice of two or more players who hope to win a prize.6 In this literature,

players’ effort choices affect the winning probabilities. Here, use of performance-enhancing

drugs affects these probabilities, and effort levels at the contest are given and supposed

to be maximal (because athletes prepare for months, or even for years, for important

contests, such as the Olympic Games). During the contest athletes attempt to reach peak

performance in all circumstances, that is, they choose maximum effort, a behavior that is

expressed by the quote “Winning isn’t everything, it is the only thing”.7

The paper is organized as follows: Section 2 presents the model and the equilibrium

when there are no doping regulations; section 3 analyzes IOC doping regulations; section 4

derives the ranking-based punishment scheme and compares IOC regulations with ranking-

based punishments. Section 5 concludes.

6See Nitzan (1994) for an overview of the literature on rent-seeking contests.
7If, instead, one considers training effort and use of performance-enhancing drugs during the precontest-

season, these choices could be related.
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2 The model

Consider a strategic game where two athletes,  and , choose simultaneously to use

performance-enhancing drugs before they compete.8 The athletes face a discrete choice

problem because, through past experience and through their doctors’ recommendations,

they have learned of substances and quantities that deliver peak-performance during the

contest. Then, shortly before they compete, they decide whether to take these quantities

and this decision depends on the strength of their opponent, on the enforcement of anti-

doping regulations, and on the cost of cheating. The model describes athletes’ incentives

to take drugs shortly before a contest and so models the choice of so-called race-day drugs

that have an immediate effect on athletes’ performances.9

The players have von Neumann Morgenstern preferences over winning and losing the

competition. The winning player receives utility   0 and the losing player receives zero

utility. Without loss in generality, assume that if no drugs are taken, player  is at least as

likely to win the game as player , i.e., he wins the competition with probability  where

1   ≥ 1
2
. When only player  is doped, he wins the game with probability  where

 ≥  and when only player  is doped, he wins the game with probability  where

 ≥ 1− . When both players are doped, the winning probabilities are not affected.

Doping improves the performance of the players at cost  where 0    . Cost

 reflects the fact that people do not like to cheat: Each athlete prefers to win without

using performance-enhancing drugs, rather than to win with their use, i.e.,    − .

However, each athlete also prefers to win with performance-enhancing drugs rather than

to lose without, i.e.,  −   0. The cost may also represent expected health cost and

monetary cost of drugs.

Let the set of players be { }, the pure strategy space of each player be { }

for doping and no doping, and denote by  and  the probability distribution over pure

strategies of players  and , respectively. The payoffs for the strategy profile { } are

{ −  (1− ) − }, for { } they are { −  (1− )}, for { } they are

8The analysis in a two-player framework is appropriate for many sports (boxing, tennis, martial arts,

etc.). It also applies to team sports, such as soccer or football, where the team manager decides whether

her team will use performance-enhancing drugs. It may also apply to other sports, such as cycling or

downhill skiing, when two clear leaders compete for the first prize and the other competitors have no

influence on this decision.
9At this stage of the contest athletes are not willing to experiment with unknown quantities or new drugs.

Other substances are taken months before the competition to increase muscle mass and strength. While

it is clear that so-called race day drugs can be detected during competition, others used in preparation for

the games may no longer be present in the body of athletes at the time of the games (Segura 1999).
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{(1− )  − }, and for { } they are { (1− )}.

To proceed, define  =  −  and  =  − (1− ) where  specifies the effective-

ness of performance-enhancing drugs in the sense of measuring the increase of player ’s

winning probability when only player  dopes. Throughout the paper, it is assumed that

performance-enhancing drugs are more effective for the weak player, i.e., that  ≥ .
10 A

special case is  =  = 1 where a doped player wins with certainty if the other player is

not doped. In this case,    when   1
2
, because  = 1−  and  = . Solving the

noncooperative game yields the following results:

Lemma 1 There is a critical value e = 

such that the following is true: if  ≥ e, there

exists a pure-strategy equilibrium (PSE) that entails  = 1 and  = 1; if  ≤ e, there exists
a PSE that entails  = 0 and  = 0; if  = e ( = e), there exists a nongeneric PSE that
entails  = 1 and  = 0 ( = 0 and  = 1); if   e   there exists a mixed-strategy

equilibrium (MSE) that entails  = ∗ ∈ (0 1) and  = ∗ ∈ (0 1), where

∗ =
 − e
 − 

and ∗ =
e− 
 − 

.

Lemma 1 characterizes the existence regions of the different types of equilibria. The

equilibria are unique except for the nongeneric parameter values  = e,  = e, and
 =  = e. Interestingly, a necessary condition for a (generic) mixed-strategy equilibrium
is that performance-enhancing drugs affect athletes asymmetrically (  ). If  = ,

we have a symmetric solution in the sense that either both agents are doped or they are not

doped. Note also that ∗ ≥ ∗ if performance-enhancing drugs are sufficiently effective,

that is, if  +  ≥ 2e.
In the mixed-strategy equilibrium, depending on parameter values, either competitor

has a better chance to win compared to the game without a doping opportunity. To see

this, denote by  player ’s probability of winning in the mixed strategy equilibrium of

the game with doping opportunity and note that − = ( − e2) ( − )
−1. Thus, if√

  e, the more talented player  is less likely to win with doping opportunities than
without. Moreover, if +  2e and if

√
  e, the favored player is more likely to use

performance-enhancing drugs than the underdog, yet he is less likely to win with doping

opportunities than without.

10In the appendix, I present a model that demonstrates how doping affects athletes’ performances and
how such a change affects the winning probabilities  and , respectively,  and . I show that under

quite plausible assumptions  ≥ , i.e., performance-enhancing drugs are more effective for the weak

player.
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Figure 1: Existence regions when  = 1−  and  = .

Figure 1 characterizes the existence regions of the different types of equilibria for all

values of  and e when  = 1− and  = . Pure strategy equilibria are labelled { }

and { }. Mixed-strategy equilibria exist for parameter values in the regions labelled mix

a and mix b. The favorite player is more (less) likely to be doped than is the underdog

in the region labelled mix a (mix b). The region where player ’s winning probability

is larger (smaller) with doping opportunities than without is labelled    (  ).

One can see that there are parameter values where the favorite player is more likely to use

performance-enhancing drugs (mix a), yet he is less likely to win with doping opportunities

than without (  ).

How do doping opportunities affect the players’ expected utilities? In equilibrium { }

both agents bear the cost  which makes them strictly worse off relative to the game without

a doping opportunity. Interestingly, in equilibrium { }, the expected payoff of player 

equals his expected payoff in the game without a doping opportunity and player  is strictly

worse off. In the equilibrium { } an equivalent result holds where player ’s expected

payoff equals the expected payoff of the game without a doping opportunity and player 

is strictly worse off. To compare the expected payoffs in the mixed-strategy equilibrium,

denote by  and  the expected payoffs for player  and , respectively. One can show

that  −  = −∗ (e+ )  0 and that  − (1− ) = −∗ (e+ )  0. Thus,

in the mixed-strategy equilibrium, the expected payoffs are strictly smaller with doping

opportunities than without.
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3 IOC doping regulations

The model provides three justifications for implementing anti-doping measures. First, a

doping opportunity never increases welfare; rather, for a large set of parameter values, wel-

fare is lower with doping opportunities. Second, and even worse, there exists no equilibrium

where the expected payoff of any competitor is strictly larger with a doping opportunity

than without. Third, the “wrong” player could win the game because doping changes the

probabilities of winning.

To attain a drug-free sports environment, the IOC defines a list of banned classes

of substances (the negative list) that is enforced with random urine or blood tests of

performing athletes. If with conditional probability  the doping test indicates that an

athlete is doped when he is, the probability that the test reads falsely negative is 1 − 

and if with conditional probability , the test indicates that the athlete is doped when

he is not the probability that it reads falsely positive is . Throughout the paper it is

assumed that  ≥ .

In reality,  and  depend on the drug for which the test is designed. For certain

doping substances, particularly substances that are not naturally produced by an athlete’s

body, doping tests are highly reliable, that is,  is large and  is small. For other sub-

stances, however, such as erythropoietin (EPO) and the human growth hormone (hGH),

which are naturally produced by the body, it is difficult to distinguish an exogenous ad-

ministration from a natural endogenous concentration, which means that  and  are

relatively close. Moreover, for each test, by choosing a threshold for the substance they

test for, regulators have a choice over  and .
11 The problem, however, is the positive

correlation between  and , so that there is a trade-off between the type of mistake

(false positive/false negative) anti-doping regulators make more often: When a low thresh-

old for a doping substance is chosen there is a low probability that the test produces a

falsely negative result and a high probability that it produces a falsely positive result and

vice versa.

Under IOC regulations, an athlete who tests positive is disqualified and must pay a fine

11For example, because the pharmaceutical and natural forms of EPO cannot, as yet, be distinguished,

the International Cycling Union measures the haematocrit content of the blood. The current threshold is

set at 50 percent for men and 47 percent for women. If the measured value is larger than 50 percent, it is

considered to be because of an exogenous administration of EPO. Actually, a cyclist with an abnormally

high haematocrit content is declared temporarily unfit for at least fifteen days, which means that he

is not allowed to finish the race (see footnote 3 about Marco Pantani). It seems that the tests are so

unreliable that the International Cycling Union - to avoid legal dispute - resorts to this health argument

when excluding a cyclist from a race.
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in terms of utility. Departing from IOC rules, I allow for ranking-based sanctions where 1

is the punishment for the winner and 2 is the punishment for the loser. Then, if 1 =
1


and if 2 =
2

, the payoffs, which are divided by , are

(1− )(1− )+ (1− ) −  (1 + (1− ) 2)− e (11)

(1− )(1− ) (1− ) + (1− ) −  ((1− ) 1 + 2)− e (11)

(1− )(1− ) + (1− ) −  (1 + (1− ) 2)− e (12)

(1− )(1− ) (1− ) + (1− ) −  ((1− ) 1 + 2) (12)

(1− )(1− ) (1− ) + (1− ) −  ((1− ) 1 + 2) (21)

(1− )(1− ) + (1− ) −  (1 + (1− ) 2)− e (21)

(1− )(1− )+ (1− ) −  (1 + (1− ) 2) (22)

(1− )(1− ) (1− ) + (1− ) −  ((1− ) 1 + 2) (22)

11 and 11 are the expected payoffs of players  and , respectively, for the strategy

profile { }. For example, consider 11: With probability (1 − )(1 − ) neither tests

positive and agent  wins the game with probability . With probability (1− ) player

 is tested negative and player  positive and player  wins the game with certainty.

With probability  he is tested positive, disqualified, and he pays the fine 1 if he is the

(disqualified) winner or 2 if she is the (disqualified) loser. 12 and 12 are the expected

payoffs for the strategy profile { }. 21 and 21 are the expected payoffs for the strategy

profile { } and 22 and 22 are the expected payoffs for the strategy profile { }.

The equilibria under the IOC punishment scheme 1 = 2 =  can be characterized in

the same way as in Lemma 1 for the game without doping regulations. However, because

a full characterization is rather cumbersome, for Lemma 2 parameter values are restricted

as follows:  =  = e and   b = (−)2+(1−)(1−)
(1−)2+(1−)2

.12 In order to prepare the

characterization, consider the four critical values ,  = 1  4. The critical value 1 is the

value of  that solves 11 = 12:

1 =
(1− ) [(1− ) (1− )− (1− ) (1− e)]−  ( − )− e

 − 
(1)

Thus, 1 is the value of punishment  that makes player  indifferent between doping and

not doping when player  is doped. Note that if   1, 12  11, which implies that

player ’s best response is not to dope when  dopes. The critical value 2 is the value of

 that solves 22 = 12:

2 =
(1− ) [(1− )e− (1− ) ]− ( − )− e

 − 
(2)

12Note that in the following section, which compares the IOC anti-doping measures with the ranking-

based punishment scheem, parameter values are not restricted.
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The critical value 3 is the value of  that solves 11 = 21:

3 =
(1− ) [(1− )− (1− ) (1− e)]−  ( − )− e

 − 
(3)

The critical value 4 is the value of  that solves 22 = 21:

4 =
(1− ) [(1− )e− (1− ) (1− )]−  ( − )− e

 − 
(4)

Finally, note that when   b, 1 ≤ 2 ≤ 3 ≤ 4.
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Lemma 2 Assume 1 = 2 = ,  =  = e and   b. Then, if  ≤ 1, there exists a

PSE that entails  = 1 and  = 1; if 1 ≤  ≤ 2, there exists a PSE that entails  = 1

and  = 0; if 3 ≤  ≤ 4, there exists a PSE that entails  = 0 and  = 1; if 4 ≤ ,

there exists a PSE that entails  = 0 and  = 0; if 2    3 or there exists a MSE that

entails  = ∗ ∈ (0 1) and  = ∗ ∈ (0 1), where

∗ =
(1− ) [(1− ) (1− )− (1− )e] + ( − ) ( + ) + e

(1− ) (1− )− 
£
(1− )

2 + (1− )
2¤

∗ =
(1− ) [(1− )− (1− )e] + ( − ) ( + ) + e

(1− ) (1− )− (1− )
£
(1− )

2 + (1− )
2¤

Lemma 2 characterizes the existence regions for the different types of equilibria. Note

that the equilibria are unique. Figure 2 shows the equilibrium strategies of players  and

 as a function of punishment . The solid line is the equilibrium strategy of player  and

the doted line is player b’s equilibrium strategy. For low values of , i.e., if  ≤ 1, we

have a pure doping equilibrium { }. As we increase the punishment, at  = 1, the

equilibrium switches to { }. As we increase  even more, at  = 2, we first attain

the mixed strategy equilibrium, then, at  = 3, the equilibrium { }, and, finally, at

 = 4, the no-doping equilibrium { }.

4321
 dd,  ndd,  mix  dnd,  ndnd,

0

1

Player a‘s equilibrium strategy: Player b‘s equilibrium strategy: 

  s

Figure 2: Equilibrium strategies of  and .

Note that the bounds  are decreasing in the relative cost of doping e. Thus, increasing
prize  (decreasing e) makes it less likely that the no-doping equilibrium is attained. This
result suggests that the ongoing trend towards higher prizes and higher salaries for top-level

athletes could be a driving force behind the recent surge in doping cases.13

13Heinemann (1999) argues that “Victory and failure are becoming more important due to the increasing
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A further reason for the recent increase in doping cases could be improvements of

existing and development of new performance-enhancing drugs. The availability of more

effective doping substances, i.e., substances with a larger e, shifts the bounds  to the
right, which makes it more difficult to attain the no-doping equilibrium. In contrast,

improvements of test technology, as expressed by an increasing , counteract this effect

because an increase in  shifts the bounds  to the left. Finally, an increase in  shifts

1 and 2 to the left and 3 and 4 to the right. Accordingly, an increase in  makes the

existence of a mixed-strategy equilibrium more likely.

Interestingly, while ∗ is decreasing in , 
∗
 is increasing (see Figure 2). Thus, in the

mixed strategy equilibrium, increasing  will increase the probability that the underdog

is doped. Moreover, if  is sufficiently large, ∗  ∗: for certain parameter values the

underdog is more likely to be doped under the IOC anti-doping regulations than without

regulations.

To explain this effect, assume that player  is very weak and doping costs are very small,

i.e.,  = 1 and e = 0, which implies that the underdog has no chance of winning in the game
without doping regulations (with these parameter values ∗ = 0 and ∗ =

(1+)(−)
(1−)(1−)).

With IOC regulations, however, the weak player has a chance of winning if player  is

disqualified. The prospect of winning through disqualification of the opponent gives player

 an strategic incentive to take performance-enhancing drugs, which is not present without

doping regulations.

dependence of top-level sports on the resources of the economy, the mass media, spectators and the state...

The specific economic value of sport is, that it produces its “product”, victory, exciting competitions,

exemplary and superlative heroes. But it is increasingly impossible to fulfil theses requirements without

doping.”

12



4 Ranking-based vs IOC punishments

This section develops a ranking-based punishment scheme that is incentive compatible

and individually rational and that implements the no-doping equilibrium for all parameter

values of the game. A mechanism with these properties is called a perfect mechanism. The

section also compares ranking-based punishments with IOC anti-doping regulations. Two

results emerge from this comparison: First, IOC anti-doping regulations are not a perfect

mechanism, i.e., they cannot attain the no-doping equilibrium for all parameter values of

the game. Second, if IOC regulations attain the no-doping equilibrium, there is always

a cheaper ranking-based punishment scheme that attains the no-doping equilibrium too.

Ranking-based punishments are cheaper because fewer doping tests are required to attain

the no-doping equilibrium.

4.1 Perfect mechanism

A perfect mechanism satisfies the following conditions:

22 ≥ 0 and 22 ≥ 0 (5)

22 ≥ 22 (6)

22 ≥ 12, 21 ≥ 11 and 22 ≥ 21 or (7)

22 ≥ 21, 12 ≥ 11 and 22 ≥ 12

Inequalities (5) and (6) are the participation and incentive-compatibility constraints,

respectively. If (5) holds, it is rational for player  and  to participate in the game. If

(6) holds, player  is better off being the more talented player. If the first (last) three

inequalities of condition (7) hold, player  (player ) has a weakly dominant strategy not

to use performance-enhancing drugs, and the other player’s best response is not to dope.

This requirement is akin to the concept of a “dominant-strategy mechanism” (Fudenberg

and Tirole 1991).

Proposition 1 Assume 1 = 2 = . Then there is no sanction  that satisfies (5)-(7) for

all parameter values.

Proposition 1 implies that IOC regulations, which set 1 = 2, are not a perfect mecha-

nism. The problem is the participation constraint of the weak player. This constraint limits

the sanction that can be imposed to punish player  if he tests positive. This constraint is:

 ≤  =
(1− ) (1− )

2 + (1− ) 


. (8)

13



According to (8), sanction  =  is the largest sanction that can be imposed without

violating the participation constraint of player . Bound  is strictly decreasing in  and

equal to zero at  = 1. It imposes no limit on  at  = 0. Thus, a necessary condition

for failure of the IOC anti-doping regulations is   0. Bound  is also decreasing in

 and equal to 1 −  at  = 1. Thus, the weaker player  is, the smaller is the largest

sanction that can be imposed without violating her participation constraint.

For certain parameter values, sanction  =  is too low to be consistent with a no-

doping equilibrium because the weak player, despite this sanction, will choose to dope. To

see this, note that the weak player’s no-deviation condition 22 ≥ 21 requires that

 ≥  =
(1− ) [(1− )  − (1− ) (1− )]− e−  ( − )

 − 
. (9)

The constraint (9) gives a lower bound on the sanction . If  ≥ , the weak player has no

incentive to deviate from the no-doping strategy profile { }. If the precision of the

test, − , converges to zero and the nominator of (9) is positive,  approaches infinity.

Thus, for certain parameter values,   , and, therefore, IOC anti-doping regulations

cannot implement the no-doping equilibrium for all parameter values.

The failure of the IOC sanction scheme to satisfy the criteria for a perfect mechanism

provides a rationale to search for an alternative sanction scheme. Proposition 2 presents

such a mechanism.

Proposition 2 The ranking-based punishment scheme 1 =
1−−+2−


and 2 = 0 is

a perfect mechanism.

This establishes the existence of a perfect mechanism if one allows for different pun-

ishments for winner and loser. The first thing to note is that the incentive compatibility

constraint (6) provides an upper limit on the difference 1 − 2, which equals

1 − 2 ≤
(1− )

2


. (10)

Thus, any perfect mechanism must satisfy (10). Moreover, the participation constraint of

the weak player and (10) imply that the sanction for the winner must satisfy

1 ≤
(1− )

2


+ 1− . (11)

Similarly, the participation constraint of the strong player and (10) imply that the sanction

of the loser must satisfy

2 ≤ 1− . (12)
14



As with the IOC regulation, the problem of any sanction scheme is the incentive of the

weak player to deviate from the no-doping strategy profile { }. Because the weak

player is less likely to win, a first guess, therefore, is to choose 2 = 0 and, then, to search

for a 1 that satisfies (10), (11), and the weak player’s no-deviation condition 22 ≥ 21.
14

To see why a ranking-based punishment scheme does not fail to satisfy the criteria for

a perfect mechanism, even if the precision of the test, − , is very low, it is instructive

to evaluate the weak player’s no-deviation constraint at  = :

1 − 2 ≥
(1− )

2 − e ( − (1− ))


(13)

In contrast to inequality (9) the right-hand side of (13) is bounded at  = . Thus, even

if the precision of the test,  − , is very low, we do not need drastic punishment to

satisfy the no-deviation condition 22 ≥ 12. What we need instead is a sufficiently large

difference in sanctions for winner and loser.

4.2 Cost effectiveness

This section compares the cost of ranking-based punishments and IOC anti-doping regu-

lations. For this purpose, assume that testing is costly and that regulators can save cost

by reducing the frequency of doping tests that they carry out after competitions. Up to

this point, the paper has assumed that player  and  are tested with certainty. In the

following, the assumption is that they are tested with probability  , so that  ()

is the probability that a doped (not doped) athlete is tested positive. Regulators’ goal is

choose the smallest value of  that is consistent with the no-doping equilibrium.

IOC regulations cannot implement the no-doping equilibrium if    where  and 

are defined in (8) and (9), respectively. Thus, if    , ranking-based punishments are

clearly better than IOC regulations. To exclude this case, assume that 0     where

inequality 0   excludes that the no-doping equilibrium is attained without punishment.

To take into account that  ≤ 1, inequalities (8) and (9) need to be redefined. Under IOC
regulations they are:

 ≤  () =
(1− ) (1− )

2 + (1− ) 


(14)

 ≥  () =
(1− ) [(1− )  − (1− ) (1− )]− e−  2 ( − )

 ( − )
(15)

14The proof, which is in the appendix, also establishes that the scheme (1 2) satisfies 22 ≥ 12 and

12 ≥ 11, which is also needed for a perfect mechanism.
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The first thing to note is that the bounds  () and  () are decreasing in  . Thus, for

any sanction  with  (1) ≤  ≤  (1), the smallest testing probability satisfying  () ≤
 ≤  () is the value of  that satisfies  =  (). Denote this value by   (index 

for Olympic Committee) and note that the participation constraint is satisfied because

 ≤  (1) ≤  ( ).

Next, consider the ranking-based punishments
³
1 = + (1−)2


 2 = − (1−)(1−)2



´

where  is again any sanction that satisfies  (1) ≤  ≤  (1) under IOC regulations. The

participation constraint and the no-deviation condition for the weak player, respectively,

are

 ≤  () (16)

 ≥  ()−  () (17)

where  () and  () are defined in (14) and (15), respectively, and

 () =
 (1− )

2



[− (1− ) (1− )]

 ( − )
.

At  =   the participation constraint is satisfied because  ≤  (1) ≤  ( ). Next, note

that at  =   the left-hand side of (17) is larger than the right-hand side of (17) because

 =  ( ). Thus, for any  there is a  ≤   that satisfies the weak player’s no-deviation

constraint, i.e.,  =  ( ) ≥  () −  (). Denote such a value by   (index  for

ranking based) and note that the weak player’s participation constraint is also satisfied,

i.e.,  ≤  ( ) ≤  ( ). Finally, note that by construction the punishments 1 and 2 are

a perfect mechanism. Thus, for any IOC sanction scheme (  ) there is a ranking-based

mechanism (1 2  ) with   ≥  .

The previous result relies on the ability of the regulators to increase punishment for

the winner and to decrease it for the loser, that is, 1 ≥  ≥ 2. Increasing punishment

is not always feasible because a natural upper bound or legal restrictions may put a limit

on the largest feasible punishment.15 In the following, I compare the cost of ranking-based

punishments and the IOC regulations when there is an upper bound on feasible sanctions.

Denote this bound by  (index  for limit) and assume this punishment is sufficiently large

to implement the no-doping equilibrium under IOC regulations, that is  (1) ≤  ≤  (1).

Again, the smallest (optimal) testing probability is the value of  that solves (15) at

equality, i.e.,  =  ( ).

15For example, a natural upper bound is a lifelong ban from all further competitions. Under the IOC

regulations, an offender receives this punishment if he or she has been caught twice.
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Next, consider the ranking-based punishments (1 =  2 = 0). The no-deviation con-

straint of the weak player requires that:

 ≥
(1− ) [(1− )  − (1− ) (1− )]− e−  ( − )

 [ −  (1− )]
(18)

The right-hand side of (15) is larger than the right-hand side of (18) if 

≥ 1−


.

Thus, if 

≥ 1−


,   ≥  , where   is the value of  that solves (18) at equality.

Accordingly, if 

≥ 1−


, the ranking-based punishment scheme (1 =  2 = 0  ) re-

quires less doping tests to attain the no-doping equilibrium than the corresponding IOC

regulations ( =   ) and this is attained by just setting the punishment for the loser to

zero.
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5 Conclusion

The paper has analyzed the incentives provided by performance-enhancing drugs and anti-

doping regulations in sport contests. When there are no anti-doping regulations, the model

shows some interesting effects of doping. For example, in the mixed-strategy equilibrium,

the favored player is more likely to use performance-enhancing drugs than is the underdog

and, yet, for some parameter values, he is less likely to win the game with a doping oppor-

tunity than without. These effects may be also relevant in other economic circumstances,

such as rent-seeking or promotion tournaments, when there is scope for cheating to advance

one’s interests.

The paper then characterizes the equilibrium under IOC regulations and shows that

IOC regulations are not individual rational, incentive compatible, and implement the no-

doping equilibrium in all circumstances, i.e., they are not a perfect mechanism. For some

parameter values, these regulations cannot attain the no-doping equilibrium because the

punishment needed to prevent the weak player’s deviation from the no-doping strategy

profile violates her participation constraint.

The paper then develops a ranking based sanction scheme that is a perfect mechanism

and compares the cost of this scheme with the cost of the anti-doping regulations adopted

by the IOC. Two results emerge from this comparison: First, ranking-based punishment

schemes are less costly than IOC regulations because less tests are needed to attain the

no-doping equilibrium. Second, this last result relies on regulators’ ability to increase

punishments for the winner above the punishment set by the IOC, which might not always

be feasible. However, the model shows that even without increasing the punishment for

the winner (by just setting punishment for the loser to zero) there are parameter values

where such a ranking-based punishment scheme requires less test to attain the no-doping

equilibrium than the corresponding IOC regulations.

A question deserving future research is whether these results are robust in a model with

 ≥ 2 players and  =  prizes (positions 1 to  in a contest). This research could follow

along the lines of Clark and Riis (1998) who consider a rent-seeking model where more

than one prize is at stake or of Rosen (1986) who studies the incentive properties of prices

in sequential elimination tournaments.

The paper has analyzed sanction schemes based on the negative list of banned sub-

stances. Bird and Wagner (1997) and Wagner (1993) have fundamentally criticized the

use of a negative list. They argue that this list creates strong incentives to develop new

performance-enhancing drugs. As an alternative, the authors propose anti-doping regu-

lations based on a drug diary. No substances are forbidden, but each athlete is required
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to record all drugs taken in a diary. The athletes are randomly tested for substances not

mentioned in the diary. If a substance not mentioned is found, the athlete is sanctioned.

This proposal has its virtues because it encourages honesty, transparency, and equal access

to doping information. Because their proposal requires doping tests and sanctions as well,

my guess is that a ranking-based sanction scheme in the drug diary approach would have

the same benefits as in the negative list approach.
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Appendix

Derivation of  and  Suppose performance of athlete  during the contest is an

independent normally distributed random variables  where  ∼  ( 
2) if the athlete

is not doped and  ∼  ( +  2) if the athlete is doped. For example,  could be the

expected distance that a 100-m runner runs in ten seconds, or, it could be the expected

number of aces and winners that a tennis player scores during a match if the player is not

doped, and  +  is the expected performance if the player is doped. Note that doping

increases the performance of both athletes equally. Nevertheless, if the players’ talents are

unequal, the incentives to take performance-enhancing drugs are unequal, in the sense that

performance-enhancing drugs affects the winning probabilities asymmetrically.

To see this assume that player  is at least as talented as player , i.e.,  ≥ , and

define  =  −  and  =  − . Use of doping affects the distribution of  in the

following way: If both athletes are doped or if they are not,  ∼  ( 22), if only player

 dopes,  ∼  (+  22), and if only players  dopes,  ∼  (−  22). Player 

wins the competition if  ≥ 0. Accordingly, the winning probabilities are  =  [ ≥ 0]
where  ∼  ( 22),  =  [ ≥ 0] where  ∼  (+  22), and  =  [ ≤ 0] where
 ∼  (−  22).

To proceed define  =  −  and  =  − (1− ) where  specifies the effec-

tiveness of performance-enhancing drugs in the sense that it measures the increase of

player ’s winning probability when only player  dopes. If   ,    because

the probability density function of  is increasing at  = 0. For the normal distribu-

tion,  =
³


³
+

2
√
2

´
−

³


2
√
2

´´
2−1 and  =

³


³
−
2
√
2

´
+

³


2
√
2

´´
2−1,

where () is the error function. Thus, performance-enhancing drugs affect the winning

probabilities asymmetrically: They are more effective for weak players.

Proof of Lemma 1 Consider, first, the PSE { = 1,  = 1}. It exists if  −  ≥
(1− ) and if (1− ) −  ≥ (1− ), i.e., if  ≥  ≥ e. The PSE { = 1,  = 0}
exists if − ≥  and if (1− ) ≥ (1− )−, i.e.,  = e. The PSE { = 0,  = 1}
exists if (1− ) ≥ − and if − ≥ (1− ), i.e.,  = e. The PSE { = 0,  = 0}
exists if  ≥ −  and if (1− ) ≥ − , i.e.,  ≤  ≤ e. In the MSE the doping
probabilities are given by ∗ = −

− and ∗ = −
− where 

∗ ∗ ∈ (0 1) if  ≤ e ≤ .¥

Proof of Lemma 2 Note, first, that b is the value of  that solves 2 = 3:

b = ( − )
2 + (1− )(1− )

(1− )
2 + (1− )

2 (19)
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Manipulation of (19) reveals that 1 ≥ b ≥ 12. Manipulations of equations (1)-(4)

reveal that if  ≥ b, 1 ≤ 2 ≤ 3 ≤ 4.

Consider, first, the PSE { = 1,  = 1}. It exists if 11 ≥ 21 and 11 ≥ 12, i.e.,

 ≤ 1 ≤ 3. The PSE { = 1,  = 0} exists if 12 ≥ 22 and 12 ≥ 11, i.e., 1 ≤  ≤ 2.

The PSE { = 0,  = 1} exists if 21 ≥ 11, 21 ≥ 22, i.e., 3 ≤  ≤ 4 and the PSE

{ = 0,  = 0} exists if 22 ≥ 12 and 22 ≥ 21, i.e.,  ≥ 4 ≥ 2.

In the mixed-strategy equilibrium, the doping probabilities are given by

 =
22 − 21

11 − 12 + 22 − 21
and  =

22 − 12
11 − 21 + 22 − 12

.

The first thing to note is that 11− 12− 21+ 22 ≤ 0. Thus,  ∈ (0 1) if 22  21 and

if 11  12, i.e., 1    4.  ∈ (0 1) if either 22  12 and 11  21, i.e., 2    3

or if 22  12 and 11  21, i.e., 3    2. This case is excluded by the assumption

 ≥ b. Thus, a MSE exists if 2    3.
16
¥

Proof of Proposition 1 The proof is a direct consequence of the discussion in the text.¥

Proof of Proposition 2 It is first shown that for all parameter values and punishments

2 = 0 and 1 =
1−−+2−


the strategy profile { } is a Nash equilibrium that

is incentive compatible and individual rational. For this purpose assume 2 = 0. Then,

condition (5) is satisfied if 1 ≤ (1−)2


+ (1−)


and if 1 ≤ (1−)2


+ (1−)
(1−) . Condition

(6) is satisfied if 1 ≤ (1−)2


. Thus, for any value of , (6) is binding.

A no-doping equilibrium exists if 22 ≥ 12 and if 22 ≥ 21. Inequality 22 ≥ 21 is

satisfied if

1 ≥
(1− ) [(1− )  − (1− ) (1− )]− e−  ( − )

 −  (1− )
(20)

The right-hand side of (20) is increasing in  and in . Thus, player 
0 incentive to deviate

from the no-doping equilibrium is largest if he is very weak ( = 1) and if  = 1. Thus, to

prevent ’s deviating from the no-doping strategy profile { } for all  and  we need

1 ≥
1−  −  + 2 − e


. (21)

16To be complete, if  ≤ b, the order of the bounds is 1 ≤ 3 ≤ 2 ≤ 4. For low values of  we again

have a pure doping equilibrium { }. As we increase the punishment the equilibrium switches to { }

at  = 1. As we increase  even more, at  = 3, we attain a region with multiple equilibria where the

set of equilibria is {{ }  { }}. Then, at  = 2 we attain equilibrium { }, and, finally, at

 = 4 the no-doping equilibrium { } is attained.
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Inequality 22 ≥ 12 is satisfied if

1 ≥
(1− ) [(1− )  − (1− ) ]− e−  ( − )

 − 
(22)

The right-hand side of (22) is decreasing in  and decreasing in  if [ − ] (1− )  

 [e+  ( − )] (case 1) and increasing in  if [ − ] (1− )    [e+  ( − )]

(case 2). Consider first case 1: In this case player 0 incentive to deviate from the no-

doping strategy profile { } is largest if  = 05 and if  = 05. To prevent ’s

deviation for all  and  we need

1 ≥
(1 + ) [ − ]− 2e

 − 
 0 (23)

Consider next case 2: In this case player 0 incentive to deviate from the no-doping

strategy profile { } is largest if  = 05 and if  = 1. Thus, we need

1 ≥
1− 2 + 2 − 2e

2 − 
(24)

One can show that inequality (21) is binding. Thus, any value of 1 such that
1−−+2−


≤

1 ≤ (1−)2


satisfies (5), (6), 22 ≥ 12, and 22 ≥ 21. Such a value exists because
1−−+2−


 (1−)2


. This establishes the existence of a no-doping equilibrium for all

values of the game that is incentive compatible and individual rational. The punishment

1 =
1−−+2−


is the smallest sanction that prevents the weak player to deviate from

the no-doping equilibrium.

It remains to show that the punishments 2 = 0 and 1 =
1−−+2−


also satisfy

either 12 ≥ 11 or 21 ≥ 11. Inequality 12 ≥ 11 holds if

1 ≥
(1− ) [(1− ) (1− )− (1− ) (1− )] + ( − ) − e

 (1− )−  (1− )
(25)

The right-hand side of (25) is decreasing in  and increasing in . Thus, the right-hand

side is largest if  = 05 and if  = 1 and we need

1 ≥
(1− )(1− )− 2( − ) − 2e


(26)

One can show that the right-hand side of (21) is strictly larger than the right-hand side

of (26). This establishes that the sanctions 2 = 0 and 1 =
1−−+2−


satisfy (5), (6)

and (7).¥
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