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Summary

In this paper we analyse the dynamics of both Romer’s original model
of endogenous growth and of a modified version where the level of
labour and human capital are determined endogenously. We find that
the original model can have an indeterminate Balanced Growth Path
(BGP) if there is some degree of complementarity between the in-
termediate inputs, and if agents have a high intertemporal elasticity
of substitution of consumption. Once we allow for the endogenous
determination -of labour and of total human capital, we find that
equilibrium can be indeterminate with a much lower elasticity of
intertemporal substitution of consumption. Moreover, if some modest
increasing returns are introduced into the production function for
human capital, the issue of global as opposed to local indeterminacy
arises: this refers to situations when there exist multiple determinate
BGPs, but where the global dynamics is still indeterminate from given
initial conditions.

J.E.L. Classification: EQO, E3, 040.
Keywords: Endogenous growth, indeterminacy, transitional
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1. Introduction
Recently, a number of papers on the endogenous growth literature

have explored the possibility of the indeterminacy of equilibrium,
that is the possibility that there exists a whole continuum of

1 For.correspondence.
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equilibria associated with given initial conditions (see, for example,
Benhabib & Farmer, 1994; Benhabib & Perli, 1994; Boldrin &
Rustichini, 1994; Xie, 1994; see also Farmer & Guo, 1994; Gali,
1994, in the context of business fluctuations). Furthermore, these
papers study and often confirm not only the theoretical possibility
but also the empirical plausibility of indeterminacy. In this paper
we study indeterminacy in the model of Romer (1990), in which
endogenous growth is driven by the production of new designs
(knowledge) purchased by monopolistically competitive firms that
produce intermediate goods. We find in Section 2.2 that in-
determinacy can obtain in this model, modified to allow for some
complementarity between the intermediate inputs, with a markup
rate of 25% in the monopolistically competitive sector, for very
standard parameter values except for the intertemporal elasticity
of substitution in consumption which is too high.

In Section 3 we take our analysis one step further and modify
the model to allow the total level of human capital present in the
economy to be chosen endogenously by the optimizing agents. To
keep the analysis as simple as possible, we assume that human
capital is produced using only a fraction of the non-leisure time
supplied by the agents, which is thus drawn out of the time
dedicated to supply raw labour to the consumption sector. This
modification causes the Balanced Growth Path (BGP) to be in-
determinate for even more plausible parameter values; in par-

‘ticular, the intertemporal elasticity of consumption gets much

closer to a realistic range, although it still remains a bit high at
around 1-4. We should note, however, that endogenizing leisure
time as well should allow for intertemporal elasticities for both
labour and consumption to easily fall well within the realistic and
commonly used ranges, as shown by Benhabib and Perli (1994) in
the context of the Lucas (1988) model.

Finally, in Section 4 we introduce a small externality into the
research sector: in this case there may exist two BGPs, both of
which may be locally determinate for low values of the inter-
temporal elasticity of substitution. Nevertheless, there will be a
global indeterminacy, in the sense that from given initial conditions
there will be equilibrium paths that converge to either BGP. Even
more disturbing, it appears that one of the BGPs is degenerate,
i.e. it has a zero growth rate. There is not enough human capital
along that path, and all of it is used in the sector that produces
the consumption good. As a consequence, no new designs are
produced in the research sector, and the economy is deprived of
its engine of growth. The model seems, therefore, to indicate that
a country may (though need not) get caught in a growth trap
not because of “fundamentals”, but simply because of the agents
coordinating their expectations on the “bad” equilibrium.
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2. The standard Romer model

In this section we analyse the transitional dynamics of a version
of Romer’s model of endogenous growth (Romer, 1990). With respect
to the original paper, we allow for some complementarity between
the different inputs in the production of the final consumption good,
as is fairly standard in models involving imperfect competition.

2.1. DESCRIPTION OF THE MODEL

The economy is divided into three sectors. At the top there is a
research sector, which uses knowledge A and human capital H, and
which produces new knowledge, or “designs” for new intermediate
goods. The intermediate sector uses the designs and capital to
produce intermediate goods used as inputs by the final good sector.
The last sector, therefore, uses these intermediate inputs together
with human capital and labour to produce the final, unique, con-
sumption good. In this section the total labour supply L and the
total level of human capital H are assumed to be fixed and supplied
inelastically to the market. The sum of all the intermediate goods
available at a certain date t constitutes the total quantity of
capital available at that date. Assuming that # units of foregone
consumption are needed to produce one unit of an intermediate
good, and assuming, for analytical convenience, that there is a
continuum of such goods, it is therefore possible to write total

A
capital as K= nJ
0

x(a)da, and the production function of the final

good as:

A {
Y= H@Lﬂ( J x(a)%da) ,

0

where y=1—a—f and where {>1 is a parameter that captures
the degree of complementarity between the inputs (if {=1 we have
no complementarity). Moreover, since everything in this model is
symmetric, all the available intermediate stock of capital are
supplied at the same level x. This implies that the total stock of
capital can be written as K=#nAx, and then the production function
becomes: .

Y=n""K'AHLA.

As is stand;.trd, total capital accumulation is simply given by the
difference between total output and consumption; therefore:
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.,  K=Y-C=n""KA""HyL’-C. 1)

It is assumed that the firms in the final sector are perfect com-
petitors. Therefore, they choose the level of intermediate goods
needed for production, and for which they have to pay the price
p(a), that maximizes their profits. Their problem is thus:

A 4 A
mgx{ﬂ“{;ﬁ(f x(a)” Cda) ._'[ p(a)x(a)da}. 2)

0 0

On the other hand, since the intermediate firms use knowledge,
which is a non-rival good, as an input to their production, they
cannot be perfect competitors; indeed they must have some market
power [see section II in Romer (1990) for a detailed discussion].
From the solution of equation (2) we can obtain an expression for
p(a), which gives the inverse demand function for the intermediate
good x(a):

A (-1
pla)= yH}H(J x(a)” cda) x(a)(7)-1. 3)
0

This demand function is taken as given by the intermediate firm
which produces x(a), which also maximizes its profits. Since, by
assumption, n units of x(a) are needed to produce one unit of the
same x(a), the problem of the typical intermediate firm is:

mfx{wH%rLﬁ(rx(a)?ﬂda)c_lx(a)“-mx(a)},

0

where r is the interest rate. The solution to this problem allows
us to express the interest rate r as a function of the other variables
of the model:

2 4 t-1 2y
r:f—éﬂw( '[ x(a)vffda) (@) (7)1 = “%K?—IAHH;L& @
n 0

Comparing equation (3) with equation (4), we see that the price
p(a) that the intermediate sector firm charges for x(a) is just a
markup over the marginal cost 7, i.e. p(a)=(n{/y)r. This fact will
be useful later when we will have to choose a calibrated value for

the parameters. In this way the profit of the monopolistic firm is
therefore:
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n=pla)x—rx= 1M"'(C—;}Q;«-:x:. (5)

The firms that produce designs in the research sector are also
competitive. Each of them has access to the entire stock of know-
ledge, which is perfectly plausible, since knowledge is a non-rival
good. Therefore, the production function of each firm a is fy(a) =
0H(a)A, where H(a) is the amount of human capital used by firm

a. Aggregating across firms we obtain the following law of motion
for A:

A=6H,A=5(H—HyA, (6)

where the last equality follows from the fact that the sum of the
human capital used in the research sector, Hs, and in the final
sector, Hy, must be equal to the total human capital available in
the economy, H.

Since the firms in the research sector are competitive, the price
of each design at time t, P4(¢), is equal to the present value of the
stream of profits that each intermediate firm (which buys the
design) can extract. Hence:

Pﬂ:{ n(@e— [rO¥de. ()
0 .

The evolution of P, over time is immediately obtained by dif-
ferentiating equation (7) with respect to ¢:

P,=rP,—mx. ®
Using equations (6) and (8) we can find the expression that governs
the evolution of Hy over time. We also have to note that the rental
rate of human capital must be equal in the two sectors where it
is used, i.e. the research and the final sectors. This implies that:

P 6A=on""K'A*"HY'LP,

since the final sector is competitive, and therefore:

P =" grAtripirp * ©)
A— 5 Y .

From this equation we get, taking logarithms and differentiating
with respect to time:
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? K 140- ”HYL"—?CM(C —y—1)(H—Hy)+(¢— 1)-—-
A Y
(10)
On the other hand, from (8) and (9) we get also that:
Py =y 9
- Y= AHY: (11)

where A=a{/[y((—7)]. Equating (10) and (11) we obtain an ex-
pression for Hy/Hy:

HY M‘Ky 1AL ?HﬁLﬁ 5A(C'——}’—1)_5‘HY (12)

Hy {(x—1) A(z—1)
' y C o((—y—1) i
o— LK oa—1 '

To complete the model, an expression for the evolution of con-
sumption over time is needed Such an expression can be readily
obtained by conmdermg the representative consumer’s problem,
which consists in the maximization of its lifetime utility functlon
subject to the intertemporal budget constraint:

[(Toeed
max e *di
C() o 1l—0c

subject to
J (C—wyH—w,L—rK)e [;@%*dt=0.
0 .

The Hamiltonian for this system can be written. as:

Cla'

A==

- e P‘+A(rK+wHH+wLL Ce~ [ 9% dt=0.

The first-order necessary conditions for this problem are:

Coe~ =l [0,
A=0,

and then, since the Hamiltonian is concave, we see that the optimal
path for consumption must obey the following law of motion:
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. o,
c_r® PV prrpgr-148-1 P (13)
C o (o o

The model is now completely characterized by the four dif-
ferential equations (1), (6), (12) and (13) in K, A, Hy and C.

2.2. TRANSITIONAL DYNAMICS

Since one of our goals is to study the transitional dynamics implied
by the model, we reduce the dimensionality of the problem from
four to three by a change of variable very similar to those used in
Mulligan and Sala-i-Martin (1993) and in Benhabib and Perli
(1994). Hence we define y = "0~ PKAC-70-D and q = C/K; note that
y would be equal to a multiple of x if there was not complementarity
between the inputs ((=1). Since y/y=K/K—({(—y)/(y—1)A/A and
d/q=C/C—K/K, we have:

ol —y)

YT+ g, (14)
Hy 90=0 ,1prrs SAC—y—1)—0
H fa-1) Hf L YA S (15)
y  0(C—y—1)

A e R

. 2

9.: l__ y—=1pyug B _E

; (Co 1)y HyL +q 2. (16)

This is a reduced three-dimensional system in y, Hy and g only;
its dynamics is equivalent to that of the original four-dimensional
system in the sense that its steady states correspond to the BGPs
of the original four-dimensional model. It turns out that this model
has a unique BGP, which can easily be found in the following way.
For notational convenience define z=y'~'H%L’. Then, from equation
(16), we can find an expression for g as a function of z:

z. 17

If we substitute (17) into equation (15) we get the following ex-
pression for z-as a function of Hy:

o {[60((—1)H—y(p+60H)] (o[6A({—y—1)—4]
' Y(e—7) Y’Alo—7)

Hy. (18)
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Finally, substituting (17) and (18) into (14), we obtain an expression
for Hy as a function of the parameters of the model:

e A OHI0G -0~ (1Dl —p(1 )
T8 Ale(y-0-A-01-(1—y)

Values for y* and g* can then be found using (18) and (17). Since
there is a unique H% there are also unique y* and g*, and the
steady state is therefore unique. This implies a rate of growth of
knowledge for this economy of:

(19)

(1 —y)(0H —Ap)
A= +AA-)—0A(y—=0)’

pa=0(H—HY) =

which, if {=1, is, of course, the same found by Romer.

We now look at the conditions needed for H% to lie between zero
and its maximum feasible value of H. It is easy to show that this
is true if the parameters of the model lie in either one of the
following two sets

0,

4 p(1—y)+6(1—-OH
{pzxﬂanda{ 3G —OH },

O,

0 p(l—y)+6(1-OH
{psKHanda‘J' 5 —OH }

If the parameters are such that they do not lie in either one of
these two sets, we have a corner solution; from now on, however,
we assume that either ®, or ®, contain the parameters of the
model.

Having established that this model has a unique steady state,
we can move on and study its dynamic properties. An equilibrium
is defined here as a collection of functions of time {K(t), A(t), C(¢),
Hy(t)} consistent with the maximization problems of each class of
agents and with market clearing. Moreover, since we want to focus
on balanced growth paths, the functions are such that, as ¢ goes
to infinity, K, A and C grow at a constant rate, and Hy is constant.
The initial values of physical capital and knowledge, K(0) and A(0),
respectively, are exogenously given, while the agents are free to
choose the initial values of consumption, C(0), and human capital
used in the production of the final good, Hy(0). In terms of the
three-dimensional model, this means that y(0) is fixed, while H(0)
and q(0) are free. It is then interesting to find out whether this
model has a unique equilibrium, completely determined by the



ENDOGENOUS GROWTH 287

given initial conditions, or whether there exists a continuum of
such equilibria, making it impossible to predict which equilibrium
the economy will select, based on the available information. In the
latter case we say that the equilibrium is indeterminate.

Indeterminacy of the equilibrium can be useful to interpret some
of the available empirical evidence on different growth experiences
of apparently similar countries, as discussed in Benhabib and Perli
(1994), without relying on differences in fixed effects. It is known
from Boldrin and Rustichini (1994) that it appears under very
mild conditions in two-sector exogenous and endogenous growth
models in discrete time with only one choice variable (typically
consumption). However, there are not comparable theoretical res-
ults for continuous time models, such as the one at issue here,
even though in the literature there are quite a few examples of
such models that exhibit indeterminacy, both with one sector and
two choice variables (e.g. Benhabib & Farmer, 1994) and with two
sectors and one or two choice variables (e.g. Benhabib & Perli,
1994; Xie, 1994). The next proposition shows that Romer’s model
considered here may also exhibit an indeterminate equilibrium. For
notational convenience define 0 as the vector of all the parameters of
the model, i.e. 0=(x, B, 7, 5, 1, 0, p, ). Then we can prove the
following:

PROPOSITION 1: suppose that the model has an interior steady state;
then a necessary condition for the equilibrium of Romers model to
be indeterminate is that 0e®,.

PROOF: our strategy is to linearize the three-dimensional system
of equations (14)~(16) around its steady state, and show that the
Jacobian matrix evaluated at the steady state can have two neg-
ative roots only if 0€0,.

The Jacobian matrix evaluated at (y*. H%, g*) can be written
as: :

*
Jl]_ ‘:)FII_"}‘,(?)EJ_JH-F&H,;) _,,y*
SAQC—y—1)—5 .

J* = (=0 JuHY ay(y—0)
Ale—1) Yoa—177)p

=Dy e-D

P —{o JIng* ay*— (o) Jng* *
o o lo(—1) HY ?

Jll -

where J;; =(y—1)z*. The key quantity to understand the trans-
itional dynamics implied by the model is the determinant of <J*.
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The BGP is locally indeterminate if there are two eigenvalues
with negativé real parts and one positive, which implies that the
determinant must be positive. After some passages we see that
the determinant of the Jacobian matrix can be written as:

YA —1) +1+A—y(1+0A)]
{oA(e—1)(y—1)

We see then that Det<J* is positive if:

DetJ*=

JLHY q*.

A-»+A1-0

o< A(y—A)

Since:

A-N+AQ-0_ p(A—p+6(1-DH
Ay—A) 5(_?—C)H

if p>(5/A)H, we can conclude that we have an interior steady
state and a positive determinant when the restriction 0e®, is
satisfied. H

The fact that the determinant is positive when 0€®, is not
sufficient to guarantee that the equilibrium is indeterminate in
the sense defined above. In principle it is possible that the Jacobian
matrix has three positive roots, which would imply that the steady
state is dynamically unstable. This does not mean that in this
case, however, the model predicts explosive growth: since the
determinant does not become zero and remains always finite, the
only way in which the dynamic properties of the steady state can
change is through a Hopf Bifurcation, which implies that cyclical
trajectories emerge, the stability properties of which remain to be
investigated.

On the other hand, the restriction e ®; automatically excludes
the possibility that the BGP is saddle-path stable, and hence the
possibility that the BGP is determinate; there can be a unique
equilibrium, however, but if so it has necessarily to be a cycle. An
immediate corollary of proposition 1 is that it is necessary for the
BGP to be determinate that fe®,. Again, this is not sufficient for
determinacy, since we could have a case of complete dynamic
stability of the steady state, i.e. three negative eigenvalues. Nu-
merical simulations, however, seem to exclude this case.

We note also that there cannot be indeterminacy if there is not
enough complementarity between the intermediate goods, i.e. if {
is not sufficiently greater than one. In particular, if {=1, which is
the assumption implicit in the original Romer paper (1990), we
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TABLE 1 0=0-34, f=0.17, §=0.05, p=0-06, {=2, n=0-34

a Hfr r* Ha [17e roots
0-10 0-806 0-037 0-009 0-028 ——+
0-15 0-739 0-039 0-013 0-038 ——+
0-20 0-601 0-042 0-021 0-063 ——+
0-26 0-155 0-054 0-041 - 0.122 ——+

see that a necessary condition for indeterminacy would be that
o<—p/(6H), which clearly contrasts with the fact that ¢ has to be
positive. We now report some results of our simulations. Since this
is not a one-sector model with perfect competition, the exponents
of K, Hyand L in the production function cannot be interpreted as
the shares of capital, human capital and labour, respectively. To
obtain plausible values for those parameters, therefore, we use the
following criterion: it is known from various other works (see, e.g.,
Lucas, 1988) that the share of capital in profits is about 0-25 to
0-33. The share of total labour, skilled and unskilled, is therefore
0-67 to 0-75. Of this, as, for example, Mankiw, Romer and Weil
(1990) point out, about 50% to 70% goes to skilled labour, i.e. to
human capital. The shares of the three factors (K, H and L) are

_given by the quantity of each factor used in production times its

rental rate divided by the total factor remuneration. The latter
is, of course, rK+w,L+wgH, or, substituting for r, w;, and wg,
(1—o—p)Y.+a+p=D. Then, the shares of capital, labour and
human capital are respectively: Sg=((1 —a—p)%(YD, S,=p/D and
Sy=a/D. Then we impose the restrictions Sg=0-25 as in Lucas
(1988) and Sy=2S;, which is in the range suggested by Mankiw,
Romer and Weil (1990). Imposing, arbitrarily, {=2, this implies
that «=0-34, f=0-17 and y=0-49. As for the other parameters, we
also rely on Lucas (1988) in setting 6 =0-05. We set the discount
factor at a level of 0-06, which is in the range of those commonly
used in the literature. Finally, we set n=0-34 in order to have a
markup of about 25%, and fix the total level of human capital to
1. Table 1 reports the results of the simulations using these
parameters and the indicated values of ¢. We see that both the
interest rate and the growth rates on the BGP are very realistic.
The problem is, of course, that ¢ is quite low. From proposition 1
we know that a necessary condition for indeterminacy is that fe®,;
with the above parameter values, this translates into p>0.055 and
0<0-26 (the values are, of course, approximate). With values of ¢
bigger than that, we have a corner solution if we keep p fixed. To
have an interior solution we have to lower the value of p, which
would bring the parameter vector inside @,, a necessary condition
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TABLE 2 =034, f=0.17, 5=0.05, p=0.05, { =2, n=0.34

o H% r* Ha Ug roots
0-50 0-855 0-036 0-007 0-021 —+ +
1-00 0-958 0-033 0-002 0-006 —+ +
1-50 0.975 0-032 0-001 0-003 —++
2.00 0-983 0.031 0-001 0-003 —++

for determinacy. Table 2 reports the root structure of the Jacobian
matrix using the same parameter values as in Table 1, with the
exception that p is now 0-05.

3. Endogenous human capital

As seen above, in the original Romer model, the total levels of
human capital and labour in the economy are assumed, for sim-
plicity, to be exogenously given. In this section we extend the model
in the direction of making those levels depend on the decisions of
the optimizing agents.

3.1. DESCRIPTION OF THE MODEL

As in the previous section, we still assume that the agents supply
their time inelastically; now, however, we allow them to decide
how to use that time: they can either use it to accumulate skills
(human capital) or they can use it to supply unskilled labour. In
the following model, therefore, human capital is produced using
only the part of time the workers decide to devote to its production.
We assume that this simplified production function of human
capital exhibits non-increasing returns in the time allocated; if we
call 7" the amount of time devoted to the production of skills, the
following functional form is analytically very convenient:

H=H(T)=T¢ (20)

with ¢<1. On the other hand, unskilled labour does not need to
be produced, and therefore it is assumed to be equal to the amount
of time not used to produce human capital, i.e. L=I(T)=1—T if
we normalize the total available non-leisure time to unity.

Since the non-leisure time is supplied inelastically, neither labour
nor human capital appear in the utility function; the agents max-
imize the same lifetime discounted utility function used in the
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previous section, ‘subject to the same intertemporal budget con-
straint. Now, however, they recognize that human capital and
labour are functions of the time that they decide to dedicate to
each of them. Formally, their problem is thus:

=] —
ct- -1
max | ———e?dt
C@) 0 l—0c

subject to
'[ (C—wyH—wiL—rK)e [;"@%*dt=0.
0

This problem can be solved using the same standard technique as
in Section 2. The Hamiltonian is:

1—o __ .
H =C—1w—19“°‘ + AMrK +wgH + wiL—C)e™ ("% dt=0.
—0

And the corresponding first-order necessary conditions are:

C e " =je [JO%
MwgeT ™ —wple™ [0 =0,
A=0.

From these conditions we can derive the law of motion of con-
sumption over time, which is again C/C=(r(t)—p)/o, and obtain
the following relationship between the rental rates and the time
spent accumulating human capital:

wy=ewgT* L. (21

Since both unskilled labour and human capital are employed in
the final good sector, which is competitive, their rental rates are
equal to their respective marginal products, i.e. w, =y "K'A*~"

YL and wy=an"K’A*"H% 'L’ (the production function of the
consumption good is, of course, still the same as in Section 2).
Substituting these two expressions into equation (21), and using

the fact that L=1—T, we can obtain the following expression for
Hy:

HyzgﬁﬁT"“i(luT). (22)

Equation (22) can then be used to eliminate Hy from the laws of
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motion of K and A. Substituting also the expressions for H and L,
we can write:

K=yK A T-(1 Ty~ _C, (23)
A =%AT8—1[5T— ae(1—T)], (24)

where  =#n""(ac/f)". As in the previous section, we can obtain an
expression for the price of each intermediate good from the typical
final sector firm’s maximization problem, and use it to write the
interest rate as a function of K, A and 7 from the intermediate
sector firm’s maximization problem. It is easy to see that the
expression for r so obtained is again equation (4). We can then use
this expression, with (22) substituted for Hy, to write the law of
motion of consumption as:

C_eo
C o

where ¢ = (77%/)(we/ B)". _
To obtain an equation for 7/7 we follow exactly the same
steps used in Section 2 to get an expression for Hy/Hy. From the

equalization of the rental rate of human capital in the final and
research sectors, we can write P, the price of each design, as:

N (25)

=Y
p,=4"

a—1
5 (‘E) RYA1=1Te=e=0(] _ 7y

p

Taking logarithms and differentiating with respect to time gives:
P, K ' A T T T
5= gt D D6y (26)
On the other hand, we can use equation (8) to obtain another
expression for P,/P;:
PA —1 Al—yra(e—1) 1- 4 -1
B =K AT (1 -T) =R TTA-D, 27)

A
where it is easy to verify that now A = (BO/ye( —y)]. Equating (26)
and (27) yields the following expression for 7/7':

?__1._ Y0—=0 ) s t—ypate-11 _ yi—y 4 . C
T_G(T)'{ ¢ YK AT a-m —I-}JK

—aTﬂ-l[(c»y—l)T+B‘°‘EAffﬁ‘?"1’(1—1*)}}, @28)
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where GO =[(a—DEe-1)A-17)+yTV(1 —T). In this way our modi-
fied model is completely characterized by the four differential
equations (23), (24), (25) and (28).

3.2. TRANSITIONAL DYNAMICS

Once again, we can reduce the dimension of the system to three
using the same change of variables as in Section 2. In particular
we define y=yK'*A°? and ¢ =C/K. Then the reduced system is:

3 = (p— LyT*-D(1 —T)' "~ (y—1)g (29)
5@3 T)Ts I[BT ae(1—T)],
i‘_i 3’(3’_;0 w(e—=1)(1 __ iy
T_ G(D'{“—{ YT~ (A —=T) 7" +yq
—5T5“1[(C —y-nr+k= aaAj(fﬂ_?_ Da- T)]} (30)
4_ pyree-n(1 —Ty7—L 4 g, (31)
q a

with @ = (y2—{0)/({o). The next step consists in finding the steady
state of the system of equations (29)—(31). For this purpose, define
z2=yT“¢~Y(1 —T)'; then from equation (31) we can write:

— Wz

ng
g

Substituting this into equation (29) we can find an expression for
z as a function of T only:

z=M,—M,T* [T —oe(1—-T)],

where, for convenience of notation, we defined the two constants
M= p/[6(1 +w)] and My = [6({ —p)VI[B(y — 1)(1 + w)]. In this way both
g and z are functions of 7" alone; we can therefore substitute their

expressions into equation (30) and obtain the following function of
T:
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TABLE 3 =0-3, f=0-3, §=0.08, p=0.05, { =4, =0.125, s=1

c L* T H* H% La Ug roots
0.1 0497 0-503 0-503 0497 0.0006 00033 ——+
0-3 0495 0-505 0-505 0495  0.0008 0-0061 ——+
0-6 0484 0-516 0.484 0-516  0.0025 0.-0154 ——+
0-7 0437 0-563 0-437 0-563 0-0100 00600 ——+
0-8 0-531 0.469 0.531 0469  0.0000 0-0000 C.S.

c.8. = corner solution.

TABLE 4 a=0-45, f=0-8, §=0.05, p=0.025, (=4, n=0.07, e=0-5

a L* T H* H% Ha Ux roots
0-1 0-552 0-448 0-670 0619 0-0025 0-0127 ——+
0-3 0-543 0-457 0-676 0602 00037 00187 ——+
0-6 0467 0-533 0-723 0-480 0-.0125 0-0626 ——+
0-7 0-001 0-999 0-999 0001  0-0500 02500 ——+

0-8 0-700 0-300 0-547 0960  0-0000 0-0000 c.s.

c¢.s. = corner solution.

f(D=?M1(C'“?—CCG)_}’Mz(C—?'—CGJ)
¢ ¢

+19ﬁ5T5—1[(c—y—1)+5"“£A(C_”_1)(1—T)}- (32)
o pA

T [BT—ae(1—T)]

The values of T' such that f(T)=0 give the steady states of our
modified model.

In general, f(7T) is impossible to solve analytically, since T appears
in it raised to the powers of ¢ and ¢é—1. We will have, therefore, to
resort to numerical calculations, some of which are reported in the
following tables.

In Table 3 we report the results obtained using a linear pro-
duction function for human capital, i.e. setting e=1. The other
parameters are 0=0-34, f=0-17 and y=0-49, as in Section 2.2,
0=0-05, p=0-05, { =2 and n=0-34. The value for  has been chosen
in such a way that the resulting markup is 25%, which is a value
usually considered plausible. In Table 4 we use instead an ¢ of 0.5.
The results shown in the two tables are very similar: we obtain
an indeterminate steady state only for values of ¢ equal to or less
than 0.7, while for higher values we obtain a corner solution. This
result resembles very closely what we got, analytically, for the
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standard Romer model in the previous section. In order to have a
determinate BGP we not only need a high o, but also a higher
discount factor. Note that we cannot say anything, at this point,
about the stability properties of the steady state when we have a
corner solution.

We could get indeterminacy also for higher values of ¢ if we
increased {, but in any case ¢ could never be bigger than or equal
to one, which seems to be the upper bound for ¢ to have an interior
steady state when (—co. The problem with a high { is that the
discrepancy between the growth rate of knowledge, p,, and of
physical capital, ug, becomes larger and larger as { grows, which
suggests that values of { above a certain threshold may not be
very realistic. Note that in Benhabib and Perli (1994) two of us
were able to obtain indeterminacy in the Lucas (1988) model for
larger values of o, because the total non-leisure time was also
endogenized. We conjecture that a similar situation should occur
with this model; given the complexity of the required analysis,
however, we leave such investigation for future research.

4. Increasing returns in the production of human capital

We have assumed so far that the production function of human
capital exhibits non-increasing returns. While this is a realistic
hypothesis at the single-agent level, it may not be such at the
aggregate level. Agents are usually thought to benefit from the
average level of human capital present in the economy, which, in
our context, is proportional to the average time spent in the
production of human capital. It seems, therefore, appropriate to
write equation (20) as:

H=TT.

With this alternative specification, following exactly the same steps
as in Section 3.1, we get that the amount of human capital used
in the consumption good sector is given by:

HY=%T3+9—1(1 _ T’)

and that the reduced three-dimensional system is now:

i—i= G —=DyT =21 -T)' "~ (y—1)q
o—)

5

T+ BT —oe(1 =T,
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TABLE 5 «=0-34, =0-17, §=0-05, p=0.05, {=2, n=0-34, e=1

Ed

c L* T H* H% La Ux roots

09 0-363 0637 0608 0347 00182 00924 ——+
1.0 0416 0584 0554 0394 0.0127 0.0771 —++
1.5 0471 0-529 0496 0442 0-0044 00263 —+ +
20 0482 0516 0485 0452 0.0032 00159 —+ +

%Zéi—ﬂ' {?(?;Omi(Hﬂ—l)(l _ 7)1_},_'_?(1
~5Te+“—1[(c-y—1)T+ﬁ —oehl =l T)}}

g: wyTu(e+6—])(1 _ TDI_T —E—HI,

q _ o

where now Gy(T) =[(«—1)(e+0—-1)A—-T)+yTWV(1—T). Again, this

system cannot in general be solved analytically; we therefore have

to use numerical techniques. As before we can express z and q as

a function of 7, and obtain the following non-linear equation in T
only:

M, —y—L{w) yM((—y—(w

}c(T):'}’ 1(C g'}’ C _’P 2( C'}’ C )

+%€_5Te+8—1[((:_,},_1)+ﬁ—OCSA(C_"P“1)(1ﬁT):|, (33)

T BT —oe(1 —T)]

BA

where w, M; and M, are defined as in Section 3.2.

We note immediately that the shape of this function of 7T'depends
crucially on the magnitude of the exponent ¢+ 6 —1: if it is smaller
than one, we have a situation equivalent to the one described in
Section 3.2, with only one steady state. If, however, ¢+0>1, i.e. if
the externality is such that the production of human capital
exhibits increasing returns at the aggregate level, f(T) would in
general have two steady states. In the following we will concentrate
on this last case. The numerical simulations that we conducted
seem to indicate that the steady state with a lower T is always a
corner solution: the constraint that Hy<H seems to be always
binding. The second steady state, however, can either be a corner
solution or an interior solution, depending on the parameter values.

The stability properties of the higher steady state for the same
parameter values used in Table 3 and a value of the externality 0
of 0-1 are reported in Table 5 for various values of the intertemporal
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elasticity of substitution of consumption ¢. We see that this steady
state is locally indeterminate for values of ¢ smaller than 1 (for
some parameter values a BGP may not exist for low ¢), and
after that it becomes locally determinate. As far as the local
indeterminacy of the equilibrium, these results confirm, of course,
those obtained in Section 3.2: the steady state with a higher T is
locally indeterminate for relatively small values of &. But now,
however, while the equilibrium is locally determinate for higher
values of g, there is still no way of deciding which equilibrium (the
one with a low T or the one with a high 7) the economy will select,
for a given initial condition, based only on the available information;
we have, therefore, a case of global indeterminacy. This situation
is perhaps even more intriguing than local indeterminacy: while
in that case, using local analysis, the model can predict at least
the long-run behaviour of the economy (all the infinitely many
equilibria have the same growth rate in the end), here nothing
can be said at the beginning about where the economy will end up
asymptotically. Of course, predictions will be precise once the
initial choices of the consumption level and of the time allocated
to the production of human capital are made. '

As noted in the introduction, the economy can get caught in a
growth trap because the agents coordinate their expectations on
the low-level equilibrium; a switch to the high-level equilibrium
would, therefore, seem to require that all the agents re-coordinate
‘their expectations on the new equilibrium. In such a case the
economy would “jump” to the high-level equilibrium and start its
development process from there.
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